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crystal temperature (T ). The corresponding phonon wave-
vectors result in the total momentum conservation (i:e:�! q i +
�! q j =

�!
0 ). The coupling coefficients γ

(3)
i j (ω) are tied to the

third derivative of the crystal potential. Due to the density
of states factor(ρω1;ω2 ) zone-edge phonons (with �! q i = � �! q j)
are expected to provide highest contribution in the decay pro-
cess. Analyzing our time-resolved CARS data for the phonon
decay at � 465 � 27 cm� 1 we should state that the Raman
active line is 80 cm� 1 blue shifted compared to the calcu-
lated zero-wavevector LO2-phonon energy provided in Ref
[8]. Comparison of the detected value with the calculated
LO2-phonon energy provided in Ref [9] shows slightly red
shifted (� 25 cm� 1) vibration while the experimental results
of this work identify the LO2-phonon position at � 408 cm� 1.
With regard to the observed phonon dynamics in our CARS
experiment, we can identify a straightforward decay route.
The traced 465 cm� 1 vibration can decay into lower energy
phonons with energies of � 300 cm� 1 and � 160 cm� 1.8,9 Us-
ing formula (2), knowing from our data that G= 1.59 ps� 1(at
T = 300K), and calculating the final phonon occupation num-
bers, we can estimate a zero-temperature decay rate of 0.73
ps� 1. This results in a linewidth of 3.89 cm� 1. With regard
to the detected � 630 cm� 1 vibration, its frequency position
matches well with the theoretical predictions of Refs [8, 9].
The DFT results of Ref [9] show that there might be at least
two different decay channels. These are the overtone paths
resulting in final phonons with equal energy (� 315 cm� 1)
and the opposite wave-vectors and the combination channel
involving two LO-phonons with energies of � 480 cm� 1 and
� 160 cm� 1. The DFT calculations of Ref. [8] also suggest
that there might be more than one combination channel for
the decay. This is the phonon pair involving LO- and TO-
vibrations with energies around � 385 cm� 1 and � 240 cm� 1

as well as another possibility that involve final phonon states
at � 490 cm� 1 and � 140 cm� 1. The above arguments to-
gether with data presented in Fig. 3 for the � 630 cm� 1 mode
yields the decay rate at zero-temperature to be within 0.63-
0.89 ps� 1 (2.38-3.36 cm� 1 for linewidths). The ratio factor
(r) mentioned above and the DFT calculations lead us to a
conclusion that the CARS transient presented in Fig. 4 is due
to a two-phonon state. Indeed, the resonant part is weaker
as the ratio drops from r = 3:7 � 10� 2 for the � 465 cm� 1

mode to r = 2:5 � 10� 4 for the mode at � 792 cm� 1. The
two-phonon state is formed by two LO2 phonons (� 385-420
cm� 1). Theoretical and experimental studies show the two-
phonon states may even have comparable Raman scattering
cross-section18–20. This is especially true for the case of wide-
bandgap materials. The cross-section was found to be depen-
dent on ratio of material’s bandgap to the probe photon en-
ergy and the increase is nonlinear with the ratio19. Similarly,
we believe that the results presented in Fig.5 (a,b) show dy-
namics of the two-phonon states with the rates governed by
low energy lattice vibrations that form the two-phonon states
combining LO2 and LO3 phonons.

In conclusion, we reported results on direct measurements
of the decay of lattice vibrations in wide-bandgap semicon-
ducting BaSnO3 single crystal. The intrinsic vibrations de-
cay via mechanisms of parametric phonon interaction. Time-

FIG. 5. (a) Time-resolved CARS signals detected at anti-Stokes
wavelengths corresponding to phonon modes at � 946 cm� 1, (b)
� 1068 cm� 1, (c) potential phonon modes at around 1240 cm� 1.
(d) CARS spectra recorded at different delay times within the anti-
Stokes wavelengths range of 730-760 nm showing two components
that correspond to the phonon modes at 946 cm� 1 and 1068 cm� 1.
Theoretical fitting curves are shown in lines and the phonon decay
time (T2) constants representing the best fits are provided in the leg-
ends

resolved coherent Raman measurements offered exceptional
precision and resulted in an equivalent spectral resolution that
is extremely difficult to achieve in traditional Raman scatter-
ing studies. In particular, the experimental data allowed im-
portant estimates for zero-temperature decay rates for the pri-
mary LO-phonons to within the range of 0.63-0.89 ps� 1. In
the spectral domain, this corresponds to linewidths range for
Raman resonances of 2.38-3.89 cm� 1. We believe that the
studies provide very important information on a class of ma-
terials within the transparent semiconducting oxides that are
being actively considered for high power solid-state device ap-
plications.
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