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Interacting hard-sphere fluids in an external field

Benaoumeur Bakhti1 and Gerhard Müller2

1G2E Lab, SNV and Department of Physics, University of Mustapha Stambouli, Mascara 29000, Algeria
2Department of Physics, University of Rhode Island, Kingston RI 02881, USA

We present a new method for studying equilibrium properties of interacting fluids in an arbitrary
external field. The fluid is composed of monodisperse spherical particles with hard-core repulsion and
additional interactions of arbitrary shape and limited range. Our method of analysis is exact in one
dimension and provides demonstrably good approximations in higher dimensions. It can cope with
homogeneous and inhomogeneous environments. We derive an equation for the pair distribution
function. The solution, to be evaluated numerically, in general, or analytically for special cases,
enters expressions for the entropy and free energy functionals. For some one-dimensional systems,
our approach yields analytic solutions, reproducing available exact results from different approaches.

I. INTRODUCTION

Fluids of interacting particles, such as sticky or ionic
fluids, exhibit broadly varied and complex phenomena,
even more so in the inhomogeneous environment of an
external field. Although several experimental works have
well characterized the complex behavior of inhomoge-
neous interacting fluids, a complete microscopic descrip-
tion of the observed behavior is still missing. Driven by
their widespread applications, including microfluidic de-
vices [1] and nanobiotechnological means of drug delivery
[2], a great deal of attention has recently been given to
models of interacting fluids [3–6].

Aiming to better understand equilibrium and nonequi-
librium properties down to the nanoscale, a variety of
analytical and computational tools have been suggested.
Density functional theory (DFT) is a powerful method for
investigating equilibrium properties of interacting fluids
[7–17]. However, good approximations from equilibrium
DFT have been limited to hard particles (via the funda-
mental measures approach) or else to weakly interacting
particles [18–25]. Constructing a good approximation of
density functionals for more general interactions remains
an open question.

To a large extent, the complex behavior of real flu-
ids stems from (i) the interaction potentials and (ii) the
shapes of constituent particles. In this work we aim to
extend the DFT for fluids of hard bodies beyond the
hard-sphere models in the line of aspect (i) by intro-
ducing nearest-neighbour interactions of arbitrary profile
and coupling strength and with a maximum range of two
molecular diameters.

Inspired by work of Percus on hard rods [26] and by
the probabilistic modeling of lattice hard rods with ad-
ditional interactions, we derive a recurrence relation for
the pair distribution function (PDF) of interacting hard-
sphere fluids which is valid in any dimension [27–32]. Us-
ing this recurrence relation, we infer explicit expressions
for entropy and free energy as functionals of density and
PDF. A key advantage of our approach is that the total
correlation function or the radial distribution function
can be determined directly from the PDF without fur-
ther differentiation of the free energy functional, which

circumnavigates the most laborious parts of more com-
monly taken approaches. The close connection between
radial distribution functions and neutron scattering cross
sections makes the former a desirable object of theoreti-
cal and computational investigations.

In this work we consider a fluid consisting of N iden-
tical particles confined to some macroscopic region of
space, in the presence of an external potential Vex and a
pair interaction potential φ between neighbors within a
limited range of mutual distances. The total (potential)
energy is [33, 34],

H(r1, . . . , rN ) =
∑
i<j

φ(ri, rj) +

N∑
i=1

Vex(ri). (1)

The particles have a hard core of diameter σ. They are
rods, disks, and spheres in D = 1, 2, 3 dimensions, re-
spectively. In addition to hardcore repulsion, our model
includes a central-force pair interaction ε(r) of limited
range and arbitrary profile. We thus write,

φ(ri, rj) =

∞ : |ri − rj | < σ,
ε
(
|ri − rj |

)
: σ ≤ |ri − rj | < ξ,

0 : |ri − rj | ≥ ξ.
(2)

The restriction, ξ < 2σ, for the maximum interac-
tion range in combination with the hardcore repulsion
[Fig. 1(a)] ensures that the number of neighbors to which
any particle is coupled is limited by the number of
nearest-neighbors in a close-packed configuration: two
in D = 1, six in D = 2 (hexagonal), and twelve in D = 3
(hcp or fcc).

In Sec. II we present the central idea behind the
methodology – a recurrence relations for the PDF – that
produces exact results in D = 1 and approximations of
promising quality in higher D. The practical use of this
recurrence relation in the functionals for the entropy and
the free energy are described in Sec. III for very general
situations. In applications to 1D systems, all expressions
simplify considerably as is described in Sec. IV, and the
approach is exact as is demonstrated in Appendix A. The
strength of the methodology for 3D applications is shown
in Sec. V in the context of three situations with inhomo-
geneous external potentials.
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FIG. 1: (a) The pair interaction, ε(|r−r′|), between two hard-
core particles of diameter σ has range, σ ≤ |r − r′| ≤ ξ. (b)
Regions of integration, named V and V ′, are shaded differ-
ently. Position r is at the center of V , position r′ anywhere
inside V and position r′′ anywhere inside V ′.

II. PAIR DISTRIBUTION FUNCTION

Direct correlation functions (DCF) are of central inter-
est in DFT. Generally, the DCF can be determined from
the free energy functional via second derivative with re-
spect to the particle density. If the free energy functional
is not known, it can be determined from the Ornstein-
Zernike (OZ) equation. But here a closure relation is
required between the two unknowns of the OZ equa-
tion, namely the DCF and the total correlation function.
Different closure approximations have been proposed to
solve the OZ equation, including the Percus-Yevick [35],
hypernetted chain [36, 37], Born-Green [38] and mean-
spherical-model approximations [39]. With the DCFs
thus calculated, free-energy functionals in various ap-
proximations are then being constructed and evaluated.

The route we take in this work is different and does
not rely on any closure relation. It aims instead for a
hitherto unused relation between the particle density,

ρ(r)
.
= 〈ρ̂(r)〉 =

1

N

〈
N∑
i=1

δ(r− ri)

〉
. (3)

and the PDF [40],

ρ(2)(r, r′) = 〈ρ̂(r)ρ̂(r′)〉

=
1

N(N − 1)

〈∑
i,j 6=i

δ(r− ri)δ(r
′ − rj)

〉
, (4)

where 〈 〉 denotes the canonical ensemble average.
For the establishment of this relation between ρ(r) and

ρ(2)(r, r′), we introduce three auxiliary distribution func-
tions (ADFs) defined as follows:

ρ̃(r, r′)
.
=

〈
ρ̂(r′)

[
1−

∫
V ′
dr̄2ρ̂(r̄2)

]〉
, (5)

ρ̃1(r, r′′)
.
=

〈[
1−

∫
V

dr̄1ρ̂(r̄1)

]
ρ̂(r′′)

〉
, (6)

ρ̃0(r)
.
=

〈[
1−
∫
V

dr̄1ρ̂(r̄1)

][
1−
∫
V ′
dr̄2ρ̂(r̄2)

]〉
, (7)

where the regions of integration are explained in
Fig. 1(b). The variable r is only implicitly present in
these expressions. The positions r′ and r′′ relative to the
position r are limited to the regions V and V ′.

These expressions can be interpreted as the probability
density (5) for a particle to be present at position r′ in
region V and no particle present inside region V ′, the
probability density (6) for a particle to be present at
position r′′ in region V ′ and no particle present inside
region V , and the probability density (7) for no particle
to be present inside the combined region VT

.
= V ∪ V ′.

The ADFs are not independent of each other. All three
can be expressed as functionals of the density (3) and the
PDF (4):

ρ̃(r, r′) = ρ(r′)−
∫
V ′
dr̄2ρ

(2)(r′, r̄2), (8)

ρ̃1(r, r′′) = ρ(r′′)−
∫
V

dr̄1ρ
(2)(r̄1, r

′′), (9)

ρ̃0(r) = 1−
∫
VT

dr̄ρ(r̄) (10)

+

∫
V

dr̄1

∫
V ′
dr̄2ρ

(2)(r̄1, r̄2).

There is space for no more than one particle in region V .
If a particle is present in region V , then there is space for
no more than one particle in region V ′.

Next we relate the PDF and the three ADFs to the
joint probability distribution (JDF) at thermal equilib-
rium,

p(r1, . . . , rN ) = Z−1e−βH(r1,...,rN ), (11)

where

Z =

∫
V
dr1 · · ·

∫
V
drNe

−βH(r1,...,rN ), (12)

is the canonical partition function and V the space to
which the fluid is confined. Keeping in mind that here
we are using a canonical ensemble, the four distribution
functions can be represented as follows:

ρ(2)(r′, r′′) =
1

Z

1

N(N − 1)

× e−β[φ(r
′,r′′)+Vex(r

′)+Vex(r
′′)]

∫
V′
dN−2r e−βH1 , (13a)

H1(r′, r′′, r3, . . . , rN ) =

H− φ(r′, r′′)− Vex(r′)− Vex(r′′), (13b)

ρ̃0(r) =
1

Z

1

N(N − 1)

∫
V′
dNr e−βH, (14)
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ρ̃(r, r′) =
1

Z

1

N(N − 1)
e−βVex(r

′)

∫
V′
dN−1re−βH2 , (15a)

H2(r′, r2, . . . , rN ) = H− Vex(r′), (15b)

ρ̃1(r, r′′) =
1

Z

1

N(N − 1)
e−βVex(r

′′)

∫
V′
dN−1re−βH3

(16a)

H3(r1, r
′′, r3, . . . , rN ) = H− Vex(r′′), (16b)

where V ′ is the complement to VT in V: V = V ′ ∪ VT ,
V ′ ∩ VT = ∅. We can thus write,

ρ̃0(r)ρ(2)(r′, r′′)

ρ̃(r, r′)ρ̃1(r, r′′)
= e−βφ(r

′,r′′)A(r, r′, r′′)

B(r, r′, r′′)
, (17)

where

A(r, r′, r′′) =

[∫
V′
dNr e−βH

] [∫
V′
dN−2r e−βH1

]
, (18)

B(r, r′, r′′) =

[∫
V′
dN−1re−βH2

] [∫
V′
dN−1re−βH3

]
.

(19)

In what follows we shall use Eq. (17) for A = B with
the understanding that, in general, it represents an ap-
proximation. We shall argue that the approximation is
good, in general. Indeed, there are nontrivial situations
for which A = B is exact as shown in Appendix A. In
combination with expressions (13)-(16) , the assumption
A = B yields the following functional relation – the de-
sired recurrence relation – between the particle density
and the PDF:

ρ(2)(r′, r′′) = e−βφ(r
′,r′′)

[
ρ(r′)−

∫
V ′ dr̄2ρ

(2)(r′, r̄2)
][
ρ(r′′)−

∫
V
dr̄1ρ

(2)(r̄1, r
′′)
]

[
1−

∫
VT
dr̄ρ(r̄) +

∫
V
dr̄1

∫
V ′ dr̄2ρ(2)(r̄1, r̄2)

] : σ ≤ |ri − rj | < ξ. (20)

For distances outside this range we have,

ρ(2)(r′, r′′) =

{
0 : |ri − rj | < σ,
ρ(r′)ρ(r′′) : |ri − rj | > ξ.

(21)

For specific 1D models this implicit relation can be solved
into an explicit expression for the PDF as a functional of
the particle density. In general, we must solve Eq. (20)
computationally.

The numerical results shown below in Sec. V justify
the strength of the approximation A = B. For interact-
ing systems, the highly structured oscillations appearing
in density profiles can be captured only by an advanced
DFT approximation such as the fundamental measure
theory (FMT), but not by a simple DFT approximation
such as the local density approximation (a mean field the-
ory) and can only be partially captured by the weighted
density approximation.

The radial distribution function and total correlation
function follow directly:

g(r′, r′′) =
ρ(2)(r′, r′′)

ρ(r′)ρ(r′′)
, h(r′, r′′) = g(r′, r′′)− 1. (22)

Even though the derivation of (20) has been worked out
in the canonical ensemble, the result is independent of
the ensemble in use. It will be used in the grandcanonical
ensemble, to which we switch in Sec. III.

III. FREE-ENERGY AND ENTROPY
FUNCTIONALS

DFT expresses the free energy (grand potential) as a
functional,

Ω̃ = Ω̃[Ṽex, φ], (23)

of the external potential modified by the chemical poten-
tial,

Ṽex(r)
.
= µ− Vex(r), (24)

and the interaction potential φ(r, r′) such as introduced
in (2). The density ρ(r) and the PDF ρ(2)(r, r′) are ex-
tracted from (23) via functional derivatives:

ρ(r) = −δΩ̃[Ṽex, φ]

δṼex
, ρ(2)(r, r′) =

δΩ̃[Ṽex, φ]

δφ
. (25)

The functions ρ(r) and ρ(2)(r, r′) are conjugate to the

functions Ṽex(r) and φ(r, r′), respectively, in a thermo-
dynamic sense. Performing a Legendre transform on (23)
yields the expression [26],
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∫
dr Ṽex(r)

δΩ̃

δṼex(r)
+

∫
dr

∫
dr′ φ(r, r′)

δΩ̃

δφ(r, r′)
− Ω

= −µ
∫
drρ(r) +

∫
drVex(r)ρ(r) +

∫
dr

∫
dr′ φ(r, r′)ρ(2)(r, r′)− Ω̃ = TS[ρ, ρ(2)]. (26)

The last equation in (26), which produces the entropy functional, is evident if we identify the first term as −G (Gibbs
free energy) and the sum of the next two terms as U (internal energy). For what follows, we introduce two kinds of
entropy density functionals by writing,

S[ρ, ρ(2)] =

∫
dr

∫
dr′ S̃[ρ(r), ρ(2)(r, r′)], S̄[ρ, ρ(2)] =

∫
dr′ S̃[ρ(r), ρ(2)(r, r′)]. (27)

The free-energy as a functional of density and PDF now reads,

Ω̃ = Ω[ρ(r), ρ(2)(r, r′)] =

∫
drdr′ρ(2)(r, r′)φ(r, r′) +

∫
dr ρ(r)Vex(r)− TS[ρ, ρ(2)]− µ

∫
dr ρ(r). (28)

The external potential and the interaction potential can
be extracted from the entropy functional as,

Ṽex(r) = −T δS̄[ρ, ρ(2)]

δρ
, φ(r, r′) = T

δS̃[ρ, ρ(2)]

δρ(2)
. (29)

An alternative route to Eqs. (29) invokes extremum
conditions for the free-energy functional (28):

δΩ[ρ, ρ(2)]

δρ
= 0,

δΩ[ρ, ρ(2)]

δρ(2)
= 0, (30)

previously employed in different contexts by Gonis et al.
[41, 42] and Bakhti [43]. Carrying out the operations in
Eqs. (30) using expressions (28) indeed reproduces the
results of Eqs. (29).

Equations (29) state that if the entropy functional is
known, the external potential and the interaction poten-
tial which generate certain profiles for density and PDF
can be calculated uniquely. Conversely, if the external
potential and the interaction potential are known, the
density and the PDF can be determined by integrating
Eqs. (29). We can thus start from the second Eq. (29)
and continue our analysis by inferring from it the relation
(see Appendix B),

T S̃[ρ, ρ(2)] =

∫
φ(r, r′)dρ(2)(r, r′). (31)

In order to perform this integral, we rewrite the recur-
rence relation (20) in the form,

βφ(r, r′) = − ln
[
1−

∫
dr1ρ(r1) +

∫
dr1dr

′
1ρ

(2)(r1, r
′
1)
]
− ln ρ(2)(r, r′)

+ ln
[
ρ(r)−

∫
dr′ρ(2)(r, r′)

]
+ ln

[
ρ(r′)−

∫
drρ(2)(r, r′)

]
(32)

The integral (31) can now be calculated without further approximations. It produces an explicit expression for the
entropy as a functional of density and PDF:

S[ρ, ρ(2)]/kB =

∫
dr
{
−
[
ρ(r)−

∫
dr′ρ(2)(r, r′)

]
ln
[
ρ(r)−

∫
dr′ρ(2)(r, r′)

]
−
[
ρ(r)−

∫
dr′ρ(2)(r′, r)

]
ln
[
ρ(r)−

∫
dr′ρ(2)(r′, r)

]
−
[
1−

∫
dr1ρ(r1) +

∫
dr1dr

′
1ρ

(2)(r1, r
′
1)
]

× ln
[
1−

∫
dr1ρ(r1) +

∫
dr1dr

′
1ρ

(2)(r1, r
′
1)
]
−
∫
dr′ρ(2)(r, r′) ln ρ(2)(r, r′)

}
+

∫
drρ(r) ln ρ(r), (33)

where the last term is an “integration constant”, added to accommodate the noninteracting limit, φ(r, r′)→ 0. When
we now combine Eqs. (28), (32), and (33), the free energy functional acquires the form,

βΩ[ρ, ρ(2)] =

∫
dr
{
ρ(r) ln

(
ρ(r)−

∫
dr′ρ(2)(r, r′)

)
+ ρ(r) ln

(
ρ(r)−

∫
dr′ρ(2)(r′, r)

)
+
[
1−

∫
V

dr1ρ(r1)
]

ln
(

1−
∫
V

dr1ρ(r1) +

∫
dr1dr

′
1ρ

(2)(r1, r
′
1)
)
− ρ(r) ln ρ(r)− βṼex(r)ρ(r)

}
. (34)
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In the limit, φ(r, r′)→ 0, expression (34) neatly reduces
to the free-energy functional of the hard-sphere model.
The full expression is consistent with the FMT function-
als, reflecting the contributions from the one particle cav-
ity (terms with ρ only), and contributions from the two-
particle cavity (terms with ρ and ρ(2)) [44].

Any thermodynamic function and response function of
interest can be inferred from (34). The expressions de-
veloped with this methodology are valid for 3D systems.
In general, the path to explicit results requires that we
resort to a numerical analysis. Three applications to col-
loidal systems in a heterogeneous, 3D environment are
presented in Sec. V. Further applications are in the works
[45].

For 3D sticky-core fluids, the interaction range is re-
duced to the hard-sphere diameter (ξ → σ). In conse-
quence, the volume integrals V ′ in Eq (20) or (32) have
to be replaced by surface integrals S over spheres of di-
ameter σ. The regions S and V represent the surface
and the interior space of the sphere with diameter σ cen-
tered at position r, respectively. The vectors r and r′ are
related by |r − r′| = σ. Expressions (33) and (34) for
the entropy and free-energy functionals must be adapted

accordingly.

We conclude Sec. III by reiterating that our approach
bypasses the OZ equation. The extremum of the free-
energy functional produces one relation between the par-
ticle density ρ(r) and the PDF ρ(2)(r, r′). A second rela-
tion is Eq. (20), which, in general, represents an approx-
imation. The latter is inferred from (17), which is exact,
but does not lead to closure, except under special circum-
stances such as discussed in Sec. IV and Appendix A.
The OZ formalism deals with the same problem differ-
ently. In both methods, achieving closure comes, in gen-
eral, at the cost of approximation.

IV. EXACT ANALYSIS FOR 1D SYSTEMS

The entropy and free-energy expressions developed
above are amenable to an exact analysis for 1D systems
with specific interactions. Consider a system of hard rods
of length σ confined to a channel and with the interac-
tion potential (2) left unspecified for now. Equation (20)
then reads

ρ(2)(y, y′) = e−βφ(y,y
′)

[
ρ(y)−

∫
dy′1 ρ

(2)(y, y′1)
][
ρ(y′)−

∫
dy′1 ρ

(2)(y′1, y
′)
]

[
1−

∫
dy′1 ρ(y′1) +

∫
dy′1

∫
dy′2 ρ

(2)(y′1, y
′
2)
] (35)

The range of y′ appearing in the integral of the PDF consists of two intervals: [y− ξ/2, y−σ/2] and [y+σ/2, y+ ξ/2].
The entropy expression (33) acquires the form,

S[ρ, ρ(2)]

kB
= −

∫
dy

{[
ρ(y)−

∫
dy′ρ(2)(y, y′)

]
ln
(
ρ(y)−

∫
dy′ρ(2)(y, y′)

)
+
[
ρ(y)−

∫
dy′ρ(2)(y′, y)

]
ln
(
ρ(y)−

∫
dy′ρ(2)(y′, y)

)
− ρ(y) ln ρ(y) +

∫
dy′ρ(2)(y, y′) ln ρ(2)(y, y′)

+
[
1−

∫
dy1ρ(y1) +

∫
dy1dy

′
1ρ

(2)(y1, y
′
1)
]

ln
(

1−
∫
dy1ρ(y1) +

∫
dy1dy

′
1ρ

(2)(y1, y
′
1)
)}

. (36)

Our approach also produces an exact expression for the free energy,

βΩ[ρ, ρ(2)] =

∫
dy
{
ρ(y) ln

(
ρ(y)−

∫
dy′ρ(2)(y, y′)

)
+ ρ(y) ln

(
ρ(y)−

∫
dy′ρ(2)(y′, y)

)
+
[
1−

∫
dy1ρ(y1)

]
ln
(

1−
∫
dy1ρ(y1) +

∫
dy1dy

′
1ρ

(2)(y1, y
′
1)
)
− ρ(y) ln ρ(y)− βṼex(y)ρ(y)

}
, (37)

derived from expression (34) as a special case of much
wider scope, albeit not exact in higher dimensions.

The entropy expression (36) coincides exactly with the
result (2.21) of Percus in [26]. Given the completely dif-
ferent nature of the two approaches, this is a remarkable
convergence. In addition to the mathematical interest
that exact solutions draw quite generally, in the present

context they are also of practical interest. Within the
DFT formalism, exact solutions for 1D systems present
themselves as ingredients in the construction of approx-
imate functionals in higher dimensions. Moreover, 3D
systems that are inhomogeneous in only one direction
are often modeled (with tacit caveats) as effectively 1D
systems.
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Our approach has a remarkable simplicity for what it
is capable to deliver. It certainly is much simpler than
the inverse-problem approach. There is a straightfor-
ward path to extend our method to situations with gen-
eral nearest-neighbor and next-nearest-neighbor interac-
tions. This can be accomplished by introducing three-
point auxiliary distribution functions. Contact can then
be made with the inverse-problem approach of Percus on

a wider scope [46–49]. One strength of our approach is
that the higher-dimensional functionals are constructed
without the FMT reference to dimensional crossover and
zero-dimensional cavity.

The functional relation (35) between density and PDF
can be solved explicitly for ρ(2)(y, y′) if we restrict the
interaction to a sticky-core contact interaction, where we
have ξ = σ. We can then express (35) in the form,

ρ(2)(y, y′) = e−βφ(y,y
′)

[
ρ(y)− ρ(2)(y, y′)

][
ρ(y′)− ρ(2)(y, y′)

]
1− L(y) + ρ(2)(y, y′)

, L(y)
.
=

∫ y+σ/2

y−σ/2
dx ρ(x), (38)

and rewrite it as a quadratic equation for the PDF,

−
[
1− L(y) + e−βφ(y,y

′)(ρ(y) + ρ(y′))
]
ρ(2)(y, y′) + (e−βφ(y,y

′) − 1)
[
ρ(2)(y, y′)

]2
+ e−βφ(y,y

′)ρ(y)ρ(y′) = 0

which has the unique physically relevant solution,

ρ(2)(y, y′) =
1

2η

[
K[ρ]−

√
K2[ρ]− 4η(η + 1)ρ(y)ρ(y′)

]
, K[ρ]

.
= 1 + e−βφ(y,y

′)
[
ρ(y) + ρ(y′)

]
− L(y), (39)

where η = e−βφ(y,y
′)− 1 and y′ is now related to y by y′− y = σ. The simplified expressions for the entropy (36) and

for the free energy (37), into which we can substitute the PDF (39), read

S[ρ, ρ(2)]

kB
=

∫
dy
{
−
[
ρ(y)− ρ(2)(y, y′)

]
ln
(
ρ(y)− ρ(2)(y, y′)

)
−
[
ρ(y′)− ρ(2)(y, y′)

]
ln
(
ρ(y′)− ρ(2)(y, y′)

)
−
[
1− L(y) + ρ(2)(y, y′)

]
ln
(

1− L(y) + ρ(2)(y, y′)
)
− ρ(2)(y, y′) ln

(
ρ(2)(y, y′)

)
+ ρ(y) ln ρ(y)

}
, (40)

βΩ[ρ, ρ(2)] =

∫
dy
{
ρ(y) ln

(
ρ(y)− ρ(2)(y, y′)

)
+ ρ(y′) ln

(
ρ(y′)− ρ(2)(y, y′)

)
+
[
1− L(y)

]
ln
(

1− L(y) + ρ(2)(y, y′)
)
− ρ(y) ln ρ(y)− βṼex(y)ρ(y)

}
. (41)

We are now ready to demonstrate the strength of our approach by showcasing two inhomogeneous model systems.

V. APPLICATIONS

First we investigate the sticky-hard-sphere (SHS)
model in the presence of an attractive Lennard-Jones
(LJ) wall. Second we investigate the effect of gravity
on the SHS system. These two systems are of great im-
portance for studying wetting transitions, sedimentation,
and interfacial phenomena in interacting colloids. Our
focus is on density profiles pertaining to the 3D case.

A more systematic study of this system, including ef-
fects of longer-range interactions and lower dimensional-
ity, presently in the works [45], is of great importance for
studying glass transition under gravity. The SHS model
[50] has proven to be realistic for many physical phenom-
ena including crystallization of polymers [51], micelles
[52], protein solutions [53], DNA coated colloids [54, 55],

and ionic fluids [56]. In the SHS model, the interaction
between colloidal particles is limited to an adhesive force
upon contact.

It is well known that a significant attractive interaction
between colloids results from the depletion forces, which
come into play when polymer globules or micelles are
added to a colloidal suspension. The range and strength
of the attraction can be varied continuously and indepen-
dently by adjusting, respectively, the concentration and
size of the polymer. For weak depletion, the colloidal
particles are well described by the SHS model.

Consider the square-well interaction potential,

βφ(r) =

 +∞ : 0 < r < σ,
− ln [σ/12τ(σ − ξ)] : σ < r < ξ,
0 : r > ξ,

(42)
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of width ξ, where τ has been named Baxter temperature..
In the limit SHS limit ξ → σ we can write,

e−βφ(r) = θ(r − σ) +
σ

12τ
δ(r − σ). (43)

Noninteracting hard spheres are recovered for τ →∞.

A. SHS model with LJ adhesive wall

Here we consider the effect of an attractive planar wall
on an SHS system. We construct an attractive external
potential via

Vext(z) = Ew

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
∫ 0

−∞
dz′

× φLJ
(√

x′2 + y′2 + (z − z′)2
)

(44)

from the LJ interaction,

φLJ(r) =


0 : r ≤ σw,

4ε

[(σw
r

)12
−
(σw
r

)6]
: r > σw,

(45)

where ε is the interaction strength. Setting σw = σ and
performing the integral yields a an effective external po-
tential of the form,

Vex(z) = Ew

[
−1

6

(σ
z

)3
+

1

45

(σ
z

)9]
, (46)

where Ew is an energy parameter and z the distance from
the wall.

An external potential of the type (46) was previously
introduced as a simplified model of substrate potential
for alkaline metals [57, 58], notwithstanding the fact that
there exist more accurate models [59, 60]. The unidirec-
tional nature of the external potential reduces the 3D
SHS problem technically to a 1D problem, the results
of planar averaging [58, 61, 62]. Such quasi-1D struc-
tures are, of course, very different from the structures
that characterize truly 1D systems.

From Eqs. (29) we derive the following general relation
between external potential, density, and PDF:

β[Vex(r)− µ] = ln
[
1−
∫
dr1ρ(r1) +

∫
dr1dr

′
1ρ

(2)(r1, r
′
1)
]

+ ln ρ(r)− ln
[
ρ(r)−

∫
dr′ρ(2)(r, r′)

]
− ln

[
ρ(r)−

∫
dr′ρ(2)(r′, r)

]
. (47)

This equation in combination with Eq. (32), which brings
the interaction potential into play, determine the density
and the PDF. We solved them numerically for the SHS in-
teraction, using the Newton and the Broyden algorithms.
The chemical potential and the temperature can be tuned

z

0 2 4 6 8 10

ρ

0

0.05

0.1

0.15 ρ̄b = 0.40

ρ̄b = 0.22

z

0 5 10 15 20 25

ρ

0

0.1

0.2

0.3

0.4

0.5
ρ̄b = 2.03

ρ̄b = 0.99

FIG. 2: Density profiles near LJ wall for parameter values
σ = 4, τ = 0.7, Ew = 8.0. The four curves pertain to average
bulk densities ρ̄b = 0.22, 0.40, 0.99, 2.03, controlled by the pa-
rameter values µ̄ = −3.6, −3.0, −2.7 and −1.5, respectively.

independently to fix the average bulk (reservoir) density
via the relation,

1

L

∫ L

0

ρ(z) = ρb, (48)

where ρb is the reservoir density. For consistency with
notation found in the literature, we define the average
density

ρ̄ = ρσ3 (49)

and control it with the parameter µ̄ = βµ.
The numerical results presented in Figs. 2-4 showcase

different aspects of the results. Figure 2 shows density
profiles at different values of the average reservoir density
ρ̄b. We observe the emergence of oscillations near the
wall as ρ̄b increases. They are the combined effect of
wall attraction and hard-sphere repulsion. Such highly
structured oscillations cannot be captured by DFT using
the local density approximation (LDA) or the weighted
density approximation (WDA). It requires more accurate
functionals such as provided by FMT.

The dependence of the density profile on the sticki-
ness parameter at two different temperatures is shown
in Fig. 3. We see that the stickiness of the particle sur-
face makes a difference only at temperatures sufficiently
low that the adhesive energy between two particles pre-
vails against the thermal energy kBT . Larger particles

z

0 5 10 15

ρ

0

0.05

0.1

0.15 τ = 0.5

τ = 0.7

τ = 1.5

z

0 5 10 15

ρ

0

0.1

0.2

0.3

0.4

0.5

τ = 0.5

τ = 0.7

τ = 1.5

FIG. 3: Density profiles near LJ wall at kBT = 1.0 (a) and
kBT = 0.5 (b) for parameter values σ = 4, µ = −3 and
Ew = 8.0, and various strengths of stickiness.
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z

0 10 20 30

ρ

0

0.1

0.2

0.3

0.4 σ = 4

σ = 6

σ = 8

FIG. 4: Density profiles near LJ wall for parameter values
τ = 0.7, β = 0.6, µ = −3 and Ew = 9, and particles of
various diameters.

produce oscillations near the wall that have a larger am-
plitude, a larger wavelength, and a larger depth into the
bulk, as is evident in the results presented in Fig. 4.

B. SHS model with hard walls

To make contact with previous results of the density
functional formalism, we switch off the LJ attraction and
consider the SHS system confined by two hard walls. In
DFT, the free-energy functional (34) is rewritten in the
form,

Ω[ρ(r)] = F1[ρ(r)] + F0[ρ(r)] +

∫
dr
{
Vex(r)− µ

}
ρ(r)

(50)

where

F0[ρ(r)] = β−1
∫
drρ(r)

{
ln
[
ρ(r)Λ3

]
− 1
}

(51)

is the ideal part and Λ the thermal wavelength. The
excess part F1 contains the particle interactions. To de-
termine the density profiles and the radial distribution
functions (pair correlation functions), the minimization
equation is written in a form more suitable for numerical
implementation,

ρ(r) = ρb exp
[
−βVex(r) + c(1)[ρ(r), r] + βµ1

]
, (52)

where

c(1)[ρ(r), r] = −β δF1[ρ(r)]

δρ(r)
, (53)

is the one-point direct correlation function. The excess
chemical potential µ1 can be calculated by considering
the minimization condition for the bulk fluid,

µ1 = c
(1)
0 (ρb) = µ− β−1 ln

(
ρbΛ

3
)
. (54)

The radial distribution function is then evaluated using
the equation for density profiles, Eq. (52), by fixing a
particle at the origin and setting the external potential
equal to the particle interaction. In this case, we get
g(r) = ρ(r)/ρb, and write,

g(r) = exp
[
−βφ(r) + c(1)[ρbg(r)] + βµ1

]
, (55)

where φ(r) is the the particle interaction. For the SHS
under confinement as described, we again have a quasi-
1D system. Numerical results for the reduced density
profiles ρ(z)σ3 and pair correlation function g(z) are
shown Fig. 5.

z/σ

0 2 4 6 8

ρ̄(z)

0

0.5

1

1.5
τ = 0.2

ρ̄b = 0.8

(a)

z/σ
2 3 4 5

g(z)

0.8

1

1.2

1.4

τ = 0.13

ξ = 0.164

(b)

FIG. 5: (a): density profiles of SHS in confinement between
two hard walls. Solid line represents our results and dots
represents results of the third order perturbation theory of
DFT [64]. (b): pair correlation function of SHS for at strong
stickiness τ = 0.13 and at packing fraction ξ = 0.164. Black
line represents our results and blue line represents results of
the regulated FMT [65].

The two confining walls are located at z = σ/2 and
z = L − σ/2. Our results are in good agreement with
previous results from a third-order perturbation theory
of DFT [63, 64] in which the one-point direct correla-
tion function c(1) has been approximated via the Percus-
Yevick scheme. At low bulk density, the particles seg-
regate near the bottom wall. The density is small or
vanishes at high altitude. At higher bulk density, the
density profile is symmetric with respect to the middle
of the system. We only show the lower part. The pair
correlation function has one SHS particle fixed at z = 0.

Our results are a good fit with the Rosenfeld FMT,
which is known to satisfy the Percus-Yevick equation of
state [65]. However, a comparison with Monte Carlo re-
sults indicates that the Rosenfeld FMT is less accurate
than White-Bear version of the FMT, which satisfies the
Carnahan-Starling equation of state. On the other hand,
our approach has the advantage that it operates with ar-
bitrary short-range interaction, whereas in the FMT, the
weighted densities must be recalculated for each interac-
tion, which is, in general, not a simple task.

There are two well known procedures to get the bulk
or inhomogeneous equation of state from the free energy
functional Eq. (34). For systems with a two-body in-
teraction, a direct and accurate method is to use the
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Irving-Kirkwood relation [66],

p(r) = kBT
ρ(r)

m
− 1

2D

(
ρ(r)

m

)2 ∫
r′φ′(r′)g(r′)r′, (56)

where D is the space dimensionality, g(r′) ≡ g(r, r + r′)
is the pair correlation function, m is the mass of the
particle, and φ′ is the derivative with respect to r′ of
the interaction potential. A second method is to use the
expression [67],

χ = kBT
∂ρ(r)

∂p(r)
= 1 + ρ(r)

∫
[g(r′)− 1] dr′ (57)

for the isothermal compressibility. If g(r) is known ex-
actly, then the two procedures yield exactly the same
results. Any deviation from the exact g(r) produces a
difference between the results of the approaches [68]. In
DFT, the equation of state can also be calculated using
the expression,

βp(r) =
∑
i

ρi(r)
δΦ[ρ(r)]

δρi(r)
− Φ[ρ(r)], (58)

where Φ[ρ(r)] is the density of free-energy functional and
the sum i extends over all weighted densities.

If we impose a hard wall at the origin (z = 0), which
prevents particles to be at this position, the second term
in Eq. (56) vanishes and we get a hard-wall sum rule as
for the standard DFT:

p = kBTρ(0+). (59)

The pressure profile becomes

βp(r) = − ln
[
1−
∫
dr1ρ(r1) +

∫
dr1dr

′
1ρ

(2)(r1, r
′
1)
]
,

(60)

which for bulk fluids satisfies Eq. (59) with contact den-
sity taken from the solution of Eq. (47).

C. SHS model with sedimentation under gravity

Here we consider a fluid bounded by two hard, hori-
zontal walls, a distance L apart, with a uniform verti-
cal gravitational field acting on SHS colloidal particles of
diameter σ toward sedimentation. This amounts to an
external potential of the form,

Vex(z) =

 +∞ : z < σ/2,
mGz : σ/2 < z < L− σ/2,
+∞ : z > L− σ/2,

(61)

where mG is the (effective) gravitational force acting on
the colloid. The effects of gravity become pronounced
inside the colloidal regime close to the boundary with the
granular regime, i.e for colloids with diameters of several
hundred nanometers.

Such systems are of great importance for studying in-
terfacial and solvation phenomena. They has previously
been investigated via different approaches, including the
OZ integral equations formalism combined with a Percus-
Yevick [62] or a hypernetted-chain[61] closure relation.
They have also been studied by Monte Carlo simulations
[69].

In order to facilitate contact with previous studies in-
cluding Refs. [61, 62], we introduce the scaled quantities,

k1 =
σmG

kBT
, k2 =

σµ

kBT
. (62)

where k1 controls the strength of the gravitational po-
tential and k2 controls the average colloidal density via
the relation (48).

The system of Eqs. (47) and (32) for the external po-
tential (61) and the SHS interaction (43) can be solved
numerically to high precision using Newton, Broyden or
spectral collocation methods. Numerical results for the
one-particle distribution are shown in Figs. 6, 7 and 8. In
our graphical representations we use the one-point distri-
bution function,

g(z) =
ρ(z)

ρb
, ρ̄b

.
= ρbσ

3. (63)

The four panels in Fig. 6 present variations of the one-
point distribution functions for sticky hard spheres of di-
ameters σ = 2 and σ = 4 under the effect gravity.
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FIG. 6: One-particle distribution function g(z) versus altitude
z for SHS with with parameter values as stated. For diameter
σ = 2 we have set L = 5σ and for diameter σ = 4 we have set
L = 11σ. For all cases we have set k1 = 1.0.

When the gravitational energy is comparable or greater
than the thermal energy, we can see pronounced oscilla-
tions in one-point distribution with amplitudes increasing
when reducing the chemical potential. These oscillations,
which arises from the hard wall combined with strong re-
pulsive interaction of the hard spheres, are a signature of
layering in the fluid that proceeds the condensation of the
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FIG. 7: One-point distribution function versus altitude for
SHS with diameter σ = 4 and L = 10σ at high temperature
(weak gravity) and low temperature (strong gravity). The
stickiness parameter is fixed to τ = 0.7. We have set k2 =
−3.0.

fluids on the surface of the wall. Reducing the stickiness
parameter enhances the oscillations because of the depen-
dence of the former on temperature via (42). Parameters
for the σ = 4 case are taken from Ref. [61] to compare
with the results found there. Our results are manifestly
in good qualitative and quantitative agreement with the
those derived from the OZ approach using the Percus-
Yevick approximation as a closure relation [62] and from
the hypernetted chain/OZ equation [61].

Increasing the effect of gravity or reducing the tem-
perature enhances the oscillatory regime at the bottom
of the wall leading to condensation of the SHS. This is
demonstrated in Fig. 7. Only at high temperature or
weak gravity (meaning differential in mass density) do
the colloids reach high altitude.

A noteworthy feature is the dependence of the (num-
ber) density profile on the diameter of the colloids as
shown in Fig. 8 at fixed bulk (number) density. The
increase in structure for decreasing diameter is quite re-
markable, far from obvious.
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FIG. 8: One-point distribution function versus altitude for
SHS with different diameters. The parameter values are set
at ρ̄b = 0.111, L = 10σ, τ = 0.7 and k1 = 1.0. The chemical
potentials which correspond to ρ̄b = 0.111 are µ = −0.1 for
σ = 2, µ = −9.5 for σ = 6, and µ = −18.9 for σ = 8.

VI. CONCLUSION

We have introduced a new approach for studying the
thermodynamics of interacting hard-sphere fluids in an
arbitrary external field. The key accomplishment is a
functional relation between density and PDF that works
for cases of inhomogeneous fluids with general finite-
range nearest-neighbor interactions. We have been able
to construct from this functional relation explicit entropy
and free-energy functionals.

For the special 1D case of hard rods confined to a nar-
row channel and interacting upon contact, our results
coincide with Percus’ results [26] obtained via rigorous
analysis. Exact solutions in explicit form can then be
worked out. To test the strength of our approximation
in higher dimensions, we have considered a system of
sticky hard spheres with different external fields.

The results demonstrate that our approach is in good
agreement with corresponding results inferred from com-
monly used approaches such as Percus-Yevick/OZ and
the hypernetted chain/OZ equation and also with Monte
Carlo simulation. Extensions of this work to mixtures
of interacting fluids in arbitrary, inhomogeneous exter-
nal fields are in progress. Extensions to molecules of
different sizes and shapes, which require the inclusion of
orientational degrees of freedom, are within the range of
our methodology.
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Appendix A: Exactness of analysis in D = 1

Here we present a proof that the functional relation
(20) is rigorous for 1D systems, which implies that the
expressions derived from it in Sec. IV are exact and ready
to be evaluated for any application of choice. The proof
uses the fact, which only holds in D = 1, that the inte-
grals in Eq. (18) and (19) are factorizable. The conclu-
sion that A = B follows from this attribute.

Consider a system of N hard rods (1D hard spheres)
with diameter σ confined to a region of space. Without
loss of generality, we order the positions of rods (their
centers of mass) as x1 < x2 < . . . < xN .

Introducing the functions,

h(x) = e−βVex(x), f(x, y) = e−βφ(x,y), (A1)

allows us to rewrite Eqs. (13)-(16) in more compact form
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as follows:

ρ(2)(xi, xi+1) =
1

Z
h(xi)f(xi, xi+1)h(xi+1)

×
∫ i−1∏
k=1

dxkh(xk)f(xk, xk+1) (A2)

×
∫ N∏
k=i+2

dxkh(xk)

N−1∏
k=i+1

f(xk, xk+1),

ρ̃0(x) =
1

Z

∫ i−1∏
k=1

dxkh(xk)

i−2∏
k=1

f(xk, xk+1)

×
∫ N∏
k=i+2

dxkh(xk)

N−1∏
k=i+2

f(xk, xk+1), (A3)

ρ̃(x, xi) =
h(xi)

Z

∫ i−1∏
k=1

dxkh(xk)f(xk, xk+1)

×
∫ N∏
k=i+2

dxkh(xk)

N−1∏
k=i+2

f(xk, xk+1), (A4)

ρ̃1(x, xi+1) =
h(xi+1)

Z

∫ i−1∏
k=1

dxkh(xk)

i−2∏
k=1

f(xk, xk+1)

×
∫ N∏
k=i+2

dxkh(xk)

N−1∏
k=i+1

f(xk, xk+1). (A5)

Next we process the product in the first line of (A2):

ρ̃(x, xi)ρ̃1(x, xi+1)f(xi, xi+1)

=
1

Z2
h(xi)f(xi, xi+1)h(xi+1)

×
∫ i−1∏
k=1

dxkh(xk)f(xk, xk+1)

×
∫ N∏
k=i+2

dxkh(xk)

N−1∏
k=i+2

f(xk, xk+1) (A6)

×
∫ i−1∏
k=1

dx′kh(x′k)

i−2∏
k=1

f(x′k, x
′
k+1)

×
∫ N∏
k=i+2

dx′kh(x′k)f(xi+1, x
′
i+2)

N−1∏
k=i+2

f(x′k, x
′
k+1).

When we interchange xk and x′k in (A6), we recognize
the exact relation,

ρ̃(x, xi)ρ̃1(x, xi+1)

eβφ(xi,xi+1)
= ρ(2)(xi, xi+1)ρ̃0(x), (A7)

between the four distribution functions (A2)-(A5). The
three ADFs (8)-(10) simplify into

ρ̃(x, x′) = ρ(x′)−

[∫ x−σ/2

x−ξ/2
+

∫ x+ξ/2

x+σ/2

]
dx′1ρ

(2)(x, x′1),

(A8)

ρ̃1(x, x′′) = ρ(x′′)−
∫ x+σ/2

x−σ/2
dx′1ρ

(2)(x′1, x
′′), (A9)

ρ̃0(x)=1−
∫ x+ξ/2

x−ξ/2
dx′1ρ(x′1) (A10)

+

∫ x+σ/2

x−σ/2
dx′1

[∫ x−σ/2

x−ξ/2
+

∫ x+ξ/2

x+σ/2

]
dx′2ρ

(2)(x′1, x
′
2).

Substitution of Eqs. (A8)-(A10) into Eq. (A7), yields the
exact relation Eq. (35) used in Sec. IV for the further
exact analysis.

Appendix B: Justification of Eq. (31)

Even though ρ and ρ(2) are not independent, as is man-
ifest in Eq. (20), in the integral (31) with respect to ρ(2),
we keep ρ fixed. This course of action requires justifica-
tion. We can express the differential of the free energy
functional in the form,

dΩ[Ṽ , φ] =
δΩ

δṼ

∣∣∣∣∣
φ

dṼ +
δΩ

δφ

∣∣∣∣∣
Ṽ

dφ = −ρdṼ + ρ(2)dφ, (B1)

where we have used the DFT relations (25). From the
first Eq. (25), the density profiles ρ can be calculated by
differentiating the free energy with respect to the external
potential at fixed interaction potential. Differentiation
with respect to the interaction potential at fixed external
potential produces the PDF ρ(2). Substitution of

d
(
ρṼ
)

= ρdṼ + Ṽ dρ, d
(
ρ(2)φ

)
= ρ(2)dφ+ φdρ(2)

into Eq. (B1) yields

dΩ[Ṽ , φ] = −d(ρṼ ) + Ṽ dρ+ d(ρ(2)φ)− φdρ(2), (B2)

which we rewrite as follows:

Ṽ dρ− φdρ(2) = d
(

Ω[Ṽ , φ] + ρṼ − ρ(2)φ
)

= −d(TS)

= −T δS
δρ

∣∣∣∣∣
ρ(2)

dρ− T δS
δρ(2)

∣∣∣∣∣
ρ

dρ(2). (B3)

In consequence we can write

Ṽ = −T δS
δρ

∣∣∣∣∣
ρ(2)

, φ = T
δS
δρ(2)

∣∣∣∣∣
ρ

(B4)

From the second relation (B4) we conclude that the en-
tropy functional S follows via integration of the interac-
tion potential φ with respect to ρ(2) at fixed ρ.
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lasiǹski, M. A. ter Horst, and C. J. Jameson, Ab initio
study of van der Waals interaction of CO2 with Ar. J.
Chem. Phys. 104, 6569 (1996).

[60] A. Chizmeshya,M. W. Cole, and E. Zaremba, Weak Bind-
ing Potentials and Wetting Transitions. J. Low Temp.
Phys. 110, 677 (1998).

[61] A. Jamnik, Suspensions of adhesive colloidal particles
in sedimentation equilibrium in a planar pore. J. Chem.
Phys. 109, 11085 (1998).

[62] G. Rodrguez and L. Vicente, Density profiles of colloidal
suspensions in equilibrium inside slit pores. Mol. Phys.
87, 213 (1996).

[63] N. Choudhury and S. K. Ghosh, Density functional the-
ory of adhesive hard sphere fluids. J. Chem. Phys. 106,
1576 (1997).

[64] N. Choudhury and S. K. Ghosh, Density Functional The-
ory for Baxters Sticky Hard Spheres in Confinement. J.
Chem. Phys. 116, 384 (2002).

[65] H. Hansen-Goos, M. A. Miller, and J. S. Wettlaufer, Sed-
imentation equilibrium of a suspension of adhesive col-
loidal particles in a planar slit: A density functional ap-
proach. Phys. Rev. Lett. 108, 047801 (2012).

[66] J. H. Irving and J. G. Kirkwood, The Statistical Mechan-
ical Theory of Transport Processes. IV. The Equations of
Hydrodynamics. J. Chem. Phys. 18, 817 (1950).

[67] T. L. Hill, Statistical Mechanics (Dover Publications,
1987).

[68] E. Thiele, Equation of State for Hard Spheres. J. Chem.
Phys. 39, 474 (1963).

[69] T. Biben, J-P. Hansen, and J-L. Barrat, Density pro-
files of concentrated colloidal suspensions in sedimenta-
tion equilibrium. J. Chem. Phys. 98, 7330 (1993).


	Interacting hard-sphere fluids in an external field
	Citation/Publisher Attribution

	Interacting hard-sphere fluids in an external field
	The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.
	Terms of Use

	tmp.1615226560.pdf.bVkJR

