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ABSTRACT: Papers reporting the results of dynamic simulation models of aquatic ecosystems tend to 

show predicted concentrations of the state variables. The phytoplankton compartment is typically 

represented as predicted biomass, expressed as the concentration of chlorophyll a, particulate car- 

bon, or particulate nitrogen. While computed values of phytoplankton biomass generally agree with 

observations, many of these same models significantly underestimate primary production. Existing 

simulation models often base the calculation of primary production on the Eppley curve, which sets 

the maximum daily phytoplankton growth rate as a function of temperature. Despite the apparent 

wide applicability of the Eppley curve, an increasing number of culture and field studies have mea- 

sured growth rates in excess of those predicted by the curve, which may explain why existing mod- 

els often underestimate primary production. An alternate empirical formulation which predicts daily 

phytoplankton production from biomass, photic depth, and incident irradiance has been shown to 

apply in a variety of nutrient-rich estuarine systems. Despite the large number of systems in which 

these empirical models have been developed, they predict remarkably similar rates of daily and 

annual production. Furthermore, these empirical models predict rates of production in excess of those 

predicted by the Eppley curve. The empirical formulation therefore presents an alternative to the 

Eppley curve in dynamic ecosystem models, and may result in more accurate predictions of primary 

production by these models. 
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INTRODUCTION 

 
Dynamic simulation models have become increas- 

ingly important as tools for the study and management 

of coastal marine ecosystems. Such models have been 

developed for a variety of estuarine systems, including 

Narragansett Bay (Kremer & Nixon 1978), Chesapeake 

Bay (Cerco & Cole 1994), the Delaware inland bays 

(Cerco et al. 1994), the North Sea (Fransz et al. 1991, 

Baretta et al. 1995), the Baltic Sea (Stigebrandt & Wulff 

1987, Savchuk & Wulff 1993, 1996), and the Lagoon of 

Venice (Bergamasco et al. 1998). 

 
 

*E-mail: brush@vims.edu 

Output from simulation models is generally reported 

in terms of standing stocks rather than rate processes, 

e.g. as phytoplankton biomass (chlorophyll a, particu- 

late carbon, or particulate nitrogen) rather than daily 

or annual primary production. If one is to use models to 

study ecosystem functions such as nutrient cycling, 

carbon fluxes, and oxygen dynamics, however, it is 

of critical importance to accurately simulate rate 

processes as well as state variables. In the few cases 

where modeled annual production is reported and 

compared to in situ measurements, existing models 

often underestimate the rate of primary production 

(Table 1). While this comparison may be somewhat 

complicated by year-to-year variations in the rate of 

annual production, models also often underestimate 
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Table 1. Examples of models which underestimate annual pri- 

mary production (Pr; g C m–2 yr–1). All observed estimates are 

based on 14C incubations 
 

 
 

rates of daily production when compared to measure- 

ments on the same day (e.g. Cerco & Cole 1994, Hydro- 

Qual & Normandeau Associates 1995). 

On first examination of Table 1, one might wonder 

how models that produce reasonable predictions of 

phytoplankton biomass can simultaneously underesti- 

mate phytoplankton production. We believe this ap- 

parent paradox is due to a concurrent underestimation 

in the phytoplankton loss processes. Several such 

losses exist, including respiration, flushing, sinking, 

and grazing by various size fractions of zooplankton as 

well as benthic filter feeders. These losses are charac- 

terized by large spatial and temporal variability. Many 

are poorly constrained or need to be estimated a priori 

due to insufficient data (or a lack of data) in the litera- 

ture (e.g. Broekhuizen et al. 1995, Ebenhöh et al. 

1995). Often parameter values are set during calibra- 

tion to achieve an acceptable fit between predicted 

and observed biomass (e.g. Cerco & Cole 1994). In this 

case, if a model is underestimating production, the cal- 

ibrated values for the loss terms would be set below 

their true values to obtain correct predictions of bio- 

mass. Further, some loss processes such as grazing are 

dependent on entirely separate state variables (e.g. 

zooplankton, benthic filter feeders) which are difficult 

to simulate accurately due to increased biological com- 

plexity (e.g. Kremer & Nixon 1978). Finally, there are 

simply far more loss processes operating in any system 

than can be included in a model, so they are frequently 

aggregated into a small number of terms which loses 

considerable biological detail and accuracy (Rigler & 

Peters 1995, Hofmann & Lascara 1998). 

Whatever the source of error in the loss terms, simul- 

taneous underestimation of production and losses 

could nevertheless lead to correct estimates of bio- 

mass. While certain model applications might require 

accurate estimates of biomass alone, many models 

include additional components of the ecosystem such 

as dissolved nutrients and oxygen, to which the phyto- 

plankton formulations are closely coupled. Since phy- 

toplankton production occurs at the base of the food 

web and is directly related to carbon, nutrient, and 

oxygen cycling, it has great influence on the dynamics 

of these other system components. Thus, if one is con- 

cerned with predicting concentrations and processes 

in the system for components other than the phyto- 

plankton, such as bottom-water oxygen concentrations 

under nutrient-reduction scenarios, it is critical to 

accurately predict phytoplankton production as well as 

biomass. When phytoplankton production is under- 

estimated in such applications, accurate predictions 

of the concentrations of phytoplankton, nutrients, and 

oxygen are likely to be more the result of parameter 

adjustment during calibration than model dynamics 

(Bowie et al. 1985). This weakens the conclusions of 

such models as well as their utility in management 

applications. 

The discrepancy between measured and modeled 

production warrants an examination of the way in 

which existing simulation models calculate phyto- 

plankton production. It should be noted that the fol- 

lowing discussion as well as the analyses and conclu- 

sions to come apply only to dynamic simulation models 

of aquatic ecosystems. Our work does not apply to 

models that compute production and growth from 

measured biomass and irradiance combined with a 

detailed integration of a photosynthesis-irradiance 

(P-I) function over depth and time (e.g. Behrenfeld & 

Falkowski 1997), or to bio-optical models which com- 

pute production as a function of various photophysio- 

logical parameters (e.g. Sosik 1996). 

The general approach to modeling phytoplankton 

production in dynamic models begins with the calcula- 

tion of the maximum attainable daily growth rate, Gmax 

(d–1) (base e), from forced environmental variables, 

most commonly temperature (Bowie et al. 1985, Cullen 

et al. 1993). Gmax describes the rate at which phyto- 

aObserved Pyr is a bay-wide, area-weighted estimate 

based on C. A. Oviatt et al. (2002) for 1997-8; modeled Pyr 

is the range for the entire bay for 1972-3 from Kremer & 

Nixon (1978). Oviatt et al. report the first area-weighted 

estimate of Pyr for the entire bay, which is nearly identical 

to past estimates at single stations 
bObserved Pyr data are from 1985–1996 or 1990–1993, 

depending on location; modeled Pyr is the average for the 

period 1985–1994 (see Nixon et al. 1999; model described 

by Cerco & Cole 1994). Both estimates are averages of the 

values at the same 6 locations down the main axis of the 

bay 
cObserved and modeled Pyr are for 1972–1975 (Jørgensen 

1976). This author does not identify where measured val- 

ues were taken, but the observations are directly com- 

pared with the model predictions in the paper, so we take 

them to apply to the same geographic location. Jørgensen 

suggests the value of 1800 g C m  2 yr 1 may be an over- 

estimate due to insufficient sampling of production over 

depth the first year of the study 
dObserved Pyr is an area-weighted estimate for the entire 

Baltic around 1980 (Elmgren 1984, 1989); modeled Pyr is 

also for the entire Baltic and corresponds to a model run 

forced by meteorological data randomly selected within 

the standard deviation of weekly 20 yr means (Savchuk & 

Wulff 1993) 
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plankton will grow under optimal conditions; for exam- 

ple, under 24 h of continuous (and presumably opti- 

mum) irradiance and conditions of nutrient sufficiency. 

This maximum growth rate is then reduced by fac- 

tors that prevent the phytoplankton from realizing this 

hypothetical maximum rate. If Gmax is set as a function 

of temperature, then these limiting factors include 

daylength (coded as photoperiod, ƒ), sub-optimal light 

throughout the day and over the photic depth, and 

limiting nutrient concentrations: 

G  =  Gmax · ƒ · LTLIM · NUTLIM (1) 

where G is the realized daily growth rate (d–1) (base e), 

ƒ is the fraction of the day during which there is light, 

and LTLIM and NUTLIM are dimensionless ratios from 

0 to 1 which describe light and nutrient limitation of 

growth, respectively (e.g. Kremer & Nixon 1978). 

Gmax is most frequently expressed as a function of 

temperature (Bowie et al. 1985, Cullen et al. 1993). In 

early models, this relationship was often described by  

a linear function (e.g. DiToro et al. 1971). More re- 

cently, the most commonly used temperature formula- 

tion was derived by Eppley (1972), who compiled a 

database of culture studies in which growth rates of 

approximately 130 species or clones of phytoplankton 

were measured at a variety of temperatures under 24 h 

of continuous illumination and conditions of nutrient 

sufficiency. When growth rates were plotted against 

temperature, Eppley found that the data fell below an 

envelope which was exponential in shape and could be 

described by the following equation  expressed  in  

base e: 

Gmax  =  0.59e0.0633T (2) 

 
where T = water temperature. This exponential func- 

tion has come to be known as the ‘Eppley curve’ and is 

commonly taken to define the maximum attainable 

daily growth rate under non-limiting conditions of light 

and nutrients. 

The Eppley curve or a similar temperature-based 

function has been used to set the maximum daily 

growth rate in a variety of estuarine, lacustrine, and 

open ocean models (Fig. 1). We reviewed 112 papers, 

reports, chapters, and other documents reporting the 

results of 60 different estuarine and nearshore dy- 

namic simulation models produced between 1971 and 

2000. Of these 60 models, 53 set Gmax as a function of 

temperature, either with the Eppley curve, a similar 

temperature-dependent function, or by using the fol- 

lowing variation on Eq. (1): 

G   =   Gmax · TLIM · ƒ · LTLIM  · NUTLIM (3) 

where the highest attainable value of Gmax is specified 

as a fixed rate and the exponential relationship to tem- 

perature is expressed as a unitless ratio from 0 to 1 

 

 

Fig. 1. Temperature-dependent functions for the maximum 

daily phytoplankton growth rate (base e) in a variety of 

dynamic simulation models. The bold line is the Eppley curve. 

Sources which use the Eppley curve directly include models 

of Lake Ontario (Thomann et al. 1975), Narragansett Bay 

(Kremer & Nixon 1978), the Baltic Sea (Stigebrandt & Wulff 

1987), the outer southeastern US continental shelf (Hofmann 

& Ambler 1988), the subarctic Pacific (Matear 1995), and 

nearshore regions of Chesapeake Bay (Madden & Kemp 

1996). Sources which use a variation of the Eppley Curve 

include models of the following systems and species groups:  

1, Sacramento-San Joaquin Delta (DiToro et al. 1971); 2, Lake 

Glumsø (Jørgensen 1976); 3, Potomac River (DiToro et al. 

1977); 4, Lake Huron and Saginaw Bay (DiToro & Matystik 

1980); 5, Lake Erie diatoms (DiToro & Connolly 1980); 6, 

other Lake Erie phytoplankton (DiToro & Connolly 1980);   

7, Potomac River (Thomann & Fitzpatrick 1982); 8, Chesa - 

peake Bay main stem (HydroQual 1987); 9, James, York, and 

Rappahannock Rivers (HydroQual 1987); 10, Patuxent River 

(HydroQual 1987); 11, the WASP (Water Quality Analysis 

Simulation Program) model (Ambrose et al. 1993); 12, Chesa- 

peake Bay diatoms (Cerco & Cole 1994); 13, Chesapeake 

Bay green algae (Cerco & Cole 1994); 14, Chesapeake Bay 

cyanobacteria (Cerco & Cole 1994); 15, Indian River Lagoon 

and Rehoboth Bay (Cerco et al. 1994) 

 

 

 

(TLIM) analogous to LTLIM and NUTLIM. Though 

Eq. (3) is expressed slightly differently from Eq. (1), the 

2 formulations produce the same result. The 7 models 

that did not set Gmax as a function of temperature 

defined a maximum growth rate and reduced it to 

account for light and/or nutrient limitation. 

A similar literature review demonstrated that lacus- 

trine models typically  use  temperature-dependent 

Gmax functions as well. The situation is different for 

models of the continental shelf and open ocean, how- 

ever. While a good number of these models do use an 

Eppley-type relationship, many compute phytoplank- 

ton growth rate only as a function of light and nutrients 

(e.g. Evans & Parslow 1985, Fasham et al. 1990). Ex- 

clusion of temperature in these models is justified due 
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G = 
1 

ln  C0 + C  
 

   

 
(4) 

t  C0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Histogram of carbon-to-chlorophyll (C:chl) ratios mea- 

sured in light-limited cultures compiled by Cloern et al. 

(1995). Arrows denote the first quartile (C:chl = 30), median 

(C:chl = 42), and third quartile (C:chl = 60)  

 

 
 

in part to the much smaller annual temperature range 

in open-ocean systems as compared to lakes and estu- 

aries. 

Additionally, many open-ocean models are steady- 

state models which are run over short time periods in 

which water temperatures do not change a large 

amount. 

The discrepancy between measured and modeled 

rates of primary production, together with the impor- 

tance of accurately predicting such rates, has led us to 

examine the traditional way in which phytoplankton 

growth and primary production are formulated in 

aquatic simulation models, and in particular the use of 

the Eppley curve. We have searched the literature for 

evidence of culture studies which violate the curve, 

and have compared growth rates measured in situ to 

those predicted by the Eppley curve from 2 estuaries 

(Narragansett Bay, RI, and Waquoit Bay, MA) and 2 

mesocosm facilities at the University of Rhode Island 

(URI Marine Ecosystems Research Laboratory [MERL] 

and the URI Lagoon Mesocosm Facility). An empirical 

alternative to Eppley’s curve is presented and ex- 

amined for its potential application in estuarine simu- 

lation models. 

 

 
MATERIALS AND METHODS 

 
To compare growth rates predicted by the Eppley 

curve with those measured in situ, we compiled 

datasets consisting of temperature, chlorophyll, and 

daily production from Narragansett Bay, Waquoit Bay, 

MERL, and the Lagoon Mesocosm Facility. Growth 

rates were calculated according to: 

where t = 1 d, C0 = initial phytoplankton biomass in 

carbon units, and C = daily increase of phytoplankton 

biomass due to production (in carbon units). This equa- 

tion is derived from the exponential growth equation 

and is commonly used to calculate growth rates from 

biomass or cell count data (Eppley 1972). 

Chlorophyll data. The ideal dataset for this analysis 

would consist of phytoplankton biomass measured as 

carbon and phytoplankton production measured as 14C 

uptake. However, data for phytoplankton carbon bio- 

mass is lacking due to the difficulty in separating the 

phytoplankton from other sources of carbon (e.g. zoo- 

plankton, detritus, microbes) when filtering water 

samples. As such, we have had to use measurements  

of chlorophyll a (chl a) concentrations as a proxy for 

phytoplankton biomass, and convert to carbon units 

using the carbon-to-chlorophyll ratio (C:chl). Cloern et 

al. (1995) compiled C:chl ratios from a variety of culture 

studies and classified them according to whether the 

cultures were light-limited or nutrient-limited. Despite 

a wide range of values, the C:chl ratios compiled by 

Cloern et al. for light-limited conditions, which are the 

prevailing conditions in the estuaries we are simulat- 

ing, show a distinct peak at a median value of 42, with 

first and third quartiles of 30 and 60,  respectively  

(Fig. 2). We have taken the first and third quartiles to 

define the range over which C:chl is most likely to vary, 

and have converted all chlorophyll data into carbon 

units using a C:chl of 30 and 60. Therefore, all calcula- 

tions of measured growth rates and comparisons to the 

Eppley curve will be done at a C:chl of 30 and 60. 

Production data. Production was measured as the 

rate of 14C uptake in MERL and Narragansett Bay and 

as the production of O2 in Waquoit Bay and the Lagoon 

Mesocosm Facility. Production in the MERL meso- 

cosms was measured biweekly by Keller (1988a) from 

1982 to 1983 during a nutrient-addition experiment in 

which tanks received inorganic nutrient additions from 

0 to 32 times the estimated loading rate to Narra- 

gansett Bay. Bottles were suspended at 5 depths in the 

MERL tanks for 4 h around midday. The hyperbolic 

tangent equation of Platt & Jassby (1976) was fit to the 

resulting photosynthesis-irradiance (P-I) curves, pro- 

ducing estimates of the light-saturated hourly produc- 

tion rate. These hourly rates were multiplied by 24 to 

obtain light-saturated daily rates, which are directly 

comparable to the Eppley curve. Data from all tanks 

were pooled for this analysis. 

Production in Narragansett Bay was measured from 

1997 to 1998 by Oviatt et al. (2002). Water was col- 

lected approximately biweekly from 3 stations in Nar- 

ragansett Bay and placed in bottles which were hung 
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at 18 depths in the MERL mesocosms. Incubations 

lasted for 2 h around midday. P-I curves were fit and 

the light-saturated hourly production rates were con- 

verted to 24 h rates as described above. It should be 

noted that, while growth rates calculated from the 14C 

data are directly comparable to the Eppley curve 

because they represent rates in 24 h of continuous illu- 

mination, any effects of nutrient limitation would have 

necessarily been incorporated into the measurements. 

In contrast, the Eppley curve predicts rates under con- 

ditions of nutrient sufficiency. As a result, this com- 

parison of measured growth rates to the Eppley curve 

is conservative. 

Incubations in Waquoit Bay were conducted by I. 

Valiela et al. (unpubl. data) in light and dark bottles for 

3.5 to 10 h during morning and early afternoon from 

1991 to 1993. Measurements were made at 1 to 2 

depths in the Quashnet River, the Childs River, Sage 

Lot Pond, and the main bay every 2 wk from March to 

November. Production in the light bottles was extrapo- 

lated to net daytime apparent production. 

Net daytime apparent production in the Lagoon 

Mesocosm Facility was measured by Milliken (1991), 

Taylor et al. (1995), and S. Granger (unpubl. data) 

using the diel oxygen curve method of Odum & Hoskin 

(1958) and the dawn-dusk-dawn oxygen method of 

Oviatt et al. (1986). Production was measured in clear 

metabolic chambers which enclosed the entire water 

column and isolated the water from the atmosphere 

and sediments. Data presented here were collected at 

various times during 1989, 1991, and 1997, and were 

pooled from all tanks across a range of inorganic nitro- 

gen and phosphorus loading rates. The 1989 and 1991 

experiments are described in Milliken (1991) and 

Taylor et al. (1995), respectively. 

All oxygen data were converted to carbon units 

using a photosynthetic quotient of 1.2. Production rates 

based on oxygen represent net daytime ecosystem 

production rather than net daytime primary produc- 

tion, as they include losses of oxygen due to heterotro- 

phic respiration. These losses lower the observed rate 

of production below that due to phytoplankton alone, 

which would be the appropriate comparison to the 

Eppley curve. As a result, the measured growth rates 

based on oxygen are underestimates of phytoplankton 

primary production, so this comparison of measured 

rates to the Eppley curve is quite conservative. 

 

 
RESULTS 

 
Culture studies 

 
In his paper, Eppley (1972) notes that he omitted 

some data points which seemed unreasonably high 

from his analysis of growth rates as a function of tem- 

perature. From this initial indication of some apparent 

violations of the Eppley curve, we have found several 

culture studies published both before and after Epp- 

ley’s paper in 1972 which report growth rates in excess 

of those predicted by the Eppley curve (Fig. 3). 

We were able to find 59 growth rates measured in  

24 h of continuous illumination which exceed the Epp- 

ley curve (Fig. 3a). Since they were measured in con- 

tinuous light, these growth rates are directly compara- 

ble to Eppley’s curve and suggest that the curve is 

simply too low. One can fit a new upper envelope to 

the data as a ‘modified’ Eppley curve using the same 

exponential rate of increase: 

Gmax  =  0.97e0.0633T (5) 

We found an additional 62 growth rates which were 

measured under a daily light-dark cycle, but which 

exceed the Eppley curve when linearly extrapolated to 

a 24 h photoperiod, as is commonly done in ecosystem 

models (e.g. Kremer & Nixon 1978) (Fig. 3b). However, 

a number of culture studies have shown a non-linear 

relationship between photoperiod and growth, in 

which growth rate increases relatively quickly, reaches 

Gmax at ƒ < 24 h, and then remains constant up to ƒ = 

24 h (e.g. Castenholz 1964, Paasche 1967, 1968, Sak- 

shaug & Andresen 1986). In these cases, linearly 

extrapolating growth rates measured under a light- 

dark cycle to 24 h rates would result in an overestimate 

of growth rate. We have therefore plotted both the 

original data (under the experimental light-dark 

cycles) as well as the 24 h extrapolated rates in Fig. 3b. 

All of the data shown exceed the Eppley curve in the 

latter case. The true growth rates lie somewhere be- 

tween these 2 extremes, and several would still exceed 

the curve. 

 

 
Field measurements 

 
Several of the growth rates computed from 14C pro- 

ductivity measurements in MERL and Narragansett 

Bay exceed the Eppley curve across the typical range 

of C:chl ratios (Fig. 4). A greater number of points 

exceed the curve at the lower C:chl ratio of 30. As for 

the culture data, the measured rates suggest that 

Eppley’s exponential upper envelope is too low. 

It is unclear why relatively few data points from the 

Narragansett Bay study violate the Eppley curve com- 

pared to the MERL experiment, although it is possible 

that nutrient limitation kept production rates low in the 

former study. As mentioned previously, the measured 

rates incorporate the effects of nutrient limitation, 

while the Eppley curve applies to conditions of nutrient 

sufficiency. In contrast, the MERL experiment spanned 
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a 32-fold gradient in nutrient loading rate, so nutrients 

would have been much less limiting during the incu- 

bations from that experiment. 

 

 

Fig. 3. (a) Instantaneous daily growth rates measured in cul- 

ture which exceed the Eppley curve (solid line). Data (n = 59) 

were converted from divisions d–1 (base 2) to d–1 (base e). 

Rates were measured under 24 h of continuous illumination 

and are thus measures of Gmax and directly comparable to the 

Eppley curve. The broken line attempts to define the upper 

envelope of the data (Eq. 5). (b) As for (a), but rates were 

measured on a light-dark cycle with light periods ranging 

from 9 to 16 h. All of these data (n = 62) exceed the Eppley 

curve when linearly extrapolated to a 24 h light period (ƒ) 

(diamonds). The true 24 h growth rates (Gmax) lie somewhere 

between these 2 extremes, suggesting that several would 

still exceed the Eppley curve. Data points have been slightly 

offset in the x dimension at a given temperature so one can 

see all the points. Culture data were compiled from Braarud 

(1945), Curl & McLeod (1961), Parsons et al. (1961), Guillard 

& Ryther (1962), Smayda (1969), Davis et al. (1973), Paasche 

(1973), Durbin (1974), Thomas & Dodson (1975), Throndsen 

(1976), Sakshaug & Holm-Hansen (1977), Furnas (1978), 

Goldman & McCarthy (1978), Yoder (1979), Brand & Guillard 

(1981), Brand et al. (1981), Gallagher (1982), Krawiec (1982), 

Verity (1982), Sakshaug & Andresen (1986), and Langdon 

(1987, 1988) 

Several of the growth rates based on O2 data from 

Waquoit Bay and the lagoon mesocosms also violate 

the Eppley curve (Fig. 5). While this violation is more 

significant at the lower C:chl ratio, it also occurs to a 

large degree at the higher ratio. These violations are 

even more significant than they appear, since the rates 

are derived from net ecosystem production rather than 

net phytoplankton production. The upper envelope of 

both datasets approximate straight lines, suggesting 

the lack of a relationship between O2-based growth 

rates and temperature. 

The data in Fig. 5 were measured under natural con- 

ditions and represent production during the daylight 

hours, so they incorporate the effects of photoperiod as 

well as light and nutrient limitation. In contrast, the 

Eppley curve represents growth rates under conditions 

of continuous (24 h) illumination and nutrient suffi- 

ciency. It is striking that so many of the measured 

growth rates nevertheless exceed this theoretical 

maximum attainable 24 h growth rate. 

If one considers that daylength is 12 h on average, 

the Eppley curve would need to be reduced by 50% for 

more direct comparison with the measured rates. We 

have therefore included curves in Fig. 5 which repre- 

sent 50% of the Eppley curve. These lines still do not 

take into account the effects of sub-optimal light and 

nutrient limitation, so the comparison of measured and 

predicted rates is again conservative. Nevertheless, 

comparison of the measured rates to the reduced 

Eppley curve reveals an even larger discrepancy be- 

tween measured and predicted rates. 

 

 
DISCUSSION 

 
Our results indicate that the Eppley curve underesti- 

mates growth rates from a variety of both culture and 

field studies. This underestimation may explain why 

many existing simulation models, in which the calcula- 

tion of daily production is often rooted in the Eppley 

curve, underestimate primary production. One possi- 

ble solution to this problem is simply to use a formula- 

tion similar to the Eppley curve which predicts higher 

growth rates for a given temperature. For example, 

one could use the new upper envelope proposed for 

the culture data in Fig. 3a (Eq. 5). This approach has 

been followed in several existing models, most of them 

more recent than those in Fig. 1 (Fig. 6). It is apparent 

from Fig. 6 that some models use formulations much 

higher than would be supported by measured data 

(e.g. Fig. 3a). While this approach is attractive as it 

continues to rely on first principles (i.e. the mechanistic 

relationship between temperature and Gmax), it is 

worth noting that the models of Savchuk & Wulff 

(1993), Soetaert et al. (1994), and HydroQual & Nor- 
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Fig. 4. Instantaneous daily growth rates (base e) calculated from chlorophyll a concentrations and 14C-based productivity mea- 

sured (a) during the MERL nutrient addition experiment and (b) in Narragansett Bay, RI. See text for details of the measurements. 

Growth rates were calculated from empirically determined rates of light-saturated production (Pmax) and therefore are estimates 

of Gmax. Solid line is the Eppley curve 

 
 

mandeau Associates (1995) all use an elevated Epp- 

ley function but still underestimate production (see 

Table 1 and surrounding text). It is therefore worth- 

while to search for another alternative.  

A second solution may lie in the correction of the 

Eppley Gmax for photoperiod. The maximum daily 

growth rate from the Eppley curve is generally re- 

duced by the fraction of the day during which there is 

light, thereby accounting for photoperiod in a linear 

manner (e.g. Kremer & Nixon 1978). However, as dis- 

cussed above some culture studies have reported 

results in which the relationship between photoperiod 

and growth is in fact non-linear (e.g. Castenholz 1964, 

Paasche 1967, 1968, Sakshaug & Andresen 1986). In 

these studies, most or all of the daily growth was com- 

pleted after 15 to 19 h, with little additional growth 

occurring beyond this up to 24 h. If this is generally 

true, then a linear correction of rates predicted by the 

Eppley curve would result in an underestimate of the 

true growth rate. Accounting for this non-linearity in 

an Eppley-based model would thus result in higher 

predicted growth rates and therefore higher rates of 

production than would a linear correction.  

In the face of uncertainties regarding just how high 

to set an elevated Eppley function and just how uni- 

versal the non-linearity between photoperiod and 

growth rate is (and exactly what the relationship is), it 

may be desirable to seek an entirely different type of 

formulation. A third option would therefore be to turn 

to the rich literature based on computation of water- 

column production from measured biomass and irradi- 

ance coupled to a detailed integration of the P-I curve 

over depth and time (e.g. Platt 1986, Platt et al. 1990, 

Behrenfeld & Falkowski 1997). It would be possible to 

insert modeled chl a during each time step into these 

equations along with forced irradiance. 

However, these models still require the specification 

of the maximum photosynthetic rate, Pmax (analogous 
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Fig. 5. Instantaneous daily growth rates (base e) calculated from chlorophyll a concentrations and O2-based productivity mea- 

sured in (a) Waquoit Bay, MA, and (b) the Lagoon Mesocosm Facility, RI. See text for details of the measurements. Upper curve  

is the Eppley curve. Lower curve is the Eppley curve reduced by 50% to account for photoperiod and limitation by light and 

nutrients. Measured rates represent net community production and are more comparable to the lower curve  

 
 

to Gmax), which introduces the same problems dis- 

cussed so far. While Geider (1993) suggests that Pmax 

is determined largely by conditioning to growth irradi- 

ance, models of temperate estuaries and lakes would 

certainly have to force Pmax as a function of tempera- 

ture due to the large annual range in temperature in 

these systems. Behrenfeld & Falkowski (1997, their 

Fig. 4) present several temperature functions which 

have been used to set Pmax (Popt in their terminology) in 

these detailed P-I models, one of which is the Eppley 

curve, and there is such a large difference between 

these functions that it would be most difficult to choose 

among them. Considering the difficulty in specifying 

Pmax, it is worth noting that Behrenfeld & Falkowski 

(1997) list the selection of this parameter as second in 

importance only to depth-integrated biomass in con- 

tributing to variability in predicted production. 

Still another approach would be to replace the tradi- 

tional formulations for growth rate (i.e. Eqs. 1 & 3) with 

one of the increasingly sophisticated bio-optical mod- 

els of primary production which are based on para- 

 
meters that describe phytoplankton photophysiology 

(e.g. Sosik 1996). Production in these models is com- 

puted as a function of irradiance, maximum photosyn- 

thetic quantum yield, photosystem II functional 

absorption cross-section, turnover time for carbon fixa- 

tion, and pigment-specific light absorption. However, 

this approach requires the specification of a variety of 

parameters which can themselves vary with tempera- 

ture, irradiance, and nutrient availability (Sosik 1996). 

As with the P-I models, such variations call into ques- 

tion the usefulness of this approach for overcoming the 

problem with the Eppley curve. 

 

 
An empirical alternative 

 
The first 2 solutions discussed above continue to rely 

on the Eppley curve, and therefore on a relationship 

developed in culture, to predict production in the field. 

All 4 of the approaches discussed thus far involve sub- 

stantial uncertainties. We have therefore chosen to 
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these systems were not included in the pooled dataset. 

An alternate expression of this relationship was devel- 

oped by Cole & Cloern (1984) previously for San Fran- 

cisco Bay: 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Temperature-dependent functions for the maximum 

daily phytoplankton growth rate (base e) in a variety of 

dynamic simulation models in which this function exceeds the 

Eppley curve (bold line) over part or all of the seasonal tem- 

perature range. The proposed new upper envelope of the cul- 

ture data in Fig. 3 (Eq. 5) is plotted for comparison (dashed 

line). Sources which use elevated temperature functions in- 

clude models of the following systems and species groups:    

1, Long Island  Sound  winter  diatoms  (HydroQual  1991); 

2, Long Island Sound summer assemblage (HydroQual 1991); 

3, Baltic Sea (Savchuck & Wulff 1993); 4, Westerschelde estu- 

ary, Netherlands (Soetaert et al. 1994); 5, North Sea diatoms 

(Aksnes et al. 1995, Skogen et al. 1995); 6, North Sea flagel- 

lates (Aksnes et al. 1995, Skogen et al. 1995); 7, Massachu- 

setts and Cape Cod Bays winter diatoms (HydroQual & Nor- 

mandeau Associates 1995); 8, Massachusetts and Cape Cod 

Bays summer assemblage (HydroQual & Normandeau Asso- 

ciates 1995); 9, Baltic Sea (Savchuck & Wulff 1996); 10, North 

Sea diatoms (Baretta-Bekker et al. 1997); 11, North Sea auto- 

trophic flagellates (Baretta-Bekker et al. 1997); 12, North Sea 

picoalgae (Baretta-Bekker et al. 1997); 13, North Sea dino- 

flagellates (Baretta-Bekker et al. 1997); 14, Lagoon of Venice 

and Adriatic Sea (Bergamasco et al.  1998) 

 

 

investigate a fifth solution which is simple, is widely 

applicable, does not involve parameter estimation, and 

is based on actual measurements of phytoplankton 

production. Cole & Cloern (1987) demonstrated a 

strong (r2 = 0.82) linear relationship between daily 

photic zone productivity (Pd, mg C m–2 d–1) measured 

using 14C and the composite parameter BZpI 0, where  

B = phytoplankton biomass measured as chl a (mg m–

3), Zp = depth of the photic zone (m) (defined as the 

depth of the 1% light level), and I0 = surface irradiance 

(photosynthetically active radiation, PAR) (E m–2 d–1). 

The empirical regression for their pooled dataset from 

North and South San Francisco Bay, Puget Sound, and 

the New York Bight was: 

Pd =  150 + 0.73(BZpI0) (6) 

Similar linear relationships were demonstrated for 

Delaware  Bay  and  the  Neuse  River,  but  data  from 

Pd  =  58 + 3.8(BI0/k) (7) 

where k is the vertical attenuation coefficient for light 

(m–1). The 2 expressions are related by Zp = 4.61/k. 

Since Cole & Cloern published their regressions, 

similar empirical relationships have been demon- 

strated in Delaware Bay (Harding et al. 1986, Pennock 

& Sharp 1986), Chesapeake Bay (Harding et al. 1986), 

Narragansett Bay and MERL (Keller 1988a,b), Tomales 

Bay (Cole 1989), the Neuse River (Mallin et al. 1991, 

Boyer et al. 1993), the Westerschelde estuary (The 

Netherlands; Kromkamp et al. 1995), and Boston Har- 

bor and Massachusetts Bay (Kelly & Doering 1997). 

The various regressions are summarized in Table 2. 

The BZpI0 empirical regressions describe 14C-based, 

depth-integrated daily production as a function of bio- 

mass and a term which quantifies light availability in 

the water column (ZpI0 or I0/k). The application of 

such a relationship to compute production dates back 

to Ryther & Yentsch (1957). The BZpI0 regressions in 

Table 2 have been demonstrated in nutrient-rich estu- 

aries, in which productivity is expected to be primarily 

limited by light. As such, the regressions can be con- 

sidered extensions of the linear relationship between 

surface irradiance and production normalized to bio- 

mass in the light-limited region of the production- 

irradiance curve (Falkowski 1981, Platt 1986), in which 

light controls production rather than the nutrient 

supply. The latter relationship has been found to apply 

over wide variations in chlorophyll, nutrients, temper- 

ature, species composition, and vertical distributions of 

the phytoplankton (Falkowski 1981), so it is not sur- 

prising that the BZpI0 relationship has a similar wide 

applicability. 

The BZpI0 regressions consistently explain the 

majority of the variation in production data, and with 

few exceptions the slopes are remarkably consistent 

among regressions (Table 2). Noticeably lower slopes 

have been reported for Delaware Bay and the Wester- 

schelde estuary, which could be due to the fact that 

both are highly turbid systems. Cole et al. (1986) found 

no significant differences between the slopes of the 

BZpI0 regressions when computed for 3 size fractions 

of plankton and for the pooled data set (Table 2). Such 

strength and consistency in the BZpI0 relationship 

across several coastal systems indicates that it could be 

a useful alternative to the Eppley curve for predicting 

primary production in simulation models. The y-inter- 

cepts suggest there is net production in the absence of 

chlorophyll and/or light (when BZpI0 = 0), so these 

regressions should actually be forced through the 
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aThe authors report their relationship as a function of BI0kc/kt, distinguishing between the attenuation coefficient due to the 

chlorophyll (kc) and the total attenuation coefficient (kt). The expression was converted to BZpI0 format using Harding et al.’s 

definition of kc [= 0.015 m–1 (mg chl a m 3) 1] and the data in their Table 5 
bRegression slopes and intercepts estimated from Fig. 7 in Pennock & Sharp (1986)  
cRegressions of the form Pd = b + m(BZpI0) were fit for each station. Slopes (m) ranged from 0.22 to 0.72, intercepts (b) ranged 

from 32 to 317, and r2 ranged from 0.32 to 0.83 

 

 

Table 2. Empirical models of daily photic zone production as a function of phytoplankton biomass and light availability. Intercepts 

and coefficients have been converted where necessary to predict production in units of mg C m–2 d–1. Regressions reported as a 

function of BI0/k have been converted to BZpI0 format using Zp = 4.61/k 

 
 

Source Study area Regression r2 

Cole & Cloern (1984) San Francisco Bay Pd = 58 + 0.82(BZpI0) 0.82 

Cole et al. (1986) San Francisco Bay  

 Unfractionated Pd = 57 + 0.81(BZpI0) 0.81 
 Netplankton Pd = 34 + 0.73(BZpI0) 0.73 
 Nanoplankton Pd = 28 + 0.73(BZpI0) 0.75 

 Ultraplankton Pd = 25 + 0.76(BZpI0) 0.55 

Harding et al. (1986)a Chesapeake Bay Pd = 176 + 0.74(BZpI0) 0.69 

 Delaware Bay Pd = 131 + 0.39(BZpI0) 0.76 

Pennock & Sharp (1986)b Delaware Bay   

 Non-summer Pd = 100 + 0.07(BZpI0) 0.68 

 Summer Pd = 300 + 0.23(BZpI0) 0.42 

Cole & Cloern (1987) San Francisco Bay, Puget Sound, New York Bight  Pd = 150 + 0.73(BZpI0) 0.82 

Cloern (1987) South San Francisco Bay Pd = 94 + 0.88(BZpI0) 0.88 

 North San Francisco Bay Pd = 63 + 0.67(BZpI0) 0.72 

Keller (1988a) MERL Pd = 199 + 0.59(BZpI0) 0.86 

Keller (1988b) Narragansett Bay, MERL Pd = 220 + 0.70(BZpI0) 0.82 

Cole (1989) Tomales Bay Pd = 125 + 0.75(BZpI0) 0.90 

Cloern (1991) San Francisco Bay Pd = 1.1(BZpI0) 0.93 

Mallin et al. (1991) Neuse River estuary Not reported 0.73 

Boyer et al. (1993) Neuse River estuary lnPd = –80 + 960ln(BZpI0) 0.66 

Kromkamp et al. (1995)  Westerschelde estuary See footnotec  

Kelly & Doering (1997) Massachusetts Bay, Boston Harbor Pd = 285 + 0.79(BZpI0) 0.66 

 

 

 

 

 

 

 

origin, as was done by Cloern (1991) in an analysis of 

data from San Francisco Bay (Table 2). 

While use of such a formulation would deviate from 

the traditional use of mechanistic formulations based 

on first principles in such models, the use of a robust, 

widely applicable function actually rooted in measured 
14C production data is justified in light of the fact that 

the existing mechanistic approach frequently underes- 

timates production. We propose to use predicted 

chlorophyll, k, and forced I0 during each time step of 

our models to compute daily productivity with a BZpI0 

regression. The predicted rate can then be converted 

to a growth rate using the biomass and C:chl ratio, or 

used to grow phytoplankton biomass directly, depend- 

ing on the integration scheme. 

 

 
Comparison of Eppley and BZpI0 predictions 

 
A simple model was developed to compare rates of 

production calculated using the traditional approach 

based on the Eppley curve and the alternative BZpI0 

approach. Average annual cycles of temperature and 

photoperiod were taken from Kremer & Nixon’s (1978) 

model of Narragansett Bay: 

T (°C)  =  11.5 – 8.5cos[2(day – 40)/365] (8) 

ƒ (dimensionless) = 0.5 – 0.125cos[2(day + 10)/365] 

(9) 

The average annual cycle of PAR for Narragansett 

Bay was developed using daily data collected by 

MERL and the Eppley Laboratory in Newport, RI: 

I0 (E m–2 d–1)  =  30 – 19cos[2(day)/365] (10) 

We modeled 3 scenarios in which chlorophyll and 

the vertical attenuation coefficient for light were held 

at constant values for a full year: 
ï Model 1: Chl a = 1 mg m–3, k = 0.2 m–1 

ï Model 2: Chl a = 10 mg m–3, k = 0.4 m–1 

ï Model 3: Chl a = 50 mg m–3, k = 1.2 m–1 

Depth (z) was set at the photic depth (= 4.61/k) in 

each model. The scenarios span the typical range in 
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chlorophyll and attenuation in temperate estuaries, 

from relatively clear, oligotrophic waters (Model 1) to 

turbid, eutrophic waters (Model 3). 

Daily production in the Eppley-based model was 

computed by multiplying the maximum daily growth 

rate by a term to account for photoperiod and light lim- 

itation (after Kremer & Nixon 1978): 

G = 0.59e(0.0633T )  
0.85 

e 
exp


 – 

 I 0   
 e  kz 

 
  exp


   

 I 0   
 

 
(11) 

kz 
        I opt    I opt 

 

where Iopt = optimal irradiance for photosynthesis 

(PAR; E m–2 d–1). The value of Iopt was computed each 

day as the weighted moving average of the irradiance 

at 1 m after Kremer & Nixon (1978): 

Iopt = 0.7I ’1 + 0.2I ’2 + 0.1I ’3 (12) 

where I ’j is the irradiance at 1 m j days earlier. The 

value of Iopt was not permitted to go below a level 

which results in an average water column irradiance of 

3.6 E m–2 d–1 (PAR). This value is equal to the apparent 

threshold for bloom formation observed by Riley 

(1967), and the approach is that of Kremer & Nixon 

(1978). 

Daily production was computed each day for 1 yr 

using the following equation at C:chl = 30 and 60: 

Pd (g C m–2 d–1) = chl 
 C 

eG – chl 
 C   

(13) 

 chl   chl 

the year to obtain annual production. 

Daily production was also calculated using the BZ pI0 

models of Cole & Cloern (1987), Keller (1988b), and 

Kelly & Doering (1997) (Table 2). The y-intercepts 

were set to zero as they are an artifact of linear regres- 

sion analysis (see above). Daily production was calcu- 

lated every day for 1 yr, and daily values were inte- 

grated over the annual cycle. 

The 3 BZpI0 equations produce very similar pre- 

dictions of both daily and annual production (Fig. 7, 

Table 3). It is remarkable that these relationships, 

developed in a wide variety of estuarine systems, con- 

verge to produce such similar predictions. The sea- 

 
 

Table 3. Annual production (g C m  2 yr 1) predicted by a 

simple Eppley curve model and 3 BZpI0 equations. See text 

for details of each model 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Daily production calculated for 3 scenarios using a sim- 

ple model based on the Eppley curve as well as 3 BZpI0 equa- 

tions. See text for details. Lower Eppley line is for C:chl = 30; 

upper line is for C:chl = 60. Upper, middle, and lower BZpI0 

lines were predicted by the relationships of Kelly & Doering 

(1997), Cole & Cloern (1987), and Keller (1988b), respectively 

 

 

 
sonal cycles of production predicted by the  2  ap-  

peak production in June, coincident with the annual 

 
 

Formulation Model 1 Model 2 Model 3 
proaches differ, with the empirical models predicting 

Eppley curve, C:chl = 30 69 399 835 maximum in irradiance, and the Eppley model predict- 

C:chl = 60 137 799 1669 ing peak production in August, coincident with the 

Cole & Cloern (1987) 184 970 1561 annual maximum in temperature (Fig. 7). 

Keller (1988b) 177 930 1497 The empirical models generally predict higher pro- 

Kelly & Doering (1997) 199 1049 1690 duction than the Eppley model at both C:chl ratios dur- 
    ing the winter, spring, and fall (Fig. 7). Only in summer 
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and sometimes in the fall when temperatures are high- 

est does the Eppley model predict rates as high as or 

higher than the BZ pI0 models, and then only at the 

higher C:chl ratio. The annual integrals for the empiri- 

cal models exceed those for the Eppley model in the 

first 2 scenarios (Table 3). For the third scenario, the 

Eppley prediction at a C:chl of 60 is within the range of 

the BZpI0 predictions. In all cases, however, the actual 

C:chl ratio will be somewhere between 30 and 60 on 

average, so even in the third scenario the BZ pI0 mod- 

els predict higher rates of production than the Eppley 

model on an annual basis. 

Based on the results of this simple model and the 

data presented in Figs. 4 & 5, one might reach the gen- 

eral conclusion that the magnitude of the underestima- 

tion that comes from using the Eppley formulation is 

highly dependent on the C:chl ratio used in the model. 

Indeed, discrepancies between measured data and the 

Eppley curve are reduced at the higher C:chl ratio of 

60, and the simple model in Fig. 7 and Table 3 also 

shows some convergence between Eppley and BZpI0 

predictions at higher C:chl ratios. We caution against 

the conclusion that the problem with underestimation 

of production can be taken care of simply by using a 

higher C:chl ratio. While the results in Figs. 4, 5 & 7 

and Table 3 begin to converge at a C:chl of 60, Eppley 

nevertheless predicts lower rates even at this upper 

value. While higher ratios than 60 can certainly occur, 

it is unlikely that the average ratio in nutrient-rich sys- 

tems would be higher than 60 (Fig. 2), where phyto- 

plankton cells should be in a generally healthy condi- 

tion. Additionally, the model of Cerco & Cole (1994) 

presented in Table 1 used a C:chl ratio of 75 and  

still underestimated production. It seems that simply 

changing the C:chl ratio is not justified by the available 

data (Fig. 2) and may not take care of the problem. 

 

 
Application of BZpI 0 

 
The BZpI0 regressions show promise for application 

in simulation models of nutrient-rich estuaries. These 

relationships could be directly incorporated into the 

model code to compute daily production from pre- 

dicted chlorophyll, k, and forced I0, and the resulting 

rates converted to growth rates or used directly  to 

grow phytoplankton biomass. While use of an empiri- 

cal function deviates from the traditional use of mech- 

anistic formulations based on first principles, we argue 

that in the face of problems caused by such mechanis- 

tic relationships, a sound alternative is to use functions 

like the BZpI0 relationships which are rooted in mea- 

sured data (14C) and appear to be widely applicable. It 

is certainly desirable to continue efforts to improve the 

mechanistic approach, and one hopes that it can be 

modified so as to eliminate the problem with underes- 

timation of production. Until then, however, it is appro- 

priate to make use of empirical relationships where 

they exist (Rigler & Peters 1995). 

As discussed above, the BZpI0 y-intercepts are an 

artifact of curve fitting and should be removed for use 

in simulation models, as they predict positive produc- 

tion when either biomass or irradiance equal zero. 

Removal of the y-intercept may warrant increasing the 

slope of the regression slightly, as this would be the 

result of forcing the regression through zero. Compar- 

ing the study of Cloern (1991) in which the y-intercept 

was eliminated to the other studies by Cole and Cloern 

in San Francisco Bay (which were based on some of the 

same data) suggests that removal of the y-intercept 

increases the slope of the BZpI0 regression by a little 

over 40% (Table 2, based on the average slope in all of 

the other San Francisco Bay regressions). 

An additional modification to the slopes may be war- 

ranted to account for seasonal differences in the phyto- 

plankton community. While Cole et al. (1986) found 

little difference among the slopes of the BZpI0 relation- 

ships for 3 size fractions of phytoplankton, Pennock & 

Sharp (1986) report a steeper slope for summer as 

opposed to non-summer populations. Supporting evi- 

dence for this seasonal difference is also provided by 

Keller (1988b), who found steeper slopes between 

daily production and biomass alone (chlorophyll a) in 

summer versus non-summer populations. 

Despite the absence of a nutrient term in the regres- 

sions, it would be necessary to use the available supply 

of nutrients (standing stock plus inputs in a given time 

step) to set the maximum limit on daily production. 

That is, one would use the empirical model to calculate 

potential production from predicted chlorophyll, atten- 

uation coefficient, and irradiance during each time 

step, but allow only as much of that production to occur 

as there are nutrients to support. 

One potential problem with applying the BZpI0 mod- 

els to shallow systems is that the relationships have 

been derived in relatively deep estuarine systems in 

which the photic depth is generally less than the sys- 

tem depth. The models predict production in a water 

column in which the phytoplankton have access to all 

of the available light. Such a model would overpredict 

production in a system in which the depth is less than 

the theoretical photic depth (at which the 1% light 

level would be reached in the absence of a bottom), 

because the phytoplankton no longer have access to all 

of the available light. The authors are developing a 

correction factor which adapts the BZpI0 model to shal- 

low systems where light reaches the bottom by taking 

into account the non-linear relationships between 

depth and irradiance and between irradiance and pro- 

duction. 
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CONCLUSIONS 

 
Existing estuarine simulation models often accu- 

rately predict the standing stock of phytoplankton but 

underestimate the rate of primary production. Many of 

these models calculate production using the exponen- 

tial relationship between temperature and growth rate 

demonstrated by Eppley (1972) for culture data. How- 

ever, growth rates measured in a variety of culture and 

field studies exceed those predicted by the Eppley 

curve. This discrepancy may explain why existing sim- 

ulation models often underestimate production. The 

empirical formulation relating daily production to the 

composite parameter BZpI0 has been found to apply in 

a variety of nutrient-rich estuarine systems, and pre- 

dicts rates of production in excess of those predicted 

by the Eppley curve. The wide applicability of this 

relationship, the similarity of the various regressions 

among systems, and the foundation of the relationship 

in measured data support the application of the BZpI0 

formulation as an alternative to the Eppley curve in 

dynamic simulation models of estuarine systems. The 

authors are currently developing 2 estuarine models 

which incorporate the BZpI0 relationship and which 

will allow a comparison between predictions gener- 

ated by the empirical formulation and those generated 

by the traditional approach. 
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