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Jammed disks of two sizes in a narrow channel

Dan Liu and Gerhard Müller

Abstract A granular-matter model is exactly solved, where disks of two sizes and
weights in alternating sequence are confined to a narrow channel. The axis of the
channel is horizontal and its plane vertical. Disk sizes and channel width are such
that under jamming no disks remain loose and all disks touch one wall. Jammed
microstates are characterized via statistically interacting particles constructed out
of two-disk tiles. Jammed macrostates depend on measures of expansion work,
gravitational potential energy, and intensity of random agitations before jamming.
The dependence of configurational entropy on excess volume exhibits a critical point.

Introduction The research reported here builds on two previous studies [1, 2] em-
ploying the same methodology of exact analysis in the framework of configurational
statistics. They, in turn, were inspired by work on jammed disks in a narrow channel
based on different methods of analysis [3, 4, 5] that yielded intriguing results. The
focus on disks of two sizes and weights in alternating sequence, for which new exact
results are being presented here, is intended to be a first step toward a scenario
where the channel contains such disks in a random sequence – a realistic goal in the
framework of the same methodology.

Geometry Disks of two sizes with diameters σL ≥ σS in alternating sequence are
being jammed in a channel of width H. The following two conditions guarantee that
(i) the disk sequence remains invariant before jamming, (ii) all jammed disks have
wall contact, and (iii) jamming leaves no disks loose:
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All jammed microstates can be assembled from 8 tiles composed of two disks with
one disk overlapping (Table 1). Adding a tile to an already existing stringmust satisfy
the successor rule to maintain mechanical stability under jamming forces.

Table 1 Distinct tiles that constitute jammedmicrostates of disk sequences subject to the conditions
(1). Mechanical stability rule: v must be followed by w or 2 etc. Motifs pertain toσL = 2,σS = 1.4,
H = 2.5. Volume of tiles: Vc =

1
2 (σL + σS) +

√
H(σL + σS − H), Vf =

1
2 (σL + σS) +

√
σLσS

(assuming unit cross section of channel).

motif ID rule vol. motif ID rule vol. motif ID rule vol. motif ID rule vol.

v w, 2 Vc 1 3, 4 Vf 3 v Vf 5 3, 4 Vc

w v, 1 Vc 2 5 Vf 4 5, 6 Vc 6 w, 2 Vf

Under mild assumptions the microstate of minimum volume with N (large/small)
disk pairs is composed of an alternating sequence, vwvw· · · v, of just two tiles.
We declare it to be the reference state for statistically interacting particles in this
application. All other (jammed) microstates can be generated by the activation of
quasi-particles from this reference state. We have identified M = 5 species of
particles that serve this purpose (Table 2). Adopting the taxonomy of Ref. [6] we
distinguish between the categories of hosts and tags.

Table 2 Five species of quasi-particles. The hostsm = 1, . . . , 4 modify the reference state whereas
the tagm = 5modifies any one of the hosts. The ID lists the overlapping tiles involved. The activation
energy εm is relevant before jamming and the excess volume ∆Vm after jamming.

ID m cat. ∆Vm εm ID m cat. ∆Vm εm

13 1 host 2Vt 2pVt − γS 2546 4 host 2Vt 2pVt − γS + 2γL

146 2 host 2Vt 2pVt − γS + γL 45 5 tag 0 γL − γS

253 3 host 2Vt 2pVt − γS + γL

Particles from species m = 1, . . . , 4 can be placed directly into the reference state
(pseudo-vacuum), meaning that it is possible to add a tile v or w to the left or to
the right as follows: w13v, w146w, v253v, v2546w. Particles from species m = 5
are parasitic in the sense that they can only be placed inside a particle from species
m = 1, . . . , 4, at exactly one position and with one disk overlapping as follow: 1|45|3,
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1|45|46, 25|45|3, 25|45|46. The number of tag particles that can be added inside
the same host is only limited by the size of the number N of disk pairs in the system.
For example, two tags inside the first host reads 1|4545|3. The minimum number of
tiles v or w between two host can be two as in 13vw146, one as in 13v13, or zero as
in 146253.

Energetics The activation of every host particle extends the total volume after
jamming by the amount 2Vt, where Vt � Vf − Vc (see Tables 1 and 2). Placing a
tag does not change the volume. The activation energy εm assigned to a particle
from species m pertains to the state of random agitation before jamming. It consists
of work against the ambient pressure exerted by pistons and gravitational potential
energy, all relative to the reference state.

We are free to choose the mass density of small and large disks. Therefore,
the gravitational potential energies γL and γS are independent parameters as is the
expansion work 2pVt. A fourth parameter is the intensity Tk of random agitations.
The jamming protocol is explained in [1]. All results coming out of configurational
statistics will only depend on three (dimensionless) ratios of four energy parameters:

β �
2pVt
Tk

, ΓL �
γL

2pVt
, ΓS �

γS
2pVt

. (2)

Combinatorics The quasi-particles identified in Table 2 are statistically interacting
in the sense that activating one particle affects the number dm of open slots for the
activation of further particles from each species. This interaction can be accounted
for by a multiplicity expression for jammedmicrostates involving a generalized Pauli
principle [7] in the form, [6, 8, 9],

W({Nm}) =

M∏
m=1

(
dm + Nm − 1

Nm

)
, dm = Am −

M∑
m′=1

gmm′(Nm′ − δmm′), (3)

with capacity constants Am and statistical interaction coefficients gmm′ as listed in
Table 3, and where Nm is the number of activated particles from species m.

The initial capacity for hosts grows linearly with the number of disks. It is zero
for tags, which can only be activated inside hosts. Activating a host (m′ = 1, . . . , 4)

Table 3 Capacity constants and statistical interaction coefficients for each particle species.

m Am

1 N − 2
2 N − 3
3 N − 2
4 N − 3
5 0

gmm′ 1 2 3 4 5
1 2 2 1 2 1
2 1 2 1 1 1
3 2 2 2 2 1
4 1 2 1 2 1
5 −1 −1 −1 −1 0
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removes one or two slots for activating a further host (m = 1, . . . , 4) but adds one
slot for activating a tag (m = 5). Activating a tag (m′ = 5) removes one slot for
activating hosts (m = 1, . . . , 4) but leaves the number of slots for activating a further
tag (m = 5) invariant.

Statistical mechanics Wecan express the excess volume and the entropy as functions
of the average particle content {〈Nm〉} of a jammed macrostate as follows [9]:

V − Vref =

M∑
m=1
〈Nm〉∆Vm, Ym � Am −

M∑
m′=1

gmm′ 〈Nm′〉. (4a)

S = kB
M∑
m=1

[ (
〈Nm〉 + Ym

)
ln

(
〈Nm〉 + Ym

)
− 〈Nm〉 ln〈Nm〉 − Ym lnYm

]
. (4b)

The average particle numbers are the solutions of the linear equations [8, 9],

wm〈Nm〉 +

M∑
m′=1

gmm′ 〈Nm′〉 = Am. (5)

The wm are non-negative solutions of the algebraic equations [6, 8, 9],

eεm/Tk = (1 + wm)

M∏
m′=1

(
1 + w−1

m′
)−gm′m . (6)

The analytic solution of Eqs. (6), too unwieldy for display, gives us explicit ex-
pressions for the scaled excess volume, V̄ � (V − Vref)/NVt, the scaled entropy,
S̄ � S/NkB, and the particle densities, N̄m � 〈Nm〉/N , as functions of β, ΓL, ΓS.

Results There is space to present one case, ΓL = ΓS, at the border between two
regimes, large and small disks have equal gravitational potential energy when they
touch the same wall. Only two of the parameters (2) are independent. Increasing β
means reducing the intensity of random agitations before jamming and increasing
ΓL means increasing the effects of gravity (e.g. by tilting the the plane of the channel
from horizontal toward vertical).

In the high-intensity limit, β→ 0, we have the most disordered macrostate:

N̄1 = · · · = N̄4 =
1

12
, N̄5 =

1
6
, V̄ =

2
3
, S̄ = ln 3 (β = 0). (7)

It is instructive to plot the the population densities versus volume [Fig. 1(a)-(c)].
For N̄1, . . . , N̄4, β = 0 is realized at the points where multiple curves merge. For N̄5
that point is at the top of the dotted line. Increasing β toward infinity means moving
along any path toward V̄ = 0 if ΓL < 1 or toward V̄ = 1 if ΓL > 1. The path stops
at V̄ = 1

2 if ΓL = 1, which signals criticality. The following conservation law only
holds for the case considered here:
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Fig. 1 Population densities N̄m ,m = 1, . . . , 5 versus excess volume V̄ for fixed values 0, 0.5, 0.75,
1.0, 1.25, 1.5 of parameter ΓL = ΓS from bottom up in panel (a) and from left to right in panels (b)
and (c)]. The dotted line connect the points pertaining to β = 0 of N̄1 and N̄5. The dashed diagonal
represents the sum N̄1 + N̄2 + N̄3 + N̄4. (d) Entropy S̄ versus excess volume V̄ for fixed values 0,
0.5, 0.75, 0.9, 1.0, 1.1, 1.25, 1.5 of parameter ΓL = ΓS (from left to right).

N̄tot �
5∑

m=1
N̄m =

1
2

(ΓL = ΓS). (8)

Its validity is illustrated by the two diagonal lines in Fig. 1(a), where the dashed
line represents the population density of all hosts combined. The tags m = 5 do
not contribute to excess volume. Their numbers depend on V̄ nevertheless, via the
conservation law (8). Any increase in volume caused by the activation of one or the
other host necessarily crowds out one tag.

The results show that hosts m = 2, 3, 4 only contribute significantly at high
intensity. The three distinct macrostates associated with β = ∞ are located at the
corners or the center of Fig. 1(a). All have N̄2 = N̄3 = N̄4 = 0.

• The state with N̄1 = 0 and N̄5 =
1
2 is realized for ΓL < 1 and has V̄ = 0,

S̄ = 0. It is a doublet consisting of the reference state vwvw · · · vwv and the state
14545 · · · 4546. The former contains no particles, N̄5 = 0, and the latter one host
2 and a macroscopic number of tags inside, amounting to N̄5 = 1.

• The state with N̄1 =
1
2 and N̄5 = 0 is realized for ΓL > 1 and has V̄ = 1, S̄ = 0.

It is a singlet packed with hosts 1: 13vw13vw · · · 13v. Hosts 1 proliferate because
they have negative activation energies.

• The state with N̄1 = N̄5 =
1
4 is realized for ΓL = 1 and has V̄ = 1

2 , S̄ = ln 2. It
is highly degenerate. The hosts 1 are randomly distributed between vacuum tiles
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with a random number of tags inside. Hosts 1 and tags 5 have zero activation
energies whereas the hosts, 2, 3, 4 have positive activation energies.

With all this information in place we are ready to interpret a graphical represen-
tation of entropy versus excess energy [Fig. 1(d)]. The parameter β runs from zero
to infinity along each path from the top down. All paths start at coordinates V̄ = 2

3 ,
S̄ = ln 3. Paths for ΓL < 1 end at V̄ = 0, S̄ = 0, and paths for ΓL > 1 at V̄ = 1, S̄ = 0.
At critical gravity, ΓL = 1, both volume and entropy decrease monotonically but end
at the critical values V̄ = 1

2 , S̄ = ln 2.
Compact analytic expressions for the curves in Fig. 1 pertaining to zero gravity

and critical gravity are available. For ΓL = 0 we have

N̄1 = · · · = N̄4 =
1
8

V̄, N̄5 =
1
2
(
1 − V̄

)
, S̄ =

(
V̄ − 1

)
ln

(
2
V̄
− 2

)
+ ln

(
2
V̄

)
, (9)

where the range of volume is 0 ≤ V̄ ≤ 2
3 . For ΓL = 1 we have

N̄1 =
(V̄ − 1)2

2V̄
, N̄2 = N̄3 =

3
2
− V̄ −

1
2V̄
, N̄4 = 2V̄ +

1
2V̄
− 2, (10a)

N̄5 =
1
2
(
1 − V̄

)
, S̄ = 2(V̄ − 1) ln

(
1 − V̄

2V̄ − 1

)
− ln(2V̄ − 1), (10b)

across the more restricted range 1
2 ≤ V̄ ≤ 2

3 of volume.

Outlook Qualitatively different jamming patterns pertain to the regimes ΓL < ΓS of
light large disks and ΓL > ΓS of heavy large disks. Yet different jamming patterns
are expected when the analysis is generalized to periodic and aperiodic sequences
including random sequences of large and small disks (with modified jamming pro-
tocols).
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