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Exploring the role of CESA5 in the synthesis of cellulose using Physcomitrella 

patens 

 

Abstract 

 

Cellulose is very essential to plants because it determines the shape of cells, protects 

them from pathogens, and helps retain water that is needed for plant functions. It is 

also the major component of wood, cotton, and paper, which are items we use on a 

daily basis. Also, it can be used for the synthesis of biofuels. However, cellulose 

exists as strong fibers, which make it hard to breakdown for biofuel synthesis. If we 

can understand how cellulose is synthesized we can manipulate its fibers to make 

them stronger, more flexible, more absorbent, or easier to break down for use as 

biofuels. Cellulose synthase complexes are observed by electron microscopy in the 

plasma membrane and Golgi vesicles of algae and plants. However, the different 

CESA proteins cannot be identified using this technique. Therefore, the number of 

CESAs in a complex is still unknown as well as their stoichiometry.  Regulation of the 

activity and assembly of the complex are also unknown. A general idea is that there 

are certain CESAs that are responsible for the formation of the primary cell wall, and 

others that are responsible for the secondary cell wall in vascular plants. But, the 

moss Physcomitrella patens has only primary cell walls and still has seven different 

CESAs. The purpose of this project is to study the properties and characteristics of 

cellulose synthase 5 (CESA5). Understanding the role of CESA5 in P. patens can lead 

to a better understanding of the evolution of the cellulose synthase complex and the 

formation of cellulose. This can ultimately enable us to break down cellulose for 

biofuels and use it as a possible solution to global warming. During the course of this 



project, a miniSOG-tagged CESA 5 expression clone was successfully created using 

Gateway cloning. Polymerase chain reaction and a BP reaction were used to make a 

tandem-miniSOG entry clone and an LR reaction was used to insert the entry clones 

into the destination vector. The destination vector was transformed into the moss. 

Phenotypic analysis will be performed on the transformed lines to gain insight onto 

the function of CESA 5 in the synthesis of cellulose.  

 

 

 

Introduction: 

 

Plant cell walls are vital for plant development. Cellulose is the major 

component in plant cell walls, and it is the world’s most abundant biopolymer. 

Cellulose is very essential to plants because it determines the shapes of the cells, 

protects it from pathogens, and it helps retain water that is needed for plant 

functions.  

 Cellulose contains linear chains of glucose residues, but these chains 

aggregate to form impeccably strong microfibrils, which are deposited into outside 

the plasma membrane by transmembrane proteins protein complexes known as 

Cellulose Synthase Complexes (CSC) (Sommerville et. al, 2006). These complexes 

contain cellulose synthase proteins (CESA) and come in different morphological 

forms, two of which are the rosette and linear forms. In seed plants there are certain 

CESA proteins that are responsible for the formation of the primary cell walls and 

others that are responsible for synthesis of the secondary cell wall. Genome 

sequencing has shown that there are 7 CESA genes and 3 pseudogenes in 

Physcomitrella patens (Roberts and Bushoven, 2007). Additionally, freeze fracture 



electron microscopy has shown that P.patens has rosette shaped CSCs that 

polymerize the beta-1-4-glucan chains that assemble into cellulose microfibrils 

(Roberts et. al, 2013).  Physcomitrella patens has only a primary cell wall and still 

has the seven different CESAs. Understanding the roles of each of the CESAs in P. 

patens can lead to a better understanding of the evolution of the CSC and the 

formation of cellulose. 

To enable better visualization, a genetically encoded tag can be used to image 

specific proteins within cells and organisms. The miniSOG tag used in this project 

enables the highest spatial resolution in protein localization via electron 

microscopy. MiniSOG is a fluorescent flavoprotein made from Arabidopsis 

phototropin 2. “Illumination of miniSOG does not destroy the cell, it allows for ultra 

structural preservation and 3-D protein localization” (Shu et. al, 2011). Electron 

microscopy allows for higher magnification ultimately allowing for better 

visualization. In this project, a miniSOG-CESA5 expression vector was created and 

then transformed into the moss Physcomitrella patens for genotypic and phenotypic 

analysis.  

 

Methods: 

Polymerase Chain Reaction (PCR):  

The purpose of the PCR was to amplify the miniSOG DNA template; it creates the 

product with the attB sites that recombine with the attP site on the pDONR vector to 

successfully create the entry clone. In this project, TdSOG and N1SOG templates 

were amplified to produce the appropriate entry clone using the Phusion enzyme 

according to manufacturers instructions.  The forward primers used for TdSOG and 

N1SOG templates were miniSOGTd-att1 

(GGGGACAAGTTTGTACAAAAAAGCAGGCTCAACCATGGAGAAGAGCTTCGTGAT) and 

mSOG-att1 

(GGGGACAAGTTTGTACAAAAAAGCAGGCTCAACCATGGAGAAAAGTTTCGTGAT), 



respectively, and the reverse primer used was mSOG-5r 

(GGGGACAACTTTTGTATACAAAGTTGTTCCATCCAGCTGCACTCCGAT): 

 

BP Recombination Reaction: 

The BP reaction creates the entry clones by inserting the PCR fragments into the 

pDONR vector. The number of fmoles of DNA is converted to nanograms to 

determine the amount of DNA needed for the reaction. A 4 μl reaction containing 11 

ng of attb PCR product (TdSOG), 1 μl of pDONR vector, and 1X TE buffer was placed 

in a tube, and then 1μl of BP Clonase II was added to catalyze the reaction. The 

reaction was incubated at 25OC for 1 hour. After the BP reaction was complete, 

competent bacterial cells were transformed with the plasmid. In the transformation 

reaction, 2 μl of the DNA was added to the E. coli cells and incubating them for 20 

minutes at room temperature and heat shocking them at 42oC for 30 seconds. Then 

250 μl of S.O.C medium was added to the vial, which was incubated for 1 hour at 

37oC. During that LB kanamycin antibiotic plates were made.  When the plates 

cooled, the transformation product was smeared on two LB kanamycin plates and 

incubated overnight for bacterial colonies to develop. 

 

Restriction Analysis: 

The Qiaprep Spin Miniprep Kit was used to isolate bacterial plasmids from the 4 

bacterial colonies that were selected from the transformation reaction. The 

restriction analysis required 10x Buffer 4, and 0.25 μl of EcoRV to cut the insert out 

of the plasmid. Following the analysis, an agarose electrophoresis gel was prepared 

to run the samples of plasmids to determine the sizes of the fragments.  

 



LR Reaction: 

The LR reaction was used to insert our CESA5 and TdSOG entry clones into the xt18 

destination vector using LR clonase enzyme to catalyze the reaction. The tube 

containing the tdSOG, CESA5 and xt18, TE buffer, and the LR clonase enzyme were 

incubated for 16 hours at room temperature. Competent bacterial cells were 

transformed with the plasmid as described for the BP reaction. 

 

 

Genetic transformation of P. patens: 

The expression vector, which consisted of CesA5-miniSOG, was transformed into the 

moss. After transformation and antibiotic selection, the genotypes of the antibiotic 

resistant moss were analyzed.  

 

Results: 

For the first PCR we used TdSOG and N1SOG templates and mSOG-att1 and mSOG-

att5r primers. The gel revealed that TdSOG, which we expected to amplify as a 727 

bp double miniSOG, amplified as a 382 bp single miniSOG (Figure 1). Restriction 

digest analysis and sequencing revealed that the single miniSOG was successfully 

cloned (Figure 2). Unfortunately, the LR reaction was not successful. The restriction 

digests of the plasmids did not show the expected 10177 and 2915 bp bands (Figure 

3a).  In order to test the remaining colonies, we performed a bacterial screening test 

with a positive control. The positive control was compared to colony screens to 

determine if any of them contained the right product. The gel from the screening 

revealed an absence of the expected band from all other samples therefore our LR 



was unsuccessful (Figure 3b). PCR of TdSOG using the miniSOGTd-att1 and mSOG-

att5r produced the expected 727 bp band, and when the plasmid was sequenced, 

results showed that the TdSOG sequence was correct. Another LR reaction was 

performed using the Td-miniSOG-P1 5r and miniSOG- P15r and the xt18 as the 

destination vector. After performing a transformation reaction and restriction 

digest, the gel electrophoresis confirmed the expected 10177 and 2915 bp bands 

(Figure 4).  

Protoplasts isolated from a P. patens cesa5 knockout line were transformed with the 

expression vector. After antibiotic selection was complete there were 5 moss 

colonies, and 3 out of the 5 cesa5 knockouts produced leafy gametophores (Figure 

5). Results from the PCR-based genotyping for the 5’ to 3’ integration of the vector 

produced two bright bands from colonies 4 and 5 confirming the 3’ integration 

(Figure 5).  
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Figure 1 PCR OF TdSOG (Lane 

1) and N1SOG  (Lane 2) 

templates with mSOG-att1 m-

SOGatt5r primers. The bright 

band in lane 1 represents the 

TdSOG that amplified as a 

single template.  
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Figure 3: (A) Restriction digest of plasmids from LR reaction. Electrophoresis of the plasmid DNA 

isolated from the colonies that resulted from an LR recombination reaction cut with SwaI. None of the 

plasmids produced the expected 10177 and 2915 bp fragments. (B) PCR of bacterial colonies that 

resulted from an LR reaction (6 colonies per lane). The bright band in lane 10 represents the positive 

control. This band was absent in the other lanes confirming that the LR was unsuccessful.  

 

  
 
Figure 4: LR reaction of TD-miniSOG-P15r and miniSOG- P15r, using xt-18 as the destination vector. The 

bands represent in lane 2 confirm the expected 10177 and 2915 bp bands. 

Figure 2: Restriction digest of plasmids 

from BP Reaction: Electrophoresis 

of the plasmid DNA isolated from 

the colonies that resulted from a BP 

recombination reaction cut with 

EcoRV. 



 

 
 

 
Figure 5: This photo shows the CESA5-KO that produced leafy gametophores.   

 

 

 

Figure 6: Gel electrophoreses from the PCR-based genotyping of moss transformants. The two bright 

bands indicate successful 3’ integration of the vector from colonies 4 and 5.  

 

 

Discussion: 

The main goal of this project was to create an expression vector containing 

CESA5 and TdSOG and use it to transform a P. patens cesA5 knockout mutant. After 

several tries the entry clones where successfully created and the moss was 

successfully transformed.  The transformation produced 2 lines (#4 and #5) with 

the vector successfully integrated by double homologous recombination based on 

PCR genotyping. The wild type phenotype was restored in both of these lines. This 

shows that the miniSOG-tagged CESA5 protein is functional. More research will be 



conducted on CESA5 to determine its role in the formation of CSCs, including how 

CESA5 interacts with other CESAs and how it affects the synthesis of cellulose.  
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