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ABSTRACT 

The accuracy of psychological and neuropsychological evaluation may be degraded 

when non-informative alteration (NIA) in data, or alteration in the manner data are 

represented but not in core meaning, impacts interpretation. If NIA exerts an impact, it 

may also lead to underutilization of truly useful information. Certain interpretive 

practices that are based on configural relationships and are already problematic (e.g., 

scatter analysis) may be particularly vulnerable to NIA and thereby further 

compromised. This study examined: (1) judgments regarding inter-test scatter across a 

neuropsychological battery, (2) whether NIAs impact judgments regarding scatter, and 

(3) whether truncating the visual presentation of scatter alters misjudgments about the 

frequency or pathological significance of scatter. Participants (N = 193) were 

neuropsychologists and graduate students who have received training in 

neuropsychological assessment. When judging neuropsychological profiles, 

participants markedly overperceived normal levels of scatter as rare or aberrant. The 

influence of NIA was mixed. Changing the visual plotting of percentiles from equal- 

to unequal-sized units did not alter judgments.  In contrast, simply changing the 

designated metric from percentiles to T-scores, while holding visual plotting constant, 

reduced overperception of scatter, although only partially or insufficiently.  An 

intervention that truncated visual scatter further improved judgmental accuracy (i.e., 

truncated visual scatter compared to larger visual scatter with mathematically identical 

information attenuated misjudgments about the normality of scatter). This study 

provides preliminary evidence for a previously underidentified source of error in the 

interpretation of psychological test data. Future research should determine whether the 
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current findings can be replicated, advance the design of interventions as needed, and 

assist in developing evidence-based standards for representing graphical displays that 

diminish the influence of NIAs. 
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CHAPTER 1 

 

INTRODUCTION 

 

 The accuracy of psychological and neuropsychological evaluation may be 

degraded when non-informative alteration (NIA)1, or alteration in the manner data are 

represented but not in core meaning, impacts interpretation. Additionally, 

psychologists might underutilize diagnostic, or truly useful, information, when NIA 

exerts an impact. It is posited that NIA in the presentation of psychological test data, 

such as changes in the physical dimensions of displays or even in the labeling of 

metrics, may nevertheless influence interpretation, therefore increasing the potential 

for error. Differences in visual presentation of test data occur with great regularity. As 

further explained below, examples of such differences include: denotation metric, 

graphical dimensions, coloration, and orientation. A scientific basis to evaluate and, 

where needed, reduce or eliminate impact from NIA is lacking.  

Certain interpretive practices that are based on configural relationships (e.g., 

scatter analysis) may be particularly vulnerable to influence from NIA. When such 

alterations degrade the accuracy of certain interpretive practices, corrective procedures 

for graphically displaying data could prove highly beneficial. The present study 

explored: (1) judgments regarding inter-test scatter across a neuropsychological 

                                                 
1 For the purposes of this thesis, “non-informative alteration” refers to any alteration in information that 

has no true value. Although NIA can come in different forms, of particular interest here are changes in 

the graphical display of data that in no way alter the mathematical properties of those data. For 

example, if a scaled score of 80 represented in green color ink is changed to blue color ink, the change 

would be a NIA as defined here. 
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battery, (2) whether NIAs impact judgments regarding scatter, and (3) whether 

truncating the visual presentation of scatter attenuates or corrects misjudgments about 

the normality of scatter.
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

Maximizing accuracy when applying psychometric measures depends on 

adherence to certain principles. Following sound procedures in selecting, 

administering, and interpreting tests are paramount in achieving accuracy (Mitrushina, 

Boone, Razani, & D’Elia, 2005; Strauss, Sherman, & Spreen, 2006). In regards to 

interpretation, properly developed and implemented statistical judgment methods are 

not influenced by NIA, and therefore, the accuracy of such methods should not be 

impacted. However, these methods are apparently underutilized (Vrieze & Grove, 

2009). By contrast, subjective or clinical judgment may be susceptible to NIA. 

Clinical judgment may be influenced or degraded by factors that are non-informative 

secondary to cognitive limitations and biases (Faust, 1984, Faust & Ahern, 2012; 

Wedding & Faust, 1989). For example, the salience of information, even if unrelated 

to its diagnostic value, may heavily influence impressions and decisions. When 

interpretation is compromised by NIA, which may in turn lead to underutilization of 

diagnostic information, the accuracy of clinical decision-making is likely to decline.  

Clinical interpretive practices are highly variable. Whether preferable or not, 

clinical or impressionistic judgment remains the most frequently used method for 

drawing conclusions and predicting outcomes across many domains of applied 

psychology (Vrieze & Grove, 2009) and has been promulgated as a core feature of 

neuropsychological test interpretation (Lezak, Howieson, Bigler, & Tranel, 2012). 
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Given the frequent use of clinical judgment in psychological and neuropsychological 

assessment, the potential impact of NIA should be examined and, if and when present, 

attenuated or eliminated to the extent possible. The present study focuses on whether 

holding data mathematically constant, but varying the manner in which it is 

represented visually, alters interpretation. The variations examined are intended to 

exemplify the range of common practices in the field of psychological testing and 

among test publishers. 

Non-Informative Alterations  

 Within the field of psychological assessment, raw test scores are most 

frequently converted to standard scores (e.g., z-scores, T-scores, and percentiles) to 

aid in comparison with normative groups and from test to test. Test developers and 

publishers vary in the selected metric, some emphasizing T-scores, some Wechsler-

like standard scores (e.g., mean = 100; standard deviation = 15), and some percentiles. 

Utilizing the same underlying data, different metric selection will often result in 

graphical displays that differ in appearance. Assuming a normal distribution for all 

measures, metrics are easily transformed into one another (although relationships may 

not be linear, e.g., percentiles to scaled scores). Therefore, substantively 

discriminating information should usually remain unchanged or identical across 

metrics.  

There has been considerable debate within the field concerning the most useful 

metrics for representing test data. For example, some researchers adamantly oppose 

the use of percentiles (Bowman, 2002), and others endorse their value (Crawford & 

Garthwaite, 2009; Crawford, Garthwaite, & Slick, 2009). One limitation of percentiles 
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is the lack of interval measurement, resulting in disparity in the relationships between 

test scores (i.e., the relationship between the 10th and 20th percentile is 

disproportionate to the relationship between the 40th and 50th percentile). Therefore, 

graphically representing percentiles as equal-sized units, a mathematical distortion, 

visually skews the relationship between data points. At times, test data presented as 

percentiles are represented in unequal-sized units, consistent with their mathematical 

properties, but at other times, they are represented in equal-sized units, despite the 

resultant distortion.  

For example, for the Woodcock–Johnson III Tests of Cognitive Abilities 

(Woodcock, McGrew, & Mather, 2001) results are graphed horizontally as unequal-

sized units (i.e., proportional to a normal distribution); whereas results for the 

Wechsler Memory Scale –III (WMS-III) Auditory Composite Index (Wechsler, 1997a) 

are graphed vertically as equal-sized units (i.e., equal spacing between percentile 

points). Using equal interval spacing introduces increased visual discrepancy when 

plotted in percentiles and can lead to marked alterations in visual displays. Such 

alterations also occur with other metrics. For example, T-scores can be displayed to 

adhere to a normal distribution (i.e., equal-sized units), as is the case for the Minnesota 

Multiphasic Personality Inventory-2 (MMPI-2: Butcher, Graham, Ben-Porath, 

Tellegen, Dahlstrom, & Kaemmer, 2001), or as unequal-sized units (Bowman, 2002). 

T-scores graphed at unequal-sized units are often visually similar to percentiles 

graphed as equal-sized units.  

Not only does metric selection and interval spacing impact graphical display, 

but dimensions and orientation of a graph also regularly vary across, and sometimes 
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even within, psychological tests. With computerized-based test interpretation (CBTI), 

marked variations may occur even for the same test. For example, multiple 

commercial CBTI programs are available for the MMPI-2. Graphical displays on these 

programs use different dimensions and interval spacing to present T-scores (Williams 

& Weed, 2004a; 2004b). For example, portrait versus landscape orientation of the 

graphical display of test data can change the physical space between higher and lower 

scores and consequently visual impressions about test score disparities. Thus, 

regardless of psychologists’ positions on the advantages and disadvantages of 

competing metrics, the graphical displays that everyday practitioners use often vary 

independently from the properties of the obtained test data themselves. 

Scatter Analysis as a Susceptible Interpretive Practice 

 The potential problem of inconsistent interpretation based solely on variation 

in visual representation of test data may be substantial and pervasive within 

psychological assessment. For example, clinical interpretive practices often rely on 

scatter – relative variability between high and low scores. Interpretation of scatter 

attends to the relationship between patterns of high and low test scores and 

comparison of such to expectations about normal vs. abnormal test performance. Of 

concern, the visual distance between test scores is partly determined, and may be 

subsequently altered, by interval spacing, metric selection, and graphical dimensions. 

Although limitations in scatter analysis have been recognized for over half a century 

(Schofield, 1952), the appraisal of intra- and inter-test scatter remains one of the most 

common approaches to the psychological evaluation of cognitive function and brain 

disorders (Lezak, Howieson, Bigler, & Tranel, 2012).  
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Clinicians frequently underestimate normal levels of scatter (Schretlen, Munro, 

Anthony, & Pearlson, 2003), leading to overidentification of pathology. Schretlen and 

colleagues’ study (2003) demonstrated that the great majority of normal adults show 

marked quantitative discrepancies in test scores across a prototypical 

neuropsychological battery, levels that are often considered deviant. Variability 

between test scores is often influenced not only by true differences in level of ability 

but by measurement artifact as well, such as the number of tests administered (Binder, 

Iverson, & Brooks, 2009), scoring errors, which may occur with surprising frequency 

(Allard & Faust, 2000; Simons, Goddard, & Patton, 2002), and inadequate normative 

selection (Brooks, Strauss, Sherman, Iverson, & Slick, 2009). Therefore, graphical 

presentation that accentuates differences between scores may compound these 

interpretive problems. If NIA worsens an already common, problematic judgment 

practice, the impact may be pervasive. 

The primary concern here is broader than judgments about test scatter, as many 

facets of test interpretation may be influenced by alteration in graphical displays (e.g., 

impressions about the extremity or abnormality of test results). However, because of 

the frequent use and potential relevance of scatter analysis, it seemed an appropriate 

starting point for the study of the more general issue of graphical display. This thesis 

aimed to examine whether NIA may worsen an already problematic judgment habit, 

and, if so and better understood, might inform attempts to develop alternative or 

corrective methods of displaying data. 
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Pilot Study 

Given the lack of research in this area, a pilot study was performed. The pilot 

study explored the potential impact of altering graphical displays of identical test data 

on psychological test interpretation. The study used a between-group design with one 

independent variable (graphical display plotted as one of two metrics: Wechsler 

standard scores [SS] or percentiles with equal-sized units [PES]) and two dependent 

variables (perceived frequency and level of aberrance). Participants (N = 11) consisted 

of graduate students in clinical or school psychology who had just completed a 

cognitive assessment course and, therefore, had recent training in the interpretation of 

the Wechsler Adult Intelligence Scale – IV (WAIS-IV: Wechsler, 2008). This test 

generates a number of summary or composite scores. Participants were randomly 

assigned to one of two groups: SS (n = 5) and PES (n = 6). Each participant reviewed 

a graphical display of composite scores from one prototypically normal WAIS-IV 

profile. Participants were then asked to judge how frequently the level of scatter 

occurs in the normal population and the degree to which it might indicate aberrance. 

Judgments regarding frequency and aberrance may appear to be addressing the same 

question, but this is not necessarily the case. For example one might judge test results 

as rare, but not indicative of dysfunction (or vice-versa).  

Although the pilot study used the WAIS-IV (Wechsler, 2008), the 

prototypically normal profile was developed using the normative database from the 

Wechsler Adult Intelligence Scale – III (WAIS-III: Wechsler, 1997b) based on Ahern, 

Faust, and Bridges’ work (in preparation). Using the intercorrelations and base rate 

discrepancies between IQ and index scores for the normative sample set forth in the 
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WAIS-III – WMS-III Technical Manual (2002a), Ahern et al. created a profile that was 

normal or unremarkable in all basic respects (e.g., level of scatter among composite 

scores).   

Revisions from the WAIS-III to the WAIS-IV required minor adjustments in the 

prototypically normal profile. More specifically, where applicable, the labels for new 

or revised composite scores were substituted for previous labels, and extrapolations 

were made about generalization of normal features across versions of the test given 

similarities in key psychometric properties (e.g., generally satisfactory levels of test 

reliability, common means and standard deviations).  There are limitations to such 

extrapolation, e.g., correlations between indexes and IQ scores vary between the 

WAIS-III and WAIS-IV. However, for the purposes of the pilot study, which aimed 

merely to explore a potential influence of NIA, the impact of such limitations on the 

overall results was viewed as likely to be minor. Whether the profile was 

prototypically “normal” or “abnormal” the data were mathematically constant, and 

differences in judgments of frequency or aberrance would presumably be due to NIA. 

The prototypical profile was plotted in one of two metrics: SS or PES (see 

Figure 1). The PES profile introduced greater visual scatter compared to the SS 

profile, although both are mathematically constant with one another. No additional 

information was provided beyond the visually represented test scores. Participants 

were instructed as follows: 

Please respond to the questions below concerning the frequency and overall 

aberrance, if any, in the discrepancy between Wechsler IQ scores and Indexes. 

It is understood that in clinical practice the information provided is insufficient 
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and other relevant information would be advantageous, e.g., referral question, 

demographic information and clinical history. Given the acknowledged limits 

of the information, please respond as best you can. 

         As previously noted, the dependent variables included judgments about 

frequency within the normal population and degree of aberrance in variability among 

IQ scores and indices within the profile. Judgments were measured on a seven-point 

Likert-scale. The questions for the two dependent variables were: “How frequently 

does the level of variability displayed in the profile below occur in the normal 

population?” and “In regards to intra-test variability, how would you rate the level of 

aberrance, if any, in the profile below?” Corresponding Likert-scale anchors for the 

first question were: ‘1’ – “less than 10% of the time,” ‘4’ – “around 50% of the time,” 

and ‘7’ – “greater than 90% of the time.” Corresponding Likert-scale anchors for the 

second question were: ‘1’ – “strongly suggests normality,” ‘4’ – “neutral, no more 

likely to indicate normality or abnormality,” and ‘7’ – “strongly suggests abnormality” 

(see Appendix A). Given the small sample for this pilot study, analysis consisted of 

descriptive and non-parametric (Wilcoxon-Mann-Whitney) statistics.  

 Results showed that participants in the SS group judged the inter-test 

variability within the profile to be more common (M = 5.8, SD = 0.8) and less aberrant 

(M = 2.6, SD = 1.8) than participants in the PES group (M and SD = 4.0, 1.8; 4.7, 1.2, 

respectively). Despite the limited sample size, the analysis yielded significant 

differences for both variables (Z = 1.79, p = .04; Z = -1.67, p = .05, respectively). As 

the profiles were mathematically constant and the only difference was graphical 

display, the NIA between indices and IQ scores likely explained the results. Thus, the 
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pilot study provided initial evidence that NIA influences interpretations. Of note, two 

variables were simultaneously altered within the graphical display (i.e., visual scatter 

and metric selection). Therefore, whether both variables contributed to the outcome 

and their relative contributions could not be determined.   

Hypotheses 

 The pilot study justified further investigation on the potential impact of NIA on 

test data. Differences in the pilot study were presumably due to alterations in the 

appearance of variability. Visual scatter2 appears greater when results are plotted in 

PES versus SS. The pilot study also provided preliminary evidence that mode of 

graphic display may worsen certain interpretive practices, such as analysis of scatter – 

a practice that is already questionable in and of itself. Based on the results from the 

pilot study, the present study examined the following hypotheses: 

H1: Participants would judge scatter to be associated with neuropsychological 

dysfunction and would underestimate the level of scatter found in healthy 

individuals. 

H2: Greater versus lesser visual scatter (i.e., profiles plotted as percentiles with 

equal- vs. unequal-sized units) would lead participants to judge the test results 

as more unusual. 

H3 (exploratory): Metric selection would influence judgments regarding 

scatter even when mathematical properties and visual scatter of test data are 

held constant. 

                                                 
2 Visual scatter  can be differentiated from analysis of scatter. Visual scatter refers to the visual 

appearance of data when plotted graphically, not to mathematical properties of the data. Analysis of 

scatter refers to the interpretation of scatter, which may or may not rest in part or in whole on 

mathematical properties.    
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H4: Truncating visual scatter, by maintaining the overall dimensions of the 

graph but increasing the range of anchor points along the y-axis, would reduce 

participants’ overinterpretations of test scatter  
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CHAPTER 3 

 

METHODOLOGY 

 

The main study extended the pilot study by making the visual stimuli more 

representative of common clinical neuropsychological practice, by graphing data at 

varying levels of scatter, and by exploring a corrective procedure (detailed below).  

Participants 

Participants (N = 193) were recruited from the NPSYCH Listserve, an e-mail 

discussion list devoted to practice and research in adult neuropsychology. It is one of 

the more active neuropsychology listserves (NAN, 2003). It currently has 2,745 

subscribers and is only open to neuropsychologists and other related specialists and 

researchers (accessed from the listserve’s website, www3.npsych.com). Almost all 

members are expected to have had specialized training in neuropsychological 

assessment. There were no exclusionary criteria based on demographic features. A 

brief description of the study with a link to the survey (hosted by www.qualtrics.com) 

was posted to the NPSYCH Listserve on four occasions. The Qualtrics program 

randomly provided participants with one graphical display.  

Out of the 193 participants, some participants did not provide responses to all 

demographic variables and, on rare occasions, did not respond to one of the dependent 

variables. For example, only 171 participants responded to the question regarding 

gender, 174 participants responded to the first dependent variable, and 185 participants 

responded to the second dependent variable. Missing data will be addressed below. 
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This study followed American Psychological Association ethical guidelines and was 

approved by the University of Rhode Island Institutional Review Board on Human 

Subjects. 

Demographic features of the sample are summarized in Table 1 (see Appendix 

B for the demographic questionnaire). The sample was split about evenly by gender 

and was predominately White (90.7%). Twenty participants (11.7%) reported their 

level of education as M.A/M.S. Predoctoral level participants were included in the 

current analysis, because subscription to the NPSYCH Listserve suggests some 

familiarity with neuropsychological assessment. Inclusion of predoctoral level 

participants introduces limitations to the generalizability of this study.  

Procedure 

The study used test results from a prototypical neuropsychological battery 

(described below). Two levels of scatter or intra-individual variability were used and 

was defined, as is common, by the range between an individual’s highest and lowest 

scores across the test battery. At each level of scatter, information was kept 

mathematically constant, and the only variation involved a NIA. 

The levels of scatter were based on Schretlen et al.’s (2003) results. Schretlen 

et al.’s work had various positive design features (e.g., a more substantial normative 

sample than many studies of this type) and seemed to provide a strong template and 

basis for the current research.  Schretlen and colleagues studied 197 healthy adults, 

age 20-92 with a mean age of about 55 years and a mean education of about 14 years. 

Each participant completed a neuropsychological battery of 15 tests that resulted in 32 

measures or scores. Schretlen et al.’s study revealed substantial intra-individual 
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variability in the performance of presumably healthy, normal adults. For example, 

only 2% of the sample obtained a range of scatter of less than two standard deviations 

(SD), whereas 65% demonstrated a range of at least three SD and 20% a range of at 

least four SD. The mean level of intra-individual variability was about 3.4 standard 

deviations (SD = 0.8). Schretlen et al.’s findings are congruent with decades-old 

analyses showing large variability in individuals’ subtest scores across intelligence 

tests and on groups of tests included within neuropsychological batteries (for reviews 

of the literature, see Schretlen & Sullivan, 2013; Binder et al., 2009; Brooks et al., 

2009; and Mitrushina et al., 2005).  

For purposes of the present study, Schretlen et al.’s 2003 results were used as 

guides for estimating where levels of intra-individual variation fell relative to the 

general population (e.g., was it lower than usual) and for appraising the accuracy of 

respondent’s assumptions about expected levels of intra-individual variability.  

Schretlen and colleagues also kindly agreed to provide data from their research on 

healthy individuals, which was to be used to assist in the design of the prototypical 

protocols.  The design of these materials was already well underway, based on the 

information contained in the published study, before the underlying Schretlen data 

were obtained. 

Rather than providing data from the 2003 study, Schretlen et al. provided an 

updated and more extensive data set (Schretlen, Testa, Winicki, Pearlson, & Gordon, 

2008).  For example, the size of the sample was increased by over 50% (N = 327), and 

data were collected from an expanded and somewhat altered set of tests.  Furthermore, 
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although not realized by the present author at the time, results for mean level of intra-

individual variation were revised in an upward direction (M = 3.9; SD = 0.7).   

The ultimate consequences of these changes were that levels of scatter for the 

prototypical protocols, which were selected to fall at the 10th and 50th percentiles 

based on Schretlen et al’s 2003 study, fell at the 2nd and 25th percentiles, respectively, 

according to the updated and expanded data base.  The prototypical protocols had 

already been selected and sent to participants before these changes in normative values 

were uncovered, but, by sheer luck, the difference did not undermine data collection or 

analysis, as will be further explained below.  In short, even under the original set of 

normative assumptions based on the 2003 data, results showed that respondents 

markedly underestimated normal levels of scatter, and as the updated data showed 

even greater levels of intra-individual variation among normal individuals, this finding 

was not negated but rather shown to be even more extreme.  

The data base Schretlen and colleagues provided included demographic 

variables and test performances on 45 overall measures. Thirty-two of these 45 overall 

measures were selected to create the prototypical profiles3. Within the current study, 

the 32 measures assess: memory (12), attention (6), executive function (4), language 

(3), visual-spatial (5), and motor (2) abilities. As noted, profiles were selected to be 

prototypical for levels of scatter at 2.4 SD and 3.4 SD, approximately the 10th and 50th 

percentiles (although as described, the figures fell at the 2nd and 25th percentiles, 

                                                 
3 Here again, the original design for the present study was based on Schretlen et’ al’s 2003 data, which  

contained 32 test scores.  Although the updated data base provided scores on additional tests, 32 

measures seemed fully sufficient for research purposes and hence was not expanded.  Figures provided 

above on normative levels of scatter for the updated data base were based on these 32 measures or areas 

of assessment. 
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respectively, according to the updated data base).  Due to a concern that 

neuropsychologists may frequently over-interpret small to normal scatter as unusually 

large and aberrant, a normatively, small level and average level of scatter was chosen.  

Working from the data base Schretlen and colleagues provided, prototypical 

cases were selected by examining results on the 32 pertinent test scores or areas of 

measurement for level of scatter.  Only one case had a discrepancy of 2.4 SD (T-score 

range: 36 – 60) and 19 cases had a discrepancy of 3.4 SD. Of the 19 cases, seven were 

missing at least one score. Of the remaining 12 cases, one case was selected at random 

(T-score range: 31 – 65). Therefore, one case was selected with a level of scatter at 2.4 

SD and one with a level of scatter at 3.4 SD (or results that fell at the 10th and 50th 

percentile, respectively, according to Schretlen et al. [2003] but at the 2nd and 25th 

percentile, respectively, according to the updated data base) .  

As the intended participants were neuropsychologists and likely had varying 

familiarity and opinions about the tests that Schretlen et al. (2003; 2008) studied, 

generic labels for the tests were used. For example, tests were labeled by cognitive 

domain (e.g., Executive Function), instead of using the actual names of tests/subtests. 

To assess the impact of NIA on interpretations, this study utilized a between-

groups design with four independent variables and two dependent variables. 

Participants were provided with one out of seven possible profiles (detailed below). 

Each participant was then asked to judge how often the level of scatter displayed in the 

profile occurs in the normal population. Unrelated to the graphical display, 

participants were also asked whether scatter is associated with neuropsychological 
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dysfunction. If participants responded affirmatively, they were asked to approximate a 

dividing point that distinguishes between normal and abnormal levels of scatter. 

Independent Variables: Scatter, Interval Spacing, Metric, and Corrective Procedure 

The first independent variable was inter-test scatter.  Inter-test scatter was set 

at 2.4 SD and 3.4 SD, which, as noted, turned out to approximate the 2nd and 25th 

percentile, respectively, in the data Schretlen provided. It seemed worth examining 

whether susceptibility to NIA varies across differing levels of scatter. For example, it 

may be that at 3.4 SD, results would be mistakenly judged as aberrant even if the 

graphical display attenuates the appearance of scatter. 

The second independent variable, interval spacing, had two conditions: 

percentiles with equal-sized units (PES) versus percentiles with unequal-sized units 

(≠PES) (see Figures 2 – 5). As mentioned, interval spacing plotted as ≠PES is 

proportionate to a normal distribution. Both profiles were plotted with the same metric 

(percentiles) but visual scatter was greater with the PES profile, and therefore, the only 

difference between the PES and ≠PES profile involved NIA of scatter. The third 

independent variable, metric selection, was crossed with the second independent 

variable and also had two conditions: T-score vs. ≠PES, as shown in figures 6 and 7.  

The profile plotted as ≠PES had the same visual scatter as the T-score profile, and 

therefore the only difference between the T-score and ≠PES was the denoting metric.  

Finally, a corrective procedure to attenuate the potential impact from NIA was 

explored. This fourth independent variable was crossed with the T-score profile 

plotted at 3.4 SD. As noted earlier, when a NIA accentuates visual scatter (e.g., PES), 

it seems likely profiles will be misjudged as rarer or much rarer occurrences than is 



 

19 

truly the case.  Such rarity might well be overinterpreted or misinterpreted, in turn, as 

indicative of pathology.  Therefore, these profiles may cause considerable interpretive 

problems and create a pressing need for corrective procedures or interventions.  

The intervention examined here extended the range of T-scores plotted along 

the y-axis (from the original plotted range of 20-80 to the extended range of 0-100), 

while keeping the vertical and horizontal length, or overall dimensions, of the graph 

constant. By keeping overall vertical and horizontal size constant but extending the 

range of plotted T-scores, the physical distance between higher and lower test scores is 

diminished or condensed (see Figure 8 in comparison to Figure 7).    

Dependent Variables 

Participants were initially provided with a brief vignette of a hypothetical 

client. Demographic variables regarding age, education, and gender of the hypothetical 

client were borrowed from the mean characteristics found in Schretlen et al. (2003). 

The instructions were as follows: 

A neuropsychological profile of a 55 year old, white, female patient with 14 

years of education appears below. The comprehensive battery consists of 15 

tests, which generate 32 scores that have been co-normed (see below for list of 

test domains). All scores were uniformly adjusted for age, gender, and 

education. Although the data provided are certainly less complete than would 

be typical in practice, they should be valuable in addressing the questions that 

follow.  

            There were two primary dependent variables: a) judgment about the frequency 

of scatter within the graphical display and b) perceived relationship between scatter 
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and neuropsychological dysfunction. The question for the first dependent variable 

was: “How frequently does the level of inter-test variability displayed in the profile 

occur in the normal population?” Responses were measured on a continuous scale 

ranging from 0% to 100%. For the second dependent variable, the initial question used 

a dichotomous format and was followed by a subsequent question dependent on the 

first response. This second dependent variable was unrelated to the graphical display, 

and it was intended to assess broader interpretive practices. For the initial question, 

participants were asked: “Is inter-test variability associated with neuropsychological 

dysfunction?” If the response was affirmative, the participant was then asked to 

complete a second question: “Taking all test scores into account and assuming that 15 

co-normed tests with 32 measures have been administered, what is the approximate 

dividing point you use in distinguishing between normal and abnormal levels of 

variability?” Corresponding Likert-scale anchors for this question were the maximum 

discrepancy between the highest and lowest score measured in standard deviations 

ranging from less than 0.5 SD to greater than 6.0 SD. (see Appendix C).  

The two dependent variables were treated as independent from one another. 

The first dependent variable was used to address the second through fourth 

hypotheses, which all involved the impact of NIA on interpretation.  The second 

dependent variable was used to address the first hypothesis, which involved judgments 

regarding scatter and neuropsychological dysfunction.    

Analysis 

Based on the results of the pilot study, a medium to large effect size (d = .325) 

was anticipated. To achieve 80% statistical power, an overall sample of 245 
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participants (35 per cell) was needed. The overall design was segregated into three 

separate Analyses of Variances (ANOVAs) based on the groupings of the independent 

variables: interval spacing, 2X2; metric selection, 2X2; and corrective procedure, 1X1. 

Given the crossed nature of the design, there are seven cells overall. As described 

below, the actual analysis for the study utilized two one-way Mann-Whitney U tests 

(comparable to two one-way ANOVAs). Each analysis was performed at the two 

levels of scatter (i.e., 2.4 SD and 3.4 SD). An a priori power analysis (based on 

calculations using G*Power 3.1.3) was conducted on the PES vs. ≠PES groups at both 

levels of scatter to calculate an adequate cell size. Given the three separate ANOVAs 

planned for the study, a Bonferroni correction was employed to maintain an overall 

type I error rate of 5%. Thus, the α level was set at .017. Assuming the same 

parameters mentioned above (in particular the effect size), a post hoc power analysis 

on the obtained sample (N = 193) indicated 60% statistical power. However, statistical 

analytic techniques assumed in the power analysis were ultimately modified. The 

above procedure still served to guide the initial recruitment and study design. 

The original plan anticipated a Multivariate Analysis of Variance (MANOVA) 

with subsequent follow up Analysis of Variance (ANOVA) and Tukey Tests as 

indicated. However, the overall sample size was suboptimal, and Levene’s test 

indicated unequal variances (F = 2.198, p = .05). Therefore, non-parametric tests that 

are comparable to ANOVA and follow-up Tukey Tests were used; specifically, 

Kruskal-Wallis tests with follow-up one-tailed Mann-Whitney U tests. Mann-Whitney 

U tests were set a priori as one-tailed to account for the expected directionality in 

responses (i.e., responses were expected to skew toward normative characteristics 
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based on the level of scatter). The second dependent variable (relationship between 

scatter and neuropsychological dysfunction) was analyzed with descriptive statistics. 
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CHAPTER 4    

 

FINDINGS 

 

H1: Is Scatter Associated with Neuropsychological Dysfunction? 

 It was initially hypothesized that participants would judge scatter to be related 

to neuropsychological dysfunction. It was further hypothesized that those participants 

who affirmed a relationship would underestimate normal level of scatter in healthy 

individuals. Participants who did not affirm a relationship obviously could not make a 

judgment regarding level of scatter differentiating normal and abnormal performance. 

Results were analyzed by means of descriptive statistics.  

 Eight participants (4.1%) did not respond to the question asking whether inter-

test variability is associated with neuropsychological dysfunction. Of the 185 who did 

respond, 64.3% (n = 119) indicated that scatter is associated with neuropsychological 

dysfunction. Among those responding affirmatively, 72% (n = 86) indicated a dividing 

point for abnormal levels of scatter at 1.5 SD to 2.0 SD. Slightly less than 2% of 

respondents (only two) indicated a cutoff at 4.0 SD, and none indicated a cutoff below 

1.0 SD. Table 2 provides cumulative percentages for level of scatter judged to 

distinguish between normal and abnormal performance.  Many participants 

dramatically underestimated a cutoff for determining abnormal levels of intra-

individual variability or scatter not only when compared to Schretlen’s actual results 

(e.g., 3.0 SD and 3.9 SD approximated the 10th and 50th percentiles) but also when 
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compared to numerous other studies on the matter that have yielded similar outcomes 

(see Binder et al., 2009)  

Main Effects for Non-Informative Alterations at Both Levels of Scatter  

To evaluate the main effects for NIA, Kruskal-Wallis tests were conducted to 

examine differences among the three conditions with 2.4 SD of scatter (PES, ≠PES, 

and T-score) and the four conditions with 3.4 SD of scatter (PES, ≠PES, T-score, and 

T-score with intervention). The outcome was significant at 2.4 SD of scatter, 2 (2, N 

= 72) = 6.35, p < .05; and at 3.4 SD of scatter, 2 (3, N = 102) = 28.04, p < .001. 

Follow-up Mann-Whitney U tests were conducted to evaluate pairwise differences 

among the groups at each level of scatter. Descriptive statistics are summarized in 

Table 3. Respondents demonstrated a wide range of judgments regarding perceived 

frequency when evaluating both levels of scatter. That is, at both levels of scatter, 

participants’ judgments of frequency ranged from zero to 95%.   

H2: Interval Spacing (PES vs. ≠PES) 

 It was hypothesized that greater versus lesser visual scatter (i.e., profiles 

plotted as PES vs. ≠PES) would lead participants to judge the test results as rarer. At 

2.4 SD (Figure 2 vs. 3), a one-tailed Mann-Whitney U test revealed no significant 

difference between the PES (Mdn = 35) and ≠PES (Mdn = 35) conditions, U = 309, Z 

= -.068, p = .48. The effect size4 (r = .01) was negligible (Cohen, 1992). Similarly, at 

3.4 SD (Figure 4 vs. 5), a one-tailed Mann-Whitney U test revealed no significant 

difference between the PES (Mdn = 22) and ≠PES (Mdn = 25) conditions, U = 377.5, 

Z = -.206, p = .42, again with a negligible effect size (r = .03). Contrary to the 

                                                 
4 The non-parametric effect size was approximated using the following equation: r = Z/√N (Rosenthal, 

1991). 
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hypothesis, no difference in judgment was found between test data plotted as 

percentiles in a manner congruent or incongruent with the underlying mathematical 

properties (i.e., as ≠PES versus PES, respectively). 

H3: Metric Selection (≠PES vs. T-score) 

 The exploratory hypothesis that metric selection would influence judgments 

regarding scatter was supported. Even when mathematically equivalent data was 

plotted identically, simple change in the designated metric altered judgments. At 2.4 

SD (Figure 3 vs. 6), a one-tailed Mann-Whitney U test revealed a significant 

difference between the ≠PES (Mdn = 35) and T-score (Mdn = 65.5) conditions, U = 

172.5, Z = -2.187, p < .05, with a medium effect size (r = .32). Similarly at 3.4 SD 

(Figure 5 vs. 7), a one-tailed Mann-Whitney U test revealed a significant difference 

between the ≠PES (Mdn = 25) and T-score (Mdn = 40) conditions, U = 191.5, Z = -

2.345, p < .001, again with a medium effect size (r = .33). Thus, participants judged 

equivalent data and plotting of results as more common when designated as T-scores 

versus percentiles across both the 2.4 SD and 3.4 SD conditions. 

H4: Corrective Procedure (T-score vs. T-score with Intervention) 

 Based on the first hypothesis that greater visual scatter would lead participants 

to judge the test results as rarer, a corrective procedure was implemented. It was 

hypothesized that reducing or truncating the physical space between high and low test 

scores would improve judgments about the frequency of scatter, or bring them in 

closer alignment with research findings.  The corrective procedure maintained the 

overall dimensions of the graph but increased the range of anchor points along the y-

axis. This analysis was conducted only at a scatter of 3.4 SD (Figure 7 vs. 8). A one-
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tailed Mann-Whitney U test revealed a significant difference between the T-score 

(Mdn = 40) and T-score with intervention (Mdn = 75) conditions, U = 112.5, Z = -

3.335, p < .001. The effect size (r = .49) was large. Consistent with the hypothesis, a 

visual representation that truncated the appearance of scatter altered judgment about 

the frequency of occurrence, and it did so in a favorable direction.  
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CHAPTER 5 

 

CONCLUSION 

 

This study examined: (1) judgments regarding scatter across a 

neuropsychological battery, (2) whether NIAs impact judgments regarding scatter, and 

(3) whether truncating the visual presentation of scatter attenuates or corrects 

misjudgments about the normality of scatter. When NIA impacts interpretation, it 

likely degrades the accuracy of psychological and neuropsychological evaluation. 

Additionally, when NIA exerts an impact, clinicians might underutilize diagnostic, or 

truly useful, information. Interpretive practices based on configural relationships may 

be particularly vulnerable to influence from NIA, given emphasis on patterns and 

interrelations among tests scores, which can look very different depending on 

variations in visual presentation. Although research has recognized limitations in 

scatter analysis for over half a century (Schofield, 1952), the appraisal of test scatter 

remains one of the most common approaches to evaluation of cognitive function and 

brain disorders (Lezak et al. 2012). If or when NIA degrade the accuracy of certain 

interpretive practices, corrective procedures for graphically displaying data could 

prove highly beneficial. 

Neuropsychologists’ Perceptions of Normal Scatter 

 In this study, a substantial proportion of neuropsychologists (64.3%) endorsed 

the value of scatter for identifying neuropsychological dysfunction. Those endorsing 

the value of scatter were then asked to specify a cutoff for abnormally high levels 
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under the assumptions set forth in the research materials, which involved 32 co-

normed tests or test scores.  Although specified cutoffs varied all the way from 1.0 SD 

to 4.0 SD, nearly every respondent underestimated normal levels of scatter; many by a 

large margin.  For example, 72.6% indicated a cutoff between 1.5 SD and 2 SD, levels 

well below those expected for normal individuals and very often exceeded by such 

groups.  The vast majority of normal individuals in the Schretlen data base (over 99%) 

exceeded the range of 2 SD.          

 Although the Schretlen data provide a single source of information on scatter 

and are not definitive, the level of scatter found in that work is consistent with a 

considerable body of literature on the topic (Binder et al., 2009; Brooks et al., 2009).  

Consider further that studies involving even a single general measure with about 10 or 

so subtests, such as the Wechsler Intelligence scales, demonstrate levels of scatter 

among normal groups that equal or exceed the cutoff levels that many respondents in 

the current study identified under the assumption that about triple the number of 

measures were used. For example, the 11 primary subtests from the WAIS-III and the 

10 primary subtests from the WAIS-IV both have a mean of about 2.2 SD between the 

highest and lowest scores (Wechsler, 1997a; 2008).  It is also a mathematical truism 

that increasing the number of tests or subtests within a neuropsychological battery that 

already includes such an intelligence test will produce a level of scatter that must at 

least equal, and will often exceed, the level of scatter produced by the intelligence test 

alone (Binder, Iverson, & Brooks, 2009).    

           Furthermore, neuropsychological batteries are often comprised of various 

measures that are not co-normed, which is likely to accentuate scatter.  Variability 
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between test scores and measures may also be magnified by various artifacts, such as 

scoring errors (Allard & Faust, 2000; Simons, Goddard, & Patton, 2002) and 

inadequate normative selection (Brooks, Strauss, Sherman, Iverson, & Slick, 2009). 

Taking all of these considerations together, a critical implication of the current results 

is that common interpretive practices, which both emphasize scatter analysis and 

grossly underestimate normative levels, may well lead to the overidentification of 

pathology or brain dysfunction, a potentially serious error.    

The already problematic practice of overinterpreting scatter may be worsened 

by NIA because the visual distance between graphically displayed test scores is partly 

determined, and may be subsequently altered, by interval spacing, metric selection, 

and graphical dimensions. This study and prior research of Schretlen et al. (2003) 

demonstrated that psychologists frequently underestimate normal levels of scatter. 

Therefore, graphical presentation that accentuates differences between scores may 

compound these interpretive problems, a possibility the current study partly supports.  

Identification of such issues provides a platform for exploring possible interventions, 

such as truncating visual representations of scatter to decrease perceived rarity.  

Non-Informative Alterations 

 This study explored two primary NIAs: 1) interval spacing of percentiles, and 

2) metric selection with identical visual scatter. The influence (or lack thereof) from 

these alterations on judgments was similar for each variable at both levels of scatter. 

Contrary to the hypothesized result, interval spacing of percentiles did not result in 

significant differences at either level of scatter. However, metric selection did produce 
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significant differences at both levels of scatter, with scatter represented in T-scores 

judged to be more common (or less aberrant) than percentiles. 

Interval Spacing (Percentiles with Equal- vs. Unequal-Sized Units) 

 As mentioned earlier, one limitation of percentiles is the lack of equal interval 

measurement, resulting in disparity in the relationships between test scores. It was 

hypothesized that scatter plotted in percentiles at equal-sized units would be judged as 

rarer than scatter plotted in unequal-sized units, because in the former case the 

mathematical distortion artificially increases physical distance between test scores. 

When percentiles are plotted in equal-sized units, even scores that do not fall very far 

from the middle of the bell curve (e.g., a score 1 standard deviation below the mean) 

are nevertheless pulled towards the endpoints of a graphical display. Record forms 

(Wechsler, 1997a), computer-based test interpretive programs (The Psychological 

Corporation, 2002b), and authoritative texts in neuropsychology (Spreen & Strauss, 

1998) have graphically displayed percentiles as equal-sized units. However, in the 

present study, no difference was found at either level of scatter for equal- versus 

unequal-sized units  

Metric Selection (Percentiles vs. T-scores) 

Unlike the non-significant results obtained when altering the representation of  

percentiles, simply labeling identical visuals plots as percentiles versus T-scores led 

respondents to judge test variability as less common or more aberrant (median range 

for percentiles = 22% – 35%; median range for T-scores = 40% – 75%). It is possible 

that the mere magnitude of the percentile number influences judgments of the profile’s 

rarity. For example, a maximum discrepancy represented in T-scores of 30 and 70 is 
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equivalent to a percentile of approximately 2 and 98. Perhaps the magnitude of the 

difference between listed numbers can be more salient than the magnitude of the 

visual discrepancy. These findings and conclusions are preliminary and merit further 

research.  If, however, the mere number itself, and not the correct meaning of the 

number (based on both the number and its true value given the respective metric) 

exerts an impact, and perhaps a decided impact, on clinical judgment, it is a cause for 

serious concern.   

            When the criterion level of scatter was set at an unusually low level (the 2nd 

percentile or 2.4 SD), judgments about frequency or rarity based on T-scores were 

more accurate than judgments based on percentiles. However, even these appraisals 

based on T-scores were still markedly inaccurate (Mdn = 35%). Similarly, a criterion 

level of scatter set at the 25th percentile (i.e., 3.4 SD) was appraised more accurately 

when represented as T-scores versus percentiles (Mdn = 40%). Two judgmental 

problems may be occurring: a) misappraisal of normal scatter (as described above 

under “neuropsychologists’ perceptions of normal scatter”), and b) inconsistent 

interpretability of and transposition between varying metrics (i.e., equivalent data are 

treated as unequal due to how the metric is conceptualized). In regards to the latter, 

this study provides evidence that certain metrics are either systematically 

misinterpreted or poorly understood in their relationship to a normal distribution. As a 

result, percentiles and T-scores that represent mathematically identical information 

may be interpreted differently. 

 Such mixed judgmental tendencies are potentially problematic. Variations in 

metric selection occur across both test record forms and computer-based test 
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interpretive programs. To record and interpret data, clinical neuropsychologists 

frequently use multiple mediums that present data in different metrics. Depending on 

metric selection and its relation to the susceptibility of particular interpretive practices, 

even a comprehensive neuropsychological assessment system that provides a uniform 

metric across all measures within a battery may be prone to NIA. It is unclear whether 

certain metrics compound error into otherwise problematic judgment practices (e.g., 

overinterpretation of scatter). The non-trivial impact of NIA in assessment is likely 

pervasive within clinical neuropsychology, and thus attempts to ameliorate the 

influence seems warranted.  

Corrective Procedure (Truncated Visual Scatter) 

 It was hypothesized that decreasing physical spacing of visual scatter across 

higher and lower tests scores would lead respondents to judge profiles as more  

common or less indicative of pathology.  This outcome did not occur when data were 

plotted as PES vs. ≠PES, and under both conditions many respondents underestimated 

the commonality or normality of scatter.  

           Perhaps somewhat paradoxically, however, the corrective procedure produced 

encouraging results.  When data were held mathematically constant but visual scatter 

was reduced by extending the anchor points of the y-axis (0 – 100), judgments were 

altered in the desired direction. With a normal distribution, extreme T-scores 

represented within the corrective procedure become nearly unattainable (i.e., a T-score 

of zero represents a score worse than at least one in three million). However, such a 

truncated display demonstrated feasibility in diminishing the role of NIA, which may 

improve clinical judgments. Consequently, it may be possible, for example, to 
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attenuate what appears to be marked tendencies to overinterpret normal levels of 

scatter in healthy individuals.  

Limitations 

One limitation of this study was the suboptimal sample size. The study aimed 

to recruit 245 participants (i.e., 35 participants per cell for the first dependent variable) 

but fell about 70 participants short (obtained n’s = 22 – 30 participants per cell). 

Decreased sample size and smaller than expected effect size (a priori prediction: 

medium – large; actual effect size: medium) decreased the study’s overall statistical 

power. Further, the non-normal distribution necessitated the use of non-parametric 

statistical methods. A principle limitation of non-parametric analysis is that the 

underlying distribution is unknown, which restricts the ability to generalize beyond the 

data. Therefore, results from the current study should be interpreted and generalized 

with caution. However, the results do suggest that NIA can have a significant impact 

on judgment, a potential phenomenon meriting further research.  

The prototypical profiles used within the study were based on an updated and 

expanded data base from Schretlen et al.’s ABC study (2003). The normative 

characteristics of scatter from the updated data base are not identical to this study’s 

original criterion characteristics (i.e., descriptive data on scatter from Schretlen et al.’s 

ABC study, 2003). Perhaps of primary importance, the level of scatter in the updated 

data base (3.9 SD) exceeds the level Schretlen et al. (2003) obtained (3.4 SD). The 

differences in the data bases simply suggest that problems observed in the current 

study in the overappraisal of scatter are more extreme than Schretlen et al.’s initial or 

earlier figures from 2003 might indicate.  About 80% of the participants in the current 
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study set a cut-off for scatter at less than or equal to 2 SD, and whether one depends 

on Schretlen’s earlier or later data or various other studies on the same topic it is 

highly probable that such levels are very common among normal individuals 

completing a neuropsychological battery.   

Another study limitation involves the restricted data provided to participants. 

In standard clinical practice, a neuropsychologist will likely have access to detailed 

records, interview data, and other corroborating information, all of which might 

provide useful information. Efforts were taken to provide basic demographic 

information and test data that would be sufficient to answer the interpretive question. 

Participants may have preferred to have more detailed information regarding the 

hypothetical patient or specifics about actual measures. However, decades of research 

suggests that clinicians reach more accurate conclusions overall if they disregard 

interview results and base their interpretations on test results alone (Faust & Ahern, 

2012). Participants also viewed the graphical display on their personal or business 

computer. It is possible that the size and horizontal to vertical ratio of their monitors 

might have resulted in subtle distortions in the dimensions of the graphical display. All 

data points and anchors along the y-axis would have maintained their proportional 

relations, but it still possible that subtle visual discrepancies could have been present 

and influential. 

Lastly, participants were asked a dichotomous question regarding whether 

scatter is associated with neuropsychological dysfunction. Participants were given the 

option to comment on their response, and many individuals indicated that the question 

is dependent upon context. This criticism is legitimate, in particular because different 
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disorders may lessen or increase scatter or leave it unaffected.  However, most 

respondents (about 64%) affirmed a relationship between scatter and 

neuropsychological dysfunction, and almost three-quarters of the latter (about 72%) 

grossly underestimated normal levels of scatter as falling between 1.5 to 2.0 SD.  

Hence, concerns expressed in this thesis about overinterpretation of scatter seem 

warranted.   

In summary, participants in this study who were primarily licensed, clinical 

neuropsychologists5 misperceived normal levels of scatter as rare or aberrant when the 

criterion for normal scatter was based on the data Schretlen provided (i.e., scatter with 

a maximum discrepancy of M = 3.9, SD = 0.7). This poses a problem because normal 

level of scatter may frequently be perceived as abnormal and lead to 

overpathologizing. The influence of NIA was mixed. Surprisingly, percentiles 

represented at equal- and unequal-sized units did not alter judgments related to scatter.  

In contrast, metric selection produced a significant difference, with data presented as 

T-scores judged as more common than data presented as percentiles for overall levels 

of scatter at both 2.4 SD and 3.4 SD. An intervention that truncated visual scatter 

improved judgmental accuracy. That is to say, even when keeping data mathematically 

equal, truncating visual scatter lead to more appropriate judgments about the 

commonality of the outcome.  This study provides suggestive evidence for conceptual 

problems that may be pervasive in the field regarding analysis of scatter and 

inconsistent interpretations across metrics. Future research should determine whether 

the findings can be replicated, advance the design of interventions as needed, and 

                                                 
5 Graduate students trained in neuropsychological assessment made up 11.7% of the sample. 
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assist in developing evidence-based standards for representing graphical displays that 

diminish the influence from NIA and shape judgments in normative directions. 
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Table 1: Demographic Features 

  n Frequency* 

 

Gender 

 

171 

 

 Male 85 49.7% 

 Female 86 50.3% 

 no response  22 -- 

   

Ethnicity 172  

 American Indian/Alaskan 

Native 

1 0.6% 

 Asian or Pacific Islander 2 1.2% 

 Hispanic/Latino 5 2.9% 

 Caucasian/White 156 90.7% 

 Bi-Racial 3 1.7% 

 Other 2 1.2% 

 Choose not to disclose 3 1.7% 

 no response 21 -- 

   

Highest Degree 171  

 M.A/M.S. 20 11.7% 

 Ph.D. 115 67.3% 

 Psy.D. 31 18.1% 

 Ed.D. 4 2.3% 

 Other 1** 0.6% 

 no response 22 -- 

   

Currently Licensed 170  

 Yes 151 88.8% 

 No 19 11.2% 

 no response 23 -- 

   

Board Certification 166  

 Clinical Neuropsychology 47 28.3% 

 Other 21 12.7% 

 None 98 59.0% 

 no response 27 -- 

   

Forensic Involvement 174  

 Yes 73 42.0% 

 No 101 58.0% 

 no response 19 -- 
* Missing data were excluded when calculating overall percentages. 
** One participant responded “other” and provided a text response of 

“post doctorate.” 
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Table 2: Level of Inter-test Scatter Judged 

to Distinguish Between Normal and 

Abnormal Performance 

Scatter 

Cumulative 

Percentage 

>5.5 0.0 

5.0 0.0 

4.5 0.0 

4.0 1.9 

3.5 5.6 

3.0 14.0 

2.5 20.6 

2.0 57.9 

1.5 92.5 

1.0 100.0 

0.5 100.0 

0.0 100.0 

Mean 1.96 

SD 0.65 

Median 2.0 

Note. Based on the results from participants 

who affirmed a relationship between scatter 

and neuropsychological dysfunction (i.e., 

119 participants; 64.3%). 
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Table 3: Descriptive statistics by condition 

 N M (SD) Median Min. Max 

      

2.4 SD      

PES  25 41.6 (29.9) 35.0 0 92 

≠PES  25 42.8 (29.9) 35.0 1 90 

T-Score  22 61.0 (25.5) 65.5 5 95 

      

3.4 SD      

PES  30 33.0 (27.4) 22.0 1 87 

≠PES  26 27.7 (21.5) 25.0 1 80 

T-score  24 44.0 (25.3) 40.0 0 85 

Intervention  22 69.0 (21.7) 75.0 0 95 
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Figure 1: Pilot Study: WAIS-IV Prototypically Normal Profiles  

 

Plotted as SS Plotted as PES 
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Figure 2: Percentile with Equal-Sized Units Set at 2.4 SD 
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Figure 3: Percentile with Unequal-Sized Units Set at 2.4 SD 
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Figure 4: Percentile with Equal-Sized Units Set at 3.4 SD 
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Figure 5: Percentile with Unequal-Sized Units Set at 3.4 SD 
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Figure 6: T-Score Set at 2.4 SD 
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Figure 7: T-Score Set at 3.4 SD 
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Figure 8: T-Score Set at 3.4 SD with Condensed Visual Scatter 
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APPENDIX A: Pilot Study: Dependent Variable Questions 

Please respond to the questions below concerning the frequency and overall aberrance, 

if any, in the discrepancy between Wechsler IQ scores and Indexes. It is understood 

that in clinical practice the information provided is insufficient and other relevant 

information would be advantageous, e.g., referral question, demographic information 

and clinical history. Given the acknowledged limits of the information, please respond 

as best you can. 

 

How frequently does the level of variability displayed in the profile below occur 

in the normal population?  

(Please circle the corresponding number) 

 

1 2 3 4 5 6 7 

Less than 

10% of 

the Time 

  Around 

50% of the 

Time 

  Greater 

than 90% 

of the 

Time 

 

In regards to intra-test variability, how would you rate the level of aberrance, if 

any, in the profile below? 

(Please circle the corresponding number) 

 

 

1 2 3 4 5 6 7 

Strongly 

Suggests 

Normality 

 Neutral, 

No More Likely 

to Indicate 

Normality or Abnormality 

 Strongly 

Suggests 

Abnormality 

 

 

 

 

 

  

 

 

 



 

49 

 

APPENDIX B: Demographic Questionnaire 

Please respond to the following questions concerning demographic information and professional 

practice.  

 

1. Gender:  Male Female 

 

2. Ethnicity: African American/Black   Caucasian/White 

  American Indian/Alaskan Native  Bi-racial 

  Asian or Pacific Islander   Other 

  Hispanic/Latino    Choose not to disclose 

 

3. Highest Degree: B.A. M.A./M.S. Ph.D. Psy.D Ed.D Other 

 

4. Years since Highest Degree:      <5 5-10 11-20 >21 

 

5. Currently Licensed as a Psychologist:  Yes No 

 

6. Board Certification in Clinical Neuropsychology: Yes No 

 

7. Board Certification in other specialty: Yes No 

 

8. Over the last year, about what percentage of your time per week is spent on 

neuropsychological evaluations: 

 

0%  1-25%  26-50%  51-75%  76-100%  

 

9. What percentage of your time is spent with the following populations:: 
 

Children and Adolescents (≤18 years)  0%     1-25%     26-50%     51-75%     76-100%  

Adults (19-65 years)    0%     1-25%     26-50%     51-75%     76-100%  

Geriatric Adults (>65 years)   0%     1-25%     26-50%     51-75%     76-100%  

 

10. Are you involved in forensic evaluations: Yes No  

 

If yes, over the last year, about what percentage of your time per week is spent on forensic 

evaluations: 

 

N/A  0%  1-25%  26-50%  51-75%  76-100%  

 

11. When available, how frequently do you use computer-based test interpretation programs 

when available: 

 

0%  1-25%  26-50%  51-75%  76-100%  

 

12. What metric do you most commonly use during test interpretation: 

 

Z-scores T-scores  Wechsler SS Percentiles Grade Equivalent 

 Other 

 

13. Which metric do you most prefer to use during test interpretation: 

 

Z-scores T-scores  Wechsler SS Percentiles Grade Equivalent 

 Other 
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APPENDIX C: Main Study: Dependent Variable Questions 

A neuropsychological profile of a 55 year old, white, female patient with 14 years of 

education appears below. The comprehensive battery consists of 15 tests, which 

generate 32 scores that have been co-normed (see below for list of test domains). All 

scores were uniformly adjusted for age, gender, and education. Although the data 

provided are certainly less complete than would be typical in practice, they should be 

valuable in addressing the questions that follow. 

 

How frequently does the level of inter-test variability displayed in the profile 

occur in the normal population?  

 

0%----------------------------------------------------------------------------------------100% 

 

  

 

Is inter-test variability associated with neuropsychological dysfunction? 

 

Yes  No 

 

If yes:  

Taking all test scores into account and assuming that 15 co-normed tests with 32 

measures have been administered, what is the approximate dividing point you 

use in distinguishing between normal and abnormal levels of variability?  

 

Anchor points indicate the maximum discrepancy between the highest and lowest 

score across a neuropsychological battery in standard deviations. 

 

<0.5 

SD 

0.5 

SD 

1.0 

SD 

1.5 

SD 

2.0 

SD 

2.5 

SD 

3.0 

SD 

3.5 

SD 

4.0 

SD 

4.5 

SD 

5.0 

SD 

>6.0 

SD 

 

 

If you would prefer, feel free to provide any comments regarding your responses. 
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