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ABSTRACT 

Prey have evolved a number of defenses against predation, and predators have 

developed means of countering these protective measures. Monarch caterpillars, 

Danaus plexippus, for example, feed on milkweed plants in the genus Asclepias and 

sequester cardenolides as an anti-predator defense. However, some predators are able 

to consume this otherwise unpalatable prey. The observation of a Chinese mantid, 

Tenodera sinensis, consuming the body tissue of a monarch caterpillar while ‘gutting’ 

the prey (i.e., removing the gut and associated internal organs) without any apparent 

ill-effects prompted this research. In a series of behavioral trials we explored how 

adult T. sinensis handle and consume toxic (D. plexippus) and non-toxic (Ostrinia 

nubilalis and Galleria mellonella) caterpillars. In addition, we analyzed differences in 

the carbon to nitrogen (C:N) ratio and cardenolide content of monarch tissue 

consumed or discarded by mantids. We found that mantids gutted monarchs while 

wholly consuming non-toxic species. As expected, monarch gut tissue had a higher 

C:N ratio than non-gut tissue, confirming the presence of plant material. Although 

there were more cardenolide peaks in monarch body versus gut tissue, total 

cardenolide concentration and polarity index did not differ. Although T. sinensis 

treated toxic prey differently than non-toxic prey, gutting did not decrease the 

mantid’s total cardenolide intake. Since other predators consume monarch caterpillars 

whole, this behavior may be rooted in species-specific vulnerability to particular 

cardenolides or simply reflect a preference for high-N tissues. 

To further investigate the gutting behavior of the mantid, we conducted a 

second series of behavioral trials in which mantids were offered cardenolide-



 
 

containing and cardenolide-free D. plexippus caterpillars and butterflies. In addition, 

we fed mantids starved and unstarved D. plexippus caterpillars from each cardenolide 

treatment and non-toxic Ostrinia nubilalis caterpillars. These trials were coupled with 

elemental analysis of the C:N ratios in gut and body tissues of both D. plexippus 

caterpillars and corn borers. We found that cardenolides did not affect mantid 

behavior: mantids gutted both cardenolide-containing and cardenolide-free 

caterpillars. In contrast, mantids consumed both O. nubilalis and starved D. plexippus 

caterpillars entirely. Danaus plexippus body tissue has a lower C:N ratio than their gut 

contents, while O. nubilalis have similar ratios. It is possible that the gutting behavior 

is in response to non-cardenolide secondary plant compound and/or an ability to 

regulate nutrient uptake. The results of this second experiment suggest that while 

cardenolides are not driving the post-capture prey processing by mantids, it is likely 

driven by a sophisticated assessment of resource quality. 

From our first two experiments, it is clear that the Chinese mantid is able to 

consume cardenolide-containing monarch caterpillars without immediate adverse 

effects. Despite discarding the caterpillars’ gut contents, mantids still ingest 

cardenolides sequestered in monarch body tissue. Although mantids do not exhibit 

immediate adverse reactions when consuming monarch biomass, it is possible that 

there are long-term fitness costs associated with cardenolide consumption. We tested 

the hypothesis that monarch caterpillar consumption negatively affects mantid growth 

and reproductive condition. We assigned lab-reared mantids to one of four toxicity 

groups that differed in the number of monarch caterpillars offered to adult mantids 

over a 15-day period. Monarch consumption did not reduce mantid fecundity; all 



 
 

treatment groups produced similar numbers of eggs. However, mantids in the high-

toxicity group produced eggs that were 42% longer on average and devoted 75% more 

of their biomass toward egg production than those in the control group. This increase 

in reproductive condition is probably driven by other factors such as mantid size, prey 

nutritional value and/or diet mixing. Despite consuming similar amounts of prey 

biomass during the experiment, mantids in the high-toxicity group gained more 

biomass and were larger than mantids in the other groups. These results, combined 

with our previous research suggest that the Chinese mantid is able to incorporate 

monarch prey into its diet without acute or chronic ill-effects.
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PREFACE 
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ABSTRACT  

1. Monarch caterpillars, Danaus plexippus, feed on milkweed plants in the 

genus Asclepias and sequester cardenolides as an anti-predator defense. However, 

some predators are able to consume this otherwise unpalatable prey.  

2. We observed Chinese mantids, Tenodera sinensis, consuming monarch 

caterpillars by ‘gutting’ them (i.e., removing the gut and associated internal organs). 

They then feed on the body of this herbivore without any apparent ill effects.  

3. We explored how adult T. sinensis handle and consume toxic (D. plexippus) 

and non-toxic (Ostrinia nubilalis and Galleria mellonella) caterpillars. We analyzed 

differences in the C:N ratio and cardenolide content of monarch tissue consumed or 

discarded by mantids. 

4. Mantids gutted monarchs while wholly consuming non-toxic species. 

Monarch gut tissue had a higher C:N ratio than non-gut tissue, confirming the 

presence of plant material. Although there were more cardenolide peaks in monarch 

body versus gut tissue, total cardenolide concentration and polarity index did not 

differ. 

5. Although T. sinensis treated toxic prey differently than non-toxic prey, 

gutting did not decrease the mantid’s total cardenolide intake. Since other predators 

consume monarch caterpillars whole, this behavior may be rooted in species-specific 

vulnerability to particular cardenolides or simply reflect a preference for high-N 

tissues.  

KEYWORDS: Danaus plexippus, Tenodera sinensis, Ostrinia nubilalis, prey 

handling, aposematism, chemical defense, cardenolides 
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INTRODUCTION 

Prey respond to predation risk with a variety of anti-predator defenses 

including altered life history strategies, morphological defenses, and behavioral 

changes in foraging behavior and microhabitat use (Lima, 1998; Preisser & Bolnick, 

2008). Prey without inducible strategies often compensate with constitutive defenses, 

such as the production or sequestration of toxic substances, and frequently advertise 

their defense via aposematism (Duffey, 1980; Nishida, 2002; Ruxton et al., 2004). The 

stability of aposematic signals make it easier for predators to learn unpalatable prey 

(Gittleman & Harvey, 1980), thus allowing predators to consistently detect and avoid 

defended species.  

One well-known example of invertebrate aposematism involves the monarch 

butterfly, Danaus plexippus. This species’ black and yellow caterpillars feed on host 

plants in the genus Asclepias (Apocynaceae) that contain toxic cardenolides and 

sequester these toxins in their bodies (Agrawal et al., 2012). These substances have an 

emetic effect in birds (Brower et al., 1967). While aposematism provides an effective 

defense against some predators, other predators and parasitoids are able to prey upon 

D. plexippus. Birds such as Orioles (Icterus spp.) and Grosbeaks (Pheucticus spp.) 

learn to avoid the toxin-rich cuticle of adults and may develop a physiological 

insensitivity to the insect’s sequestered toxins (Nishida, 2002). Predators such as ants 

(Formica montana) and ladybird beetles (Harmonia axyridis) also prey on eggs and 

early-instar larvae (Koch et al., 2003; Prysby, 2004). In contrast, few predators attempt 

to consume late-instar caterpillars, although assassin bugs (Hemiptera: Reduviidae) 

can feed on them (Zalucki & Kitching, 1982) and predatory wasps, Polistes 
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dominulus, will attack and consume monarch caterpillars when more favorable prey 

types are unavailable (Rayor, 2004). 

While carrying out an unrelated field experiment, we observed late-instar 

Chinese mantids (Tenodera sinensis), a generalist predator, consuming D. plexippus 

caterpillars by ‘gutting’ them and only eating their integument (Fig. 1). Tenodera 

sinensis reacts negatively to chemically defended insects such as Diabrotica beetles 

and milkweed bugs (Oncopeltus fasciatus), especially when these herbivores are 

raised on toxin-containing diets (Ferguson & Metcalf, 1985). They are also able to 

learn to avoid such encounters: naïve third-instar mantids presented with two toxic O. 

fasciatus in succession take less time to sample and reject the second prey item 

(Paradise & Stamp, 1991), and it takes fewer than six encounters for late-instar 

mantids to refuse to attack O. fasciatus (Berenbaum & Miliczky, 1984).  

We present research exploring predator-prey interactions between T. sinensis, 

D. plexippus, and two other species of non-toxic lepidopteran larvae. We observed the 

behavior and consumption rates of field-collected adult T. sinensis when fed D. 

plexippus, non-toxic European corn borers (Ostrinia nubilalis), and wax moth larvae 

(Galleria mellonella). We analyzed differences in C:N ratios and cardenolide content 

between caterpillar tissues consumed or discarded by mantids. We hypothesized that 

the gutting behavior we observed for monarch caterpillars would not be employed for 

the two non-toxic prey, and that cardenolide levels would be higher in the monarch gut 

than in the rest of the body. 
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METHODS 

Insect collection and maintenance: Adult praying mantids were collected in 

July 2011 from an abandoned agricultural field at East Farm (Kingston, RI), a research 

facility run by the University of Rhode Island (URI). They were returned to the lab 

and maintained at 25 
o
C in 50 x 25 x 30 cm plexiglass aquariums with plant material 

as perches. Each aquarium housed two mantids, separated from each other by a piece 

of cardboard. The mantids were fed house crickets, Acheta domesticus, and wax 

worms, G. mellonella, ad libitum until three days before the experiment (see below for 

details).  

Monarch (D. plexippus) caterpillars and eggs were collected in August and 

September 2011 from milkweed plants (Asclepias syriaca) growing in a URI-managed 

farm. Caterpillars were removed from the leaf on which they were feeding; when eggs 

were found, the entire leaf was collected. Eggs and caterpillars were returned to the 

lab and kept in a 40 x 40 x 76 cm cage where they were fed cut milkweed. We reared a 

total of 21 caterpillars (all > 0.5 g).  

European corn borers (O. nubilalis) were collected in September 2011 from 

organically-grown flint corn (Zea mays) growing in a URI-managed farm. They were 

kept in the lab and fed ears of corn until the experiment. We reared a total of 15 

caterpillars (all > 0.3 g). 

Wax worms (the larval phase of G. mellonella) were purchased from a local 

pet store and stored in the refrigerator at 10 ˚C prior to the experiment. At the start of 

the experiment, they had not consumed any food for 1-3 days. 
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D. plexippus-only observation trials: We followed standard experimental 

protocols (Reitze & Nentwig 2011) and starved all praying mantids (n = 11) for three 

days prior to running the experiment. At the start of each trial, an individual mantid 

was placed in an 18 x 12.5 x 6 cm clear plastic container, and given five minutes to 

acclimate. We then placed a pre-weighed D. plexippus individual (n = 10) in the 

container. The interaction was video-recorded from the time the mantid attacked the 

prey until it was completely consumed or the mantid ceased feeding. We noted 

whether the mantid engaged in gutting behavior, defined as the predator-induced 

expulsion of prey organs without any subsequent attempt at consumption. 

Trials observing all three prey species: In order to determine if mantids 

exhibited gutting behavior only when handling D. plexippus larvae, we conducted a 

series of no-choice trials in which we offered mantids non-toxic prey O. nubilalis (n = 

15) and G. mellonella (n = 8) in addition to D. plexippus (n = 11). These followed the 

procedures described above but with the following modifications. First, the plastic 

container in which the trial was conducted was weighed prior to the start of each trial 

and after the trial was completed because we found that when the integument of larger 

caterpillars (i.e., D. plexippus and O. nubilalis) was punctured, hemolymph often 

dripped from the cadaver; we did not classify this incidental loss as gutting. We used 

this final mass to determine the amount of prey biomass discarded. 

To determine why mantids gut D. plexippus, we disturbed mantids during these 

trials. As the mantid fed on D. plexippus, the gut content expelled from each larva was 

collected into a pre-weighed 1.5 ml eppendorf tube in order to determine the weight of 

the expelled material. After each D. plexippus larva was gutted, the remaining cadaver 
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(i.e., the portion of the larva eaten by the mantid in the D. plexippus-only trials) was 

forcibly removed from the mantid and placed in a second pre-weighed eppendorf tube. 

This tube was re-weighed to determine the weight of the remaining cadaver; both 

tubes were then frozen at -13 ˚C until their contents could be analyzed. These data 

were used to determine the larval mass discarded by each mantid. 

We analyzed these videos for the following information. First we recorded 

whether or not the mantid engaged in the gutting behavior. We also recorded the 

amount of time the mantid spent actively feeding in order to determine predator 

consumption rate (g/m) of all prey. A total of eight mantids were tested in this 

experiment (one mantid refused to eat anything, while another mantid escaped, 

consumed a smaller mantid, and refused to eat thereafter).  

CHN and HPLC analysis: Each gut and non-gut sample of D. plexippus was 

transferred into an individual 2 ml pre-weighed screw-cap tube and dried in a 45 
o
C 

drying oven for five days. After drying was complete, 1.0-2.2 mg of dried material 

was removed from each sample for CHN analysis. This material was sent to an 

analytic chemistry lab at URI (Narragansett RI) for analysis. The remaining dry 

material from each sample was used for cardenolide analysis. 

Cardenolide concentrations were assessed by HPLC, following Bingham and 

Agrawal (2010). Briefly, oven-dried (40 
o
C) tissue from each sample was ground to a 

fine powder and extracted with 1.8 ml methanol (MeOH). Sample mass ranged from 

10-43 mg for gut tissue and 80-159 mg for body tissue. Each extract was spiked with 

20 µg digitoxin as an internal standard and sonicated for 20 minutes at 55 °C in a 

water bath. After centrifugation, the supernatant was collected, dried, resuspended in 



8 
 

300 µl MeOH, and filtered through a 0.45 µm syringe-driven filter unit. 15 µl of 

extract was then injected into an Agilent 1100 series HPLC and compounds were 

separated on a Gemini C18 reversed phase column (3 μ m, 150 x 4.6 mm, 

Phenomenex, Torrance, CA). Cardenolides were eluted on a constant flow of 0.7 

ml/min with an acetronile-0.25% phosphoric acid in water gradient as follows: 0-5 

min 20% acetonitrile, 20 min 70% acetonitrile; 20-25 min 70% acetonitrile, 30 min 

95% acetonitrile, 30-35 min 95% acetonitrile. UV absorbance spectra were recorded 

from 200 to 400 nm by diode array detector. Peaks with absorption maxima between 

217 and 222 nm were recorded as cardenolides and quantified at 218 nm. 

Concentrations were calculated based on dry mass and standardized by peak areas of 

the known digitoxin concentration. In addition to total cardenolides, we report 

cardenolide peak diversity (number of distinct cardenolide peaks per sample) and an 

index of cardenolide polarity (index P = sum[PiRTi]), where RTi is the retention time 

of the i
th

 peak, weighted by each peak’s relative concentration Pi (Rasmann & 

Agrawal, 2011). 

Statistical analysis: Data on mantid gutting behavior (yes/no) for the three prey 

species were analyzed using contingency analysis. Because some mantids consumed 

more than one individual of a given prey species, the effect of prey species on 

consumption rate (g/min) and percent biomass discarded was tested using a mixed 

model for repeated measures analysis (Littell et al., 1996). This analytic method is 

suitable for use in cases where a portion of time series data is missing; in contrast, 

standard repeated measures ANOVAs excludes all subjects missing any 

time*treatment data (von Ende, 2001). A two-factor (treatment and time) repeated 
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measures design was used, and ‘mantid’ was added as a random factor nested under 

‘treatment’. Because this design is unbalanced, i.e., not every mantid was fed two 

individuals from each prey species, the test statistics did not follow an exact F 

distribution. Following recommended procedure, we calculated P values using the 

Satterthwaite method to generate an approximate F value with fractional degrees of 

freedom (West et al., 2006). Although the data on prey handling time was normally 

distributed, the data on percent biomass discarded was not even when transformed. 

Because using a non-parametric analysis would have prevented us from incorporating 

random effects (i.e., ‘mantid’ nested within ‘treatment’), we chose to proceed with a 

parametric approach. We justify this decision by noting that ANOVAs are robust to 

departures from normality when per-treatment sample sizes are large (Underwood, 

1997), a criterion that our 34-observation data set meets. We performed means 

separation tests, where appropriate, using Tukey’s HSD at α = 0.05. Data on C:N ratio, 

total cardenolide content, number of cardenolide peaks, and polarity index were 

analyzed using a paired-sample t-test on gut and body tissue from each tested prey 

individual. We used the same approach to analyze data on individual cardenolides; 

because of the large number of comparisons, we present both the unadjusted P-value 

as well as the P-value corrected for multiple comparisons at α = 0.05 using step-up 

FDR, a sequential Bonferroni-type procedure. Statistical analyses were performed 

using JMP 9.0.0 (SAS, 2010). 

RESULTS 

We observed 44 predator-prey encounters between T. sinensis and the three 

prey species. Upon detecting their prey, the mantids would orient on it, grasp the prey 
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with their forelegs, and begin consuming it. Mantids encountering G. mellonella or O. 

nubilalis caterpillars (n = 8 and 15, respectively) ate these prey in their entirety 

(excluding any hemolymph that fell from O. nubilalis prey). In contrast, mantids 

encountering D. plexippus would allow the gut content to fall from the cadaver while 

feeding, and would not attempt to consume it even after finishing the rest of the 

cadaver (Fig. 1). Mantids encountering D. plexippus larvae gutted 18 of 21 (86%) 

caterpillars (Fig. 2A; Χ
2 

= 42.3, P < 0.001). Two of the three individuals that were not 

gutted were each parasitized by a single late-instar larvae of a tachinid fly; the 

remaining larvae was extensively infected with a fungal pathogen (likely Beauveria 

bassiana).  

The mantid’s gutting behavior led to large differences in the mean percent of 

prey mass discarded (i.e., unconsumed at the end of the feeding bout) by the mantids 

(Fig. 2B; F2,26.8 = 16.3, P < 0.001). While mantids discarded 41 + 3.1% (mean (SE); n 

= 11) of D. plexippus larval mass, they only discarded 14 + 4.6% of O. nubilalis larval 

mass and 0% of G. mellonella larval mass (Fig. 2B; P < 0.05). Mantids that consumed 

multiple caterpillars of a given prey species did not differ over time in the proportion 

discarded (F1,11.3 = 0.44, P = 0.52), and there was no time*prey species interaction 

(F2,11.2 = 0.13, P = 0.88). While the mass discarded from D. plexippus caterpillars 

consisted primarily of its gut, the discarded mass from O. nubilalis consisted entirely 

of hemolymph; mantids never discarded any tissue from either O. nubilalis or G. 

mellonella caterpillars. Despite the species-specific differences in gutting behavior, 

mantids consumed the ‘edible’ portion of all three prey species at an equal rate (Fig. 

2C; F2,21.8 = 0.36, P = 0.70). Again, mantids that consumed multiple prey items of a 
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given species did not differ in their prey consumption rate over time (F1,8.94 = 0.09, P 

= 0.77), and there was no time*prey species interaction (F2,8.90 = 0.04, P = 0.96). Gut 

tissue from D. plexippus had a marginally lower concentration of C (38.1 + 1.30 (SE) 

µmol mg
-1

) than did non-gut tissue (46.2 + 3.94 µmol mg
-1

; t8 = 2.18, P = 0.061). 

However, there was 58% less N in gut (3.1 + 0.34 µmol mg
-1

) versus non-gut tissue 

(7.5 + 0.33 µmol mg
-1

; t8 = 14.97, P < 0.001). As a result, gut tissue had a higher C:N 

ratio (13.2 + 1.22) than non-gut tissue (6.15 + 0.44; t8 = 4.77, P = 0.001). This 

suggests that the mantid-discarded D. plexippus material consisted mainly of 

macerated plant tissue, which was low in nutritive value.  

Despite the large amount of plant material in the D. plexippus gut, there were 

no differences in total cardenolide content (body: 1.90 + 0.77 (SE) µg cardenolides 

mg
-1

; gut: 1.74 + 0.88) or polarity index (body: 19.2 + 2.66; gut: 18.9 + 3.46) between 

mantid-consumed and mantid-discarded herbivore tissue (both P > 0.10). There were 

nearly three times as many cardenolide peaks in D. plexippus body versus gut tissue (t8 

= 11.8, P < 0.001), probably reflecting the breakdown of plant-derived cardenolides 

into differentially sequestered compounds.  For example, the large cardenolide peak in 

the gut tissue at 10.8 min is twice as concentrated as in the body tissue; the three 

subsequent peaks, however, are absent from the gut and only in the body tissue, 

potentially suggesting transformation during sequestration (Fig 3). 

DISCUSSION 

We found that adult T. sinensis can capture and consume late-instar D. 

plexippus caterpillars with no apparent ill effects. The fact that T. sinensis handled D. 

plexippus caterpillars differently than O. nubilalis and G. mellonella larvae appears to 
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be a behavioral mechanism to reduce exposure to prey toxicity. This interpretation is 

supported by the fact that all of the tested mantids treated D. plexippus caterpillars 

very similarly (Fig. 2A): chewing open the integument and letting the gut fall out 

while consuming the remains (Fig. 1). Given that gutted caterpillars were consumed in 

their entirety, the discarding of ~40% of prey biomass (Fig. 2B) cannot be attributed to 

mantid satiation. In contrast, T. sinensis never gutted either O. nubilalis or G. 

mellonella larvae and consumed all non-hemolymph biomass (Figs. 2A, B). While it is 

possible that larger prey are easier to gut, mantids consumed a substantial amount of 

O. nubilalis gut material that could easily have been avoided by the mantid. In 

addition, large O.nubilalis larvae (e.g., one weighing 0.73 g) were not gutted, whereas 

smaller D. plexippus larvae (e.g., one weighing 0.63 g) were gutted. Once the mantids 

had gutted the D. plexippus caterpillars, they consumed all three prey types at a similar 

rate (Fig. 2C). This suggests that the mantid considered all three prey types equally 

palatable.  

The gutting behavior we documented in T. sinensis is similar to that observed 

in other predators, many of which are capable of identifying and selectively 

consuming the least noxious body parts of chemically-defended prey (reviewed in 

Glendinning, 2007). The European paper wasp Polistes dominulus, for instance, will 

gut Pieris napi caterpillars reared on toxic host plants, but not those that were reared 

on non-toxic plants (Rayor et al., 2007). Conversely, Tanagers (Pipraeida 

melanonota) avoid the toxic integument of ithomiine moths by chewing them until the 

abdominal content is expelled; they then eat the abdominal contents and discard the 

rest (Brown & Neto, 1976). Predators that cannot separate the toxic and non-toxic 
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fractions of unpalatable prey often learn to avoid them entirely. In experiments with 

cardenolide-containing milkweed bugs, naïve third-instar T. sinensis fed a single O. 

fasciatus nymph took much less time to reject a second one (Paradise & Stamp, 1991); 

similarly, sixth-instar mantids quickly (3-4 exposures) learned to ignore mature O. 

fasciatus (Berenbaum & Miliczky, 1984). 

Despite the behavioral data, mantid-consumed and -discarded D. plexippus 

tissue had equal cardenolide concentrations and a similar polarity index. There were 

more distinct cardenolide peaks in the consumed tissue, likely due the breakdown of 

plant-derived cardenolides (e.g., at 10.80 nm in Fig. 3) into other forms (e.g., at 12.01, 

12.16, and 12.70 nm in Fig. 3). Overall, these results are consistent with previous 

work showing that cardenolide sequestration occurs in the hemolymph and epidermis 

of D. plexippus (Duffey, 1980) in concentrations equal to or exceeding those of host 

plant foliage (Agrawal et al., 2012; Malcolm et al., 1989). Our findings appear, 

however, to reject the hypothesis that mantid gutting of D. plexippus caterpillars 

allows them to avoid cardenolide-rich gut material while consuming the less-defended 

integument. Below, we discuss potential resolutions to the apparent mismatch between 

the behavioral data (Fig. 2) and cardenolide analyses.  

One explanation for our findings is that the gutting behavior of T. sinensis 

avoids plant-produced cardenolides present in the gut that D. plexippus larvae 

metabolizes into different compounds before sequestering them in their hemolymph 

and integument. This explanation is consistent with the fact that the three monarch 

caterpillars that mantids ate whole (individuals containing either tachinid larvae or a 

fungal pathogen) consumed virtually no A. syriaca in captivity. When mantids 
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punctured the integument and began feeding on these three larvae, no green plant 

material was present; in contrast, the other 18 monarch guts were green with plant 

material. Evidence suggests that monarch predators differ in their preference for (or 

avoidance of) particular body parts. The mouse Peromyscus melanotis avidly 

consumes even high-cardenolide monarch adults, for instance, by opening the 

abdomen and eating the internal contents while avoiding the integument (Glendinning, 

1990); yellowjacket wasps (Vespula vulgaris) use similar techniques to prey on adult 

monarchs (Leong et al., 1990). Although P. dominulus wasps prefer more palatable 

prey over D. plexippus larvae (Rayor, 2004), there are reports that they do not gut or 

otherwise ‘selectively process’ late-instar monarch caterpillars before eating or 

feeding them to their offspring (L. Rayor, unpublished data, cited in Rayor et al., 

2007). Our results may thus be explained by mantids’ greater tolerance for monarch-

metabolized cardenolides in the integument than for plant-derived chemicals in the 

gut. 

The gutting behavior of T. sinensis might also be explained by this obligate 

carnivore’s distaste for partially-digested plant tissue. The digestive system and 

enzymatic pathways of carnivores are optimized for a heterotrophic diet, and 

autotrophic biomass differs substantially in a wide range of parameters (reviewed in 

Price et al., 2011). This explanation is inconsistent with the fact that the mantids 

consumed similarly-sized O. nubilalis larvae in their entirety. Even so, the low 

nutrient content and likely equal (or greater) toxicity of the gut tissue may help explain 

the mantid’s behavior if the predators can tolerate consumption of the integument but 

not the material in the gut. Avian insectivores are able to regulate their exposure to 
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toxins by consuming fewer individuals as prey toxicity increases (Skelhorn & Rowe, 

2007); mantids may be similarly able to regulate their toxin loads. Despite being a 

fairly recent arrival to the east coast of the U.S., T. sinensis has rapidly become the 

dominant invertebrate predator in many old-field ecosystems (reviewed in Snyder & 

Evans, 2006). The gutting behavior we describe may enable this mantid to utilize 

otherwise inaccessible prey and thrive in their invaded range. The similar polarity 

index and total cardenolide content of mantid-consumed versus -discarded tissue also 

adds an intriguing twist to the monarch-cardenolide-predator interaction first 

elucidated nearly 50 years ago (Brower et al., 1967). Although total cardenolide 

content alone may not entirely explain the mantids’ behavior, we speculate that the 

context of the gut’s character, largely low nitrogen-containing milkweed tissue, may 

be critical to the gutting of monarchs. 
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FIGURE LEGENDS  

Figure 1: Adult Chinese mantid (T. sinensis) gutting a final-instar monarch (D. 

plexippus) caterpillar. For scale, mantid forelegs are ~3 cm in length. Photo credit: 

Alex Allaux. 

Figure 2: A. Percent individuals of each prey type gutted by T. sinensis. B. 

Percent mass of each prey type discarded ± SE. C. Consumption rates for each prey 

type ± SE.  

Figure 3: Concentration of individual cardenolides in D. plexippus gut and 

body (i.e., non-gut) tissue + SE. For initial values, * P < 0.05, ** P < 0.01, *** P < 

0.005. For adjusted values, § = significant at α = 0.05 after step-up FDR Bonferroni-

type correction. 
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Abstract 

Prey have evolved a number of defenses against predation, and predators have 

developed means of countering these protective measures. Although caterpillars of the 

monarch butterfly Danaus plexippus L. are defended by cardenolides sequestered from 

their host plants, the Chinese mantid Tenodera sinensis Saussure guts the caterpillar 

before consuming the rest of the body. We hypothesized that this gutting behavior 

might be driven by the heterogeneous quality of prey tissue with respect to toxicity 

and/or nutrients. We conducted behavioral trials in which mantids were offered 

cardenolide-containing and cardenolide-free D. plexippus caterpillars and butterflies. 

In addition, we fed mantids starved and unstarved D. plexippus caterpillars from each 

cardenolide treatment and non-toxic Ostrinia nubilalis Hubner caterpillars. These 

trials were coupled with elemental analysis of the gut and body tissues of both D. 

plexippus caterpillars and corn borers. Cardenolides did not affect mantid behavior: 

mantids gutted both cardenolide-containing and cardenolide-free caterpillars. In 

contrast, mantids consumed both O. nubilalis and starved D. plexippus caterpillars 

entirely. Danaus plexippus body tissue has a lower C:N ratio than their gut contents, 

while O. nubilalis have similar ratios; gutting may reflect the mantid’s ability to 

regulate nutrient uptake. Our results suggest that post-capture prey processing by 

mantids is likely driven by a sophisticated assessment of resource quality.  

KEY WORDS Danaus plexippus, Ostrinia nubilalis, Tenodera sinensis, cardenolide, 

prey processing 
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Introduction 

Prey utilize an array of defenses against predation. Organisms can, for 

instance, avoid detection via crypsis or disruptive coloration that makes it difficult for 

predators to identify the boundaries of the prey’s body. Prey can also employ 

behavioral measures to decrease their likelihood of attracting a predator: veeries, 

Catharus fuscescens Stephens, respond to predation risk by decreasing the rate and 

length of their songs (Schmidt and Belinsky 2013). Once detected, prey can employ 

secondary defenses such as aggressive or escape behaviors as well as morphological 

and/or chemical defenses (Ruxton et al. 2004). The presence of trout, for example, can 

cause macroinvertebrates to alter their drift rates and foraging activity (Simon and 

Townsend 2003, Eby et al. 2006), as well as their microhabitat use (Lima 1998). 

Morphological changes are also possible: Daphnia pulex Leydig respond to predator 

cues by producing fewer, but larger, offspring with prominent neck spines (Luening 

1994) that make the prey more difficult for predators to attack. 

Organisms that lack behavioral and/or morphological defenses may instead 

deter predation via the production or sequestration of noxious chemical compounds. 

Prey that adopt this strategy typically possess aposematic coloration that advertises 

their toxicity (Duffey 1980, Nishida 2002, Ruxton et al. 2004). The nudibranch 

Cratena peregrina Gmelin, for example, uses bright coloration to display its 

unpalatability to fish predators (Aguado and Marin 2007). In insects, chemical defense 

and aposematism occurs in multiple orders, including the Hemiptera, Lepidoptera, 

Coleoptera, and Hymenoptera. Hemipteran milkweed bugs, Oncopeltus fasciatus 

Dallas, feed on cardenolide-rich host plants and sequester these toxins in their bodies; 
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their contrasting orange-and-black coloration alerts predators to their toxicity (Scudder 

et al. 1986). Another insect that feeds on milkweed, the Oleander aphid Aphis nerii 

Boyer de Fonscolombe, also sequesters cardenolides and are brightly yellow-and-

black colored (Malcolm 1990).  

Although chemically-based antipredator defenses are often highly effective, 

predators have developed a variety of techniques for overcoming them. Floodplain 

death adders, Acanthophis praelongus Ramsay, prey on toxic frogs by biting the prey, 

injecting it with toxins, and then releasing it. The adder's toxins kill the frog, whose 

own defensive toxins degrade after it has died; the snake can then eat the formerly-

toxic frog without any ill effects (Phillips and Shine 2007). Loggerhead shrikes, 

Lanius ludovicianus Mearnsi, employ a similar strategy for feeding on chemically 

defended lubber grasshoppers, Romalea guttata Beauvois. Grasshoppers captured by 

the birds are impaled on thorns or barbed wire; the shrikes only return to feed on them 

once the grasshoppers' defensive toxins have been degraded and their aposematic 

coloration fades (Yosef 1992). Other predators process prey to feed selectively on the 

most palatable portion of the prey (Glendinning 2007) or regulate their toxicity burden 

(Skelhorn and Rowe 2007).  

The monarch butterfly, Danaus plexippus L., is chemically defended and 

aposematically colored in both the black-and-yellow larval and black-and-orange adult 

stage. Their caterpillars sequester toxins when feeding on cardenolide-containing host 

plants in the genus Asclepias (Apocynaceae) (Agrawal et al. 2012). Despite this 

generally effective chemical defense, D. plexippus is susceptible to predation across 

all life stages. Its invertebrate predators include ants, Formica montana Wheeler, 
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ladybird beetles, Harmonia axyridis Pallas (Koch et al. 2003, Prysby 2004), and 

predatory Polistes (Rayor 2004), and Vespula wasps (Leong et al. 1990). Birds such as 

Orioles, Icterus spp., Grosbeaks, Pheucticus spp., (Nishida 2002) and other vertebrate 

predators such as Peromyscus mice also feed on D. plexippus (Glendinning 1990).  

Danaus plexippus caterpillars are also preyed upon by an invasive generalist predator, 

the Chinese mantid, Tenodera sinensis Saussure. We have previously found (Rafter et 

al. 2013) that mantids consuming toxic D. plexippus caterpillars actively reject the gut 

material, allowing it to fall from the body. However, they consume non-toxic 

lepidopterans such as European corn borers, Ostrinia nubilalis Hubner, and wax 

worms, Galleria mellonella L., in their entirety. These results suggest that the mantids' 

gutting behavior may be a behavioral mechanism for avoiding prey toxicity. A follow-

up analysis of cardenolide levels, however, found that the mantid-discarded guts and 

mantid-consumed bodies of D. plexippus caterpillars contain similar cardenolide 

concentrations (although the two portions were composed of different individual 

cardenolides). We also found that gut material has a higher C:N ratio than body 

material, making it less nutritious. As a result, the mantids' gutting behavior may 

reflect either their avoidance of individual cardenolides or their need to feed 

selectively on the most nitrogen-rich portions of their prey (Rafter et al. 2013). We 

tested these hypotheses by conducting a series of behavioral trials in which we 

observed mantid prey handling behavior when presented with D. plexippus caterpillars 

reared on toxic cardenolide-containing and control no-cardenolide host plants. We 

paired the results of this experiment with other work in which we fed mantids starved 

and unstarved larval D. plexippus reared on the two host plants, adult D. plexippus 
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reared on the two host plants, and non-toxic European corn borers. Our results suggest 

that post-capture prey processing by mantids is likely driven by a sophisticated 

assessment of resource quality. 

Methods 

Mantid rearing and maintenance. We collected a single Tenodera sinensis 

egg mass in early April 2012 from an abandoned agricultural field at East Farm 

(Kingston, RI). It was returned to the lab and maintained at 25
o
C in a 50 x 25 x 30 cm 

Plexiglass aquarium until the eggs began to hatch. One day after hatching, 105 

nymphs were each placed in individual 1.9L mason jars; the top of each jar was 

replaced with mosquito netting for ventilation. A single stick was provided for 

perching; when mantids reached the fourth instar, the stick was replaced with a mesh 

strip secured under the lid. Water was provided using a water wick made from capped 

soufflé cups and braided dental cotton inserted through a hole in the lid. The jars were 

held in a Percival growth chamber with a 16:8 L:D photoperiod and 60-80% humidity 

at 25˚C during lighted hours and 23˚C during dark hours. The remaining mantids from 

the egg mass were communally raised in two 50 x 25 x 30 cm aquaria. Each aquarium 

had several sticks arranged for perching sites. Mantids in both the jars and the aquaria 

were fed lab-reared apterous fruit flies, Drosophila melanogaster Meigen, for the first 

four instars; following this, they were fed appropriately-sized crickets (Acheta 

domesticus L.). Because crickets will prey on mantids during the molting process, we 

tested for satiation by using forceps to offer each mantid a cricket before adding 

crickets to its jar. If the mantid refused to attack the cricket we assumed it was 

preparing to molt and did not feed it that day; jars with 'molting' mantids were marked 
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so that we could track whether non-feeding individuals did in fact molt. Mantids that 

accepted the cricket were fed two additional crickets; we deterred crickets from 

attacking the mantids by adding fruit flies to the jars for the crickets to eat. Because 

early-instar mantids have high mortality rates, we replaced any dead Percival-reared 

mantids with a communally-raised sibling of similar size and developmental stage; we 

stopped this replacement once a majority of Percival-reared mantids reached the sixth 

instar. Once mantids reached adulthood, they were fed three crickets daily and no fruit 

flies. Jars containing adult mantids were removed from the Percival and kept in the lab 

at ambient room temperature with a 16:8 L:D photoperiod. 

Experiment 1: Do mantids handle toxic (cardenolide-containing host plant) 

and non-toxic (no-cardenolide host plant) D. plexippus caterpillars differently? This 

experiment tested whether mantids varied in their behavior towards D. plexippus 

caterpillars raised on toxic (i.e., cardenolide-containing) and non-toxic (no-

cardenolide) host plants. It tests the hypothesis that the mantids' gutting behavior is a 

response to the presence of cardenolides in D. plexippus gut tissue. Two hundred D. 

plexippus eggs were purchased from Flutterby Gardens (Bradenton, FL, USA) and 

reared in 50 x 25 x 30 cm aquaria. Half of the emerging larvae were reared on a 

cardenolide-containing host plant, the common milkweed Asclepias syriaca L.; the 

other half of the emerging larvae were reared on a zero-cardenolide host plant, the 

swamp milkweed A. incarnata L. Asclepias syriaca plants were grown from seed 

while A. incarnata plugs were purchased from Northcreek Nursery (Landenberg, PA, 

USA).  
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Twenty lepidopteran-naïve adult mantids were randomly assigned to consume 

late-instar D. plexippus larvae raised on either A. syriaca (ten mantids) or A. incarnata 

(ten mantids) host plants. All mantids were starved for three days prior to the trial. At 

the start of each trial, each mantid was weighed, placed into a pre-weighed 23.3 x 15.5 

x 16.5 cm plastic container, and allowed to acclimate for five minutes. After the five-

minute acclimation period, a pre-weighed caterpillar was placed into the enclosure. 

We video-recorded each trial from the moment the prey item was placed in the 

enclosure until the end of the trial. The mantid was given ten minutes to orient on the 

prey. If the mantid did not orient within this period, the trial ended. Mantids that 

oriented were given an additional ten minutes to attack the prey. If the mantid did not 

attack during this period, the trial ended. If the mantid attacked, we recorded five 

minutes of video following the attack. At the same time, we recorded whether or not 

the mantid gutted the prey. Every mantid was tested every day for six days during the 

experiment. Once an individual mantid had attacked prey in two separate trials, we 

disturbed the remaining trials in which the mantid attacked so that we could collect 

mantid-dissected gut and body material for CNH analysis. Gut material was collected 

in a 2 ml pre-weighed screw-cap tube as it fell from the caterpillar. We then pried the 

remaining cadaver from the mantid and placed it into a second tube. This material was 

frozen at -13˚C until analyzed. 

Experiment 2: Does the presence of plant material in the caterpillar gut 

affect how mantids handle 'toxic' (cardenolide-containing host plant) and 'non-

toxic' (no-cardenolide host plant) D. plexippus caterpillars? This experiment tested 

whether mantid behavior varied as a function of the presence or absence of plant 
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material in the gut of D. plexippus caterpillars reared on cardenolide-containing and 

no-cardenolide host plants. It tests the hypothesis that mantid gutting behavior is 

driven by the presence of plant material per se rather than by cardenolide 

concentrations. This experiment was conducted identically to Experiment One (and 

used the same mantids), but added an additional experimental factor: the presence 

(‘unstarved’) or absence (‘starved’) of plant material in the caterpillar gut. The ten 

mantids that had previously been fed cardenolide-containing D. plexippus caterpillars 

were split into two groups of five mantids. Mantids in one of the five-mantid groups 

were fed starved D. plexippus caterpillars whose guts were free of plant material 

('starved' treatment); mantids in the other five-mantid group were fed D. plexippus 

caterpillars whose guts were filled with plant material ('unstarved' treatment). This 

design was replicated for the ten mantids that had previously been fed no-cardenolide 

D. plexippus caterpillars, for a total of four five-mantid treatments: starved toxic 

caterpillars, unstarved toxic caterpillars, starved non-toxic caterpillars, and unstarved 

non-toxic caterpillars. As in Experiment One, toxic D. plexippus caterpillars were 

raised on A. syriaca and non-toxic D. plexippus caterpillars were raised on A. 

incarnata. Starved caterpillars were kept without food for 24 hours in order to clear 

their guts of any plant material; any mantid-attacked ‘starved’ caterpillars whose guts 

still contained trace amounts of plant material (apparent as undigested green material 

within the gut) were excluded from our analysis. Mantid-D. plexippus interaction trials 

were conducted for six days following the same procedure as in the first experiment. 

We collected caterpillar biomass for chemical analysis once individual mantids 

attacked twice. 
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Experiment 3: Do mantids handle toxic (cardenolide-containing host plant) 

and non-toxic (no-cardenolide host plant) adult D. plexippus differently? This 

experiment tested whether mantids differed in their handling behavior of adult D. 

plexippus butterflies reared on cardenolide-containing versus no-cardenolide host 

plants. Adult D. plexippus are nectar feeders that no longer consume cardenolides; the 

experiment tested the hypothesis that this ontogenic shift affected how mantids 

responded to D. plexippus reared on different hosts. Twelve D. plexippus caterpillars 

were reared to adulthood, six on A. syriaca and six on A. incarnata. Twelve mantids 

used in experiments one and two (six that were fed A. syriaca caterpillars, and six that 

were fed A. incarnata caterpillars) were each fed a single A. syriaca-reared adult 

butterfly or a single A. incarnata-reared adult butterfly, respectively. For each trial, we 

noted if the butterfly was gutted and which body parts were discarded by the mantid; 

all twelve trials took place on the same day. 

Experiment 4: Do mantids handle larval O. nubilalis differently than D. 

plexippus? This experiment repeated previously-published work (Rafter et al. 2013) 

finding that non-toxic O. nubilalis larvae were consumed in their entirety by mantids 

that would gut A. syriaca-reared D. plexippus caterpillars. The current experiment was 

designed to confirm the results of the 2011 experiment and provide more precise 

information on how mantids handle prey that do not sequester toxic compounds from 

their host plant and that may be of higher nutritional value (i.e., lower C:N ratio). 

Because of the difficulty in finding sufficient late-instar caterpillars, the experiment 

was conducted in two stages (=trials). In trial one of this experiment, we presented 

each of 16 lepidopteran-naïve mantids with one late-instar O. nubilalis caterpillar 
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collected from organically-grown flint corn, Zea mays L., growing in an experimental 

farm. The second trial was essentially identical to the first, but took place two weeks 

later: when we presented each of 12 naïve mantids with one late-instar O. nubilalis. 

Caterpillars were always collected on the day of the trial; both trials lasted one day. 

Data collection procedures were as above. If mantids did not gut the caterpillars, we 

froze whole caterpillars and later dissected the caterpillars to isolate the gut and body 

portions for chemical analysis. 

Chemical analysis: All of the preserved caterpillar biomass was stored in 

plastic tubes and dried in a 45
o
C drying oven for five days. After drying was complete, 

1.0-2.0 mg of dried material was removed from each sample and sent for CNH 

analysis to the Analytic Chemistry lab at the University of Rhode Island's Graduate 

School of Oceanography (Narragansett RI).  

Statistical analysis: Since post-attack prey handling behavior by mantids did 

not vary (see results), statistical analysis was unnecessary. Results from the CHN 

analysis were used to determine the percent carbon and nitrogen in both gut and body 

tissues and calculate their carbon/nitrogen (C:N) ratios. We analyzed the D. plexippus 

data using a two-way ANOVA that crossed the main factors toxicity (cardenolide-

containing or cardenolide-free caterpillars) and body tissue (gut versus body). We 

analyzed the O. nubilalis data using a one-way ANOVA with the main factor body 

tissue (gut versus body). Where appropriate, we determined among-treatment 

differences using Tukey-Kramer HSD. All analyses were performed using JMP 9 

(SAS Institute, Inc). 
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Results 

Experiment 1: Do mantids handle toxic (cardenolide-containing host plant) 

and non-toxic (no-cardenolide host plant) D. plexippus caterpillars differently? We 

analyzed data for 117 predator-prey interactions; predators attacked the prey in 64/114 

cases (three caterpillars infected with a fungal pathogen were excluded from the 

analysis). Regardless of treatment, mantids gutted all the D. plexippus caterpillars they 

attacked (31/31 non-toxic and 33/33 toxic caterpillars, respectively).  

Experiment 2: Does the presence of plant material in the caterpillar gut 

affect how mantids handle toxic (cardenolide-containing host plant) and non-toxic 

(no-cardenolide host plant) D. plexippus caterpillars? We analyzed data for 113 

predator-prey interactions; mantids actually attacked the prey in 20 of the 113 

interactions. Mantids gutted all (12/12) of the unstarved prey but none (0/8) of the 

starved prey.  

Experiment 3: Do mantids handle toxic (cardenolide-containing host plant) 

and non-toxic (no-cardenolide host plant) adult D. plexippus butterflies differently? 

We analyzed data for 12 predator-prey interactions (six for each toxicity treatment). 

Mantids did not gut any of the adult butterflies regardless of the larval host plant. In 

each case, mantids consumed the body while discarding the wings, antennae, and legs. 

Some mantids appeared to ‘taste’ the wings, but stopped and returned to feeding on 

the body. 

Experiment 4: Do mantids handle O. nubilalis differently than D. 

plexippus? We observed a total of 28 predator-prey interactions; mantids attacked the 

prey in 13 of the 28 interactions. In the first trial, six of seven caterpillars were not 
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gutted, and in the remaining case the mantid stopped feeding entirely. In the second 

trial, 6/6 caterpillars were not gutted.  

Carbon and nitrogen concentrations: Percent carbon was significantly higher in the 

mantid-consumed body tissue than in the mantid-discarded gut tissue of D. plexippus 

caterpillars (F1, 53 = 31.3, p < 0.001; Fig. 1A). This did not differ between toxic and 

non-toxic D. plexippus (F1, 53=1.03, p=0.31), and there was no interaction between 

these factors (F1, 53=0.10, p=0.75). Percent nitrogen was also higher in body versus gut 

tissue, and in non-toxic D. plexippus (F1, 53=94.0, p<0.001 and F1,53=7.47, p<0.001, 

respectively; Fig 1B); however, the interaction was not significant (F1,53=1.64, 

p=0.21). The resulting C:N ratio for D. plexippus was higher in the gut versus body 

tissue, higher in toxic versus non-toxic caterpillars (F1,53=57.3, p<0.001 and 

F1,53=10.6, p=0.002, respectively; Fig. 1C), and there was a significant interaction 

(F1,53=9.27, p=0.004). In contrast, there was no difference in the percent carbon, 

nitrogen, and C:N ratio in O. nubilalis guts and bodies (F1,9=4.52, p=0.066; F1,9=0.83, 

p=0.39; and F1,9=0.24, p=0.64, respectively, Fig. 1). For D. plexippus, the C:N ratio of 

mantid-consumed body tissue was lower than the C:N ratio of mantid-discarded gut 

tissue; however, mantids eagerly consumed O. nubilalis tissue with C:N ratios equal to 

or greater than those of the D. plexippus gut. In other words, mantids consumed tissues 

with both a higher and lower C:N ratio than the D. plexippus guts they rejected. 

Discussion 

We found no evidence that D. plexippus-sequestered cardenolides affected 

mantid prey handling behavior. Specifically, T. sinensis behaved similarly towards D. 

plexippus larvae (experiments 1-2) and adults (experiment 3) reared on cardenolide-
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containing A. syriaca versus no-cardenolide A. incarnata. Since these mantids were 

lab-reared, their inability/unwillingness to discriminate between cardenolide-

containing versus no-cardenolide D. plexippus gut tissue must be innate. The lack of a 

behavioral response to D. plexippus adults seems appropriate given that mantids 

experienced no apparent ill-effects from consuming the cardenolide-laden bodies 

(Rafter et al. 2013) of D. plexippus caterpillars fed A. syriaca. 

The addition of a starved/unstarved caterpillar treatment to experiment two 

revealed that the mantids’ gutting behavior reflects the active rejection of partially-

digested plant material found within the gut. This suggests that rather than avoiding 

cardenolides, mantids may instead be avoiding the lower-quality (higher C:N ratio) 

plant material found in the gut tissue (Fig. 1C). This interpretation is further supported 

by the third experiment that found mantids did not gut adult D. plexippus, nectar 

feeders whose guts are free of plant material. While our three D. plexippus 

experiments support the ‘food quality’ hypothesis for the mantids’ gutting behavior, 

the results of our fourth experiment (O. nubilalis trials) do not. In this experiment, 

which was intended to confirm results first reported in Rafter et al (2013), we again 

found that mantids readily consume O. nubilalis gut and body tissue. The results of 

our first three experiments led us to hypothesize that the gut material of O. nubilalis 

caterpillars would be of higher nutritional quality (as indicated by the C:N ratio) than 

the mantid-discarded portions of D. plexippus caterpillars. While we found that both 

O. nubilalis gut and body tissue was relatively high in C and N (Figs. 1A and 1B, 

respectively), the C:N ratio of mantid-accepted O. nubilalis gut tissue equaled or 

exceeded those of mantid-rejected D. plexippus gut tissue (Fig. 1C).  Given the 
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inconsistency in mantid preference for tissues in relation to their respective C:N ratios, 

this metric does not appear to explain the gutting behavior. 

Although T. sinensis appears to be insensitive to the presence of cardenolide in 

D. plexippus caterpillars, it does exhibit an adverse reaction when consuming 

cardenolide-sequestering milkweed bugs, Oncopeltus fasciatus. They quickly learn to 

reject and will eventually completely avoid this prey after few encounters (Berenbaum 

and Miliczky 1984, Paradise and Stamp 1991). This suggests that the Chinese mantid 

is tolerant of, rather than unaffected by, cardenolide consumption. Milkweed bugs 

uptake cardenolides more efficiently and at substantially higher concentrations than do 

D. plexippus (Scudder et al. 1986, Agrawal et al. 2012); mantids may be intolerant to 

the higher cardenolide concentrations found in milkweed bugs.  

An alternate hypothesis for the mantid’s behavior is that they may be 

responding to the presence of other secondary plant compounds. Adult D. plexippus 

have been shown to feed on plants containing pyrrolizidine alkaloids and sequester 

these compounds; these compounds may play a role in defending adult D. plexippus 

against both vertebrate and invertebrate predators (Kelley et al. 1987, Stelljes and 

Seiber 1990). These compounds are sequestered during the adult stage, however, and 

D. plexippus butterflies were fed sugar water in this experiment. To our knowledge, 

there are no reports of D. plexippus caterpillars sequestering toxins other than 

cardenolides. However, plants often employ a suite of defenses against herbivory and 

maintain multiple defense strategies with little cost (Koricheva et al. 2004). Thus, 

there are a number of potential toxins that mantids could be responding to in the plant 

material found in the caterpillar’s gut. Many cardenolide-containing plants in the 
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Apocynaceae, including genus Asclepias, also contain alkaloids (Agrawal et al. 2012). 

In addition, although A. incarnata is cardenolide-free, it is not undefended. Both the 

roots and aboveground biomass contain pregnane glycosides (Warashina and Noro 

2000a, b) that are inducible defenses against herbivory (A. Agrawal, personal 

communication). If mantids are unable to tolerate compounds found in undigested 

plant material, they might respond by gutting the caterpillar.  

Our results may also be influenced by the fact that D. plexippus caterpillars 

and European corn borers feed on different parts of their respective host plants; D. 

plexippus feed on leaves, while corn borers feed on seeds. Corn has been selectively 

bred for human consumption and is thus relatively undefended compared to milkweed 

leaves. This further supports the idea that mantids may be gutting D. plexippus 

because of their intolerance to plant compounds found in the leaves of Asclepias 

plants. A number of other species are able to process food items in response to 

toxicity. Tanagers, Pipraeida melanonota Vieillot, reduce the toxicity of ithomiine 

moths by chewing on them until the abdominal content is expelled; they then eat the 

abdominal contents while leaving the rest behind (Brown and Neto 1976). The 

European paper wasp Polistes dominula Christ will gut Pieris napi L. caterpillars that 

were reared on toxic host plants, but not those that were reared on non-toxic plants 

(Rayor et al. 2007). Herbivores such as the meadow vole will cut branches from 

conifers and leave them uneaten for several days until tannins and phenolic 

concentrations are reduced sufficiently for the vegetation to be palatable (Roy and 

Bergeron 1990). Mantids may be similarly reducing their toxin burden by processing 

prey. 
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The results of our work illustrate the unexpectedly complex mechanisms 

determining how Chinese mantids process lepidopteran prey. This predator is 

responding to a number of chemical cues as it consumes prey items that are 

heterogeneous in nutritional value and degree of toxicity. Because mantids did not 

respond to cardenolides in D. plexippus, it seems most likely that their gutting 

behavior is driven instead by other plant secondary compounds and/or the nutritional 

quality of prey tissue. Irrespective of mechanism, this mantid’s ability to efficiently 

process toxic and non-toxic prey is likely important in allowing this non-native 

generalist predator to utilize a wide array of prey taxa. 
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Figure Legend 

Figure 1: (a) Mean percent of carbon (C) present in each prey and tissue type ± 1 SE. 

(b) Mean percent of nitrogen (N) present in each prey and tissue type ± 1 SE. (c) Mean 

C:N ratio of each prey and tissue type ± 1 SE.  
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Abstract-Predators that feed on aposematic, chemically-defended prey often 

experience non-lethal effects after consumption that result in learned avoidance of the 

prey species. Some predators, however, are able to consume toxic prey without ill-

effect. The Chinese mantid, Tenodera sinensis, is able to consume cardenolide-

containing monarch caterpillars, Danaus plexippus, without immediate adverse 

effects. Although they discard the caterpillars’ gut contents, mantids still ingest 

cardenolides sequestered in monarch body tissue. Although mantids do not exhibit 

immediate adverse reactions when consuming monarch biomass, it is possible that 

there are long-term fitness costs associated with cardenolide consumption.  We tested 

the hypothesis that monarch caterpillar consumption negatively affects mantid 

fecundity and reproductive condition. We assigned lab-reared mantids to one of four 

toxicity groups that differed in the number of monarch caterpillars offered to adult 

mantids over a 15-day period. Monarch consumption did not reduce mantid fecundity; 

all treatment groups produced similar numbers of eggs. However, mantids in the high-

toxicity group produced eggs that were 42% longer on average and devoted 75% more 

of their biomass toward egg production than those in the control group. This increase 

in reproductive condition is probably driven by other factors such as mantid size, prey 

nutritional value and/or diet mixing. Despite consuming similar amounts of prey 

biomass during the experiment, mantids in the high-toxicity group gained more 

biomass and were larger than mantids in the other groups. Our results suggest that the 

Chinese mantid is able to incorporate monarch prey into its diet without acute or 

chronic ill-effects.  

Key Words- Tenodera sinensis, Danaus plexippus, fecundity, monarch, prey toxicity 
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INTRODUCTION 

Chemically-defended species often advertise their protection via aposematism 

(Duffey 1980; Nishida 2002; Ruxton et al. 2004). These defenses generally involve 

compounds that are bitter tasting and cause vomiting or other ill effects shortly after 

consumption. These adverse but non-lethal effects allow predators to learn to avoid 

consumption of chemically-defended prey (Gittleman and Harvey 1980). These 

defenses are not always effective, however, and some predators feed on chemically-

defended prey without any immediate ill-effects. The ladybird beetle Harmonia 

axyridis, for example, can metabolize toxic alkaloids produced by the coccinellid 

species on which it feeds (Sloggett and Davis 2010). The harvestman Mitopus morio 

feeds on the larvae of the leaf beetle, Oreina cacaliae, and is similarly able to prevent 

bioactivation and detoxify the toxic pyrrolizidine alkaloids sequestered by the prey 

(Hartmann et al. 2003). Even predators that lack physiological adaptations can avoid 

or limit their exposure to prey defenses by processing their prey (Brown and Neto 

1976; Glendinning 2007; Rayor et al. 2007) or limiting their consumption (Skelhorn 

and Rowe 2007). 

Even when predators are able to consume toxic prey with seemingly little 

effect, there may still be fitness costs associated with toxin consumption. When orb 

web spiders, Zygiella x-notata, feed on oleander aphids, Aphis nerii, they suffer 

disorientation and begin to construct webs that are less efficient at prey capture 

(Malcolm 1989). The two-spotted ladybird beetle, Adalia bipunctata, suffers lower 

fecundity and egg viability when consuming aphids reared on high-glucosinolate 

plants (Francis 2001). 
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The Chinese mantid, Tenodera sinensis, is a generalist predator that is able to 

feed on chemically-defended monarch caterpillars, Danaus plexippus, with no 

immediate ill effects. Monarch caterpillars feed on host plants in the genus Asclepias 

(Apocynaceae) that contain cardenolides; the larvae sequester these cardenolides in 

their bodies, rendering them unpalatable to many predators (Agrawal et al. 2012). We 

have previously found (Rafter et al. 2013; Rafter et al. unpublished data) that mantids 

discard the gut tissue from monarch larvae while consuming the rest of the caterpillar. 

This gutting behavior does not, however, prevent mantids from consuming 

cardenolides: while the gut and body tissue differ in cardenolide composition, they 

contain similar cardenolide concentrations (Rafter et al. 2013). Though mantids suffer 

no immediate ill-effects from consuming monarch larvae, their consumption of this 

cardenolide-containing tissue may nonetheless have long-term impacts. We tested 

whether consuming cardenolide-containing monarch caterpillars reduces mantid 

fecundity.  

METHODS AND MATERIALS 

Insect Rearing and Maintenance. We collected a Tenodera sinensis egg mass 

in mid-January 2013 from East Farm (Kingston, RI), an abandoned agricultural field. 

We placed it in a 50 x 25 x 30 cm Plexiglas aquarium that was kept in a Percival 

growth chamber with a 16:8 L:D photoperiod and 60-80% humidity at 25˚C during 

lighted hours and 23˚C during dark hours until the eggs began to hatch. After 

hatching, 105 nymphs were placed in individual 1.9L mason jars, with mosquito 

netting used in lieu of the tops for ventilation. A mesh strip was secured under the lid 

to serve as a perching site and water wicks were made using capped soufflé cups with 
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braided dental cotton inserted through a hole in the lid. These jars were kept in the 

Percival growth chamber. Mantids in their first four instars were fed lab-reared 

apterous fruit flies, Drosophila melanogaster, purchased from Carolina Biological 

(Burlington, NC, USA). After mantids reached the fourth instar, they were fed two 

appropriately-sized crickets daily. Just prior to and during molting, mantids are 

vulnerable to cricket predation; to prevent this, we tested for satiation by using forceps 

to offer each mantid a cricket before placing crickets into the jars. If the mantid 

refused to attack the cricket we assumed it was preparing to molt and did not feed it 

that day. To help deter crickets from attacking the mantids, we also put fruit flies into 

the jars for the crickets to eat.  

Monarch eggs were purchased from Flutterby Gardens (Bradenton, FL, USA) 

and reared in the lab on Asclepias curassavica, a milkweed species that contains high 

cardenolide concentrations (Rasmann and Agrawal 2011). Host plants were grown 

from seed in the University of Rhode Island greenhouse. 

Experimental Design. Once mantids reached adulthood, 31 females were 

randomly assigned to one of four treatments: non-toxic control, low toxicity, medium 

toxicity, and high toxicity (Table 1). After being assigned to their treatment, all 

mantids were held for three days without food. As outlined in Table 1, toxicity 

treatments were defined by the number of late-instar monarchs (0, 1, 5, or 15) offered 

to a given mantid over a 15-day period (days 4-18). On days during the 15-day 

treatment period when a mantid was not offered a monarch caterpillar, two crickets 

(comparable in weight to a single late-instar monarch caterpillar) were offered to the 

mantid as non-toxic prey. The offering of crickets on non-monarch days was necessary 
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to prevent mantid starvation in the control (zero caterpillars), low-toxicity (one 

caterpillar), and medium-toxicity (five caterpillars) treatments. If mantids refused to 

eat a monarch caterpillar, we continued to offer a caterpillar on subsequent days until 

the mantid accepted the prey; we did not offer mantids crickets unless they had 

already accepted the caterpillar. Following the 15-day treatment period, all mantids 

were fed two crickets daily until day 35. We recorded mantid weight before and after 

feeding as well as prey weight to determine prey biomass consumed. On day 35 

mantids were weighed, anesthetized using a kill jar containing ethyl acetate, and 

dissected. We removed and weighed the egg mass, counted the eggs, and measured the 

length of five randomly-chosen eggs from each egg mass. We used the final mantid 

weight and the weight of the egg mass to determine the percent mantid biomass 

comprised of eggs. The 35-day length of our experiment ensured that all mantids 

produced a measurable number of eggs but was too short for them to have laid an egg 

mass. This allowed us to assess how exposure to monarch-sequestered cardenolides 

affects egg production and reproductive condition. 

Statistical Analyses. Because the data on number of eggs produced, average 

egg length, and percent mantid biomass comprised of eggs was non-normally 

distributed, they were analyzed using nonparametric Kruskal-Wallis tests. Among-

treatment differences were determined using the post-hoc Steel-Dwass method. 

Since insect fecundity can vary as a function of prey biomass consumed, we initially 

attempted to run an ANCOVA using total prey biomass consumed as a covariate. 

However, our data violated the assumption of homogeneity of regression slopes. 

Therefore, we used ANOVA to separately analyze data on total prey biomass 
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consumed (calculated by summing the daily amount of biomass consumed; this was 

determined using mantid weight before and after feeding) and percent mantid weight 

gain in each of the four treatments. We determined among treatment differences using 

post hoc Tukey Kramer HSD tests with α=0.05. All data were analyzed using JMP 10 

(SAS Institute, Inc.). 

RESULTS 

Mantids accepted both crickets and monarch caterpillars as prey. Some 

mantids in the low- and medium-toxicity treatments refused to consume monarch 

caterpillars on the day offered, but accepted them when offered again in subsequent 

days. Thus, mantids in the low-toxicity treatment each consumed one monarch 

caterpillar over the 15-day trial period and mantids in the medium-toxicity treatment 

consumed an average of 4.7± 0.18 caterpillars over the 15-day trial period. Mantids in 

the high-toxicity treatment each consumed 15 caterpillars. 

Monarch consumption did not affect mantid egg production (Fig. 1a; χ
2
=5.47, 

p=0.14). Despite this, both average egg length and percent mantid biomass comprised 

of eggs differed among treatments (Fig. 1b; χ
2
=8.56, p=0.036 and Fig. 1c; χ

2
=12.88, 

p=0.0049, respectively). Mantids in the high-toxicity group produced 42% longer eggs 

than those in the control.  Mantids in the high-toxicity group also devoted 75% more 

of their biomass toward egg production than those in the control group. Although 

mantids in each treatment group consumed similar amounts of prey biomass over the 

course of the experiment (Fig. 2a; F3,27=1.97, p=0.14), mantids in the high-toxicity 
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group gained 18.5, 8.7, and  13.9 percent more biomass than mantids in the  medium-

toxicity, low-toxicity and control groups, respectively. (Fig. 2b; χ
2
=14.10, p=0.0028). 

DISCUSSION 

We did not observe any acute ill-effects of consuming toxic monarch 

caterpillars on mantids. Per their typical behavior, mantids that fed on monarchs 

readily consumed the body tissues and rejected the gut material. This behavior and 

lack of immediate ill-effect is in agreement with our previous work (Rafter et al. 

2013). 

Contrary to our expectations, consumption of monarch caterpillars reared on 

high cardenolide Asclepias curassavica did not reduce mantid fecundity. Instead, 

mantid egg production was unaffected (Fig. 1a) while average egg length and percent 

mantid biomass comprised of eggs were both greater in the high toxicity group than in 

the control group (Fig. 1b and 1c, respectively). These data suggest that consumption 

of monarch prey does not reduce fecundity, but does improve reproductive condition. 

It is likely, however, that other factors influencing mantid condition are responsible 

for the observed increase; we discuss these factors below. 

The apparent increase in reproductive condition might be explained by 

differences in the amount of prey biomass consumed by mantids in each treatment 

group. Prey biomass has been shown to affect insect growth and fecundity, and food-

limited adult mantids have lower fecundity (Eisenberg et al. 1981). Because our data 

violated the assumption of homogeneity of regression slopes we could not run an 

ANCOVA using ‘prey biomass consumed’ as a covariate. Instead, we used an 

ANOVA to determine if there were any among-treatment differences in prey biomass 
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consumed. This analysis of the total amount of prey biomass consumed revealed no 

among-treatment differences (Fig. 2a). As a result, mantids in the high-toxicity group 

put on more biomass than those in all other treatment groups despite consuming 

similar amounts of prey biomass (Fig. 2b). At the end of the experiment, mantids in 

the high toxicity group were 28% larger than mantids in the control group (F3,27=3.88, 

p=0.02). Mantids in the high toxicity group could thus exhibit an apparent increase in 

reproductive condition by virtue of being larger and therefore in better condition for 

reproduction. Chinese mantids lose an average of 47% of their body mass when they 

oviposit, with larger mantids producing larger ootheca (Eisenberg et al. 1981). It is 

possible that, although we could not detect a statistical difference in total prey biomass 

consumed, biologically significant differences explain the observed results. 

While we did not test this, another possible explanation is that the nutrient 

content of monarchs, although toxic, is higher than that of crickets of comparable 

biomass. Monarch caterpillars were reared on a suitable host plant, while crickets were 

fed on a mixed diet of potatoes, apples, and artificial diet. In addition, mantids in 

toxicity treatments were consuming a mixed diet; crickets and monarchs. Having a 

mixed diet could improve overall health of the organism and thus explain the observed 

results. Agonum dorsale, a carabid beetle, exhibits the highest fecundity when reared 

on a mixed diet rather than a pure diet (Bilde and Toft 1994). It is possible then, that 

although mantids were consuming toxic prey, they were reaping a nutritional benefit 

through one or both of these mechanisms. 

This research, combined with our previous work, suggests that the Chinese 

mantid is able to incorporate toxic monarch caterpillars into its diet with neither 
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chronic nor acute ill-effects. The Chinese mantid is a non-native generalist and our use 

of naïve mantids in this and previous work indicates that mantids are pre-adapted to 

handle this type of toxic prey. The ability to readily consume toxic prey may in part 

explain the occurrence of viable and established populations of mantids throughout 

their introduced range.  
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FIGURE LEGENDS 

Fig. 1 (a) Mean number of eggs produced ± 1 SE. (b) Mean egg length (mm) ± 

1 SE. (c) Mean percent mantid biomass composed of eggs (g) ± 1 SE 

Fig. 2 (a) Mean prey biomass consumed over 35 days ± 1 SE. (b) Mean 

percent change in mantid weight ± 1 SE 
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TABLE 1 DESCRIPTION OF MANTID TREATMENT GROUPS AND THE 

NUMBER OF INDIVIDUALS IN EACH GROUP 

Treatment Group n Treatment description 

Control 9 Offered two crickets daily from day 4 to day 35 

Low Toxicity 

 

8 Offered one monarch caterpillar on day 11. Offered two 

crickets per day all other days until day 35. 

Medium Toxicity 7 Offered one monarch on days 6, 9, 12, 15, and 18. 

Offered two crickets per day all other days. 

High Toxicity 7 Offered one monarch caterpillar each day on days 4-19. 

Subsequently, offered two crickets per day until day 35. 
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Fig 1 

  

 

  

 

 

  

  

0 

10 

20 

30 

Control Low Medium High 

M
ea

n
 %

 B
o

d
y 

M
as

s 
C

o
m

p
o

se
d

 o
f 

Eg
gs

 

Treatment 

 

 

 
 

  

0 

1 

2 

3 

4 

5 

M
e

an
 E

gg
 L

e
n

gt
h

 (
m

m
) 

 

 

  

 

  

0 

50 

100 

150 

200 
M

ea
n

 N
u

m
b

er
 o

f 
Eg

gs
 

 (a) 

(b) 

(c) 

a 

ab 
ab 

b 

a 

b 
ab 

b 



60 
 

Fig 2  
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