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Overview*
The Pfiesteria organism was first identified
and named in the early 1990s and its ability
to kill fish was documented at the time.
Research on the effects of exposure to its
toxin on humans is more recent, sparked
largely by widely publicized fish kills in the
late 1990s and reports of adversely affected
persons present at the scenes of the kills.
Consequently, the peer-reviewed literature is
still limited and substantial research is in
progress at institutions in the Atlantic coast
states of Maryland, North Carolina, and
Virginia, and elsewhere. Dramatic reports of
fish kills and illness among persons exposed
to water at the time of the kills sparked public
concern and reviews by a variety of agencies
in the late 1990s. The primary data sources,
secondary reviews, and expert panel reports
were evaluated by this panel.

In approaching its charge, the panel
turned to a toxicologically based framework
for conducting its review, characterizing the
state of the science, and identifying research
gaps (Figure 1). Prevention of adverse effects
of Pfiesteria will need to be based in an

understanding of each element in this
framework: the ecological factors that drive
concentrations of the organism and its state;
the stimuli that lead to toxin production and
the nature of the toxin; the mechanism of
the toxin’s effect on fish; the circumstances
and routes of human exposure; and the
mechanisms by which human health is
adversely affected by the toxin. Sufficient cer-
tainty is needed on each of these points to
evolve policies that will assure protection of
public health and the fish populations. In
addition, we need enhanced understanding
of the still poorly characterized effects of
Pfiesteria on human health.

Other reviewers have commented on
many elements of this framework; their
reviews make clear that there are gaps in sci-
entific understanding, with attendant uncer-
tainty for decision makers, for each of these
elements. With substantial research now
under way, the panel views the timing of this
review as an opportunity to examine the gaps
and the extent to which new research findings
will set aside uncertainties. 

Pfiesteria has proved to be a challenging
problem. Researchers have referred to the
organism as “ephemeral” and “phantom-like.”

It has multiple forms, transforming itself into
a toxin-producing dinoflagellate when it
somehow senses the presence of fish. Its toxin
apparently destroys the integrity of the skin of
fish, allowing the organism to feed; after feed-
ing, the organism transforms into a dormant
form. (Throughout this report, we refer to
“Pfiesteria toxin,” recognizing that the organ-
ism may well produce more than one toxin.
We use the plural “toxins” in describing the
basis for supposing that more than one toxin
exists.) There is debate as to whether a
pathognomonic lesion occurs in fish. Humans
seem to be at risk when their activities lead to
contact with toxin-containing water at the
time of fish kills. Whether the toxin reaches
target tissues by dermal contact or inhalation
is unclear. A diffuse syndrome has been
described in individuals likely to have been
exposed to toxin; its components include der-
mal irritation, respiratory and gastrointestinal
symptoms, systemic symptoms such as fatigue
and malaise, and impaired neuropsychological
functioning. The Centers for Disease Control
and Prevention (CDC) has offered criteria for
possible estuary-associated syndrome (PEAS)
for the purpose of surveillance (1–3).

While the scientific evidence on Pfiesteria
is only now being accumulated, driven by
funding made available over the last several
years, there are sufficient credible human case
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reports to suggest adverse effects of Pfiesteria
toxin on people. The panel viewed this clinical
evidence as sufficiently compelling to motivate
a research agenda that would comprehensively
address the many gaps in our understanding
of Pfiesteria and human health. 

Principles for Interpreting Evidence
In addressing its charge, the panel reviewed
evidence associating Pfiesteria with fish kills,
toxin elaboration, and adverse effects on
human health; it also considered ecological
data on the presence of Pfiesteria and changes
in nitrogen and phosphorus concentrations
driven by man’s activities. The various lines
of data were derived from observation and
also from the laboratory setting. No single
framework can be applied across disciplines
for evaluating such diverse evidence for its
strength in establishing linkages of hypothe-
sized sets of causes with observed outcomes,
e.g., Pfiesteria with fish kills, waste effluents
into rivers with the presence of Pfiesteria, or
Pfiesteria toxin with human health effects. 

To identify causes of human disease,
criteria for determining the causal nature of
associations have been proposed, beginning
with Koch’s postulates, offered at the end of
the 19th century for judging if an infectious
disease were caused by a particular microbe as
described by Evans (4). Koch’s postulates,
sometimes referred to as the Henle-Koch pos-
tulates to acknowledge the contribution of
Henle, Koch’s professor, included a) an
organism needs to be present in every case of
the disease and “under circumstances which
can account for the pathological changes and
clinical course of the disease”; b) the organism
is not found in other diseases as a fortuitous

and nonpathogenic bystander; and c) after
isolation from affected people and growth in
culture, the organism can induce the disease
(4). Koch applied these criteria in describing
the causal link of the tubercle bacillus with
human tuberculosis. 

Recently, Fredricks and Relman (5)
described an extension of these criteria to
sequence-based identification of microbial
pathogens. They specifically addressed
sequence-based identification of microbial
pathogens, now possible with modern assay
techniques. Marshall and colleagues (6) modi-
fied the Koch postulates and applied them to
findings of fish bioassays for the toxicity of
Pfiesteria. In analogy to Koch’s first postulate,
they proposed that Pfiesteria must be present
at a fish kill or disease event. For the second
postulate, they suggested that Pfiesteria must
be isolated from a fish-killing sample and then
grown in clonal culture. For the third, addi-
tion of the clonal Pfiesteria to healthy fish cul-
tures results in death. Finally, Pfiesteria must
be isolated from the experimentally induced
fish kill and recloned. Their report describes
experiments intended to meet these criteria. 

Criteria for causality in relation to human
disease have evolved substantially since Koch’s
writings over 100 years ago. In the mid-20th
century, substantial epidemiologic research
was initiated on the emerging epidemics of the
“chronic diseases”—cancer, coronary heart
disease and stroke, and chronic lung disease.
There was soon recognition that the Henle-
Koch postulates were not appropriate for
interpreting the evidence on these multifactor-
ial, complex diseases. A set of guidelines
evolved (4,7,8) that was applied, for example,
in interpreting the evidence on smoking and
lung cancer in the 1964 Surgeon General’s
Report (9). The guidelines consist of the fol-
lowing elements: consistency of association,
strength of association, specificity of associa-
tion, temporal relationship of association, and
coherence of association. These elements are
intended to be criteria for judgment and not a
rigid checklist. They call for consistency of
findings with replication and coherence with
other relevant observations, including under-
standing of pathogenesis. The argument for
causality is strengthened by the finding of a
stronger level of association, less likely to be
attributable to chance or bias, and the pres-
ence of a dose–response relationship.
Specificity is generally not relevant to multi-
caused human diseases. 

The scientific evidence on Pfiesteria is still
limited, with only a small number of research
groups involved and insufficient time for
replication and validation of key findings.
Thus, regardless of the criteria applied for
causal interpretation, the paucity of the data
limits the strength of inferences that can be
drawn. Consequently, in carrying out its

review, the panel first attempted to characterize
the extent of the evidence available, enumer-
ating to the extent possible the number of
independent observations, e.g., cases of
human disease reported and the numbers of
samples studied in the laboratory setting. The
panel judged that some reports included over-
lapping data and attempted in its review to
document the evidence available. 

Beyond this detailed enumeration of the
data available, the panel considered the
Henle-Koch postulates as appropriate for
linking Pfiesteria to either fish kills or human
disease. As a minimum, there should be doc-
umented presence of the organism at the time
of fish kills or, in the instance of human dis-
ease, the presence of a fish kill when persons
who become ill were in contact with water.
Effects on fish can be addressed in the labora-
tory, thus fulfilling the last postulate, but
human effects cannot be investigated experi-
mentally. There is anecdotal evidence in the
form of experience of persons exposed in the
laboratory who have become ill. However,
establishing causal linkages between exposure
to Pfiesteria and human disease is complicated
by the nonspecificity of the clinical picture as
presently characterized. 

The evidence on ecological determinants
of the organism’s presence and concentration
is also observational. The panel’s approach for
interpretation paralleled that used for the
human health data. 

This report follows the panel’s framework
offered in Figure 1. We begin with a review
of the ecophysiology of Pfiesteria and then
shift to its effect on marine organisms. The
subsequent section covers approaches to mea-
surement and detection of the organism and
its toxin. After that, we address human health
effects, including clinical and epidemiological
reports. Finally, we offer conclusions and sug-
gest directions for further investigation.

Ecophysiology of Pfiesteria
piscicida*

P. piscicida Relative to Other
Dinoflagellates and Harmful Algal
Blooms

Pfiesteria piscicida Steidinger & Burkholder
represents a novel group of dinoflagellates first
discovered in the 1980s, and collectively
termed “ambush predators.” (Throughout this
report, we use “Pfiesteria” to encompass
“Pfiesteria piscicida Steidinger & Burkholder,”
“Pfiesteria shumwayae Glasgow & Burkholder,”
and other as yet unidentified species of the
genus. We use the standard shortened forms
“P. piscicida,” “P. shumwayae” whenever we
can do so without causing confusion.) P.
piscicida appears to be unique among this

*Section author: Theodore Smayda

Figure 1. A framework for addressing Pfiesteria and
public health.
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group and among dinoflagellates generally in
its life cycle, nutritional behavior, and toxicity,
although much remains to be learned (10,11).
The ichthyotoxic blooms of P. piscicida were
first described in 1992 (10) and the organism
was classified taxonomically in 1996 (12).
Knowledge of the life cycle and feeding behav-
ior of the organism is based primarily on
research conducted in the laboratory and on
less extensive field research. 

Current understanding of the salient
features of the life cycle and of the behavior of
P. piscicida has been described in several peer-
reviewed publications (6,10,11,13,14). The
organism’s polymorphic life cycle (Figure 2)
consists of three distinct life-form stages—fla-
gellated, amoeboid, and encysted—that live
in bottom sediments or as free-swimming
organisms in the water column. These stages
involve at least 24 size, shape and morpho-
typic variants, ranging from 5 to 450 µm in
size. The stages include rhizopodial, filose
[i.e., the star amoebae in Figure 2; (15)] and
lobose amoebae; toxic and nontoxic
zoospores (asexual flagellated spore); cysts of
various structure; and gametes (mature

sexual reproductive cells having a single set
of unpaired chromosomes) (14). 

Under laboratory conditions in the
presence of live fish, its sediment-dwelling
amoeboid and resting stages transform
rapidly into free-swimming flagellate stages
in response to unknown chemical cues
secreted or excreted by fish (10). The
induced (excysted) flagellate stages swarm
into the water column and become toxic
during their continued exposure to the fish-
derived (sometimes shellfish-derived) chemi-
cal stimulants. The toxic zoospores gather
together, alter their random swimming pat-
tern into directed movement, doubling their
swimming speed in the process (to 670 µm
sec–1; median), and commence predatory
behavior directed toward targeted fish. 

The toxic zoospores produce a neurotoxin
of unknown structure, soluble in water, and
which may be liberated as an aerosol under
some conditions. Fish are first narcotized by
the toxin, die suddenly, and slough off tissue,
which the attacking zoospores consume by
sucking out the cell contents through the
attached peduncle. The zoospores sometimes

ingest other microscopic plant and animal
prey at the same time. During this killing
period, the zoospores reproduce both asexu-
ally (mitotic division) and by producing
gametes that fuse to produce toxic planozy-
gotes (actively swimming offspring formed by
sexual reproduction, i.e., the union of two
gametes) (Figure 2). The presence of live fish
is required both for completion of the sexual
cycle and for toxin induction. 

Upon fish death or their retreat, the toxic
zoospores and planozygotes transform into
(mostly) nontoxic amoeboid stages that gather
onto the floating fish carcasses on which they
feed for extended periods, and follow the sink-
ing fish remains to the bottom sediments. Not
all toxic zoospores and planozygotes transform
into amoebae. Some encyst and sink into bot-
tom sediments; a lesser number revert to non-
toxic zoospores that remain in the water
column. The proposed 24 stages of the com-
plex life cycle are based on laboratory observa-
tion. Although several stage transformations
have been documented photographically,
photographic or videotape documentation for
other proposed phases has not been published.
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Figure 2. Schematic of the complex life cycle of P. piscicida with (+) and without (–) live finfish. Other environmental controls are indicated by: A, presence of flagellated algal
prey; N, nutrient enrichment (e.g., organic or inorganic N and P); S, environmental stress such as shift in salinity, temperature, or physical disturbance. NTZ, nontoxic zoospore.
Adapted from Burkholder and Glasgow (11) with permission from the American Society of Limnology and Oceanography.
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Neither is molecular confirmation available to
demonstrate that each of the proposed stages
has the same genome.

Other dinoflagellate species have multiple
life stages that transition from bottom sedi-
ments to the water column, feed on multiple
trophic levels, are toxic to fish, “bloom”
explosively under certain environmental con-
ditions, and are toxic to other marine organ-
isms and to humans. Pfiesteria’s distinctive
characteristics are its extraordinarily complex
life cycle, nutritional diversity, trophic con-
trol of its life cycle and toxicity, and the way
it kills fish prey. During fish kills attributed
to P. piscicida in natural habitats, and in con-
trast to blooms of many ichthyotoxic flagel-
lates, its lethal stages [i.e., toxic zoospores,
planozygotes, large lobose amoebae (at tem-
peratures <15°C)] usually represent only a
minor component of the phytoplankton
community present in the water column.
Blooms of P. piscicida are very ephemeral—
generally only hours in duration, of relatively
modest cellular abundance (>250 cells mL–1),
and rarely discolor the water mass (15). Of
particular interest, P. piscicida is the first
dinoflagellate and the first harmful bloom
species observed to attack prey spanning all
trophic levels of estuarine food webs, from
bacteria to fish (16). 

The complexity of the life cycle and
unusual behavior ascribed to P. piscicida raise
the following questions: Are the reported eco-
physiology and trophic impact of this appar-
ently novel dinoflagellate compromised by as
yet imprecise (inconclusive) methodology and
investigation? Or is P. piscicida a particularly
problematic species, one that warrants contin-
ued special research attention and public
health concern? In asking these questions, the
panel recognizes that the context of the evi-
dence in which they are asked comes from
only a decade of research.

Several scientific challenges to the validity
of some key ecophysiological features

advocated for Pfiesteria can be raised in rela-
tion to the peer-reviewed and non–peer-
reviewed literature, including: 
• Some of the proposed “stages” in the

complex life cycle proposed for P. pisci-
cida are actually other organisms (“conta-
minants”) present in the P. piscicida
cultures.

• Field events, toxicity features, and fish
kills attributed to P. piscicida have been
confused with the behavior of look-alike
species, or are based on inadequate field
sampling.

• P. piscicida outbreaks are consequences,
rather than causes, of fish kills.

These challenges are addressed in the following
sections.

The Life Cycle Issue
The life cycle of P. piscicida (Figure 2) is
based primarily on documented transforma-
tions of isolated cells and populations studied
in the laboratory and exposed to various com-
binations of temperature, salinity, nutrient
addition, prey availability, and live and dead
fish exposure (11,13,14). Life-cycle transfor-
mations appear to be highly sensitive to habi-
tat conditions, often occurring rapidly and
producing structurally similar stages despite
different life cycle pathways. Most dinoflagel-
lates that spend part of their life cycle in the
water column and part in bottom sediments
are biphasic, with swimming and resting
stages. Pfiesteria is notable because it is appar-
ently triphasic, including flagellated, amoe-
boid (three distinct types), and resting
(encysted) stages and as many as 24 distinct
life-form variants. 

P. piscicida is not the first dinoflagellate
shown to produce amoebae that dominate its
life cycle or the first to exhibit a triphasic life
cycle (17,18). Haidadinium ichthyophilum, a
freshwater dinoflagellate ectoparasitic on
three-spined stickleback, has four distinct
amoeboid stages, cysts, and “gymnodinioid”

swarmers (19). The 24 stages presently recog-
nized in P. piscicida’s life cycle are consider-
ably less than the 38 stages recorded for
H. ichthyophilum, the previously mentioned
freshwater dinoflagellate that is also character-
ized by the nutritional versatility exhibited by
P. piscicida (15). 

Contamination of laboratory cultures of
P. piscicida by other organisms cannot be
ruled out and it is possible that some stages
have been incorrectly identified.
Nonetheless, such complexity is neither
unique nor exclusive to P. piscicida among
dinoflagellates. Its complexity is not therefore
an a priori reason to doubt the validity of the
life cycle as now described. Two additional
bits of evidence support this: During multi-
ple Pfiesteria-linked fish kills, several of the
life stages depicted in Figure 2 have been
recorded within the water column. The
dominant amoeboid stages, which are partic-
ularly abundant on sediments regardless of
fish availability, were ubiquitous during the
fish kill events (20). More quantitatively,
analyses of ribosomal DNA sequences
demonstrated that four dinoflagellate species
(P. piscicida, a Pfiesteria look-alike species, a
cryptoperidiniopsoid sp., and the obligate
fish parasite Amyloodinium ocellatum) are
closely related members of an early ancestral
group (Blastodiniphyceae) having parasitic
tendencies (21). Litaker et al. (22) also
reported sequence data for P. piscicida, but
uncertainty surrounds this GenBank entry.

Problem of Identification and 
Look-Alike Species
Two species currently form the Pfiesteria
complex: P. piscicida and a new species to be
named P. shumwayae. A Pfiesteria sp. has been
implicated in a fish kill in a marine home
aquarium (23). This fish kill cannot be attrib-
uted definitively to Pfiesteria because other
parasitic dinoflagellates were identified in the
tank and because the Pfiesteria-like organism
disappeared before it could be examined and
classified taxonomically. A combination of
microscopic techniques and fish bioassay is
required to detect P. piscicida in its various
life stages (see below, “Measurement Tools for
Detecting the Pfiesteria Organism”). Many
small gymnodinioid dinoflagellate species look
like P. piscicida zoospores under light
microscopy. Taxonomic identification requires
scanning electron microscopy (SEM) (12,18)
(see below, “Scanning Electron Microscopy”). 

P. piscicida is easily overlooked in fish
kills that it may have induced, for several rea-
sons. Its toxic zoospore stages closely resem-
ble other small, nontoxic species. Its small
flagellated forms tend to preserve poorly in
the fixatives routinely used in phytoplankton
analyses. When preserved, its amoeboid
stages often resemble organic debris, and its

Figure 3. The dinoflagellate P. piscicida. (A) Apical view with epithecal plate tabulation and pattern. (B) Oblique
ventral view showing four sulcal plates; the s.a. plate ties under the 1’ and 5” plates. (C) Dorsal view. Views B and C
show the complete hypothecal plate tabulation and pattern. Scale bar = 7 µm. Reproduced by permission from
Journal of Phycology (12).
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colorless heterotrophic cells blend into
“counting chamber” surroundings (15).
Proper identification requires SEM, an
approach generally not used in field monitor-
ing. The optimal period for detecting lethal
Pfiesteria stages is during the fish kill (10),
but sampling is usually done after the fish kill
is reported and rarely conducted during the
active die-off period. 

Cryptic occurrences prior to fish kills are
another problem. Pfiesteria’s presence may be
overlooked because of its low abundance or
life cycle stage. A Neuse River, North
Carolina, experimental study was hampered
by chronic low abundance of the biflagellate
zoospore stage (frequently <6 cells mL–1).
Abundance of other phytoplankton organ-
isms of similar size ranged from 103 to 104

cells mL–1 (24). Dead fish often are carried to
regions outside of the active kill area by tidal
and other currents, blurring interpretations
based on analyses of watermass properties in
samples collected in the “dead zone.” 

The rapid stage transformations and
population dynamics that characterize P.
piscicida contribute to these detection and
identification difficulties. Time constants of
life-cycle transformations are consistent with
the ephemeral, rapid response, “sudden
death” syndrome described for ichthyotoxic
Pfiesteria events. Upon stimulus, zoospores
can transform within minutes into filose
amoeboid stages (Figure 2) (18). Flagellated
stages subjected to shear can encyst within
minutes to hours (11). Nontoxic zoospores
become lethal within 3–4 hr upon exposure to
live fish (15), and they are capable of growth
rates that double the population in 15–21 hr
(25,26). Recently formed cysts (hours to days
in age) can excyst and yield toxic zoospores
within 15–20 min after exposure to live fish
(11). In culture, toxic zoospores of P. piscicida
and two tested Pfiesteria-like species killed
healthy fish within minutes after exposure
(15). Toxic zoospores sharply declined in
abundance within 1–2 hr after fish death as a
result of their transformation into cysts or
amoeboid cells (10).

P. piscicida is also adapted to withstand
prolonged periods of unsuitable growth con-
ditions, a feature that further compounds the
problems of its detection and association with
putative fish kills. The lag period for excyst-
ment upon stimulation by live fish varies from
minutes to days to months, and increases with
cyst age. Cysts dormant for two years required
6–8 weeks to produce toxic zoospores; less
than 2 weeks if dormant for 2–8 weeks, and
less than 30 min if only hours or several days
old (11). Lobose amoebae held in culture one
year produced nontoxic zoospores when sup-
plied with a microalgal prey, and a Pamlico
Sound, North Carolina, water sample rich in
amoebae and kept in darkness for 4 months

transformed into toxic zoospores when live
fish were added (11).

In summary, traditional methods of
analysis typically cannot be applied to detect-
ing and monitoring P. piscicida’s involvement
in fish kills for three reasons: a) its cryptic
appearance, low abundance, and multiphasic
life cycle; b) its explosive, ephemeral bloom
events; and c) the existence of morphologically
similar but ecophysiologically distinctive
Pfiesteria-like species. These complications,
and discrepancies in fish bioassay results used
to quantify P. piscicida involvement, have
fueled controversy. A rigorously standardized
fish bioassay process has only recently been
used to replicate and confirm key findings con-
cerning the ichthyotoxicity of P. piscicida (6).

These gaps and limitations of the available
evidence are a legitimate rationale for question-
ing the proposition that Pfiesteria transforms
and then releases a fish-killing toxin. Published
comments include rejection of the idea that
P. piscicida blooms cause fish kills, and strenu-
ous denials that the organism may pose signifi-
cant threats to natural fish stocks or human
health (24,27,28). Some of these objections
(27) are basically polemical arguments flawed
by scientific misinterpretations that have been
pointed out by Lewitus et al. (29) and Oldach
(30). The more substantive points raised by
Pinckney et al., and Stow are addressed in
subsequent sections of this report.

Distribution and Ecophysiology 
of P. piscicida
P. piscicida is distributed in estuarine waters
throughout the mid-Atlantic and southeast-
ern United States, from Delaware Bay to
Mobile Bay, Alabama, and may be found as
far north as Long Island, New York (31). It is
best known for its association with fish kills
in the Albemarle–Pamlico Estuarine System
(Pamlico and Neuse Rivers, North Carolina)
(13,15,32), where it was implicated as the
causative organism in 50% of 35 major fish
kills (103–109 fish) observed during
1991–1993 (15). Within the Chesapeake
Bay, it has been recorded from the Choptank
and Patuxent River estauries in Maryland and
the York River Estuary in Virginia; and it
and/or a related species is found in 7 of 10
eutrophic Florida embayments where fish
kills have occurred (15,33). Within this dis-
tribution, P. piscicida behaves as a warm-
temperate estuarine species that occurs across
a wide range of temperature and salinity but
displays a distinct preference for relatively
shallow, turbid, slowly flushed, nutrient-
enriched, moderately saline habitats (5–18
ppt). An exception to this may be its recent
discovery (via fish bioassay) in the pristine
North Inlet Estuary of South Carolina (26).

Pfiesteria-linked fish kills occur over a
broad range of salinity (0–35 ppt) but

predominate in moderately saline habitats
(5–18 ppt). Laboratory and field data suggest
that 15 ppt is the optimum salinity for toxic-
ity of P. piscicida, with toxic outbreaks (as
zoospores) most frequent at ≥26°C within its
bloom temperature window, which ranges
from 10 to 33°C (15,20). Low temperature
has also been shown to induce toxicity of
amoeboid stages. Addition of live fish or
shellfish (flounder and scallop) to experimen-
tal aquaria held at 10–15°C triggered
ichthyotoxicity in the lobose amoebae that
are the predominant life cycle stage of
Pfiesteria in that temperature range (11).

Laboratory and field results indicate that
P. piscicida is highly sensitive to water-column
mixing and shear (11). In the laboratory, its
flagellate stages encyst within minutes to
hours when exposed to rapid filtration or agi-
tation. Even gentle swirling of cultures can
induce transformation. Field populations tend
to be evenly distributed within the water col-
umn during calm weather unless tracking tar-
geted fish. During wind-induced mixing,
zoospore populations collect into lenses and
cluster at or near the bottom. 

Toxic Pfiesteria zoospores have no apparent
optimal irradiance level and do not exhibit
diurnal activity in the laboratory. They actively
kill fish at night or in full sunlight (11). Given
their heterotrophic nature, this apparent indif-
ference to irradiance is not surprising. 

Although the life history stages of P. pisci-
cida are controlled primarily by the availabil-
ity of fresh fish secretions/excretions or fish
tissue, the availability and utilization of alter-
nate prey and dissolved nutrient energy
sources are also important nutritionally
(11,13,29,34). The nutritional versatility of
P. piscicida is remarkable. Zoospores consume
bacteria, microalgae, microfaunal ciliates, ery-
throcytes, and fish tissue; amoebae are equally
versatile. When deprived of fish tissue,
zoospores and amoebae (in culture) can sur-
vive on a diet of microalgal prey but then
exhibit prey selectivity and differing growth
rates based on the microalgal species ingested
[see Table 1 in Burkholder and Glasgow
(15)]. Zoospores consume microalgae, either
by phagotrophy or by attachment of their
peduncles to prey, followed by sucking out
cellular contents in saprophytic manner. 

P. piscicida also can function as a
phototroph, carrying out photosynthesis by
utilizing the chloroplasts captured from
microalgal prey and inorganic and organic
nitrogen and phosphorus. Laboratory obser-
vations indicate that this expropriation and
retention of the captured chloroplasts
(termed kleptoplastidy) can last for at least 9
days (29,34). 

The nutritional versatility of P. piscicida is
consistent with the polymorphism and differ-
ing habitat requirements of its life cycle
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stages. It is a “prey generalist” that can behave
as an ichthyoparasite and survives periods of
fish deprivation by means of a complex life
cycle and nutritional versatility.

Research has focused on the toxic
“ambush predator” features of P. piscicida;
there is very limited information on the
extent to which it is itself predated. Mallin et
al. (35) have shown that a rotifer and the
common estuarine copepod Acartia tonsa
readily grazed upon P. piscicida in short-term
experiments. There is no information on the
long-term effects of Pfiesteria blooms on these
or other grazers. Bay scallops and oysters did
not strongly stimulate toxic activity of P.
piscicida, and scallops remained viable for 9-
to 14-day test periods while filtering low con-
centrations of toxic zoospores (~60 cells
mL–1) (20). At higher toxic zoospore levels
and in the presence of dying fish, scallops
died. These data suggest that filter feeding
shellfish may help control the abundance of
P. piscicida, particularly when population
densities are low.

Given the complex life cycle of P.
piscicida, the problems of detecting its pres-
ence, its impacts on fish, and the limited avail-
ability of quantitative field studies, little can
be said about the ecological drivers of its pop-
ulation dynamics, ichthyotoxicity, or spread-
ing potential. Attention has been focused on
the hypothesis that nutrient loading of waters
by man’s activities is one determinant of
Pfiesteria’s presence and abundance. Lewitus
et al. (29) warned that continued and/or
increased nutrient loadings of coastal and
estuarine habitats may lead to an increase in
the magnitude and geographical range of
P. piscicida toxic events. About 75% of the
toxic outbreaks of Pfiesteria-like dinoflagellates
have occurred in nutrient-enriched waters (20),
with Pfiesteria-linked fish kills often clustering
in North Carolina estuaries near sites exposed
to discharge from wastewater treatment facili-
ties, fish processing plants, domestic animal
operations, and phosphorus mining (16).

Mean nontoxic zoospore abundance
(1,240 cells mL–1) at four wastewater sites
was 6-fold higher than at control sites (14).
In the Neuse–Pamlico estuaries, where total
phosphorus averaged ≥200 µg L–1 and total
Kjeldahl nitrogen levels ≥580 µg L–1,
Pfiesteria was abundant. 

Nutrification of a small estuary by acci-
dental discharge of swine waste effluent was
followed three weeks later by a fish kill
(>104), during which toxic flagellate and
amoeboid stages of P. piscicida were present
(36). This fish kill cannot be definitively
attributed to nutrient induced stimulation of
P. piscicida because concurrent disruption of
habitat conditions and altered bloom
responses in the normal microbial and
microalgal communities also occurred. 

Pinckney et al. (24) concluded from
mesocosm experiments that Pfiesteria-like
organisms in the Neuse River do not respond
to inorganic nitrogen and phosphorus nutrifi-
cation, nor is their growth negatively influ-
enced by water column mixing. The authors’
interpretation of their findings directly con-
tradicts laboratory experience with these eco-
physiological factors (11,16), which Pinckney
et al. dismiss in extrapolating their results to
P. piscicida. Their study is compromised by
serious experimental flaws (control popula-
tions usually died off) and taxonomic uncer-
tainties, inadequate consideration of Pfiesteria
life cycle stages and their trophic regulation,
and a restricted data focus. 

In laboratory culture, P. piscicida responds
both via increased abundance and life-cycle
transformation to enrichment with inorganic
and organic nutrients (10,11,14,26). Under
some laboratory conditions, phosphorus-
containing substances released by fish or
direct phosphorus enrichment stimulate
growth of zoospores. 

Zoospores that have “stolen” chloroplasts
from microalgal prey take up inorganic and
organic nitrogen at rates equaling ingestion
of particulate nitrogen (prey N) by phago-
trophic stages. In natural settings, nutrient
enrichment often stimulates the growth of
microalgae and other microbial loop com-
ponents on which P. piscicida can feed. The
capacity of P. piscicida for both direct
uptake (phototrophy) and indirect uptake
via ingestion of stimulated prey (phagotro-
phy) suggests that the response of natural
populations of Pfiesteria to nutrient enrich-
ment is very complex. The specific pathway
of any stimulation depends upon the nutri-
tional state and life cycle stage of P.
piscicida. The specific pathway of nutrient
stimulation may be through enhancement of
microalgal prey abundance, or direct stimu-
lation by nutrient uptake from ingested
prey. Pfiesteria may require a specific chemi-
cal “water quality” factor in its habitats—the
bottom sediments and water column—to
complete its life cycle, undergo stage trans-
formation or emerge from dormancy. This
factor may also be influenced by degree and
type of nutrient loading. 

The various field and laboratory results,
paucity of quantitative data, and nutritional
versatility of P. piscicida complicate field and
laboratory efforts to establish a definitive
relationship between blooms of the organism
and degree of anthropogenic nutrient enrich-
ment. The recent discovery (26) of P. pisci-
cida in the highly flushed, pristine, and
low-nutrient North Inlet Estuary of South
Carolina (where no major fish kills have been
reported) suggests that the effects of nutri-
ents on Pfiesteria may be site specific. Water
samples from North Inlet were introduced

into fish aquaria, and fish died. P. piscicida
was identified in these cultures by SEM. 

It seems reasonable to conclude that
P. piscicida is highly tolerant of nutrient-
enriched waters, which appear to be a pre-
ferred habitat, but neither laboratory nor field
research has identified specific conditions
within eutrophicated habitats that are respon-
sible for ichthyotoxic blooms. To conclude
that eutrophication, per se, will lead to geo-
graphical spreading and increased magnitude
of its bloom events would be premature.

Fish Kills: Cause or Consequence 
of P. piscicida Blooms?
That P. piscicida can become ichthyotoxic
upon exposure to live fish under appropriate
laboratory conditions appears to be clearly
established. The reported threshold density of
toxic zoospores required to kill fish is
250–300 mL–1. During 26 estuarine/coastal
fish kills linked to P. piscicida (20), observed
zoospore population densities ranged from
270 to 35,360 cells mL–1 during fish kills.
Zoospore densities in another fish kill were
below the reported threshold. The various
life-cycle stages of P. piscicida were also pre-
sent during fish kills (11,32).

Some authors have argued that P. pisci-
cida is not the cause of, but a consequence
of, these die offs (28,37). Stow’s reservations
(28) are based primarily on his misinterpreta-
tion that field sample data on cell densities
and presence of Pfiesteria were the sole basis
for inferring its active role in the observed
fish kills. His largely statistical argument
ignores the laboratory-based experimental
evidence that established the organism’s toxi-
city in the first place (11), confirmatory fish
bioassays, and the presence of toxic life stages
during the fish kills [see Tables 1 and 2 in
Burkholder et al. (20)], and may be moot in
light of subsequent confirmatory fish bioas-
say results by others (7,34).

Blazer et al. (37) challenged the assertion
that Pfiesteria is responsible for the ulcerative
skin lesions purported to be diagnostic of
P. piscicida involvement in fish kills. Their
histological analyses suggested to them that
fungal pathogenicity can induce the same
ulcerative lesions in juvenile menhaden.
While fish skin lesions may not be a useful
proxy for the presence of Pfiesteria or its tox-
ins, Blazer et al. do not dispute the ichthy-
otoxicity of Pfiesteria, or do they dispute the
evidence that P. piscicida has caused major
fish kills. This is also discussed in the section
“Effects of Pfiesteria on Marine Organisms.”

The preponderance of evidence from
laboratory and field investigations supports
the proposition that P. piscicida has caused
fish kills in estuaries of Chesapeake Bay and
the southeastern coastal regions of the United
States. The evidence supporting the argument
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that blooms of the organism are consequences,
rather than causes, of fish kills is considerably
less persuasive. The behavior reported for P.
piscicida is consistent with the considerable
global experience with other ichthyotoxic
algal bloom species, their impacts, and estab-
lished procedures applied by harmful algal
bloom researchers. 

Conclusions
Compelling evidence indicates that, in experi-
mental enclosures, exudates, and/or excre-
tions from fish stimulate blooms of P.
piscicida, which then attack the fish by pro-
ducing an exotoxin, although the toxin has
not been isolated or characterized. Field
observations, together with the laboratory evi-
dence, indicate that P. piscicida has been
responsible for major fish kills in mid-
Atlantic estuaries. Laboratory experiments
have revealed P. piscicida to have a very com-
plex life cycle consisting of toxic and nontoxic
stages, which exhibit great nutritional diver-
sity. These traits suggest a multiple-niche
requirement and dependency on several
trophic levels. Laboratory nutrient enrich-
ment experiments have yielded growth
responses consistent with the results of field
studies that suggest a preference for nutrient-
enriched habitats.

The limited availability of quantitative
ecophysiological observations from laboratory
and field studies, together with taxonomic
complexities, has impeded general acceptance
of the ichthyotoxic affects, distinctive life
cycle, and ecophysiology ascribed to P. pisci-
cida. Some critical scientific initiatives that
would help to resolve such uncertainty
include the following:
• Establishment of research-quality cultures

for wide distribution among the scientific
community for life cycle, physiological,
and ecological study 

• Development of more effective and
quicker methods to distinguish P. pisci-
cida in each of its life cycle stages from
look-alike species, and to quantify their
abundance, distribution, seasonality, and
toxicity 

• Laboratory and field investigations, using
appropriate controls, to clarify the role of
organic versus inorganic nutrients, includ-
ing those in sewage and in wastes from
agro-industrial sources, in stimulating
growth and toxicity of P. piscicida, and
the role of these and nonnutritional fac-
tors, including prey and predatory
dynamics, in regulating its in situ growth,
population dynamics, and seasonal cycles.

• Rigorous evaluation of the linkage
between the stimulation of blooms of P.
piscicida, induction of toxicity, and
substances produced by targeted fish,
including chemical characterization of

the putative growth/toxicity stimulant(s)
and the ichthyotoxin

• Assessment of the role of environmental
signals in controlling loss, or gain, in
toxin-producing capability, life-cycle
transformations, and functional pheno-
type occurrences, along with determina-
tion of the accompanying physiological
characteristics of the life-cycle stages and
population strains

Such ecophysiological studies will help to
resolve current ecological enigmas, knowledge
of which is essential to clarify the fisheries and
human health issues attributed to P. piscicida’s
bloom events. 

Effects of Pfiesteria on Marine
Organisms*
In both laboratory bioassays and field situa-
tions, the toxic stages of P. piscicida and
Pfiesteria-like dinoflagellates affect every
species to which they have been exposed, at
least 33 species of finfish and four species of
estuarine invertebrates (10,11,20,38). In this
section, we focus our review on studies deal-
ing with the toxicologic and pathologic
effects of Pfiesteria spp., particularly in finfish.
Pfiesteria is toxic to shellfish such as blue
crabs (Callinectes sapidus), bay scallops
(Argopecten irradians), and eastern oysters
(Crassostrea virginica) as well (20), but
detailed reports on those species are not avail-
able. Whether in aquaria or in the wild,
Pfiesteria principally elicits neurotoxic effects
and skin lesions in exposed fish in patterns
that are considered to be characteristic of the
dinoflagellate toxins (10,11).

Effects of Pfiesteria Toxin on Fish 
in the Wild
The link between Pfiesteria and kills of wild
fishes was made when water from a site of fish
kills involving Atlantic menhaden (Brevoortia
tyrannus) was bioassayed with tilapia
(Oreochromis aureus and O. mossambicus) held
in aquaria (10). Subsequently, Pfiesteria has
been implicated in fish kills and epizootic dis-
ease in estuarine fishes along the Atlantic
coast (10,20,39). The presence of fish, usually
large schools of menhaden, stimulates
Pfiesteria to excyst and transform into toxic
stages. The toxic stages of the dinoflagellate
release toxins to the water and the toxins
cause disorientation, respiratory distress, and
death in fish and invertebrates (11,39). Skin
lesions attributed to Pfiesteria may be acute or
chronic. Typically, gross chronic lesions are
well circumscribed ulcers with necrotic cen-
ters, or round raised, friable red nodules (40).
Microscopically, the lesions are marked by a
chronic inflammatory infiltrate, granulomas
and exposed necrotic muscle. Fungal hyphae

often were present in the granulomas and
gram negative, rod-shaped bacteria were pre-
sent in the lesions. Pathological lesions in
other organs and tissues from wild fish-kill
specimens have not been reported.

Ulcerative skin lesions like those described
above have been considered to be caused pri-
marily by fungal infections and termed “epi-
zootic ulcerative syndrome” or “ulcerative
mycosis,” common lesions of fish worldwide
and attributed to the fungal pathogens
Aphanomyces invadans and Saprolegnia sp.
(37,41,42). However, after the discovery of
Pfiesteria and the association of the dinofla-
gellates with fish kills, fungal infections seen
in menhaden and other fishes from mid-
Atlantic estuaries were considered secondary,
opportunistic infections occurring subsequent
to epithelial damage caused by exposure to
Pfiesteria toxins (14,37,39). Blazer et al. (37)
have challenged this assertion after histologi-
cally examining about 150 ulcerated men-
haden from sites in the Chesapeake Bay area
where fish kills and ulcerated fish were attrib-
uted to P. piscicida. Fungal hyphae were pre-
sent both in deeply penetrating ulcers and in
raised lesions with or without epithelial ero-
sion. The authors contended that the men-
haden lesions from the Chesapeake area
corresponded to similar lesions reported
worldwide and caused by the A. invadans. An
Aphanomyces sp. was cultured from the men-
haden lesions, but Koch’s postulates have yet
to be fulfilled for this fungus (37). Thus, the
roles of Pfiesteria and various fungi in the
pathogenesis of skin lesions in fish from fish
kills along the mid-Atlantic coast remain
uncertain. 

Effects of Pfiesteria Toxin in Laboratory
Exposures
Pfiesteria toxins, rather than contact with or
ingestion of the dinoflagellate cells, are
responsible for effects in fish and inverte-
brates (20). Laboratory studies have shown
that toxin elaboration depends on the pres-
ence of live finfish or their secretions that
stimulate transformation of Pfiesteria cysts or
other nontoxic life stages to toxin-producing
stages. Large numbers of live fish are required
to stimulate excystment and toxin produc-
tion in Pfiesteria in the laboratory (14).
Burkholder and Glasgow (14) supplied
Pfiesteria cultures in 40-L aquaria with
15–20 live, 5- to 7-cm tilapia per day to
maintain densities of more than 2,000
cells/mL of toxic Pfiesteria stages. Even in
swarming schools of menhaden, such densi-
ties rarely occur in the field. The lag period
for excystment of Pfiesteria cysts increased
with the age of the cysts; cysts that had
remained inactive for more than about 170
days could not be activated in the laboratory
by exposure to live fish. Yet in the field, the
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organisms presumably remain encysted for
more than 170 days every winter. Evidently,
additional stimuli or environmental condi-
tions that have not yet been elucidated must
be required to stimulate toxic Pfiesteria
blooms and maintain high densities of toxic
stages in the field.

Some evidence indicates that Pfiesteria
produces more than one toxin (see “Chemical
Properties of Pfiesteria Toxins”). 

As discussed above, similar effects have
been observed in both the laboratory and the
field (43). Bioassays of Pfiesteria with aquar-
ium fish are difficult to conduct. Because
purified toxins are not available, bioassays
depend on culturing or acquiring the organ-
ism and transforming the cysts to toxic stages
that release toxins. Furthermore, there are
considerable human safety concerns as well as
the need to add fresh, live fish during the
bioassay to ensure toxin production. 

To date, histological effects of Pfiesteria in
fish have been characterized and documented
only for the skin (39). Damage to “myelinated
neural tissue” has been suggested but not sub-
stantiated (33). Noga et al. (39) reported that
in striped bass exposed to Pfiesteria skin dam-
age began within 8 hr, resulting in a nearly
complete denuding of the epithelium within
48 hr. Bacteria colonized areas denuded of
epithelium. In severe cases, the erosion
extended to the basement membrane (39).
The pathogenesis for skin lesions in laboratory
fishes is assumed be the same for skin lesions
in wild fishes. This was true particularly for
menhaden, in which the skin damage com-
bined with systemic immunosuppression, as
indicated by splenic lymphoid depletion,
resulted in secondary bacterial and fungal
infections in the skin ulcers (20,39). Fungal
infections in menhaden skin lesions examined
by Blazer et al. (37), however, appeared to be
primary lesions and not secondary infections. 

Skin lesions often precede severe systemic
effects and the appearance of neurological signs
of toxicity. With exposure to Pfiesteria, fish
become lethargic, with episodic hyper-
excitability; they also experience respiratory dis-
tress, often gulping air at the surface of the
water (10,11,20,38,39). They exhibit a poor
fright response, disorientation, and loss of bal-
ance (44). The fish lose the ability to osmoreg-
ulate; in salt water, blood osmotic pressure
increases as concentrations of sodium, chloride,
and potassium in serum increase toward those
in the ambient seawater (39). White blood cell
counts may be depressed by 20–40% in fish
exposed to Pfiesteria toxins (45). Menhaden
and striped bass eggs do not hatch in the pres-
ence of the toxic stages of Pfiesteria (20,45).

Conclusions
Relatively little is known about specific effects
of Pfiesteria spp. on marine organisms.

Research progress is slowed by lack of
purified toxin with which to conduct bioas-
says and develop antibodies. Despite the
complex effects of the toxin, few clear pat-
terns of toxicity emerge, those being general
neurological and skin effects and death. The
actual cause of death, even in acute exposures,
is not known and there is, as yet, no pathog-
nomonic lesion. Extreme caution is needed
when attributing particular fish kills, espe-
cially fish lesions, to Pfiesteria. Whatever the
outcome of the ongoing controversy concern-
ing the role of the fungus in the pathogenesis
of skin lesions in wild fish, the mere presence
of lesions in fish—whether or not the lesions
are associated with a fish kill—is not a valid
indicator of an ongoing or previous Pfiesteria
bloom. Until field techniques for identifying
the Pfiesteria toxin are available, work should
be continued to understand the role of
Aphanomyces spp. and possibly other infec-
tious agents in skin ulcers in wild menhaden. 

Neurotoxic effects are considered to be
indicative of Pfiesteria toxin effects in fish as
well as in humans. However, little information
is available on correlative pathology of the ner-
vous system in affected fish. There is a need for
rigorous, complete (full tissue), time- and dose-
associated pathological assessment accompany-
ing laboratory bioassays and, as far as possible,
in kills of wild fishes. To resolve diagnostic bias,
consideration should be given to having
Pfiesteria-related lesions in fish reviewed by an
independent team of fish pathologists and vet-
erinary pathologists who have expertise in fish
pathology. Additional studies are needed of the
physiological effects (i.e., osmotic and ionic reg-
ulation, respiration, endocrinology, neurophys-
iology) of Pfiesteria exposure to better
understand the mechanisms of toxic action of
the dinoflagellate toxins in fish. 

In summary, additional research should
be undertaken to do the following:
• Characterize the role of Aphanomyces spp.

in causing skin ulcers observed in wild
menhaden and the potential interaction
of this fungus with Pfiesteria toxin in
affecting fish

• Conduct full tissue pathological evalua-
tions of fish from laboratory bioassays of
Pfiesteria and in the wild fish from
Pfiesteria-associated fish kills

- Develop a detailed standardized
protocol for necropsy, histopathologic
examination, and diagnostic criteria for
specimens from laboratories conducting
fish bioassays or analyzing fish collected
from fish kills.
- Compile findings of these examina-
tions in a centralized database shared
among laboratories.

• Investigate the physiological and toxico-
logical effects of Pfiesteria toxin exposure
in fish, especially neurophysiologic effects

and tissue and organ distribution.
Pathophysiological studies should be
accompanied by chemical analyses aimed
at characterizing the toxin and its binding
sites (below). 

Measurement and Detection
of Pfiesteria and Pfiesteria-like
Organisms and Their Toxins*

Measurement Tools for Detecting 
the Pfiesteria Organism

Significant progress has been achieved toward
developing methods for specific detection and
differentiation of Pfiesteria spp. and Pfiesteria-
like organisms (PLOs). Nevertheless, these
methods remain labor intensive and restricted
to laboratory facilities and are not yet avail-
able for routine field application. Initial field
determinations are based on relatively non-
specific monitoring of fish kills, particularly
those in which affected fish display behavioral
abnormalities and ulcerative lesions. The
standard method for associating P. piscicida
with fish kills involves analysis by light
microscopy, followed by fish bioassay and
SEM. Morphological analysis by SEM
remains the definitive method for speciation
of Pfiesteria, but it is limited to laboratories
that have the requisite equipment and exper-
tise. Recently described methods employing
specific gene probes have facilitated more
rapid detection and differentiation of P. pisci-
cida, the closely related P. shumwayae
(“species B”), and other PLOs. However, the
development of immunochemical assays,
which might be used for onsite analysis, has
been hampered by researchers not having
Pfiesteria-specific antibodies. Further efforts
will be needed to produce methods capable of
selectively detecting toxic Pfiesteria, since
none of the available assays, except for the
fish bioassay, can differentiate toxic from
nontoxic Pfiesteria strains. 

Light Microscopy
Light microscopy is typically used for prelimi-
nary identification and enumeration of
Pfiesteria spp. in water samples. Distinguishing
Pfiesteria from other species may be difficult
because in these samples Pfiesteria spp. often
comprise a minority of the phytoplankton
population (20). Although light microscopy
lacks the resolution to provide a definitive
result (12), biologists with sufficient experi-
ence can identify and quantify organisms
whose morphology is consistent with Pfiesteria
(46). Preserved cell samples are observed at
high magnification with bright field, phase
contrast, and differential interference optics
(12). Counts exceeding 300 zoospores/mL in
water samples taken from active fish kills are

*Section author: Gary S. Bignami
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considered presumptively positive for possible
involvement of Pfiesteria in a fish-kill event
(10,20,47). Staining with fluorescent dyes may
increase specificity (48) but does not obviate
the need to use SEM for definitive identifica-
tion of the organism (12). Light microscopy
cannot differentiate toxic from benign
Pfiesteria but does provide a rapid screening
tool to select samples that should be tested for
toxicity by fish bioassay (47).

Electron Microscopy
Electron microscopy (EM) provides sufficient
resolution to classify the species, P. piscicida,
in a new family (Pfiesteriaceae) and genus of
dinoflagellate (12). SEM studies have revealed
a multiphasic life cycle with polymorphic
unicellular flagellated, amoeboid, and cyst
stages. Transmission EM of the flagellated
form (i.e., zoospore) shows typical dinoflagel-
late ultrastructure, including mitochondria
with tubular cristae, endoplasmic reticulum,
lipid bodies, trichocysts, Golgi apparatus,
mesokaryotic nucleus with condensed chro-
mosomes, large food vacuoles, microtubular
basket associated with a peduncle, and a
multimembrane thecal complex with vesicles
and thin plates (12,49).

SEM is the standard technique for
morphological and taxonomic classification of
Pfiesteria. Culture amplified zoospores are
processed for SEM using a membrane-strip-
ping or suture-swelling technique that reveals
a characteristic number and organization of
thecal plates [see Figure 1 in Steidinger et al.
(12)]. Recent examination of cultured P. pis-
cicida cysts by SEM X-ray analysis indicates
that cystic scales contain silica (6), suggesting
that Pfiesteria represents a primitive dinofla-
gellate species. SEM is used to confirm the
presence of Pfiesteria zoospores in positive fish
bioassays, as well as to reconfirm species iden-
tification following cloning by micromanipu-
lation or flow cytometry (7,47). SEM plays
an essential role in the diagnosis of Pfiesteria
in water samples but suffers from a number
of potential drawbacks. These include the
possible overgrowth of competing algae dur-
ing culture amplification (50), the inability to
directly distinguish toxic from benign
Pfiesteria, the need for specialized equipment
and facilities, and the requirement for staff
with expertise in sample preparation, data
acquisition, and results interpretation. 

Genetic Diagnostics
Pfiesteria gene sequencing efforts have focused
primarily on the ribosomal gene complex.
Extensive databases exist for these genes [e.g.,
GenBank at the National Center for
Biotechnology Information, National Library
of Medicine (see http://www.ncbi.nlm.nih.gov/
genbank )] and the phylogenetic relationships
can be deduced from these data (46). The

entire 18S small subunit (SSU) ribosomal
DNA gene has been sequenced for the proto-
typical P. piscicida (GenBank accession
#AF077055) and P. shumwayae (GenBank
accession #AF218805) strains (50). Partial
sequences are available for the 18S SSU gene
of a PLO [(21); GenBank accession
#AF080098] and for P. piscicida mitogen-acti-
vated protein kinase mRNA (GenBank acces-
sion #AF227275). Portions of the internal
transcribed spacer regions I and II, the 5´ end
of the large subunit ribosomal gene, nontran-
scribed spacer regions adjacent to the riboso-
mal genes, and the cyclin box gene have been
sequenced but have not been published. These
gene sequences offer the means to develop
highly specific analytical tools for environ-
mental testing. To date, all reported assays are
based on the Pfiesteria SSU gene sequences.
These include polymerase chain reaction
(PCR) assays, a heteroduplex mobility assay/
single-strand conformational polymorphism
(HMA/SSCP) assay, and a fluorescent in situ
hybridization (FISH) assay. 

Polymerase Chain Reaction
Polymerase chain reaction is a method for
exponential DNA amplification that has
become the default method for DNA and
RNA analysis. PCR uses paired (forward and
reverse) gene probe primers in combination
with a thermostable DNA polymerase that
are cycled through a repetitive process of
DNA denaturation, probe annealing, and
primer extension. Typically, PCR products
are separated by gel electrophoresis and
detected with DNA binding dyes. 

Rublee et al. (31) developed a PCR assay
for detecting P. piscicida in environmental
water samples, based on P. piscicida-specific
forward primers and a generic eukaryotic-
specific 18S SSU ribosomal DNA reverse
primer. Four species-specific forward primers
(65 For, 110 For, 286 For, 301 For) were
evaluated. DNA sequences of the resultant
PCR products showed 100% homology with
P. piscicida (GenBank sequence #AF077055).
Environmental sample DNA analyzed by
PCR was isolated from filter-concentrated cell
samples by maceration in a buffered detergent
solution followed by chloroform extraction
and isopropanol precipitation. 

Rublee and co-authors (31) noted potential
difficulties associated with assaying field
samples, such as cross reactivity against
unrelated organisms that share the target
sequence, the presence of high levels of non-
target DNA that can interfere with primer
hybridization, and decreased assay sensitivity
due to Taq DNA polymerase inhibitors
and/or non specific adsorption of extracted
DNA to particulate matter. These concerns
were validated, as in some samples only one
or two of the primer sets produced positive

results. Nevertheless, this assay appears gener-
ally robust and was successfully used to screen
170 estuarine water samples, collected from
New York to northern Florida, for the pres-
ence of P. piscicida. Of the 170 samples, 35
were positive, including sites where there was
no historical evidence of P. piscicida-related
fish kills.

Fluorescent in Situ Hybridization 
Fluorescent in situ hybridization techniques
employ fluorescently tagged gene probes to
label target DNA (or RNA) in intact cells.
FISH has been adapted by Rublee et al. (31)
to detect and enumerate P. piscicida in water
samples using selected 18S SSU rDNA probe
sequences reported by this group for P. pisci-
cida PCR. Unlike the fish bioassay, FISH
does not require culture amplification prior to
analysis, and it may be better suited than
PCR to the analysis of dinoflagellate popula-
tions in complex matrices, such as sediment
samples (51), where Taq DNA polymerase
inhibitors can affect PCR results (31,46).

The FISH technique is conceptually
straightforward, involving sample concentra-
tion by centrifugation, fixation with
paraformaldehyde, and hybridization with
two 5´-fluorescein–labeled probes. The
hybridization reaction takes place in a pro-
grammable thermal controller, and, following
a washing step, the labeled cell samples are
captured on a black polycarbonate filter for
observation under a fluorescence microscope
equipped with filters that permit detection of
green FITC fluorescence as well as red
chlorophyll-derived autofluorescence. Due to
the potential for nonspecific binding, positive
control–confirmed P. piscicida and negative
control dinoflagellates are also carried
through the process. Multiple-labeled probes
are used to compensate for compromised
accessibility of the probes to targeted
sequences, which can result in a failure to effi-
ciently label target cells or in low fluorescent
signal strength (52). Detection of FISH-
labeled cells can be adapted to flow cytometry
for quantitative analysis of target gene label-
ing in combination with additional parame-
ters such as size distribution. 

Rublee et al. (31) used FISH, in conjunc-
tion with a PCR assay described above, to
identify P. piscicida as far north as Long
Island, New York, thereby extending the
dinoflagellate’s known range from New York
to Mobile Bay, Alabama. The FISH probe
also enabled researchers to discern P. piscicida
from look-alike species (for example, P.
shumwayae, Gyrodinium galatheanum,
Cryptoperidiniopsis nov. gen.) and to estimate
its abundance in water samples from a major
fish kill and toxic Pfiesteria outbreak that
occurred in North Carolina waters in 1998
(53). Many of the sites where P. piscicida was
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detected were not associated with active fish
kills or a history of fish health problems, sug-
gesting that P. piscicida may usually exist in a
benign state (26).

Heteroduplex Mobility/Single-Strand
Conformational Polymorphism Assay
Oldach et al. (50) recently reported a hetero-
duplex mobility assay (HMA) capable of
detecting and differentiating DNA “signa-
tures” of Pfiesteria spp. and PLOs. The
method is based upon PCR amplification of
highly conserved regions within dinoflagellate
18S ribosomal DNA gene sequences.
Sequences amplified from target organisms
are then combined with a “driver” DNA
sequence amplified from Gymnodinium san-
guineum to form DNA heteroduplexes that
are separated by gel electrophoresis. Since
DNA heteroduplexes migrate more slowly
through the gel matrix than homoduplexes,
distinct banding patterns are produced when
the target sequence differs from the driver
sequence. Homoduplex (single-band) pat-
terns arise when the driver and target DNA
share 100% sequence homology or if marked
sequence divergence prevents hybridization.
In some examples, the technique has been
shown to resolve single nucleotide differences
between DNA fragments, illustrating its util-
ity for guiding DNA sequence discovery. 

By modification of the hybridization
conditions, it is possible to concurrently per-
form the HMA and an SSCP. The SSCP is
based upon the principle that the 3-dimen-
sional conformation of a single-stranded
DNA molecule has a specific sequence-based
secondary structure in a non denaturing gel
matrix (54). SSCP can often further resolve
dinoflagellate strains not differentiated by
HMA. In combination, the HMA/SSCP
assays provide a high resolution means to dis-
tinguish among Pfiesteria species and strains.
The HMA/SSCP has identified mixed
dinoflagellate cultures previously thought to
represent clonal cultures.

The banding patterns produced by
HMA can be used as a guide for gene
sequence discovery. For example, the PCR
amplicons yielding an HMA banding signa-
ture characteristic of multiple SEM-con-
firmed P. piscicida cultures were cloned,
sequenced, and found to be identical (50).
This sequence was used to design PCR
primers yielding a near full-length sequence
of the P. piscicida 18S SSU ribosomal DNA
gene sequence. The remaining sequence was
appended by sequencing PCR products
amplified using a generic dinoflagellate PCR
primer and a universal eukaryotic 3´ SSU
primer. For P. shumwayae, a similar strategy
was employed, in which full-length 18S gene
sequences were PCR amplified from a
HMA/SSCP-confirmed clonal culture using

universal eukaryotic 5´ and 3´ SSU primers.
A 1,800 basepair sequence has been deposited
with GenBank for P. piscicida (accession
#AF077055) and for P. shumwayae (species B;
accession #AF218805). 

Based on these sequences, Oldach et al.
(50) developed highly selective PCR primers
for P. piscicida (Ppisc108F/Ppisc311R) and
P. shumwayae (SpecB-forward/SpecB-
reverse). PCR assays incorporating these
primers have been used to screen environ-
mental water samples and mixed population
cultures suspected of containing Pfiesteria
spp. The P. piscicida PCR assay has demon-
strated high specificity as evidenced by
a) negative assay results for more than 400
estuarine water samples in which “generic
dinoflagellate” DNA had been detected by
PCR; b) negative assay results for 33 charac-
terized non-Pfiesteria dinoflagellate cultures
and a series of 28 Pfiesteria-like dinoflagellate
cultures that did not share the identical HMA
pattern; c) negative results for the most
closely related dinoflagellate species available,
P. shumwayae and Cryptoperidiniopsis sp.; and
d ) sequence identity among all P. piscicida
PCR product amplicons examined. The anal-
ogous PCR assay for P. shumwayae, also sub-
jected to extensive testing, has been shown to
cross-react with an as yet uncharacterized
organism. Thus, the P. shumwayae PCR
primer pair is highly selective but does not
have absolute specificity.

Chemical Properties of Pfiesteria Toxin
The chemical properties of Pfiesteria toxin are
not well understood, primarily because the
toxin has not been purified and characterized.
Informal suggestions have been made that at
least three toxins exist, including two lipid-
soluble toxins and one water-soluble toxin
(55). A water-soluble toxin that appears to
target the nervous system was tentatively
assigned an estimated molecular mass of
400–500 atomic mass units (amu) (56). One
of the lipid-soluble toxins, estimated to have a
molecular mass of 390 amu (55,56), has been
attributed dermonecrotic activity that may
contribute to the skin ulcer formation com-
monly observed in Pfiesteria-associated fish
kills (38). The other lipophilic toxin has been
termed “lipid-soluble lethal factor” (55).

Purification efforts may have been com-
plicated by attempts to isolate toxin from
preparations derived from nonclonal
Pfiesteria cultures (57). Individual Pfiesteria
strains could produce a unique toxin or com-
plement of toxins and metabolites. Thus,
over time the spectrum of toxins harvested
might change in concert with the population
dynamics of the culture. Toxin instability
may also have impeded successful purifica-
tion. It is not clear, however, whether this
instability is due to chemical degradation,

adsorption to surfaces, metabolism, or other
factors. Sterile aquarium water filtrate has been
shown to be nonlethal to fish after 48 hr at
ambient room temperature (11,38), but water
samples stored frozen retain toxic activity in
rats through at least one freeze–thaw cycle
(58,59). Lipophilic toxin fractions adsorbed to
C-18 chromatography resin and eluted with
acetonitrile retained potent cytotoxicity (60).

Methods for Detecting Pfiesteria Toxin
Fish bioassay. The batch-culture fish bioassay
is the standard method for detecting exotoxin
activity associated with Pfiesteria (6,10,
28,30). The assay is used to test unpreserved
environmental water (or sediment) samples
taken from sites where fish kill events are in
progress after it is determined by light
microscopy that presumptive Pfiesteria
zoospore counts of ≥300/mL are present. The
fish bioassay has been described as “a process
rather than a rigid procedural ‘recipe’ to allow
the flexibility needed for optimizing detection
of toxic Pfiesteria from samples collected
across a range of environmental conditions”
(6). Nevertheless, the assay requires a biohaz-
ard Biosafety Level 3 laboratory to prevent
potential human exposure to Pfiesteria toxins. 

The assay typically is carried out with
juvenile (3–7 cm) tilapia, Oreochromis spp.,
under conditions that favor proliferation of
toxic zoospores. For example, this would
include replicate tilapia cultures, each with
2–15 fish, kept in covered aquaria main-
tained at 18–24°C, under a 12-hr light/dark
cycle (30 µEin m–2 s–1) with 15 ppt Instant
Ocean salts (Aquarium Systems, Mentor,
OH, USA) and aeration (6). Bioassays are
initiated by introduction of Pfiesteria cultures
or environmental samples (water or sedi-
ment). Control fish cultures without P. pisci-
cida are maintained under otherwise identical
conditions. Aquarium water samples are
taken at frequent intervals to measure dis-
solved oxygen and ammonia levels, and to
determine Pfiesteria and other microbial
counts. A minimum live fish density must be
maintained for optimal stimulation of toxic
zoospores (11). Therefore, dead fish are
removed from cultures and replaced with live
fish to sustain growth of toxic zoospores and
inhibit transformation to amoebae or non–
toxin-producing cysts.

The time to death of fish exposed to toxic
Pfiesteria varies, apparently depending on
whether toxin biosynthetic pathways have
been induced in the dinoflagellate population
by (undefined) stimuli elaborated by fish.
However, population densities of ≥250–300
toxic zoospores per milliliter can produce
lethal concentrations of Pfiesteria toxins (16).
Burkholder has classified Pfiesteria toxin
production capacity into three phenotypic
categories (6,47,53):
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• Actively toxic (Tox A) strains are produc-
ing ichthyotoxic substances that have
caused stress, disease, or death in fish.
Environmental samples of actively toxic
Pfiesteria are “primed” for toxin produc-
tion and produce a positive fish bioassay
(i.e., cause disease or death of test fish)
within 21 days (usually in 4–9 days).

• Nontoxic (Tox B) strains are potentially
toxic—they can be induced to produce
toxins that cause fish stress, disease or
death, but they are not actively producing
toxins; Pfiesteria/PLO species collected as
part of surveys (i.e., not in response to
reports of fish disease or fish kills) may
produce positive fish bioassays, but time
to death is 8–10 weeks. 

• Noninducible (never toxic) strains are
incapable of producing ichthyotoxins in
the presence of live fish or their fresh
materials. 
Actively toxic Pfiesteria strains will gradu-

ally lose the ability to produce toxin when
cultured over a period of months, even when
cultured in the presence of fish (53).
Whether associated microorganisms have a
role in toxin biosynthesis is not known.
However, intracellular bacteria have been
shown to exist in P. piscicida flagellated and
amoebae stages (11,12). The phylogeny of
these bacteria has not been reported, but
their presence raises the possibility that they
play a role in toxin production, as has been
proposed for Alteromonas/Pseudomonas-like
bacteria associated with the dinoflagellate
Alexandrium tamarense (61).

The complete process for associating toxic
Pfiesteria spp. with a fish kill event involves
the following (7,47): a) initial field determi-
nation that an active fish kill event is in
progress that may be associated with a
Pfiesteria bloom; b) sample collection and
transportation to laboratory facility; c) enu-
meration of PLOs by light microscopy and
determination that potentially toxic PLO
concentrations (≥300 zoospores mL–1) are
present; d ) determination by fish bioassay
that cultured PLOs produce ichthyotoxins;
e) speciation of fish bioassay dinoflagellate
population by SEM and molecular assays,
confirming the presence of Pfiesteria;
f ) cloning and retesting by fish bioassay,
SEM, and molecular assays.

Fish bioassays can also be used to detect
Pfiesteria toxin preparations (as opposed to
toxin produced in situ during the bioassay).
Culture water filtrate (0.22 µm) from actively
killing Pfiesteria cultures has been shown to
retain full toxicity and kill fish within 3 hr
(11). Concentrated aqueous toxin extracts
killed fish within 20 min in a modified fish
bioassay system (below) (62).

The fish bioassay remains the standard
method for detecting toxic Pfiesteria and

Pfiesteria toxins. While intoxicated fish may
display characteristic signs (lethargy, erratic
swimming behavior, hemorrhage, lesions)
that provide a degree of specificity, the assay
is time consuming (up to 21 days), requires
Pfiesteria culture amplification, cannot be
used in the field, and lacks specificity with
respect to toxin identification. A rapid and
specific method that can detect toxic
Pfiesteria and/or Pfiesteria toxins at fish kill
sites is needed to expedite management of
public health interests.

Modified fish bioassay. Ramsdell and
co-workers described a miniaturized 24-well
plate version of the fish bioassay that they
used in validation studies for a reporter gene
cytotoxicity assay (below), and to monitor
chromatography fractions during purification
procedures (62). The assay is conducted with
one 7- to 10-day-old sheepshead minnow,
Cypronodon variegates, added per well contain-
ing 1 mL 25 ppt Instant Ocean. Following
addition of toxin samples, fish are observed
for up to 2 hr for signs of intoxication. Even
though this assay has not been thoroughly
validated, it may be useful as a rapid screen-
ing method to aid in bioactivity-guided
purification of ichthyotoxins.

Cellular assays. Cellular assays have been
used to test Pfiesteria culture water, fish tissue
and toxin purification fractions for the pres-
ence of toxin activity. These assays include
cytotoxicity (viability) assays and a reporter
gene assay.

Cytotoxicity assays. Ramsdell and
co-workers used a colorimetric cytotoxicity
assay for detecting cell survival and prolifera-
tion based on the dye MTT [3-(4,5-
dimethylthiazol-2-yl)2,5-diphenyl tetrazolium
bromide], which undergoes reduction in the
mitochondria of living cells to form a purple
formazan product (63). Culture water, toxin
purification fractions, and a residual water
fraction were tested against a panel of eight
cell lines, including three mammalian neu-
ronal cell lines, three finfish cell lines, and
two mammalian epithelial cell lines. Assays
were carried out in 96-well plates and colori-
metric end points were determined in a
microtiter plate reader. A rat pituitary epithe-
lial cell line, GH4C1, was shown to be the
most sensitive to diethyl ether and residual
water purification fractions, and was therefore
selected for development of a reporter gene
assay (below). 

Another cytotoxicity assay was developed
to detect toxicity in fish tissue in an effort to
ascertain whether consumers could be at risk
because of consumption of fishery products
exposed to toxin during a fish kill (60). Live
fish representing several species were col-
lected from the site of an ongoing fish kill,
although it is unclear that Pfiesteria was
confirmed to be the causative agent. Tissue

samples were extracted with methanol/water
and partitioned against hexane, then methyl-
ene chloride. The methylene chloride frac-
tion was dried and dissolved in dimethyl
sulfoxide (DMSO) for cytotoxicity testing
against Caco-2 human colon carcinoma and
neuro 2A mouse neuroblastoma cells. Cell
counts and morphological changes were used
as cytotoxicity assay end points. A partially
purified toxin preparation adsorbed to C-18
cellulose resin, eluted with acetonitrile, dried,
and resuspended in DMSO was used to
establish assay parameters prior to testing fish
tissue extracts. This preparation was reported
to induce cell rounding, membrane blebbing,
cytoplasmic graininess, and membrane lysis
at the extraordinarily dilute level of 1 × 10–16

g extract/mL. This represents unprecedented
cytotoxicity for a partially purified marine
toxin and the authors cautioned that the
result must be verified with pure toxin (when
available). Extracts of fish tissue from the kill
site were mostly noncytotoxic except for
some of the Atlantic menhaden samples.
However, the authors cautioned that these
results were not conclusive because Pfiesteria
toxin could not be rigorously established as
the cause of the fish deaths.

Reporter gene assay. Reporter gene assays
rely upon specific gene induction in respon-
sive cell lines stably transfected with reporter
gene constructs. A reporter gene assay based
on the inducible expression of the immediate
early gene, c-fos, has been described by Fairey
et al. (62). The AP-1 transcription factor,
consisting of Fos and Jun protein dimer
complexes, coordinates cellular responses to
growth and stress stimuli, including toxins
(64). Previously, the same group demon-
strated that various neuronal cell lines differ-
entially express c-fos in response to toxin
exposure, conferring a degree of selectivity to
the assay. For this assay, GH4C1 and neuro
2A (N2AC) cells were stably transfected with
a gene construct consisting of the c-fos regu-
latory region ligated to the coding region of
the reporter element, firefly luciferase. The
transfected cell lines GH4C1-A1 and N2AC
were evaluated for Pfiesteria toxin-induced
expression of the reporter gene.

Reporter gene activity was induced in
GH4C1 cells exposed to toxic culture water
containing live Pfiesteria cells, whereas the
N2AC cells were unresponsive. In N2AC
cells, the marine toxins brevetoxin (PbTx-1)
and ciguatoxin (CTX-3C) induced c-fos-
luciferase expression, while saxitoxin inhib-
ited PbTx-1 induced reporter gene activation.
In contrast, GH4C1-A1 cells were selectively
responsive to Pfiesteria toxin preparations,
and unresponsive to PbTx-1, CTX-3C, STX,
and domoic acid. This selectivity is attributed
to a higher complement of voltage-activated
sodium channels in the N2AC cell line. 
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The GH4C1-A1 reporter gene assay
showed a concentration-dependent induction
of c-fos–luciferase expression over a range of
30–300 Pfiesteria cells/mL and was used to
screen environmental water samples for the
presence of toxin-producing Pfiesteria. This
assay was also useful for bioactivity-guided
purification of Pfiesteria toxins, as water soluble
fractions with reporter gene activity coeluted
with ichthytoxic activity. Finally, the assay was
shown to be useful for detecting Pfiesteria toxin
activity in biological fluids, including tissue
culture medium and human serum. 

Despite its demonstrated utility, however,
certain features of the GH4C1-A1-based assay
are problematic. For example, at higher con-
centrations, Pfiesteria toxins inhibited c-fos-
luciferase expression and resulted in a
bell-shaped dose–response curve. Thus, sam-
ples must be serially diluted over a wide range
to assure that responses are detected within the
relatively narrow linear response range. Also,
5-fold concentrated Instant Ocean salts were
shown to nonspecifically induce reporter gene
expression. This prevents testing of concen-
trated aqueous samples unless the salts can be
removed. The possibility that other agents will
nonspecifically induce c-fos–luciferase expres-
sion in GH4C1-A1 cells cannot be ruled out.

Conclusions
Two critical gaps remain in what is known
about detecting the dinoflagellate Pfiesteria
and its toxins. First, despite the development
of species-selective PCR assays, gene sequences
targeted in current tests do not differentiate
toxic from benign Pfiesteria populations.
Second, the chemical identity of Pfiesteria
toxins remains unsolved, preventing develop-
ment of toxin-specific analytical methods and
field assays and limiting the ability to under-
take systematic toxicological studies.

Efforts to identify genes involved in toxin
biosynthesis may be facilitated by the rapidly
evolving technologies emanating from the
Human Genome Project. For example, since
it is known that Pfiesteria toxin production is
inducible in the presence of fish, it may be
possible to compare gene expression in
“Tox-A” versus “Tox-B” phenotypes by such
methods as differential display reverse
transcriptase–PCR, representational differ-
ence analysis, or serial analysis of gene expres-
sion (65). Sequences of inducible mRNA
transcripts might then be targeted to develop
RT-PCR assays that are selective for toxin-
producing Pfiesteria.

The development of toxin purification
methods and development of well-characterized
toxin-specific assays are interdependently
linked. Thus, without purified toxin, reliable
and valid assays cannot readily be developed;
conversely, without the assays to guide purifi-
cation, toxin cannot readily be purified. The

apparent instability of the toxins is another
barrier. The methods that have been devel-
oped for toxin detection, especially the
reporter gene assay, offer potential means to
break through this circular conundrum.
Development of a high performance liquid
chromatography (HPLC) method, based on
correlation of reporter gene activity with elu-
tion times, could serve both analytical and
preparative functions. It seems logical to sug-
gest that such efforts have already been under-
taken, and one wonders if the toxins and the
“phantom” organism are equally ephemeral.

Without purified toxin, it still may be
possible to develop highly sensitive and selec-
tive bioassays such as receptor-binding assays.
However, this assumes that a specific receptor
exists and, if so, that toxins competing for
receptor binding can be identified—perhaps
requiring a substantial screening effort. With
purified toxin available, it should be possible
to develop a variety of analytical methods,
such as HPLC and capillary electrophoresis,
and possibly antibody-based toxin assays. The
availability of purified toxin would also enable
structural determinations to be made using
nuclear magnetic resonance (NMR), mass
spectroscopy, and perhaps crystallography.
Structural identification could then be used to
design haptens for antibody production.

A need clearly exists for a field assay for
Pfiesteria, its toxins, or both. Antibody-based
assays can be adapted to rapid qualitative or
semiquantitative devices such as lateral flow
“dipsticks.” Furthermore, such antibodies can
be used in laboratory-based methods such as
the enzyme-linked immunosorbent assay or
flow cytometry. To date, however, there are
no reports of antibodies specific to either the
Pfiesteria organism or its toxins. A toxin-
specific immunoassay would be especially
useful, as antibodies to the organism would
be unlikely to differentiate toxin-producing
and benign Pfiesteria.

Finally, recent advances in the develop-
ment of portable PCR devices make it realistic
to expect that PCR assays will soon be carried
out with hand-held, battery-powered instru-
ments. The Hand-held Advanced Nucleic
Acid Analyzer (HANAA) developed by Dean
Hadley and co-workers at Lawrence
Livermore National Laboratory (Livermore,
CA, USA) measures 5 × 8 × 2 inches and
weighs about 2 pounds (66). This device is
currently undergoing a 6-month validation
study by scientists from the U.S. Food and
Drug Administration, CDC, University of
Maryland, Utah Department of Health, Los
Angeles Emergency Operations Bureau, and
the Southwest Foundation for Biomedical
Research. The device incorporates TaqMan
fluorescent probes that allow near-real time
PCR assays to be carried out. The instrument
can simultaneously test four samples for two

DNA sequences each and report findings in
about 15 min. One can imagine that if PCR
probes to “toxicity genes” can be developed
that the HANAA will permit on-site detec-
tion of both the organism and its toxin-
production phenotype. 

In summary, to address research gaps,
future research should focus on the following:
• Developing and preserving a standard

panel of ichthyotoxic water samples
and/or extracts derived from clonal
Pfiesteria cultures 

• Promoting collaboration among laborato-
ries developing analytical and purification
methods by distributing the standard
ichthyotoxic water sample/extract panel

• Standardizing the fish bioassay methodol-
ogy to facilitate interlaboratory repro-
ducibility

• Developing and/or refining chromato-
graphic methods for toxin analysis and
purification using 
a) conventional detection [e.g. diode array
ultraviolet (UV) detection] and 
b) bioassay methods (cytotoxicity, receptor-
binding assay, rapid fish bioassay) to
guide method optimization

• Applying mass spectroscopic detection
methods to chromatographic procedures to
estimate molecular mass of putative toxins

• Applying NMR methods to (purified)
toxin samples for structural determinations

• Producing antibodies and developing
immunochemical methods to detect the
Pfiesteria organism and Pfiesteria toxin in
the field

• Identifying genes associated with toxin
biosynthesis using genomic screening
methods and/or analysis of gene expression

• Adapting PCR and/or FISH methods to
devices that can be used in the field to
detect toxin-producing phenotypes of
Pfiesteria

Human Health Effects:
Epidemiologic and Clinical
Studies*

Epidemiologic Observations

Epidemiology comprises methods and
principles used to investigate diseases and
their causes in human populations. In investi-
gating new syndromes like that caused by
Pfiesteria, epidemiologists establish case defin-
itions and develop hypotheses about expo-
sures that may have causal roles. The first
phases of epidemiological investigation are
often descriptive, involving characterization
of the affected individuals and obtaining
information about exposures they may have
received. Building on this initial information,

*Section authors: Jonathan Samet and Robert
Feldman
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epidemiologists next carry out hypothesis-
testing studies, typically using studies of
either the cohort or case–control design. The
cohort study involves follow-up of exposed
and nonexposed individuals and observation
for the occurrence of the outcome of interest.
For example, cohort studies are now under
way in Maryland, North Carolina, and
Virginia, each involving persons with high
potential for exposure to Pfiesteria and its
toxin because they work on the waterways. In
a case–control study, exposures of persons
with the outcome of interest are compared
with those of similar persons not having the
outcome. This design has not yet been
applied specifically to Pfiesteria-related symp-
toms and illness. The cross-sectional design
(sometimes referred to as a “survey”) has been
used to characterize persons with Pfiesteria-
related health problems. In this design, obser-
vations are made at one point in time and
consequently, causal relationships may not be
apparent. This design has been used in
describing the health of persons with expo-
sure to Pfiesteria and making comparison to
the status of unexposed controls.

The epidemiologic method is particularly
informative if both exposure(s) and out-
come(s) can be sharply specified and mea-
sured with little error. Nonspecificity and
measurement error typically weaken epidemi-
ological data, most often resulting in a bias
toward negative findings. Both potential limi-
tations have already been evident in research
on Pfiesteria. The exact toxin remains
unknown, as does the route of entry into the
body—inhalation, percutaneous, or inges-
tion. The potential for exposure can be
described as contact with water at the time of
fish kills, but such contact is only a surrogate
for the actual exposure to toxin, which can-
not yet be measured or quantified. The out-
come is also nonspecific and has multiple
clinical dimensions, all with many other pos-
sible causes. The assessment of neurocogni-
tive functioning, an outcome of concern,
requires neurologic evaluation and the use of
sophisticated test instruments. To date, a
variety of such tests has been used.

Public health researchers have attempted
to address these vexing methodologic prob-
lems by developing standardized approaches
for characterizing exposure and outcome.
Participants at a 1997 workshop sponsored
by the CDC proposed that exposure to estu-
arine water might be characterized by a) fish
with lesions consistent with P. piscicida or a
morphologically related organism; b) a fish
kill involving fish with lesions consistent with
P. piscicida or a morphologically related
organism; and c) a fish kill involving fish
without lesions of P. piscicida or related
organisms and with no alternative reason for
the fish kill (1). The workshop participants

also offered a description of the clinical
features of the associated syndrome (Table 1).

For the purpose of surveillance, the CDC
has offered a definition of PEAS (1,2). The
definition incorporates contact with estuarine
water, as well as clinical features (Table 1).
These definitions are notable for including
exposure as a defining element because the
clinical features of the syndrome are nonspe-
cific and not pathognomonic. 

In applying these definitions in the
context of an epidemiologic study, potential
methodologic problems are evident.
Participants in a study may be unaware of
whether a fish kill has occurred or if there are
typical lesions on the fish. Unless they are able
to track fish kills and document the presence
of the organism, researchers may have diffi-
culty linking activities at different places and
times to exposure. Unless they are educated
and aware, PEAS may be missed by healthcare
providers who may not query persons with
possible symptoms as to their exposure. 

The nonspecificity of the clinical picture
is also a potential methodologic limitation of
observational studies of the consequences of
exposure to Pfiesteria. Although case reports
document relatively dramatic and severe acute
illnesses among exposed persons, research
studies have focused on more subtle and pos-
sibly long-term consequences of exposure.
These potential effects are typically evaluated
using standardized neuropsychological test
batteries that address learning and memory.
These test batteries are also used, for example,
in assessing the health effects of occupational

exposure to solvents. Performance on these
instruments may be influenced by many fac-
tors, including use of alcohol or medica-
tions, age, education, and presence of
cerebrovascular disease. If exposed and non-
exposed persons are not comparable for such
potential confounding factors, a study using
a neuropsychological test battery may give
biased results. 

Review of Epidemiologic Evidence
Case reports. A number of case series have
been reported; these reports range from anec-
dotal, popular accounts of affected scientists
(67) to more formally collected case series
(Table 2) (68). As would be anticipated, crite-
ria for concluding that the illnesses were
related to Pfiesteria were variable across the
reports and some of the reports provide little
clinical information. A series of affected per-
sons was described in Environmental Health
Perspectives and the Maryland Medical Journal
in 1997 and 1998 (70,71,74–77). From
information provided, it is difficult to assess
the number of independent cases described
across the multiple articles in the issue. The
reported cases ranged from dramatic accounts
of substantial cognitive impairment in
exposed laboratory workers (16) and water-
men (71,72) to symptom episodes in persons
with relatively casual contact with water
where fish kills took place or may have taken
place (75). These case series have proved
useful for describing the elements needed for
a working case definition and as a signal of
the need for more formal investigation. 
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Table 1. Conditions of exposure and symptoms present in possible estuary-associated syndrome.

Present in Present in 
Symptoms following exposurea 1997 definition 1999 definition

Memory lossb X X
Confusionb X X
Symptoms develop within 2 weeks after confirmed exposure X
Health provider cannot identify another cause for symptoms X
Acute skin burning at site of water contact X X
Headachesc X

<2 weeks
≥2 weeks X

Skin rash X X
Eye irritation

<2 weeks X
≥2 weeks X

Upper respiratory irritation
<2 weeks X
≥2 weeks X

Muscle cramps
<2 weeks X
≥2 weeks X

Gastrointestinal symptoms (nausea, vomiting, diarrhea, abdominal cramps) X
<2 weeks
≥2 weeks X

aConditions establishing exposure: 1997: Exposure to estuarine water characterized by any of the following conditions: a) fish with
lesions consistent with P. piscicida or morphologically related organism (MRO) toxicity (20% of a sample of at least 50 fish of one
species having lesions); b) a fish kill involving fish with lesions consistent with P. piscicida or MRO toxicity; or c) a fish kill involving
fish without lesions, if P. piscicida or MROs are present and there is no alternative reason for the fish kill (1). 1999: Development of
symptoms within 2 weeks after exposure to estuarine water (2). bSymptom must be present. cFor both 1997 and 1999 definitions,
three or more of the remainder of the symptoms must be present.
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Epidemiologic studies. Several studies of
more formal design than the case series have
been carried out. In materials reviewed by the
panel, the level of information concerning
study design is variable and key aspects of
design are not included in all instances.
Reviews of the specific studies follow:

GRATTAN ET AL., 1998. This study (68)
included cross-sectional observations on 24
people having direct contact with the waters
of the Pocomoke and other estuaries in the
Chesapeake Bay. An additional eight unex-
posed watermen were recruited for compari-
son. A structured questionnaire was used to
obtain information on exposure and the par-
ticipants were then placed into strata of high,
medium and low exposure (Table 3).
Participants were queried about symptoms
and a standard neuropsychological test bat-
tery was administered that was considered
appropriate for exposure to Pfiesteria. 

SAVITZ ET AL. 1998; SWINKER ET AL.
2000. This study (69,70) compared North
Carolina workers with and without potential
for exposure to Pfiesteria. Using maps of
locations where distressed or killed fish had
been found in 1997, the investigators
enrolled gill-net and crab-pot fishermen
working the Pamlico, Neuse, and Trent
Rivers and tributaries in North Carolina.
These workers (n = 19) and an additional
four state employees with potential for expo-
sure were enrolled as the exposed group. The
unexposed cohort was selected with match-
ing for age, gender, occupation, and educa-
tional level but were from the Outer Banks
of North Carolina. All participants had a
detailed medical evaluation and completed a
neuropsychological test battery. 

GRIFFITH ET AL., 1999. Griffith et al. (73)
provide findings of a cross-sectional study of
253 North Carolina crabbers who worked in
waters known to be home to dinoflagellates,

and of two control populations—115 crabbers
working in other areas and 125 nonfishing
residents of the communities of the crabbers. 

Clinical Assessment and Neurotoxicology
Clinical manifestations. The clinical data
found in the various reports vary in their com-
pleteness, but they do provide a perspective on
symptoms in apparently exposed persons
(Tables 3–5). Many of the reports cite non-
specific symptoms of dizziness, eye irritation,
and headache (16,74–77). Gastrointestinal
complaints of diarrhea and abdominal pain
were common, as were respiratory complaints
of wheezing, coughing, and shortness of
breath. Dermatological symptoms were also
frequent. Complaints of cognitive deficits were
also described, including memory impairments
that developed within hours after exposure.
The cognitive deficits and memory impair-
ments have been reported to subside sponta-
neously in some cases but to be aggravated by
strenuous exercise in others. Other reports
have suggested that treatment with cholestyra-
mine may improve clinical prognosis and has-
ten recovery, but these observations lack
proper controls (74).

Neuroimaging studies. Radiological
imaging was done in four individuals
(16,74,76). The magnetic resonance image
(MRI) of a waterman examined by Bever et
al. (76) was reported as normal. A patient
with persistent cognitive deficits reported by
Shoemaker (74) had a computerized axial
tomogram (CT) that was normal and a MRI
that revealed mild inflammation of the mas-
toid and a possible polyp in the sinus.
Glasgow et al. (16) reported that their patient
B had minimal changes in the hippocampus
that they considered to be of borderline sig-
nificance. Patient B had cognitive deficits on
neuropsychological testing that resolved after
2 months, although the patient continued to

complain of episodes of “foggy memory” and
irritability lasting about 12 hr and precipi-
tated by strenuous exercise. Findings of a
fluorodeoxyglucose positron-emitting tomo-
gram (PET) of patient B were normal
(Tables 3–5).

Electrophysiological studies. Peripheral
nerve electrodiagnostic tests [electromyogram
(EMG) and nerve conduction studies] were
done in two subjects (patients A and B)
described by Glasgow et al. (16) Evoked
potential studies were done in Patient B.
Findings for Patient A were reported to be
essentially normal with mild electromyo-
graphic changes and normal sensory and
motor conduction velocities consistent with
minimal EMG evidence of motor axonopa-
thy and no evidence for Guillain-Barré
syndrome. Decreased ankle reflexes were also
seen in this patient. The studies in Patient B
showed no evidence of either peripheral or
autonomic neuropathy. The visual and brain-
stem auditory evoked potential studies in
patient B were normal although neuro-
psychological testing was reported to support
a diagnosis of amnestic syndrome involving
verbal more than visual modalities (16). The
electroencephalogram (EEG) of patient B and
that of a Chesapeake Bay waterman examined
by Bever et al. (76) were assessed as normal.

Neuropsychological studies. Most reports
presented descriptions of Pfiesteria exposure-
associated changes in emotional state such as
irritability and lability of mood; cognitive
impairments including confusion, poor con-
centration, disorientation, and memory diffi-
culties; motor impairments including ataxia,
dysmetria, and dysarthria; and sensory distur-
bances such as decreased ability to smell
odors and paresthesia. 

Shoemaker (74) reports findings of
neurocognitive studies for four patients. The
specific tests used in the evaluation were not
described. Findings for a 56-year-old woman
were markedly abnormal immediately after
exposure to Pfiesteria but returned to normal
within 1 month after treatment with
cholestyramine (2 months after cessation of
exposure to Pfiesteria). A second patient exam-
ined by the group, a 33-year-old man, had
memory impairments that persisted 1 year
after exposure; these memory problems were
reportedly improved by treatment with
cholestyramine and multivitamins. Neuro-
cognitive findings in a third patient, a 32-
year-old man, were reported as abnormal 3
months after cessation of exposure. Two
weeks after beginning treatment with
cholestyramine, minimal improvement in his
performance on neurocognitive tests had
occurred, although the patient was reported
able to return to work after initiation of this
therapy. Memory impairments were also doc-
umented in a 44-year-old man seen by this

Table 2. Symptoms and clinical conditions among persons with direct contact with waters of Pocomoke Estuary,
Chesapeake Bay, Maryland and controls, by estimated exposure.a

High exposure Moderate exposure Low exposure Controls
Symptoms and clinical conditions (n = 11) (n = 7) (n = 4) (n = 8)

Neuropsychological symptomsb 9 (82%) 6 (86%) 2 (50%) 1 (13%)
Headache 9 (82%) 5 (71%) 2 (50%) 1 (13%)*
Skin lesions 8 (73%) 4 (57%) 1 (25%) 1 (13%)†
Skin burning on contact with water 5 (45%) 6 (86%) 1 (25%) 2 (25%)‡
Diarrhea 5 (45%) 4 (57%) 2 (50%) 1 (13%)
Nausea/vomiting 7 (64%) 4 (57%) 0 1 (13%)
Abdominal cramps 4 (45%) 4 (57%) 1 (25%) 1 (13%)
Joint pain 5 (45%) 2 (29%) 1 (25%) 2 (25%)
Muscle/leg cramps 8 (73%) 2 (29%) 1 (25%) 2 (25%)
Eye irritation 6 (55%) 2 (29%) 2 (50%) 4 (50%)
Sinusitis 5 (45%) 5 (71%) 3 (75%) 3 (32%)
Shortness of breath 2 (18%) 4 (57%) 1 (25%) 2 (25%)
Pneumonia 2 (18%) 1 (14%) 0 0
aData from Grattan et al. (68). bConfusion, episodes of distortion, new or increasing forgetfulness, or difficulties concentrating.
*p < 0.01, Fisher’s exact test, two tail, comparing high-exposure group with controls; †p < 0.05, Fisher’s exact test, two-tail, comparing
high-exposure group with controls. ‡Control watermen reported seeing sea nettles in association with sensation of burning skin;
affected individuals denied sea nettle contact. If two controls with complaints of skin burning are presumed to have had contact with
sea nettles and are excluded, p < 0.05, Fisher’s exact test, two tail.
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Table 3. Clinical manifestations reported among persons with suspected exposure to P. piscicida. Suspected source of exposure, neurological and dermatological symptoms,
and signs.

ID # Refa Age (years) Sex Exposure history Neurological symptoms and signs Dermatological symptoms

1 (74) 23 M Water skier × 1 hr Memory, ataxia, dysarthria 1.5 - to 2-cm pruritic lesions with 
follicular eruption

2 (74) 26 M Swimmer upstream from water skier None reported 1.5- to 2.5-cm lesions
3 (74) 30 F Swimmer in vicinity of water skier None reported None reported
4 (74) 56 F Dept. of Environment worker Memory problems Burning sensation, rash and 

sorting fish desquamation of skin 
5 (74) 41 M Sampling shell fish beds Memory problems 3 lesions with discrete macular

desquamation of left hand
6 (71) 47 M Fisherman Memory problems None reported
7 (71) 33 M Waterman (commercial fisherman) Memory problems None reported
8 (71) 32 M Commercial diver Memory problems Skin lesions
9 (71) 44 M Fisheries worker Memory problems Skin lesions

10 (16) <40 NR Marine scientist Concentration and memory problems, Skin lesions
paresthesia, ataxia,

11 (16) <40 NR Marine scientist Memory problems, irritability, emotional Skin lesions
lability, disorientation, dysarthria, 
insomnia, paresthesias

12 (16) <40 NR Marine scientist Disorientation, concentration and memory None reported
13 (16) NR NR 5 laboratory personnel and 2 nearby problems, 

office workers None reported None reported
14 (16) >40 M Waterman (commercial fisherman) Memory problems, dysmetria, decreased smell 

in right nostril and positive palmar mental 
reflex (left) and positive globellar reflex None reported

15 (75,76) 38 3 M Boaters 2/3 disorientation, concentration and 2/3 skin lesions; 1/3 burning sensation 
(mean) memory problems, on contact with contaminated water 

16 (75,76) 38 4 M Working with samples of infected 6/ 7 disorientation, concentration and 5/7 skin lesions; 4/7 burning sensation
(mean) 3 F water/fish (8–20 hr/week) memory problems, on contact with contaminated water

17 (75,76) 39 8 M Watermen (commercial fishermen) 9/11 disorientation, concentration and 8/11 skin lesions; 5/11 burning
(mean) 1 F memory problems, sensation on contact with 

contaminated water
18 (78) 45 93 M Watermen, researchers, recreational None reported None reported

(mean) 19 F water exposures
19 (72,73,77) 40 55 M Fishing, handling fish with lesions, 47/55 memory loss, confusion 31/55 rash, burning sensation on 

(mean) 11 F boating, swimming contact with contaminated water 

Abbreviations: F, female; M, male; NR, not reported. aReference numbers in parentheses correspond to reference numbers in text.

Table 4. Clinical manifestations reported among persons with suspected exposure to P. piscicida. Gastrointestinal, respiratory, and nonspecific symptoms.

ID # Refa Age (years) Sex Gastrointestinal symptoms Respiratory symptoms Nonspecific symptoms

1 (74) 23 M None reported Shortness of breath Dizziness, headache, stiff neck
2 (74) 26 M None reported None reported None reported
3 (74) 30 F Diarrhea, nausea, abdominal cramps None reported Headache
4 (74) 56 F None reported Cough, wheezing, reduced FVC and FEV Eye irritation

on pulmonary function testing
5 (74) 41 M Abdominal pain, diarrhea None reported None reported
6 (71) 47 M Abdominal pain Cough, wheezing, Headache, eye irritation
7 (71) 33 M Abdominal pain, diarrhea Cough, pneumonia Weight loss, pneumonia
8 (71) 32 M Abdominal pain, diarrhea None reported Headache
9 (71) 44 M Abdominal pain None reported None reported

10 (16) <40 NR None reported None reported None reported
11 (16) <40 NR Abdominal pain, nausea, vomiting Shortness of breath, chest tightness Eye irritation, headache, 
12 (16) <40 NR Abdominal pain, nausea Shortness of breath, pneumonia, asthmatic Eye irritation, headache, joint pain

bronchitis
13 (16) NR NR None reported None reported None reported
14 (76) >40 M None reported Shortness of breath, chest tightness None reported
15 (68) 38 3 M 1/3 diarrhea; 1/3 abdominal pain 1/3 shortness of breath; 3/3 sinusitis 2/3 headache, 1/3 joint pain; 2/3 eye 

(mean) irritation
16 (68) 38 4M 4/7 diarrhea, abdominal pain, nausea 4/7 shortness of breath; 5/7 sinusitis; 5/7 headache, 2/7 joint pain; 2/7 eye 

(mean) 3 F 1/7 pneumonia irritation
17 (68) 39 8 M 5/11 diarrhea; 4/11 abdominal pain; 2/11 shortness of breath; 5/11 sinusitis; 9/11 headache, 5/11 joint pain; 6/11

(mean) 1 F 7/11 nausea 2/11 pneumonia eye irritation
18 (78) 45 93 M None reported None reported None reported

(mean) 19 F
19 (72,73,77) 40 55 M 28/55 nausea, vomiting, diarrhea, 37/55 upper respiratory tract irritation 4/55 headache, muscle cramps, eye 

(mean) 11 F abdominal pain irritation 

Abbreviations: FEV, forced expiratory volume; FVC, forced ventilatory contraction.
aReference numbers in parentheses correspond to reference numbers in text.
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group. This patient was reportedly unable to
remember any of the numbers in a five-
number sequence and only one of four words
in a list immediately after his exposure to
Pfiesteria. Three months after cessation of
exposure to Pfiesteria and 8 days after begin-
ning treatment with cholestyramine, the
patient reportedly showed improvement in
memory function. The specific neuropsycho-
logical tests used to document his improve-
ment were not reported by the authors. 

Patient B, in the study reported by
Glasgow et al. (16), showed verbal memory
deficits soon after Pfiesteria exposure; his mem-
ory function was reported as normal 2 months
later. A Maryland waterman examined by
Bever et al. (76) showed attention, memory,
and psychomotor impairments on neuro-
psychological tests. These authors did not
report the specific tests they used, but these
tests can be inferred from descriptions pro-
vided by Grattan (75), who was a co-author
of the article by Bever et al. (76). Inferences
concerning the tests used in the evaluation of
this patient are indicated in parentheses in the
following discussion. Testing indicated prob-
lems with delayed recall of verbal and visual
information [Rey Auditory Verbal Learning
Test (RAVLT) and Visual Retention Test,
respectively]. Selective and divided attention
deficits were also seen (Stroop and Trails B,
respectively). In addition, this patient’s perfor-
mances on tests of psychomotor speed and
dexterity (Grooved Pegboard) were impaired.
Performance on a task of clerical speed and

accuracy (Digit Symbol) was impaired as
well. In contrast, performance on simple
attention and concentration (Digit Spans),
constructional praxis (block design), verbal
fluency (controlled oral word association),
naming (Visual Naming Test), reading
(Boston Diagnostic Aphasia Exam), visual
perceptual abilities (Hooper instrument),
remote memory, calculations, and language
functions were stated by the examiners to be
“within expectation.”

Neuropsychological tests were performed
on groups of boaters, sport fishermen, and
watermen allegedly exposed to waters con-
taining Pfiesteria (75,77,78). Deficits were
seen on the RAVLT (77). Compared with an
unexposed control group, deficits on the
RAVLT and on the Stroop test were more
prevalent among persons who were exposed
to waters containing Pfiesteria (75). Visual
contrast sensitivity (VCS) deficits were identi-
fied in Pfiesteria-exposed subjects (78–80).
Verbal and motor skills, memory, attention,
and spatial reasoning were also assessed in
some of these subjects (Table 5). 

Behavioral changes were reported in rats
exposed to extracts from Pfiesteria culture
water (81–83). These behavioral changes sug-
gest impairment of central nervous system
functioning in these animals. However, the
significance of these findings is difficult to
interpret with regard to previously reported
changes in human behavior because different
parameters of central nervous system
functioning (e.g., visual vs verbal learning) are

being measured. The animals exposed to
Pfiesteria culture extracts were assessed for
their performance on a radial-arm maze.
Human exposures to Pfiesteria, in contrast,
have been associated with deficits on tests of
auditory verbal learning and visual contrast
sensitivity. 

This experimental system has been
proposed for two uses: rapid screening of
extracts from cultures of different strains of
Pfiesteria; and establishing dose–response rela-
tionships between the concentration of toxin-
producing Pfiesteria cells in the culture
medium and performance of rats in the radial
arm maze. However, the validity of the assay
for these purposes has not been established
and further research in this area is warranted.

Commentary on Research Findings
Reviewed
Human exposure to Pfiesteria appears to be
associated with effects on functioning of the
auditory and visual systems as indicated by
performances on the RAVLT and VCS tests.
Limited data from performance on other neu-
ropsychological tests indicate that other cog-
nitive domains, including attention and
executive function, may also be affected.
Although frequencies of symptoms and
neuropsychological findings are reported in
these group studies, it is nevertheless difficult
to discern from the published reports what
impairments were seen in which individuals
and how those impairments relate to
Pfiesteria exposure. The subjects in these

Table 5. Clinical manifestations reported among persons with suspected exposure to P. piscicida. Findings of neuroimaging, electrophysiological, and neuropsychological tests.

ID # Refa Age Sex Neuroimaging studies NCV/EMG/EEG/EP studies Neuropsychological testing

1 (74) 23 M CT normal, possible MRI sinus None reported None reported
polyps and mastoid inflammation

2 (74) 26 M None reported None reported None reported
3 (74) 30 F None reported None reported None reported
4 (74) 56 F None reported None reported None reported
5 (74) 41 M None reported None reported None reported
6 (71) 47 M None reported None reported None reported
7 (71) 33 M Abnormal PET scan None reported None reported
8 (71) 32 M None reported None reported None reported
9 (71) 44 M None reported None reported None reported

10 (16) <40 NR None reported Normal NCV and EMG None reported
studies

11 (16) <40 NR Normal MRI and PET Normal NCV, EMG, EEG, Verbal memory deficits; returned to normal 2 months postexposure
BAEP, and VEP studies

12 (16) <40 NR None reported None reported None reported
13 (16) NR NR None reported None reported None reported
14 (16) >40 M Normal MRI Normal EEG Attention, memory, psychomotor impairments
15 (75,76) 38 3 M None reported None reported 3/3 Verbal memory deficits (RAVLT); Stroop; Trails B; Grooved Peg-

(mean) board; performance improved at follow-up testing (+10–12 weeks) 
16 (75,76) 38 4 M None reported None reported 7/7 Verbal memory deficits (RAVLT); Trails B; performance improved 

(mean) 3 F at follow-up testing 10–12 weeks later
17 (75,76) 39 8 M None reported None reported 9/9 Verbal memory deficits (RAVLT); Stroop; Trails B; Grooved Peg

(mean) 1F board; performance improved at follow-up testing 10–12 weeks later
18 (78) 45 93 M None reported None reported Visual contrast sensitivity

(mean) 19 F
19 (72,73,77) 40 55 M None reported None reported 13/13 with neurological symptoms had RAVLT scores below the 

(mean) 11 F 10th percentile

Abbreviations: BAEP, brainstem auditory evoked potential; EP, electrophysiologic testing; NCV, nerve conduction velocity; VEP, visual evoked potential. 
aReference numbers in parentheses correspond to references in text.
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groups were not characterized as to individual
histories of exposure, time elapsed from cessa-
tion of exposure to date of testing, or age at
the time of testing. In these cases, the infor-
mation available from case histories and
neurological work-ups is insufficient to deter-
mine the neuropathologic basis of the
observed neurocognitive deficits. Several
reports indicate that the neurological deficits
are reversible. The complaints of memory and
other cognitive problems, together with for-
mal neuropsychological test results from case
studies, suggest that the cognitive distur-
bances develop within hours after exposure
and may subside spontaneously after cessation
of exposure but may be exacerbated by stren-
uous exercise. The few reports of neuro-
imaging studies and neurophysiological
studies do not indicate a neuropathological
process; they do suggest that the deficits seen
on neuropsychological tests may be due to
reversible disruptions of neurotransmission or
cellular respiration processes. Cholestyramine
has been used to treat cognitive and systemic
features of Pfiesteria exposure, but no con-
trolled trials have been conducted to support
its use for this purpose.

Directions for Future Research—
Confirming and Extending Prior Studies
Rey Auditory Verbal Learning Test. Deficits
have been reported on the RAVLT among
patients exposed to Pfiesteria (77). The results
of the RAVLT should be compared with
scores on the California Verbal Learning Test
(CVLT) to validate these findings. RAVLT
and CVLT scores also should be compared
with performances on the Digit Span test for
auditory memory function, which is one of
seven tests included in the World Health
Organization (WHO) Neurobehavioral Core
Test Battery (see “Other Neuropsychological
Tests”). If an association is found between
RAVLT scores and performance on Digit
Span tests administered by clinicians, the
results could be compared with the computer-
administered oral Digit Spans that will be
available on the Neurobehavioral Evaluation
System-3 (NES-3) once it is fully normed. 

Because the RAVLT has been so heavily
emphasized, it is essential that any subject
evaluated with this test have good hearing.
RAVLT, CVLT, and Digit Span scores
should be compared with brainstem auditory
evoked responses as well as simple auditory
tests. Findings from these tests should be vali-
dated with other tests of attention and other
auditory memory, i.e., the Verbal Paired
Associate Learning Task and Logical
Memories test. Their performance on those
tests should be carefully evaluated using a
recognition paradigm to determine if any
deficits identified are in encoding or retrieval
of verbal information. 

The battery neuropsychological tests used
by Bever and co-workers (75,76) apparently
did not include a test such as Logical
Memories, which is designed to elucidate the
contribution of attention, working memory,
and auditory information processing to
deficits of the kind reported by these authors.
Had their evaluation included such a test,
the findings of Bever and co-workers would
help to better define the contribution of
encoding and retrieval deficits to the findings
on the RAVLT reported by these authors
and others (76). This test battery also lacked
a test of vigilance, such as the Continuous
Performance Test, which may also have been
sensitive to the attention and concentration
deficits reported by the patient as difficulty
following conversations, driving to familiar
places, and managing the finances of his
business, and revealed by the formal neu-
ropsychological tests of selective and divided
attention. 

The Neurobehavioral Evaluation System-2
(NES-2) used by Turf et al. (78) does not
include an auditory verbal learning test and
therefore would not be expected to detect
deficits in this cognitive domain. The NES-2
also does not include a computerized
counterpart to the VCS test used in studies
reviewed here (78–80). Hudnell et al. (84)
have published reports indicating that subjects
with VCS deficits might perform below
expectation on subsets of the NES-2, includ-
ing the hand–eye coordination test, when
compared with subjects with intact visual
function. The potentially confounding effects
of such contrast sensitivity deficits should be
taken into consideration in evaluating perfor-
mance on the NES-2.

Visual contrast sensitivity tests. A report
by Mergler and Blain (85) suggests that the
Lanthony D-15 or the Farnsworth-Munsell
100 Hue tests would be more suitable for
assessing color vision in putatively exposed
patients who are suspected to have visual
deficits. The Lanthony-D15 (comprising 15
caps of different colors) is a shorter test, tak-
ing approximately 5 min, and would there-
fore be appropriate for assessing larger groups,
while the Farnsworth-Munsell 100 Hue
(comprising 85 caps of different colors)
should be used for more detailed assessments
of individual subjects. By contrast, these
authors suggest that the Ishihara Plates are
not good for assessing acquired color vision
loss, such as may occur in persons exposed to
Pfiesteria, because this test is sensitive only to
red–green color vision loss and thus may not
detect blue–yellow color vision loss com-
monly seen in acquired dyschromatopsia. In
addition, acquired dyschromatopsia is
complex, may involve one or both eyes, and is
age dependent. Therefore, the value of the
Ishihara Plate test would be as a screening

tool for detecting possible congenital color
blindness or retinal problems. 

VCS measures the function of retinal
cells and their pathways to the cortex and
cortical function but does not localize
deficits. These findings should be correlated
with visual evoked potentials (VEPs), which
measure conduction of impulses from the
retinal cells through to the optic cortex.
VEPs are sensitive to demyelinating processes
such as multiple sclerosis (MS). The VEPs of
patients with MS are also sensitive to changes
in sine wave grating pattern orientation. This
finding implies cortical pathology because
the receptive field of retinal cells is circular or
oval (86) and therefore these cells do not
have a significant response preference for one
orientation or another. The VEPs of patients
with macular degeneration are slowed but are
not sensitive to sine wave grating orientation
(87), further supporting the hypothesis that
cortical pathology underlies the sensitivity to
orientation, as the retina is the site of the
lesion in macular degeneration. These find-
ings indicate that VEPs using sine wave grat-
ing and visual contrast sensitivity studies can
be used to localize pathology in the visual
system of patients exposed to Pfiesteria and
that localization of the pathology will depend
on the response to orientation of the grating
stimulus. 

Other neuropsychological tests. While
verbal memory and visual contrast sensitivity
deficits are the reported salient features of
Pfiesteria poisoning in the subjects so far stud-
ied, deficits may also be seen on tests of atten-
tion and executive function, visual memory,
psychomotor speed, and personality and affect.
Improvement in cognitive functioning may be
seen within 3 months after cessation of expo-
sure, but whether residual deficits can persist
indefinitely has not been determined (16,76).

Among the persons assessed in this series
of reports, memory deficits typically were
reported within several days after exposure,
indicating that the first neuropsychological
assessment of an exposed subject should be
done as soon after the exposure as possible.
Serial testing will document clinical course
and recovery and help to predict prognosis
after cessation of exposure.

The WHO Neurobehavioral Core Test
Battery (NCTB) assesses central nervous
system function. It is composed of seven tests
that measure simple motor function, short-
term memory, eye–hand coordination, affec-
tive behavior, and psychomotor perception
and speed. The battery includes Digit Span
for auditory memory; Santa Ana manual dex-
terity; Digit Symbol for perceptual motor
speed; the Benton visual retention for visual
perception and memory; and Pursuit Aiming
II for motor steadiness. The sensitivity of this
battery for detecting exposure to neurotoxins
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such as Pfiesteria is limited because it is too
brief and does not include more complex
tasks of attention and executive function such
as the Trail Making Test (Trails B), Paced
Serial Auditory Addition, oral arithmetic, or
the Wisconsin Card Sort. 

The Boston Extended Neurotoxicologic
Battery (Clinical) (88) contains omnibus tests
such as the Wechsler Adult Intelligence Test
Scale—Revised as well as tests selected for
their sensitivity to deficits in particular cogni-
tive domains. This battery is extensive and
requires a full day to administer but would be
very useful in defining well-studied cases with
serial assessments to fully elucidate the clini-
cal picture of exposure to Pfiesteria.
Performances on various tests with salient
auditory components could be compared
with scores or tests of verbal memory to
determine if deficits are in the processing of
all auditory information or in auditory mem-
ory only. Visual–spatial test performance
could be compared with visual contrast sensi-
tivity scores to further localize possible func-
tional deficits. The addition of tests sensitive
to attention and executive function will reveal
contributions that deficits in these domains
make to the clinical profile. 

An annotated version of this battery could
be developed for research work, based on pre-
vious published reports, and could include
selected tests of attention and executive func-
tion (e.g., Trail Making Tests A and B; Digit
Spans, oral arithmetic, Paced Auditory Serial
Addition; Stroop Test; Wisconsin Card Sort;
Continuous Performance Test); visuopatial
and visuomotor function (e.g., finger tapping;
Digit Symbol; Block Designs; Object
Assembly; Boston Visuospatial Quantitative
Battery; Santa Ana Form Board; memory
(e.g., California Verbal Learning Test;
Peterson task, visual reproductions, Logical
Memories, Verbal Pair Associate Learning,
Rey Osterreith Complex Figure); verbal and
language function (e.g., Boston Naming Test;
writing sample, reading comprehension and
the information and vocabulary subtests from
Wechsler); mood and affect (e.g., Profile of
Mood States or Minnesota Multiphasic
Personality Inventory). 

Clinical Documentation
Further clinical studies should better charac-
terize the temporal course of effects of expo-
sure, documenting the time relationship from
exposure to symptom onset and the subse-
quent course of the clinical symptoms. Formal
neuropsychological tests must be done while
the patient still has clinical complaints about
memory or emotional disturbances. Selected
brief but highly sensitive test instruments or
clinical tasks should be done to assess atten-
tion, cognitive tracking, working memory,
and visual and auditory memory. Tandem

and fine-motor control must be tested to
substantiate the clinical complaints of ataxia
and dysmetria. Should positive findings
appear within the first 4–6 hr after exposure,
serial testing with any measures used is essen-
tial so that the time course of effect can be
accurately documented. Persistent effects may
emerge over days but the longer the time
interval until testing, the greater the likelihood
that any underlying causal relationship will be
obscured. Of course, a well-characterized bio-
logical marker of the exotoxin for use in
experimental studies is sorely needed. 

Pathological Studies
Pathological findings in fish exposed to
Pfiesteria (33) suggest that a demyelinating
processes is involved in the clinical neurologi-
cal manifestations seen in fish. However,
species differences in metabolism of and cel-
lular responses to the toxin have not been
studied. Therefore, no inferences about the
role of demyelination in reported human
responses to Pfiesteria can be made based on
these limited findings in fish. In addition, it is
unclear whether the demyelinating process
described in this study affects the peripheral
and central nervous systems in the same fash-
ion. Demyelination could result secondarily
from axonal injury. More pathological studies
are needed to see if the reported observations
of fish swimming upside down have an
anatomical correlate in the balancing mecha-
nisms, such as the vestibular and cerebellar
systems of fish. Such information may shed
light on the complaints of ataxia and disori-
entation given by allegedly exposed persons.

Magnetic resonance spectroscopy studies
may be useful for documenting the subtle
changes in brain chemistry that underlie the
neuropsychological findings thus far reported. 

Neurotoxicology
Because P. piscicida is a dinoflagellate,
inferences about its toxicity can be drawn
from the behavioral neurotoxicology of
toxins produced by other dinoflagellates. To
cause the effects described in the literature,
the exotoxin must be quite potent: fish are
affected within minutes of exposure;
reported effects in humans occurred after
exposure to what must be minute quantities
of the toxin in a contaminated spray of
water. The pharmacology of this exotoxin
has not yet been elucidated.

If the apparent prompt uptake in fish is
from the skin as well as the gill, it can be
deduced that the exotoxin is lipophilic. For
that reason, the toxin would also be taken up
quickly by the nervous system and would
probably move easily across the blood–brain
barrier to affect the central nervous system. If
it is lipophilic, the exotoxin could also affect
the peripheral myelin.

With scant descriptive information
about the neurological consequences avail-
able from the case reports, only speculations
can be offered concerning the possible
anatomical sites of action. The diarrhea and
nausea described in the case reports suggest
an effect upon the autonomic nervous sys-
tem, which would also explain the blurred
vision reported by some affected persons.
The central nervous system effects of ataxia,
dysarthria, and dysmetria would indicate a
cerebellar site of effect; the postural instabili-
ties may arise from vestibular imbalance. If
memory is the most prominent effect, one
can assume that there are neurotoxic effects
on either the hippocampal structures (e.g.,
layer CA1) or the prefrontal cortex area.
Central nervous system neurotransmitters,
such as glutamate, glycine, and dopamine
may be implicated in the mechanism of
cognitive impairment. 

Conclusions
The best-documented instances of adverse
effects in humans are the self-reported cases
of laboratory workers. The clinical findings
in these cases suggest an association between
exposure to Pfiesteria and the development of
neurological symptoms consistent with ner-
vous system dysfunction that may persist
beyond the acute exposure period, suggesting
that the toxin possesses significant neurotoxic
potential. Few additional studies of individ-
ual cases and groups that were thoroughly
evaluated within a short time after exposure
have been reported thus far. The inconsisten-
cies in the clinical approaches and test batter-
ies used to document the effects of exposure
to Pfiesteria make it difficult to interpret the
significance of the neurological findings.
Tests of auditory verbal memory and visual
contrast sensitivity appear to be sensitive to
the central nervous system effects, but fur-
ther research is needed to substantiate these
early findings. A dose–response relationship
cannot be ascertained at this time. 

The lack of neuropathological findings
will not permit speculation on specific
anatomical sites within the human nervous
system that may be vulnerable to the effects
of Pfiesteria. The possible mechanisms of
Pfiesteria neurotoxicity have not been eluci-
dated. The reports of persistent behavioral
changes and clinical neuropsychological find-
ings suggest that, with sufficient exposure to
the toxin, more than an acute disruption of
neurotransmission occurs. 

Directions for Future Research
With regard to effects on human health, we
endorse the following research to address
data gaps:
• Aggressive surveillance should be

maintained in the coastal states where
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instances of adverse effects on human
health have been reported.

• Any persons considered to have symptoms
related to exposure to Pfiesteria toxin
should be enrolled in a prospective study
with the objective of characterizing the
time course of adverse effects.

• A standard battery of neuropsychological
tests should be adapted and applied uni-
formly to all persons considered to have
possible manifestations of exposure to
Pfiesteria toxin. A standardized protocol
for neurological assessment should be
established as well. 

- A questionnaire such as the Boston
Occupational and Environmental
Neurology Questionnaire (89) should
be administered to all persons with
possible exposure to Pfiesteria to ascer-
tain concomitant exposures to indus-
trial chemicals and other factors that
could produce similar neurological
manifestations. 
- The assessment of effects of exposure
should be charted with careful attention

to the time relationship with exposure
and to track the natural history of any
adverse effects.

• Epidemiological studies of persons
considered at high risk as a result of occu-
pation are in progress. These studies repre-
sent an appropriate step in characterizing
risk to the population because they address
groups considered to have high exposure
potential. These studies should be con-
ducted with sufficient standardization of
methods to allow ready cross-comparison
of findings and even pooling.

Conclusions and Directions 
for Future Research
Research on Pfiesteria has the ultimate purpose
of providing evidence that will guide develop-
ment of strategies to protect the health of estu-
arine ecosystems and of the people at risk for
exposure to Pfiesteria toxin. Researchers must
also use the clinical evidence to guide evalua-
tion and management of persons affected by
Pfiesteria toxin. Recognizing the need for
research to provide a basis for protection of the

environment and human health, the panel
adopted a conceptual framework that extends
from the ecological drivers of the presence and
abundance of Pfiesteria to its effects on fish and
people (Figure 1). The panel’s review was
structured around this framework and its
research recommendations are directed at key
points of uncertainty. 

The panel found that uncertainties still
remain throughout this framework,
although laboratory-based studies, coming
now from several laboratories, and the sup-
porting field observations, provide firm evi-
dence that Pfiesteria can cause fish kills. It is
more difficult, however, to attribute a partic-
ular fish kill to Pfiesteria. The experimental
evidence is sufficient to meet the modifica-
tion of Koch’s postulates that has been
applied by this panel and others. The toxin
still remains unidentified and there is even
uncertainty as to the number of toxins pro-
duced by the organism. Questions remain as
to whether there is a pathognomonic ulcer-
ated lesion of the skin caused by Pfiesteria.
Using the fish bioassay, several laboratories
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Table 6. Summary of areas for future research on ecophysiology, toxicopathology, and human health effects of Pfiesteria.

Topical area Future research

Ecophysiology of Establish research-quality cultures of P. piscicida for wide distribution among the scientific community for life cycle, physiological, and ecological study
P. piscicida Develop more effective and quicker methods to 

• distinguish P. piscicida in each of its life cycle stages from look-alike species 
• quantify the abundance, distribution, seasonality, and toxicity of P. piscicida
Conduct laboratory and field investigations, using appropriate controls, to clarify the role of organic versus inorganic nutrients, including those in sewage 

and in wastes from agroindustrial sources, in stimulating growth and toxicity of P. piscicida, and the role of these and nonnutritional factors, including 
prey and predatory dynamics, in regulating its in situ growth, population dynamics, and seasonal cycles

Identify and chemically characterize the substances produced by fish that stimulate life-stage transformations, growth, and toxin production in P. piscicida
Assess the role of environmental signals in controlling toxin-producing capability, life-cycle transformations, and functional phenotype occurrences of 

P. piscicida; determine the accompanying physiological characteristics of its life cycle stages and population strains
Effects on fish and Characterize the role of Aphanomyces spp. in causing skin ulcers observed in wild menhaden organisms and the potential interaction of this fungus with 

other aquatic Pfiesteria toxin in affecting fish
organisms Conduct full tissue pathological evaluations of fish from laboratory bioassays of Pfiesteria and in the wild fish from Pfiesteria-associated fish kills

Develop standardized protocol and diagnostic criteria for necropsy and histopathologic examination
Compile histopathology and necropsy findings in centralized database shared among laboratories
Investigate the physiological and toxicological effects of Pfiesteria toxin exposure in fish, especially 
• neurophysiologic effects
• tissue and organ distribution

Methods to detect Develop and preserve a standard panel of ichthyotoxic water samples and/or extracts derived from clonal Pfiesteria cultures
Pfiesteria and Promote collaboration among labs developing analytical and purification methods by distributing the standard ichthyotoxic samples or extracts 
toxin Standardize the fish bioassay process to facilitate interlaboratory reproducibility

Develop or refine chromatographic methods for toxin analysis and purification:
• conventional diode array UV detection
• bioassay methods (cytotoxicity, receptor-binding assay, rapid fish bioassay) to guide method optimization
Apply mass spectroscopic detection methods to chromatographic procedures to estimate molecular mass of putative toxins
Apply NMR methods to determine structure of purified toxins
Produce antibodies and develop immunochemical methods to detect the Pfiesteria organism and its toxin in the field
Identify genes associated with toxin biosynthesis using genomic screening methods and analysis of gene expression
Adapt PCR and/or FISH methods to devices that can be used in the field to detect toxin-producing phenotypes of Pfiesteria

Epidemiological and Maintain aggressive surveillance for possible estuary-associated syndrome in the coastal states where adverse effects have been reported among 
clinical studies persons possibly exposed to waters containing Pfiesteria

Enroll symptomatic persons identified through surveillance in a prospective study of the natural history of adverse effects of exposure
Establish a standardized protocol for neurological assessment and apply it to all persons considered to have clinical manifestations of exposure to 

Pfiesteria toxin; the protocol should include a standard battery of neuropsychological tests adapted for the purpose
Using a validated questionnaire, ascertain concomitant exposures to other neurotoxic agents (e.g., industrial chemicals, metals) 
Conduct repeated neuropsychological and clinical evaluations of symptomatic persons to characterize the clinical course of any adverse neurological 

effects and establish their time relationship with exposure
Standardize methods in epidemiological studies of persons at high risk for occupational exposure to Pfiesteria toxin to allow ready cross-comparison of 

findings or pooled analyses
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have independently confirmed that the
organism can kill fish. 

Laboratory and field observations indicate
that the organism has a complex life cycle. The
current formulation includes 24 stages, but
only a few of the stage transformations have
been fully documented with photographic or
videographic techniques, and molecular confir-
mation of the genetic identity of each stage has
not been published. The certainty of the
panel’s conclusions with regard to both the life
cycle of Pfiesteria and its ability to cause fish
kills reflects the convergence of evidence from
both the laboratory and the field. 

For other key points in the panel’s
conceptual framework see Figure 1; however,
uncertainty remains. The extent and nature
of the hazard posed to human health by expo-
sure to Pfiesteria toxin remains unknown.
The anecdotal reports of affected scientists
and individual case reports of persons exposed
at times of fish kills are a basis for concern
and have appropriately led to a broad pro-
gram of epidemiological and clinical research.
Aside from indicating a potential threat to
public health, however, the available clinical
and epidemiological data provide neither a
clear picture of the consequences of exposure
to Pfiesteria toxin nor an indication of the
magnitude of the problem. A patchwork of
approaches has been used to describe symp-
toms and neuropsychological effects and the
panel could not find a cohesive picture on
reviewing the evidence. Work in this area is
further limited by the need to use surrogates
for exposure, since the presence of toxin can-
not be directly confirmed and exposure can-
not be quantified. 

In its review of the ecological evidence,
the panel could not reach any firm conclusion
as to the role of nitrogen- and phosphate-
containing runoffs in determining the extent
of Pfiesteria contamination of waters. The
available data support a hypothesis that dis-
charges from sewage treatment plants, indus-
trial operations, and agriculture may have a
role, but further tests of this hypothesis are
needed.

This report offers a series of recommenda-
tions for addressing these uncertainties. Each
section of the report concludes with suggested
directions for future research, which are sum-
marized in Table 6. This is an extensive
research agenda that spans from broad-scale
ecological studies to detailed clinical evalua-
tion and molecular studies. At present, the
Panel believes priority should be given to
research that will give better insight into the
effects of Pfiesteria on human health; this
understanding is needed to assure that public
health is protected to the extent possible and
to gauge the urgency with which initiatives to
protect against exposure are needed. In this
regard, key gaps include: 

• Our very limited understanding of the
Pfiesteria toxin; it has not yet been iso-
lated and its mechanism of action is a
matter of speculation. 

• The incomplete description of the effects of
exposure on humans; we have a patchwork
of data and little longitudinal information. 

• Finally, the nature and extent of exposures
that place people at risk but remain
uncharacterized; we need to determine the
magnitude of the potential threat to per-
sons exposed to toxin-contaminated waters
through work or recreational activities. 
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