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ABSTRACT

The dynamic response of filled corrugated steel sandwich panels was investigated
under combined extremes of blast loading and high temperature heating. The objective
of this project was to study blast mitigation and the thermo-mechanical response of
panels using a polymer based syntactic foam and mortar as a filler material. These
materials were selected due to their thermal resistivity.

In this study, silicone resin (with an operating temperature range between -53°C
to 232°C) and two types of glass bubbles were selected as materials to develop a heat
resistive syntactic foam. The mechanical properties of the foam were investigated, in
ambient temperatures, before and after high-temperature heat treatment (of 500°C), by
quasi-static compression experiments. It was observed that plateau stress increases
after introduction of glass bubbles in silicone, enhancing the energy absorption
properties for both specimens with and without heat treatment.

To produce repeatable blast loading, a shock tube was utilized. Pressure history
was recorded using pressure transducers located in the shock tube muzzle. High speed
photo-optical methods utilizing Digital Image Correlation (DIC) coupled with optical
band-pass filters and high-intensity light source, were utilized to obtain the real-time
deformation at high temperature while a third camera captured side-view deformation
images. The shock pressure profiles and DIC analysis were used to obtain the impulse
imparted to the specimen, transient deflection, in plane strain and out-of-plane velocity
of the back face sheet.

Shock tube experiments were performed to investigate the blast response of

corrugated steel sandwich panels filled with a silicone based syntactic foam filler at



room and high temperature. It was observed that using the syntactic foam as a filler
material, decreased the front face and back face deflections by 42% and 27%,
respectively, compared to an empty panel. The highest impulse was imparted on the
specimen at room temperature and subsequently lower impulses with increasing
temperature. Due to increasing ductility in steel with high temperature, the specimens
demonstrated an increase in back face deflection, in-plane strain and out-of-plane
velocity with increasing temperatures with weld failure being the primary form of core
damage.

High temperature blast experiments were also performed on mortar filled
corrugated steel sandwich panels. Mortar is a common building material that can
withstand extreme temperatures. It was observed cement based mortars are thermally
resilient enough to be used as a filler material for high temperature applications. The
highest impulse was imparted on the specimen at room temperature and subsequently
lower impulses with increasing temperature. A temperature difference of at least
300°C was observed across the thickness of the specimen for all heating conditions.
Due to increasing ductility in steel with high temperature, the specimens demonstrated
an increase in back face deflection, in-plane strain and out-of-plane velocity with

increasing temperatures with weld failure being the primary form of core damage.
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PREFACE

The present study investigated the behavior of corrugated sandwich structures
filled with different materials under combined extremes of high temperature blast
loading. The sandwich panels were comprised of AISI 1018/A36 steel face sheets with
alternating layers of corrugated steel forming a lattice core. A syntactic foam was
developed, using silicone and glass microspheres, and its properties were investigated.
Sandwich panels were filled with syntactic foam and blast performance was compared
with an empty panel as well as at elevated temperatures. The use of mortar as a filler
material was also investigated at extreme temperatures. Real-time deformation images
were captured using high speed photography to provide further insight into the core
response and full field rear face deformations. This thesis is prepared using the
manuscript format.

Chapter 1 presents the method for developing a silicone based syntactic foam by
introducing two different types of glass bubbles, provided by 3M Company, at
different weight percentages (henceforth wt%). The materials were characterized
using a screw-driven universal testing machine. Samples were tested both as prepared
and after heat treating at elevated temperatures. This chapter followed the formatting
guidelines for and was published by Acta Physica Polonica A.

Chapter 2 investigates the blast response of corrugated sandwich panels when
filled with syntactic foam. Two studies were performed: (1) a comparison of the blast
performance between empty and filled panels and (2) experiments investigating the
response of filled panels under three different temperature environments up to 500°C.

A shock tube was utilized to load the specimen while three high speed cameras

Vi



obtained images later used in analysis. This chapter followed the formatting guidelines
specified by the Journal of Sandwich Structures and Materials.

Chapter 3 investigates the blast response of corrugated sandwich panels when
filled with mortar, a common building material comprised of cement and sand
aggregate. Four series of experiments were performed each at different temperature
environments up to 900°C. A shock tube was utilized to load the specimen while three
high speed cameras obtained images later used in analysis. This chapter followed the
formatting guidelines specified by the Journal of Sandwich Structures and Materials.

Chapter 4 provides a summary of the major experimental findings obtained
during the development of a syntactic foam, the dynamic response of syntactic foam
filled corrugated structures under high temperature shock loading, and the dynamic
response of mortar filled corrugated structures under high temperature shock loading.
This chapter concludes with suggestions for future work to compliment or enhance the

studies contained within this thesis.
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Abstract

Syntactic foams are one of the most widely used close cell structured foams.
They are used for industrial applications on account of their good acoustical
attenuation, excellent strength to weight ratio, vibration isolation, and dielectric
properties. These foams are fabricated by incorporation of hollow particles in a matrix
material. In this study, silicone resin (with an operating temperature range between -
53°C to 232°C) and two types of glass bubbles were selected as materials to develop a
heat resistive syntactic foam. Both types of glass bubbles were incorporated into the
silicone resin at three different mass percentages (10%, 20%, and 30%) reducing the
density of the silicone by as much as 50%. The mechanical properties of the foam
were investigated, in ambient temperatures, before and after high-temperature heat
treatment (of 500°C), by quasi-static compression experiments. It was observed that
plateau stress increases after introduction of glass bubbles in silicone, enhancing the
energy absorption properties for both specimens with and without heat treatment. It
can be concluded that syntactic foams with a silicone base matrix can be used for
applications with heat resistance, low weight and high compression strength

requirements.

1. Introduction

Many applications demand the use of light weight materials, but often at the
cost of reduced strength. Foams can provide significant weight saving structures but
their applications are limited by their low strength and modulus. In recent years

considerable efforts have been invested in developing methods of introducing porosity



in materials without causing detrimental effects on the mechanical properties of
material [1]. Syntactic foams are a class of porous materials in which manufactured by
filling a polymeric matrix with hollow spheres called microspheres or micro balloons.
Syntactic foams are sometimes described as three-phase composites, considering
interstitial voids within the matrix to be the third phase [2, 3]. Compared with standard
foams (containing blown gas bubbles only), syntactic foams are often preferred in
weight-sensitive applications, for which their enhanced mechanical properties and
tailorability make them useful [4, 5]. Several compositions of nano-scale reinforced
syntactic foams are now developed for further enhancement in mechanical and thermal
properties [6, 7]. As a class of advanced lightweight composites, syntactic foams have
been widely employed in more and more engineering applications, e.g., marine
equipment for deep sea operations [8], aircraft components, spacecraft solid rocket
booster nose cone filling, thermal insulation for deep sea pipelines [9-11], core
materials of sandwiches [12,13] and structural components in the aerospace industry
[14]. While a wide body of literature is now available on room-temperature
mechanical properties of syntactic foams, relatively few efforts are found focused on
thermal properties such as coefficient of thermal expansion [15], thermal conductivity
[4, 16] and high temperature behavior [17]. In spite of the abundant literature
regarding various thermoplastic and thermo set resin based syntactic foams; few
studies consider silicone rubber based syntactic foams [18, 19]. According to the
authors' investigations, there is no current literature about silicone based high

temperature resistive syntactic foams.



In this study, novel high temperature resistive polymer based syntactic foams
were developed. Compression properties of the foams are compared with respect to

glass bubble percentage variation in specimens with and without heat treatment.

2. Experimental Procedure

High temperature closed cell syntactic foam was produced by using platinum
silicone resin and two different type glass bubble contributions at 10, 20, 30 wt%. A
liquid silicone rubber resin (MoldStar® 30) was used as a matrix material, obtained by
mixing two supplied components (A and B) which are mixed 1A:1B by volume. This
easy to use platinum silicone features relatively low viscosities (According to ASTM
D2393/12500 cps) and vacuum degassing is not required for most applications. The
pot life is 45 minutes and cure time is 6 hours at room temperature. MoldStar30® has
30A Shore hardness. Tensile strength (ASTM DA412) is 2.90 [MPa] and Elasticity
Modulus is 0.66 [MPa]. Cured Mold Star® rubber is heat resistant up to 232 °C [20].
Closed-cells structure was obtained after reinforcement with glass bubbles. Glass
bubbles (Figure 1a) were obtained from 3M Company with the product codes:
A16/500 and A20/1000. The properties of these bubbles are given in Table 1. The
glass bubbles are thermally stable up to the 600°C, depending on the duration of

exposure.



Table 1 - Properties of the glass bubbles [21]

Test Pressure Density Particle Size  Thermal Conductivity

[MPA](PSI)  [g/cc] [um] [W/m.K] at 20°C
A16/500 | 3.44 (500) 0.16 115 0.06-0.16
A20/1000 | 6.90 (1000)  0.20 105 0.06-0.16

A syntactic foam was produced by mixing silicone rubber and glass bubbles by hand.
After mixing for 20 minutes, the raw material was filled in a wax mold and
compressed by hand. The specimen was designed to be cylindrical with a diameter of
25 mm and a height of 17mm. High temperature heating of specimens was performed
by applying a constant temperature of 500+10 °C to one side of the specimen for a
duration of one hour. During this time, the specimen’s opposite surface was left

exposed to ambient temperatures. Temperatures were recorded on both surfaces using

thermocouples.

iy N 50°C

Heat
resistive ,
brittle layer
o —=130ec
b) Y 0

Figure 1 Images of glass bubbles and specimens
a) Glass bubbles b) Virgin syntactic foam (30% GB1000)
¢) Heat treated syntactic foam (30% GB1000) and temperature measurement points.



The density of the foam was obtained by weighing a specimen on a weight
scale, with a sensitivity of 0.0001g, and calculating the volume based on the specimen
geometry. Compression experiments were performed by using Instron Universal 5585
universal testing machine with a 1 mm/min cross head speed. Experiments were
performed at room temperature for specimens with and without heat treatment. The

microstructures were investigated by using an SEM microscope.

3. Results and Discussions

Syntactic foam densities decreased with the addition of glass bubbles in higher
percentages. In syntactic foams containing 30% glass bubbles by weight, the density
decreased 63% using A20/1000 glass bubbles (henceforth GB1000) and 68% using
A16/500 glass bubbles (henceforth GB500). Room temperature quasi static
experiments were performed on the syntactic foams to ascertain the glass bubbles’
weight percentage effect on compression strength and energy absorbing capabilities.
The selected glass bubbles have a low failure compression strength, they collapsed
during the syntactic foams' compression. Because of this, the foams’ stress v. strain
plots show more plateau regions, suggesting greater energy absorbing properties. The
variations of the quasi-static compression behavior are given in Figure 2 for both
GB500 and GB1000 syntactic foams. It is observed that the virgin silicone rubber
behaves as a viscoelastic material and that the introduction of glass bubbles increases
the plateau stress of the material. Figures 2a and 2b show the results of compression
tests between the two syntactic foams, GB500 and GB1000, with the different wt% of
glass bubbles with their respective crush strengths as : 3.44 [MPa] for A16/500 and

6.90 [MPa] for A20/1000.
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Table 2 - Density of the syntactic foams.

Wt% of Glass bubbles  Density [kg/m’]

10% 739.78
GB500 20% 472.25
30% 360.38
10% 747.95
GB1000 20% 539.57
30% 409.61

- 1120

Silicone
Rubber Resin

The specimens that were heat treated (at constant temperature of 500 °C) were
originally light blue in color. The color, originating from the heated surface, started to
change white and after about 20 minutes, stabilized at less than 1/3 of the specimens
section height (see Figure 1b). During heating, the face exposed to ambient
temperature was measured, and a steady state surface temperature of 130 °C was
obtained. When heated to 500 °C, the glass bubbles remain intact within the syntactic
foam (Figure 4a). Because of maximum temperature sensitivity of the glass bubble is
around 600 °C, any heating beyond this temperature, the glass bubbles would rupture
(Figure 4b). For the purpose of this study, heating was limited to 500 °C. The white
section is more brittle and heat resistive than the virgin syntactic foam. After heating,
the foam developed into a two layered foam structure. The front layer (heat treated
surface) is brittle and heat resistive (Figure 1c), while the back layer exhibits more

elastic and plastic properties similar to the unheated syntactic foams (Figure 1b). In



Figure 3, the results from quasi-static compression of high-temperature heat treated
specimens are given. It was observed that plateau stress and plateau region sizes

depend on the wt% of glass bubbles.

Signal A= SE1 Date :28 Mar 2013 A 0 = Signal A= SE1 Date :28 Mar 2013
WD =145 mm Vacuum Mode = High Vacuum Mag= 100K X WD=165mm Vacuum Mode = High Vacuum

Figure 4 SEM microscopy of syntactic foam
a) 500 °C Heat treated 30% GB1000 syntactic foam 500X SEM picture
b) 750 °C Heat treated 30% GB 1000 syntactic foam 1000X SEM picture

Figures 2 and 3 show that heating the specimens, from one face, does not affect the

compression properties considerably of the developed syntactic foam.

4. Conclusions

In this study, high temperature resistive silicone based syntactic foams were
developed. The effect of post high temperature heating on material properties were
investigated using quasi-static compression tests. Results obtained can be summarized
as follows:

1) A High temperature resistive layer forms when the silicone syntactic foam is
subjected to heating on one surface, 2) Foam is transformed to a two layer structure

during high temperature heating (brittle and soft layers), 3) The foam shows very good



heat resistivity with the brittle layer working as a heat barrier, 4) Compression strength
properties were not affected after heating processes, 5) The insulative properties of
silicone rubber improved with higher weight percentages of glass bubbles, 6) The
introduction of glass bubbles lowers the density of silicone rubber, 7) During
compression tests, the Plateau (crush) regions increased by introducing higher

amounts of glass bubbles improving energy absorption properties.
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Abstract

Shock tube experiments were performed to investigate the blast response of
corrugated steel sandwich panels filled with a silicone based syntactic foam filler at
room and high temperature. The syntactic foam filler was prepared by mixing a two-
part silicone with glass microspheres and its microstructure and mechanical properties
were characterized. A shock tube apparatus, capable of testing materials at
temperatures up to 900°C, was used to generate the shock loading. High speed photo-
optical methods utilizing Digital Image Correlation (DIC) coupled with optical band-
pass filters, and a high-intensity light source, were utilized to obtain the real-time
deformation at high temperature while a third camera captured side-view deformation
images. The shock pressure profiles and DIC analysis were used to obtain the impulse
imparted to the specimen, transient deflection, in plane strain and out-of-plane velocity
of the back face sheet. It was observed that using the syntactic foam as a filler
material, decreased the front face and back face deflections by 42% and 27%,
respectively, compared to an empty panel. At high temperatures the silicone based
syntactic foam decomposes into silica, a stable and non-hazardous byproduct. The
highest impulse was imparted on the specimen at room temperature and subsequently
lower impulses with increasing temperature. Due to increasing ductility in steel with
high temperature, the specimens demonstrated an increase in back face deflection, in-
plane strain and out-of-plane velocity with increasing temperatures with weld failure

being the primary form of core damage.
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1. Introduction

In this study, the response of corrugated steel sandwich structures were
evaluated during high temperature shock loading using measurements taken by high
speed optical methods. Blast loading is simulated using a shock tube apparatus
outfitted with heating nozzles to provide uniform specimen heating during
experimentation. A syntactic foam was developed to fill the corrugated structures
using silicone and 3M Glass Bubbles. The demands for tailorable multifunctional
structures are ever increasing in industries ranging from defense, automotive,
aerospace and naval. Sandwich panels offer many benefits over their monolithic
counterparts for mitigating blast energy and have the potential to act as thermal
insulators. Extensive studies have been conducted on various core configurations from
closed cell, lattice corrugation, pyramidal truss, honeycomb and composite functional
graded structures'™. Xue and Hutchinson established the benefits of sandwich panels
over monolithic plates due to compressibility of the core allowing longitudinal shear
and axial stiffness. Core response was divided into three parts: fluid structure

interaction, core compression, and beam bending .

Core response can be
characterized as stiff or soft depending on the mid-span velocity versus time curve of
the front and rear of the panel *. The back face of a stiff core will respond almost
immediately after shock impingement of the front face, whereas a soft core response
will exhibit a delay during fluid structure and core compression stages of panel
response. Filled core configurations have been investigated using a variety of filler

materials including PVC, styrene and metallic foams > ** *°. Langdon et al explored

the different failure mechanisms associated with varied core densities, showing that a
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stiffer core resists damage better than soft cores at higher impulse. Wang et al found
that functionally grading a core from soft to stiff reduced dynamic pressures felt on the
back face, limiting the damage imparted on the panels. Novel materials, such as
syntactic foams, show improved energy absorption and may even be used in some
high temperature applications *°*°. Syntactic foams are comprised of particles, used to
enhance or modify material properties, that are suspended in a matrix material ranging
from rubber or elastomer, ceramics and even metal. A recent study, by Abotula et al,
investigated the response of monolithic metallic plates subjected to shock loads at high
temperatures, but no studies have been performed on filled sandwich panels with this
combined extreme environment %. The syntactic foam filled panels exhibit a stiff core
response and superior blast mitigation compared to unfilled panels. The use of

syntactic foam also creates a good thermal barrier for temperatures up to 500°C.
2. Materials and Specimen

Syntactic foam filler

High temperature closed cell syntactic foam was produced in house using
platinum silicone resin and A20/1000 Glass Bubbles supplied by 3M Company. A
liquid silicone rubber resin (MoldStar® 30), used as a matrix material, was obtained
by mixing two supplied components (A and B) which are mixed 1A:1B by volume.
This easy to use platinum silicone features relatively low viscosities (According to
ASTM D2393/12500 cps), and vacuum degassing is not required for most
applications. The pot life of this particular silicone is 45 minutes and cure time is

about 6 hours at room temperature. By introducing the glass bubbles to ensure proper
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curing, the specimens were given a minimum of 6 days before experiments were
performed. MoldStar30® has 30A Shore hardness. Tensile strength (ASTM D412) is
2.90 MPa and modulus is 0.66 MPa. Cured Mold Star® rubber is heat resistant up to
232 °C. When glass microspheres are added to a silicone matrix, the material's density
is lowered and due to sacrificial collapse, quasi-static compression tests show energy
absorbent foam-like material behavior. Closed cells were obtained after adding glass
bubbles, at 30% by weight, obtained from 3M Company with the product code:
A20/1000. To investigate the effects of extreme temperatures on the microstructure of
syntactic foam, SEM microscopy was used. At high temperature, the silicone begins to
decompose into silica, however, Figure 1(a) shows the glass bubbles remain intact
after being heated to a temperature of 500°C. Figure 1(b) depicts syntactic foam that
was heated to 750°C at which point, the glass bubbles rupture. This verifies the

manufacturers specifications stating material properties may change at temperatures

above 600°C.

(b)

Figure 1 - SEM images of syntactic foam
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Compression tests of silicone containing 30 wt% of Glass Bubbles were
performed using an Instron 5585 material testing system. Samples were tested before
and after heat treatment to 500°C. The results of compression tests, seen in Figure 2,
show that the syntactic foam experiences plastic yielding around 1MPa. A crush
plateau is observed between a strain of 0.1 and 0.5, after which the specimen steadily
enters the densification regime reaching a final densification strain of 0.7. The post-

heated specimen observes a lower yield stress but behaves similarly to the room

temperature sample.
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Figure 2- Stress-strain curves of syntactic foam before and after heating to 500°C

1018 Steel

Steel was used to construct the sandwich panels as it is a common building
material that can be recycled with desirable material properties in both strength and
temperature resistance. The decrease in yield stress due to thermal effects can be

represented by the Johnson-Cook constitutive model, Equation 1%*. The Johnson-Cook
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parameters of 1018 steel, seen in Table 1, were used to calculate the stress strain
behavior of steel at room and elevated temperature 2. Temperature, T, was varied
between experimental temperatures of 25 °C, 330 °C and 500 °C. A plot of the
calculated stress-strain behavior for 1018 Steel at various experimental temperatures
can be seen in Figure 3. Due to the effects of thermal softening, the yield stress
decreases as temperatures increase, thus it was predicted that plastic deformation of

the face sheets will increase at elevated temperature given the same applied load.

o= (0,+Be")(1+ Clng,i)(l -TF)
1

where,

()

Table 1. Johnson-Cook parameters of Cold Rolled 1018 Steel

g, B n C &

SO m
(MPa) (MPa) s 6 (K)

560 300 032 7.6x10° 10 5x10° 055 1773
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Figure 3 - Calculated stress-strain behavior of 1018 steel at different temperatures

Sandwich panel

Each specimen is composed of two 1018 steel face sheets with the dimensions:
203.2 mm length, 50.8 mm width, and 1.6 mm thickness. The core is constructed by
using four layers of corrugated G90 galvanized steel strips, with a 29 gauge thickness,
stacked back to back. A form was created from aluminum matching the pitch and
length of the sinusoidal-shaped features of the corrugated sheets. The sheets were then
clamped between the mold which was fastened to an X-Y table of a Bridgeport milling
machine. An abrasive wheel was used to reduce sheet deformation by providing
constant contact during the cutting process. The corrugated material was cut to a width
of 50.8 mm, the same as the face sheets. The sandwich panel was assembled by
welding the outer nodes of alternating corrugated layers, forming the core, and then by
spot welding the monolithic face sheets. Table 2 lists the specifications of an empty

sandwich panel, seen in Figure 4. The filler material was extruded through the
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sandwich panel and then a speckle pattern was applied for DIC, seen in Figure 5. The

mass of a filled corrugated sandwich panel is 480 grams.

Table 2. Specifications of empty corrugated sandwich panel

Parameter Length Width Height Mass  Areal
(mm) (mm) (mm) ) Density
(kg-m™)

Value 203.2 50.8 274  377.7 36.6

Figure 4 - Corrugated Sandwich Panel

Figure 5 - Filled Corrugated Sandwich Panel
prepared for DIC
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3. Experimental Procedures

Shock tube

A shock tube apparatus, as seen in Figure 6(a), was utilized to simulate a blast
in a controlled environment. With a length of 8 m, the shock tube consists of a driver
and driven section. The high-pressure driver section and the low pressure driven
section are separated by a Mylar diaphragm. The driver section is then pressurized
using helium and pressure difference across the diaphragm is created. Once this
pressure difference reaches a critical value, the diaphragm ruptures resulting in a rapid
release of gas creating a shock wave, which travels down the tube to a convergence
section, impart dynamic loading on the specimen in the form of a planar wave front.
The muzzle diameter at the specimen end is 38.1 mm. Two pressure transducers
(PCB102A) are mounted at the end of the muzzle section, to measure the incident and
reflected pressure profiles during the experiment which are recorded using an
oscilloscope. A schematic of the muzzle dimensions and sensor locations can be seen
in Figure 6(b). The specimen was placed in the supports and positioned 3 mm away
from the end of the muzzle. The support fixtures ensured simply supported boundary
conditions with a span of 152.4 mm. To reduce the effects of friction during
deformation, the sandwich panels are positioned over a block, where contact is only on
the edge of the back face. The sandwich panel is then secured to the simple support
using Nickel-Chrome wire, with a diameter of 0.05 mm, which easily breaks during

shock loading and deformation.
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In the first part of this study, both empty and filled sandwich panels are
compared at room temperature. A single diaphragm of Mylar with a thickness of 0.127
mm was selected to generate a shock wave loading that impinged on the specimen
with an average incident peak pressure of approximately 0.35 MPa, a reflected peak
pressure of approximately 1.32 MPa, an incident shock wave speed of 741 ms™ and a
reflected shock wave speed of 203 ms™. The shock wave generated had a short rise
time (~70 ps) and showed an exponential decay period of approximately 6ms. The
final part of this study investigated the response of filled sandwich panels under three
different temperature conditions: ambient temperature, 330°C and 500°C. A single
diaphragm of Mylar with a thickness of 0.254mm (10 mil) was chosen to generate
shock wave loading with an incident peak pressure of approximately 0.44 MPa, a
reflected peak pressure of approximately 1.77 MPa, an incident shock wave speed of
820 ms™ and a reflected shock wave speed of 265 ms™. The rise time and decay period
were approximately the same as with the 5mil diaphragm, approximately 6 ms. Figure
7 shows a typical pressure profile obtained from the sensor closest to the specimen at

room temperature.
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Figure 7 - Typical Pressure Profile

High temperature shock tube setup

The shock tube was modified to heat the back face of the specimen before
shock impingement. Four propane nozzles were directed at the rear of the specimen
and calibrated to give an even temperature distribution across the surface. A 1018 steel
monolithic plate was used representing the rear face sheet of the sandwich panel,
therefore having dimensions of 203.2 mm length, 50.8 mm width, and 1.6 mm
thickness. Three thermocouples were positioned on the specimen along the vertical
axis at the center and ~38mm above and below the center and were affixed to the
monolithic plate using resistive spot welding. Figure 8 shows the heating setup with
the nozzles directed at the specimen. After adjusting the nozzle orientations and flow
rate, the temperature was recorded during calibration. A typical plot of the temperature
distribution obtained on the back face on the points of the vertical axis is shown in
Figure 9. After obtaining even heating on the back face, a filled specimen was used to
then record the temperature on the front face (loaded area) to study the transient

thermal response of the panels.
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Figure 9 - Typical Recording of Temperature

Calibration

High speed photography system

A high speed digital photography system was utilized to capture deformation
images at high frame rates during shock loading. The experimental setup, shown in
Figure 10, consisted of a back-view 3D Digital Image Correlation (DIC) system with
two synchronized Photron SA1 cameras facing the back side of the specimen to

capture full field deflection and strain information. The DIC cameras used in these
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studies operated at 50,000 frames per second at a resolution of 192x400 pixels for a
one second time duration. Subset size of 8.4 mm was selected for performing DIC
analysis and the displacement resolution = 0.02 mm. Another Photron SA1 Camera,
positioned perpendicular to the shock tube and specimen, was utilized to capture
deflection information and core response during shock loading. Though all cameras
were triggered simultaneously, the side view camera was independently controlled,
and was operated at 18,000 frames per second with a resolution of 384x752. Results
obtained from MATLAB analysis of side view images are subject to an accuracy of +

0.27 mm.

Real speckle
pattern

Shocktube

Side-view camera
system

Back-view DIC system

Figure 10 - DIC setup with side view camera

High temperature DIC system under shock loading

Heating a specimen to high temperatures poses difficult challenges when it
comes to using optical methods to capture specimen deformation. To eliminate the
influence of thermal radiation on image quality during heating, a DIC setup developed

by Abotula et al was used. A band-pass filter was used permitting the transmission of
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light in the blue wavelengths between 410-490nm. To ensure sufficient contrast for
high speed imaging, the need for a high intensity light source was realized. A Cordin,
Model 659, high energy flash lamp was used which has a maximum capacity of 1100
Joules regardless of single flash duration. The lamp was set to illuminate the specimen
for a duration of 8 ms, which gives a power of 137.5 kW. Figure 11(a) shows an
image of a specimen exhibiting the effects of black body radiation as the surface is
heated between the simple support fixture. Comparing this image to Figure 11(b), it is
observed that the use of an optical band-pass filter helps eliminate contributions of
lower frequency wavelengths, increasing contrast of the speckle pattern which is

required for DIC optical analysis.

152

(@) (b)
Figure 11 - Images of specimen without (a) and with (b)
use of filter at high temperature

4.Results and Discussion

A comparison was made between empty and filled sandwich structures,
conducted at room temperature, using a pressure of 1.25 MPa to evaluate the benefit
of using syntactic foam as a filler material. Three experiments were performed for

both the filled and unfilled cases. The full-field deformation history of the back face
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was obtained by DIC and is displayed in Figure 12. Images for the empty and filled
panels were analyzed using Vic-3d and are displayed under the same temporal
resolution and fixed contour scale for comparative purposes. The back face of the
empty specimen, displayed in Figure 12(a), shows the panel steadily deforming until
reaching maximum around t=4 ms before rebounding. The filled panel exhibits a stiff
response as it deflects less, and reaches its maximum nearly 1 ms sooner when

compared to the empty sample.

(a) IIIIII
(b) IIIIII

t=Oms t=1ms t=2ms t=3ms t=4ms t=5ms
Figure 12 - Full-field deformation history of
(a) Empty sandwich panel
(b) Syntactic foam filled sandwich panel
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To better understand core behavior, images from the side view camera were
also analyzed. In the following images, the impinging shock propagated from the left

side of each frame to the right side; both cases are compared within the same temporal
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duration, starting from an undeformed state at time t = 0. The transient behavior of the
empty corrugated sandwich panel can be seen in Figure 13(a). Fluid structure
interaction and core compression phase of core response begins immediately from
time of shock impingement. Elastic deformation of the corrugated layers can be seen
throughout the core until about t=0.4 ms when the back face begins to deform. This
shows an initial decoupled response of the core. The front face sheet deflects more
than the back face and plastic deformation and buckling of the core can be observed
near the load area. Core compression continued along the horizontal axis through the
specimen width until it reaches its maximum, after about t=2.5 ms, at which point
several welds failed due to shearing about the neutral axis. The corrugated core
adjacent to the front face experiences compression while the opposing region stretches
under tension as the back face continues to deflect. The filled panel, shown in Figure
13(b), shows minimal core compression due to the presence of the foam filler. A stiff
core response is observed as it enters global bending by t=1ms and begin to shear
along the neutral central axis at t=1.6 ms. By t=3 ms, maximum deflection is observed
as well as separation of the filler from the corrugation is observed as well as nodal

weld shearing between the core and front face sheet.
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Figure 13 - Real-time deformation of empty and filled sandwich
panels

The deflections of both front and back face sheets are plotted in Figure 14(a)
and displays a decoupled panel response as the back face dwells briefly after the front
face begins deforming . The empty sample exhibited maximum front face deflection of
16 mm by t= 4ms while the back only deflected 12.8 mm due to the compression of
the core. The filled panel, seen in Figure 14 (b) experienced a coupled core response
as the delay between face sheets was very small, around 0.25 ms. The filled sample
obtained maximum deflections of 9.4mm around t=3.4 ms. Using the syntactic foam
as a filler material, decreased the front face and back face deflections by about 42%

and 27%, respectively.
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Deflection (mm)

face deflections. Figure 15 shows the amount of core compression versus time for both
the empty and filled specimens. It can be seen that the core of the empty specimen
compresses about 5.5mm by t=2.5ms at which point the panel experiences bends

globally then rebounds. Recalling the accuracy of side-view analysis, the core
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Figure 14 - Front and back face deflection for
empty and filled sandwich panels

compression experienced by the filled panel is considered negligible.
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Figure 15- Core compression for empty and

filled sandwich panels
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One of the primary goals for creating an energy absorbent sandwich panel is
to decrease panel deflections that may be impacted by a dynamic load while trying to
keep a low areal density. The back face deflections of the filled panel, Wy;;.q, can be
scaled for comparative purposes using the mass of the empty panel as reference. The
scaled values for back face deflection, W* ¢4, Can be calculated using the expression

shown in Equation 3. The scaled deflection has been plotted in Figure 16.
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Figure 16 - Panel deflections after scaling
with respect to mass
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It can be seen that although the filler material adds more mass to the panel,
there is still a 5% reduction in back face deflection even after scaling with respect to
the mass of the empty panel. Due to its increased stiffness, the filled specimen reaches
its peak back face deflection sooner than the empty corrugation with observable core
damage being nodal weld shearing throughout the core and face sheet, followed by
global bending. The empty specimen, however, experienced buckling and bending of

independent core ligaments as well as shearing of nodal points within the core.

Permanent deformation of the corrugated steel sandwich panels was visually
inspected and documented using a digital camera. In post-mortem, the empty
specimen, shown in Figure 17(a), exhibits plastic deformation of 16.1mm for the front
face sheet and 11.9 mm for the rear face sheet. The core permanently compressed by
8% of its original width in the center of the specimen. From high speed video
playback, it was seen that welds at the interface between the core and rear face sheet
failed under tension while the specimen rebounded. Permanent core deformation is

visible, displaying compression near front face and extension near the back face.

Since the foam filler does not bond to metals, it is assumed that delamination
contributes little to energy lost in the core compared to other composite materials or
adhered structures. Due to the stiff response of the core, no localized buckling is
observed and most of the damage is attributed to weld shearing both within the core as
well as the nodes joining the corrugation to face sheets. Plastic deformation of the face
sheets is present with negligible core compression. Permanent back face deflection of

the filled panel, shown in Figure 17 (b), is 5.5mm.
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Figure 17 - Post mortem images of empty and filled comparison

The use of a syntactic foam has proven to enhance blast response of sandwich
panels, therefore, experiments were then conducted using a higher pressure of 1.77
MPa to investigate the effects high temperature has on the response of filled sandwich
panels. Experiments were conducted using temperatures of 25°C, 330°C and 500°C.
Specimens, whose back face was heated to 330°C and 500°C, were held at temperature
for 20 minutes before the application of shock loading to ensure a steady state
temperature through the thickness of the specimen. A 3mm standoff between the
specimen and the muzzle was used for each experiment to protect pressure transducers
from excessive heating. The transient thermal response of the filled sandwich panels
up to the point of shock impingement can be seen in Figure 18(a) and Figure 18(b) for

experiments conducted with back face temperatures of 330°C and 500°C respectively.
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Figure 16 - Temperature response of syntactic foam filled sandwich panels

For the 330°C case, steady state back face temperature is achieved after 7
minutes while the front face stabilizes to 150°C after 20 minutes. For the 500°C case,
it only takes 4 minutes for the back face to reach steady state while the front face also
reaches 150°C after 20 minutes. The real-time observations of the transient behavior
for syntactic foam filled sandwich structures at varying temperatures was taken using
the side view camera. For all cases, the panels exhibited a coupled response with the
back face sheet deforming soon after the front. Figure 19 shows the real-time
observations from room temperature experiments. The panel showed signs of weld
shearing by t= 0.6ms along the vertical central axis. At t=1.5ms, separation of the filler
from the corrugation is observed as well as welds shearing on both the front and back
face sheet. Maximum back face deflection occurs around t=3.64ms. No notable

buckling was observed.
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Figure 19 - Real - time deformation of samples at 25°C
At 330°C, the sandwich panel, shown in Figure 20, shows signs of bulging
from the side of the specimen as the filler material is heated. First signs of weld
shearing occurred at t=0.7ms along the vertical central axis. However, unlike the room
temperature series, more weld failures are present throughout the core, resulting in
more substantial filler material separation. Despite the additional failures within the

core, the face sheets/core interface remained intact. Maximum back face deflection

occurred around t=3.7ms then the specimen begins to rebound.
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Figure 20- Real - time deformation of samples at 330°C

The specimen heated to 500°C, seen in Figure 21, also displays material
swelling while being heated. Condensed water vapor is dispersed by the impinging
shock, causing a brief obstruction in side view images due to its illumination by the
flash, seen at t=1.5 ms. More material adjacent to the heated surface has decomposed
at this temperature causing brittle fragments to be ejected as the specimen deforms.
Maximum back face deflection occurs around 7ms and due to increased ductility, the

specimen plastically deforms without rebound.
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Figure 21 - Real - time deformation of samples at 500°C

The pressure history for each experiment is given in Figure 22(a). Since
pressures are measured from within the muzzle the profiles recorded are dependent on
the specimen deflection. Pressures decay more rapidly with elevated temperatures due
to an increase in ductility allowing specimens to deflect for longer durations of time
with higher maximum deflections. Impulse imparted to the specimen, plotted in
Figure 22(b), can be calculated by integrating the force-time data of the reflected
pressure profile. It can be seen that all panels experience the same impulse until about
t=1ms. The room temperature specimen obtained a maximum impulse of 3.4 Ns.
When the temperature increased from room temperature to 500°C, the maximum

impulse imparted decreased by approximately 15% (from 3.4 Ns to 2.9 Ns).
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Figure 22 - Pressure profile and impulse plots for temperature experiments

The mean mid-point deflection of the back face were obtained by DIC and
plotted in Figure 23(a). For all experiments, the back face starts to deflect around
0.2ms after the shock impinges the front face of the panel. The maximum deflection
for the room temperature experiments was 14.7mm, occurring at t=3.8ms. The
experiments conducted at 330°C, behave similarly to room temperature. Panel
stiffness was not affected at this temperature as the material property of steel remained
unaffected with such a small temperature gradient through the specimen thickness.
Specimens heated to 330°C and 500°C showed maximum deflections of 15.4 mm and

37mm at 3.7ms and 8ms, respectively.

The average in-plane strain-rate observed in these experiments was 10 s .
Using the Johnson-Cook parameters listed in Table 2, the stress—strain curves of 1018
Steel were constructed for 25 °C, 330 °C, 500 °C temperatures at a strain-rate of 10
st From these stress—strain curves, it was determined that the flow stress at 330 °C

had decreased by 42 % when compared to room temperature and as a result, the mid-

39



point back-face deflection had increased by 5 %. In comparison to room temperature,
the value of flow stress at 500 °C decreased by 54%. Due to a significant decrease in
flow stress values at these temperatures, the back-face deflections at 500 °C showed
an increase of 152%. Calculating the stiffness as a function of temperature is more
complex with sandwich structures compared to monolithic plates. While heating
occurs on one face, there is a gradation of the elastic modulus of both the steel coupled
with property changes in syntactic foam through the thickness of the specimen which
changes the stiffness of the structure. As temperatures increase, the stiffness of the
panel decreases towards the heated surface. At higher temperatures, however, the
overall structural stiffness and strength of the welds are decreased, causing failure on
both front and back face sheets, resulting in an increase in deflections. It is noted that
though the 500°C specimens exhibited extreme deflections, the samples never ejected

from the simple supports.

The out-of-plane velocities are plotted in Figure 23(b) showing substantial
increase for the 500°C when compared to the room and 330°C experiments. As steel
becomes more ductile, the resistance to bending decreases, allowing the panel to
deform at a higher rate. For the experiments conducted at 25°C and 330°C the max out
of plane velocity occurred at 1 ms and were within 2% of each other at 7.32 m/s and
7.46 m/s, respectively. The specimens then reach a point of maximum deflection, and
begin to rebound at t=4 ms. For the 500°C case, the out-of-plane velocity reached
10.62 m/s, occurring around t=1.3 ms, 46% higher compared to room temperature, and

then decreases until the end of the event.
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Figure 23 - Out-of-plane deflection and velocity plots for temperature
experiments

The in-plane-strain (eyy) information, displayed in Figure 24, exhibited an
increasing trend as temperatures increased. After 0.2ms, the back face for all
specimens showed significant bending, resulting in higher in-plane strains (gyy). At
room temperature, the maximum in-plane strain of the specimens was around 0.39% at
t=2.9 ms. For the 330°C case, a maximum in-plane strain of 0.51% was observed at
t=4.1 ms. For the 500°C case, the in-plane strain reached 0.6% and continued to
increase until the end of the event. In comparison to the room temperature
experiments, the specimens at 330°C and 500°C showed an increase in &yy 0f 31% and

54%, respectively.

41



0.7
_ A
0.6 MM“‘M‘MAA‘AA“
i A9 20,
AO ° 4 ‘::e:& “ ...'...o.'...o.' o
OO% 4 4 AAA o° 4
= S e T e
£0.3- ."A‘ o - ""'_
g A '-.'
o021 o
X -'. m 25°C
o
014 o e 330°C
] n.‘l-' A 500°C
00 n T T T T T T T T T T T
0 1 2 3 4 5 6
Time (ms)

Figure 24 - In-plane strain (gyy) for temperature
experiments

Permanent deformation of the corrugated steel sandwich panels was visually
inspected and documented using a digital camera. In post-mortem, the samples from
room temperature experiments, pictured in Figure 25, shows front face separation
along with separation of filler material. Weld shearing is present, primarily along the

central axis with filler material separating from the corrugated core. Permanent plastic

deformation of the back face sheet is 8.5 mm.

m——— g
.

Figure 25 - Post-mortem image of 25°C specimen
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Samples from 330°C, seen in Figure 26, shows higher plastic deformation
when compared to room temperature. Core failure due to weld breakage is more
prominent. It was noted that the filler material showed a white discoloration 3 mm into
the panel originating from the heated face. This white region is a result of the
decomposition of silicone leaving silica, carbon dioxide and carbon monoxide as a
byproduct of combustion. Permanent plastic deformation of the back face sheets is 12

mm.

Figure 26- Post-mortem image of 330°C specimen

The specimen heated to 500°C, shown in Figure 27, also shows a decomposed
layer of the filler material measuring at a depth of roughly 15mm into the panel
originating from the heated face. The post mortem specimen shows significant core
failure, major deflection and separation of both face sheets. The corrugated core
appears to retain a majority of its filler material. Due to decreased stiffness as a result
of weld breakage along the face sheets, inner core separation is present. Minor core
buckling can be seen in the core near the load area due to the extreme panel
deformation and front face sheet separation. Plastic deformation of the back face sheet

is measured to be 41 mm.
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Figure 27- Post-mortem image of 500°C specimen

5. Conclusions

A series of experiments were conducted to investigate the shock resistance of
corrugated sandwich panels with and without a syntactic foam filler as well as the
response of syntactic foam filled panels to shock loading at room and high

temperatures. The following is the summary of the results:

1. The syntactic foam filled corrugated panels show superior blast mitigation
compared to unfilled panels. The presence of syntactic foam decreased back
face deflections by 27% given the same applied pressure. The filled panels
exhibit a stiffer core response in comparison to unfilled panels that

demonstrate core compression and softer response
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2. Syntactic foam maintains its structural integrity up to 500°C as glass bubbles
do not rupture. Though the yield stress is slightly lower at higher temperature,
the material properties are not significantly affected.

3. When heated, the panels maintained a minimum temperature difference of
180°C between the front and back face (25.4 mm). This gradient grew larger
with increasing temperature. A temperature gradient of nearly 350°C was
observed for 500°C experiments.

4. The maximum back face deflection of specimens at 500°C was approximately

152% higher than those at room temperature.

5. The maximum in-plane-strain (eyy) showed an increase of 54% as

temperatures increased from room temperature to 500°C.

6. Due to decreased ductility of steel with increasing temperature, the integrity of
the welds was weakened at 500°C. Coupled with a gradation of elastic modulus
through the panel thickness, the stiffness decreased toward the heated surface

resulting in larger deformation.
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Abstract

The dynamic behavior of mortar filled corrugated sandwich structures heated
to temperatures up to 900°C was studied using a shock tube apparatus. High speed
photo-optical methods utilizing Digital Image Correlation (DIC) coupled with optical
band-pass filters, and high-intensity light source, were utilized to obtain the real-time
deformation at high temperature while a third camera captured side-view deformation
images. The shock pressure profiles and DIC analysis were used to obtain the impulse
imparted to the specimen, transient deflection, in plane strain and out-of-plane velocity
of the back face sheet. It was observed that cement based mortars are thermally
resilient enough to be used as a filler material for high temperature applications. The
highest impulse was imparted on the specimen at room temperature and subsequently
lower impulses with increasing temperature. A temperature difference of at least
300°C was observed across the thickness of the specimen for all heating conditions.
Due to increasing ductility in steel with high temperature, the specimens demonstrated
an increase in back face deflection, in-plane strain and out-of-plane velocity with

increasing temperatures with weld failure being the primary form of core damage.
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1. Introduction

The dynamic response of corrugated steel sandwich structures filled with
mortar was investigated using shock tube apparatus and high speed optical methods.
The shock tube apparatus outfitted with heating nozzles to provide uniform specimen
heating during experimentation. Mortar is commonly found in building material
comprised of cement and sand aggregate. It is able to withstand high temperatures and
IS cost effective compared to more exotic materials. Sandwich panels offer many
benefits over their monolithic counterparts for mitigating blast energy and have the
potential to act as moderate heat barriers. Extensive studies have been conducted on
various core configurations from closed cell, lattice corrugation, pyramidal truss,
honeycomb and composite functional graded structures **. Xue and Hutchinson
established the benefits of sandwich panels over monolithic plates due to
compressibility of the core allowing longitudinal shear and axial stiffness. Core
response was divided into three parts: fluid structure interaction, core compression,
and beam bending™. Core response can be characterized as stiff or soft depending on
the mid-span velocity versus time curve of the front and rear of the panel®. The back
face of a stiff core will respond almost immediately after shock impingement of the
front face, whereas a soft core response will exhibit a delay during fluid structure and
core compression stages of panel response. Filled core configurations have been
investigated using a variety of filler materials including PVC, styrene and metallic
foams, syntactic foams and cements ***°. Langdon et al explored the different failure
mechanisms associated with varied core densities, showing that a stiffer core resists

damage better than soft cores at higher impulse. A recent study, by Abotula et al,
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investigated the response of monolithic metallic plates subjected to shock loads at high
temperatures, and Sohel et al conducted static experiments using Steel-Concrete-Steel
sandwich structures for marine and off-shore structures **'®. There have been very few
studies investigating the blast response of heated sandwich panels to such extreme
temperatures. The material response of concrete and mortars are of great interest in
civil applications. There have been several studies investigating the effects of extreme
temperature on the strength of concretes and mortars with different mixture
formulations*®®. Results from these investigations show a decrease in compressive
strength as temperatures increase with variations depending on material composition.
Despite a decrease in strength, cements and mortars are resilient enough to withstand
extreme temperatures, providing a cost effective option for a filler material while

maintaining superior blast resistance in temperatures up to 900°C.
2. Materials and Specimen

1018 Steel

Steel was used to construct the sandwich panels as it is a common building
material that can be recycled with desirable material properties in both strength and
temperature resistance. The decrease in yield stress due to thermal effects can be
represented by the Johnson-Cook constitutive model, Equation 1?°. The Johnson-Cook
parameters of 1018 steel, seen in Table 1, were used to calculate the stress strain
behavior of steel at room and elevated temperature?’. Temperature, T, was varied
between experimental temperatures of 23°C, 500°C, 700°C and 900°C. A plot of the
calculated stress-strain behavior for 1018 Steel at various temperatures can be seen in

Figure 1. Due to the effects of thermal softening, the yield stress decreases as
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temperatures increase, thus it was predicted that plastic deformation of the face sheets

will increase at elevated temperature for a given load.
£
(o, + BeM(1 + Clng,—)(l -THo
o

1)
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)

Table 1. Johnson-Cook parameters of Cold Rolled 1018 Steel
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Figure 1 - Stress-strain behavior of 1018 steel at various experimental temperatures
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Sandwich panel

Each specimen is composed of two 1018 steel face sheets with the dimensions:
203.2 mm length, 50.8 mm width, and 1.6 mm thickness. The core is constructed by
using four layers of G90 corrugated galvanized steel strips, with a 29 gauge thickness,
stacked back to back. A form was created from aluminum matching the pitch and
length of the sinusoidal-shaped features of the corrugated sheets. The sheets were then
clamped between the mold which was fastened to an X-Y table of a Bridgeport milling
machine. An abrasive wheel was used to reduce sheet deformation by providing
constant contact during the cutting process. The corrugated material was cut to a width
of 50.8 mm, the same as the face sheets. The sandwich panel was assembled by
welding the outer nodes of alternating corrugated layers, forming the core, and then by
spot welding the monolithic face sheets. Table 2 lists the specifications of an empty

sandwich panel, seen in Figure 2.

Table 2. Specifications of empty corrugated sandwich panel

Parameter Length Width Height Mass  Areal
(mm) (mm) (mm) 9) Density
(kg-m™)

Value 203.2 50.8 274 377.7 36.6
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Figure 2 - Corrugated Sandwich Panel

Mortar

Mortar is a very common building material used to bind construction blocks
such as: brick, stone and cinderblocks. It is a paste comprised of cement and sand
aggregate which cures and can be used to fill cracks and gaps in structures.
Quickrete® Mortar Mix (No. 1102) was used to fill the sandwich structures in this
study and complies with ASTM C 270 property requirements as a Type N mortar.
Yazici et al found that the relative compressive strength of ordinary portland cement
based mortars decreased to 62%, 48%, and 35% after being exposed to temperatures
of 450°C, 600°C, and 750°C respectively?>. Considering the minimum compressive
strength for this product is listed by the manufacturer as 5.2 MPa, then even at 750°C,
the compressive strength will drop to 1.82 MPa which is above the peak target
pressure of 1.7 MPa used in experiments. Combined with the stiffness of the sandwich
panel, it is assumed that the compression of the mortar itself will be minimal,
therefore, no further material characterization was performed. The mortar was
prepared by thoroughly mixing 250 grams of Quikrete Mortar Mix with 50 grams of

water. The mix was then poured into the core of the sandwich panel leaving an empty
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region, two cells in depth, adjacent to the front face sheet. This was done to promote
core compression while maintaining an barrier of air to help facilitate insulation.
While the mixture was solid within a day, it was allowed to set for a week before
experimentation. The mass of a filled corrugated sandwich panel is 617 grams. An

image of the filled corrugated structure can be seen in Figure 3.

Figure 3 - Image of mortar filled sandwich panel

3. Experimental Procedures

Shock tube

A shock tube apparatus, as seen in Figure 4(a), was utilized to simulate a blast
in a controlled environment. With a length of 8 m, the shock tube consists of a driver
and driven section. The high-pressure driver section and the low pressure driven
section are separated by a Mylar diaphragm. The driver section is then pressurized
using helium and pressure difference across the diaphragm is created. Once this

pressure difference reaches a critical value, the diaphragm ruptures resulting in a rapid
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release of gas creating a shock wave, which travels down the tube to a convergence
section, impart dynamic loading on the specimen in the form of a planar wave front.
The muzzle diameter at the specimen end is 38.1 mm. Two pressure transducers
(PCB102A) are mounted at the end of the muzzle section, to measure the incident and
reflected pressure profiles during the experiment which are recorded using an
oscilloscope. A schematic of the muzzle dimensions and sensor locations can be seen
in Figure 4(b). The specimen was placed in the supports and positioned 3 mm away
from the end of the muzzle. The support fixtures ensured simply supported boundary
conditions with a span of 152.4 mm. To reduce the effects of friction during
deformation, the sandwich panels are positioned over a block, where contact is only on
the edge of the back face. The sandwich panel is then secured to the simple support
using Nickel-Chrome wire, with a diameter of 0.05 mm, which easily breaks during

shock loading and deformation.

Transducers @
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Shock Tube Muzzle L

Specimen

(a) Shock Tube (b) Detailed Dimensions of Muzzle
Figure 4 - Shock Tube and Muzzle Detail

A single diaphragm of Mylar with a thickness of 0.254 mm was selected to
generate a shock wave loading that impinged on the specimen with an average

incident peak pressure of approximately 0.5 MPa, a reflected peak pressure of
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approximately 1.77 MPa, an incident shock wave speed of 821 ms™ and a reflected
shock wave speed of 200 ms™. The shock wave generated had a short rise time (~70
us) and showed an exponential decay period of approximately 6ms. The response of
filled sandwich panels were investigated at room temperature and under three different
high temperature conditions: 500°C, 700°C and 900°C. Figure 5 shows a typical

pressure profile obtained from the sensor closest to the specimen at room temperature.
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Figure 5 - Typical Pressure Profile

High temperature shock tube setup

The shock tube was modified to heat the back face of the specimen before
shock impingement. Four propane nozzles were directed at the rear of the specimen
and calibrated to give an even temperature distribution across the surface. Figure 6(a)
shows an image of the heating setup with the nozzles directed at the specimen. A 1018
steel monolithic plate was used representing the rear face sheet of the sandwich panel,
therefore having dimensions of 203.2 mm length, 50.8 mm width, and 1.6 mm
thickness. Three thermocouples were positioned on the specimen along the vertical
axis at the center and ~38mm above and below the center and were affixed to the

monolithic plate using resistive spot welding. After adjusting the nozzle orientations
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and flow rate, the temperature was recorded to calibrate the temperature across the

specimen, seen in Figure 6(b).

A typical plot of the temperature distribution obtained on the back face on the
points of the vertical axis are shown in Figure 7. After obtaining even heating on the
back face, a filled specimen was used to then record the temperature on the front face

(loaded area to study the transient thermal response of the panels.

Propane heating nozzles

Specimen Loading fixtures wrapped
(51mm wide) with a heat shield b)
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Figure 6 - Heated Shock Tube Setup and Heating Calibration
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Figure 7 - Typical recording during temperature
calibration
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High speed photography system

A high speed digital photography system was utilized to capture deformation
images at high frame rate during shock loading. The experimental setup, shown in
Figure 8, consisted of a back-view 3D Digital Image Correlation (DIC) system with
two synchronized Photron SA1 cameras facing the back side of the specimen to
capture full field deflection and strain information. The DIC cameras used in these
studies operated at 50,000 frames per second at a resolution of 192x400 pixels for a
one second time duration. Subset sizes between 8-12 mm were used for performing
DIC analysis to reduce decorrelation for some high temperature experiments. The
displacement resolution of this technique is+ 0.02 mm. Another Photron SAl
Camera, positioned perpendicular to the shock tube and specimen, was utilized to
capture deflection information and core response during shock loading. Though all
cameras were triggered simultaneously, the side view camera was independently
controlled, and was operated at 18,000 frames per second with a resolution of
384x752. Results obtained from MATLAB analysis of side view images are subject to
an accuracy of £ 0.27 mm.

Real speckle
pattern

Shocktube

Side-view camera
system

Back-view DIC system

Figure 8 - DIC setup with side view camera
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High temperature DIC system under shock loading.

Heating a specimen to high temperatures poses difficult challenges when it
comes to using optical methods to capture specimen deformation. To eliminate the
influence of thermal radiations on image quality during heating, a DIC setup
developed by Abotula et al was used. A band-pass filter was used permitting the
transmission of light in the blue wavelengths between 410-490nm. To ensure
sufficient contrast for high speed imaging, the need for a high intensity light source
was realized. A Cordin, Model 659, high energy flash lamp was used which has a
maximum capacity of 1100 Joules regardless of single flash duration. The lamp was
set to illuminate the specimen for a duration of 8 ms, which gives a power of 137.5
kW. Figure 9(a) shows an image of a specimen exhibiting the effects of black body
radiation as the surface is heated between the simple support fixture. Comparing this
image to Figure 9(b), it is observed that the use of an optical band-pass filter helps
eliminate contributions of lower frequency wavelengths, increasing contrast of the
speckle pattern which is required for DIC optical analysis.

51 mm
<>

(a) (b)
Figure 9 - Images of specimen without (a) and with (b) use of filter at high
temperature
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4. Results and Discussion

Before blast loading, the transient thermal response of the panels was recorded
with three thermocouples placed in the same location as in the temperature calibration.
Small variations were noted across the length of the specimen, the warmest
temperatures usually recorded by the center thermocouple. Figure 10 shows a typical
temperature history plot comparing the average front face and back face temperatures
for an experiment over a duration of 20 minutes. The final temperatures and times
required for the front face (FF) and back face (BF) to reach steady state have been

recorded in Table 3.
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Figure 10 - Typical temperature history plot for front and back face during heating
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Table 3. Results of temperature measurement and times to reach steady state

BF Temp BF Times; FF Temp FF Times

cC) (min) cC) (min)
500°C 512 + 15 8 204 +8 20
Experiments
700°C 716 + 15 5 226 + 15 16
Experiments
200°C 874 + 28 25 260 + 16 16

Experiments

Mortars are not usually considered insulative with a thermal conductivity of
1.27 WIim-K, but compared to steel with a thermal conductivity of 52 W/m-K, the
main form of heat transfer is likely to be via conductive thermal bridging of the steel
corrugated core. Using the temperature history for each series, the difference in face
sheet temperature is plotted in Figure 11, using the expression AT =Ty-T;, where Ty
and T are back face and front face temperatures, respectively. AT peaks after
instantaneous heating of the back face and gradually tapers as heat is transferred
through the core to the front face until it plateaus reaching steady state. It can be seen
that as back face temperatures increase, the steady state difference in temperature also
improves. The panels maintain a gradient of at least 300°C through the thickness and

an even larger gradient with increasing temperatures.
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Figure 17- Temperature difference through thickness of specimens

The pressure history for each experiment is given in Figure 12. Since pressures
are measured from within the muzzle the profiles recorded are dependent on the
specimen deflection. Pressures decay more rapidly with elevated temperatures due to
an increase in ductility allowing specimens to deflect for longer durations of time with
higher maximum deflections. Impulse imparted to the specimen, plotted in Figure 13,
can be calculated by integrating the force-time data of the reflected pressure profile.
Since the overall time period of reflected pressure profile was longest at room
temperature, the room temperature specimen obtained a maximum impulse of 5.6 Ns.
When the temperature increased from room temperature to 900°C, the maximum

impulse imparted decreased by approximately 56% (from 5.6 Ns to 3.1 Ns).
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Figure 12 - Pressure profiles of mortar filled sandwich panels
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Figure 13 - Impulse of mortar filled sandwich panels

The mean mid-point deflection of the back face for different temperatures were

obtained by DIC and plotted in Figure 14. All specimens behave similarly until about
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t = 1 ms. The maximum deflection for the room temperature specimen was 5.2mm ,
occurring at t = 2.8 ms began to reverberate. For the same incident pressure loading,
the specimens at higher temperatures continued to deform for a longer duration of time
due to thermal softening and lower values of flow stress. At 900°C, the specimen
deformed for twice the duration as the room temperature sandwich panel. Specimens
heated to 500°C , 700°C , and 900°C showed a maximum deflections of 10.6 mm,

18.2 mm, and 20.7 mm at 3.6 ms, 5.6 ms and 5.6ms, respectively.
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Figure 14 - Mid-point back face deflection of mortar filled sandwich panels

The average in-plane strain-rate observed in these experiments was 10 s
Using the Johnson-Cook parameters listed in Table 1, the stress—strain curves of 1018
Steel were constructed for 23 °C, 500 °C, 700 °C and 900°C with a strain-rate of
10 s '. From these stress—strain curves, it was determined that the flow stress at 500 °C
had decreased by 54 % when compared to room temperature and as a result, the mid-

point back-face deflection had increased by 104%. In comparison to room
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temperature, the value of flow stress at 700 °C decreased by 66% increasing
deflections by 250%. Flow stress for 900°C decreases by 76% resulting in an
increased back face deflection of nearly 300%. Calculating the stiffness as a function
of temperature is more complex with sandwich structures compared to monolithic
plates. While heating occurs on one face, there is a gradation of the elastic modulus of
steel coupled with property changes of mortar through the thickness of the specimen
which changes the stiffness of the structure. It is noted that though the 900°C
specimens exhibited extreme deflections, the samples never ejected from the simple

supports.

The out-of-plane velocities are plotted in Figure 15 showing an increasing
trend with increasing temperature. As steel becomes more ductile, the resistance to
bending decreases, allowing the panel to deform at a higher rate. The room
temperature experiments reached a maximum velocity of 3m/s at t = 0.7 ms before
slowing and rebounding shortly after t = 3 ms. The specimens heated to 700°C and
900°C both exhibited a 100% increase in velocity reaching 6 m/s after t = 2 ms and

rebounds after t = 6ms.
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Figure 15 - Mid-point out-of-plane velocity of mortar filled sandwich panels

The in-plane-strain (eyy) information, displayed in Figure 16, exhibited an
increasing trend as temperatures increased. After 0.2ms, the back face for all
specimens showed significant bending, resulting in higher in-plane strains (gyy). At
room temperature, the maximum in-plane strain of the specimens were around 0.14%
at t = 2.3 ms. For the 500°C case, a maximum in-plane strain of 0.31% was observed
at t = 3.0 ms. For sandwich panels heated to 700°C, in-plane strain reached a
maximum of 0.53% by t = 6.0 ms. For 900°C experiments, the maximum in-plane
strain was shown to be nearly 1% and continued to increase until the end of the event.
In comparison to the room temperature experiments, the specimens at 500°C, 700°C
and 900°C showed an increase in &y, 0f 121%, 278%, and 614%, respectively. It is
important to disclose that the strain resolution of the DIC technique is 200 micro-strain

which translates to + 0.02% strain.
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Figure 16 - Mid-point in-plane strain of mortar filled sandwich panels

The real-time observations of the transient behavior for mortar filled sandwich
structures under shock loading for different temperatures are shown in Figure 17. The
shock wave is propagating from left side of the image to the left side, causing
deformation in the specimens. Time t = 0 ms corresponds to the beginning of the event
where the shock wave impinged on the specimen. The time scale is kept the same to
provide a comparison of panel response up to the point of maximum deflections
obtained by the 900°C experiments. The images were later used to calculate the mid-
point deflections in the specimens front face. At room temperature, 500°C and 700°C,
the specimens experience little core compression, however, the 900°C experiments

showed more significant weld failure about the neutral axis, reducing stiffness and
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allowing further deformation of core ligaments.
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Figure 17 - Real-time side-view deformation images of mortar filled sandwich panels
at different temperatures
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From the side view analysis, there was evidence to suggest extremely minor
core compression increasing at higher temperatures, up to 1.5 mm. Recalling the
displacement resolution, the deviation was large enough for the difference in core

compression between samples to be considered negligible.

To understand the amount of work done on specimens by shock loading, it is
necessary to evaluate the deflection-time data from high speed side view images and
the force-time data collected by pressure transducers “%. This can be used to the
evaluate the amount of energy used for panel deformation at different temperatures. It
is assumed that the pressure pulse delivered by shock loading is planar, the work done
on specimen can be approximated by integrating the pressure-deflection profile for
every point inside the shock loading area using Equation 3, plotted in Figure 18. This
energy imparted into the specimen is equal to the summation of energies used in panel

response outlined in found in Equation 4.

Especimen = % (j Preflected (t) * dldeformation) ds
Sshock tube
©)
where
Especimen = Edeformation + Ekinetic + Edissipated
(4)
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Figure 18 - Deformation energy of mortar filled sandwich panels at various
temperatures

The work done on samples for experiments conducted at room temperature and
500°C showed maximum of 8.2 J and 11.0 J, respectively. A maximum of 12.7 J was
observed for both the 700° and 900°C experiments. The work done for the two highest
temperatures was approximately 55% higher than at room temperature. This indicates
that the specimens at higher temperature absorbed significantly more energy during
the shock loading process. Even though the impulse was lower at higher temperatures,
the specimen absorbed more energy, resulting in higher deflections. Due to increased
ductility within the structure as temperatures increase, bending stiffness decreases.
This allows for greater deflections for a given shock load, resulting in higher work
done on the specimen during fluid structure interaction. With a 35% difference in flow
stress of steel between 700°C when and 900°C, and with the presence of increased

core damage in form of weld failure, the rear out-of-plane deflection was 12% higher
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given the same amount of energy used for specimen deformation at 900°C. This can

also be observed from post-mortem images.

Permanent deformation of the corrugated steel sandwich panels was visually
inspected and documented using a digital camera and is shown in Figure 18. In post-
mortem, the samples from the room temperature experiments show no core damage as
all welds are intact and there is no noticeable core buckling. Some of the mortar filler
appears to have shifted slightly as the front and back face are permanently deformed
by 3 mm. For the 500°C experiments, a very few broken welds are present and are
mostly located between the neutral axis and rear face sheet. Permanent plastic
deformation of the rear sheet was 7 mm. The 700°C and 900°C experiments show the
most core damage and plastic deformation. As temperatures increase, the flow stress
decreases so drastically that the rear face sheet and corrugated layers become more
ductile, effectively reducing the relative stiffness and compromising weld strength.
For these temperatures, the brittle filler experienced cracking and portions were
ejected as welds breakage and localized bending of the core ligaments allowed core
separation. The permanent back face deflections for the 700°C and 900 °C are

17 mm and 20 mm, respectively.
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Figure 19 -Post-mortem images of mortar filled sandwich panels
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5. Conclusions

A series of experiments was conducted to investigate the shock resistance of
corrugated sandwich panels filled with mortar shock loading at room and high

temperatures. The following is the summary of the results:

1. Mortar is thermally resilient and can be used as a filler material for sandwich

panels to improve blast mitigation.

2. When heated, the panels maintained a minimum temperature difference of
300°C between the front and back face (25.4mm).This gradient grew larger
with increasing temperature. A temperature gradient of nearly 620°C was
observed when the back face was heated to 900°C exhibiting good thermal

qualities while maintaining a similar blast performance as 700°C experiments.

3. The maximum back face deflection of specimens at 900°C was approximately
300% higher than those at room temperature.

4. The impulse imparted into the specimen decreased as temperatures increased
from room temperature to 900°C.

5. The maximum in-plane-strain (eyy) showed an increase of 614% as
temperatures increased from room temperature to 900°C.

6. The amount of deformation energy aborbed by specimens increased by 55% as

temperatures increased from room temperature to 900°C.
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CHAPTER 4

CONCLUSION AND RECOMMENDATIONS

Conclusions

This research experimentally investigated the properties of a polymer based
syntactic foam as well as mortar for use as a filler material in corrugated steel
sandwich structures. The objective of this project was to develop an understanding of
the effects that extreme temperatures have on the blast response of filled corrugated
sandwich panel. This in turn will provide a basis to further the development of
tailorable multifunctional structures which could be used in many applications where
it is necessary to mitigate blast energy and insulate persons or objects from extreme
temperatures. The relevant findings from the present study are presented below.

1. A syntactic foam was developed using silicone and glass bubbles. The
insulative properties of silicone rubber improved with higher weight
percentages of glass bubbles do to the additional voids the hollow
microspheres create and thus also lowering the density of the material. It was
found that a layer forms when the silicone syntactic foam is subjected to
heating on one surface, resistant to high temperatures. This layer transforms
the material into a two layer structure during high temperature heating by
creating a brittle and soft layer.

2. The foam shows very good heat resistivity with the brittle layer working as a
heat barrier, as this segment of decomposed silicone leaves behind silica as

well as carbon dioxide and carbon monoxide after combustion. Syntactic foam
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maintains its structural integrity up to 500°C with glass bubbles remaining
intact.

. The effect of post high temperature heating on material properties were
investigated using quasi-static compression tests. The compression strength
properties were not affected after heating processes, aside from a slight drop in
yield stress. During compression tests, stress-strain plots show an increase in
the crush plateau by introducing higher amounts of glass bubbles improving
energy absorption properties compared to virgin silicone.

. When investigating the shock resistance of corrugated sandwich panels with
and without a syntactic foam filler, it was found that syntactic foam filled
sandwich panels exhibited superior mitigation compared to unfilled panels.
The filled panels exhibit a stiffer core response in comparison to unfilled
panels that demonstrate core compression and softer response

During heating, the front face temperatures of syntactic foam filled panels
never exceeded ~150°C and a temperature difference of at least 180°C and
greater was observed for both heated experiments, highlighting the thermal
barrier characteristics of syntactic foams. The syntactic foam stiffened the core
despite gradation of elastic modulus through the specimen width, reducing
deflection at 330°C. Integrity of the welds were weakened at 500°C, decreasing
the panels overall stiffness causing larger deformation

Mortar proved to be thermally resilient and remains intact at extreme
temperatures. It is prepared easily and can be used as a filler material for

sandwich panels to improve blast mitigation.
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7. When heated, the mortar filled panels maintained a minimum temperature
difference of 300°C between the front and back face (25.4mm).This gradient
grew larger with increasing temperature. A temperature gradient of nearly
620°C was observed when the back face was heated to 900°C exhibiting good
thermal qualities while maintaining a similar blast performance as 700°C

experiments.

8. Due to increasing ductility in steel at elevated temperatures, both the syntactic
foam and mortar filled specimens demonstrated an increase in back face
deflection, in-plane strain and out-of-plane velocity with increasing

temperatures.

Recommendations

The current investigation has provided a basis for experimentally investigating
the dynamic response of filled sandwich structures to high temperature blast loading.
There, however, remains a significant body of work to be completed in this area to
better understand the use of fillers and their insulative properties on the performance
of sandwich structures. This work includes further experimental studies as well as
computational studies. The proposed potential future projects are summarized as
follows:

1. Develop a method to quantify the energy absorbed by the core due to failure
and dissipation. MATLAB code exists to calculate the energy imparted by

gasses, deformation energy and Kinetic energy for a monolithic plate. These
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calculations are contingent on the knowledge of the muzzle inner diameter.
The stress field acting on the back face, the wave speed and inertia effects
through this complicated core structure are unknown. This may require the
generation of a finite element model which would then require validation and
knowledge of simulation of welds.

Conduct well designed experiments exploring the thermal properties of
syntactic foam with different percentages of glass bubbles and cenospheres.
The addition of cenospheres may further increase the heat resistivity while
introducing more local stress concentrations to promote sacraficial collapse of
micrspheres. This will create a more energy absorbant insulative syntactic
foam with expanded tailorability.

Perform quasi-static experiments on empty corrugated sandwich panels and
find a way to model weld strength using finite element methods. Once the
stiffness of the panel is assertained, a model can be created and simulations can
be conducted using the pressure profiles gathered in experimentation. If the
model is validated, with the experimental results, a variety of simulations can
be conducted with different fillers, reducing the time required to carry out
preliminary experiments. All material properties for fillers will need to be
identified to apply to the simulation to ensure proper transient thermal response
to the structure.

Explore funtional grading the filler material used in sandwich stuctures by
greatly varrying the percentage of suspended particles. In past studies, Gardner

et al. determined the most energy absorbant core configurations is graded soft
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to firm from the direction of shock front. Using a rigid cement/morter on the
back surface that can withstand extreme temperatures while grading the
intermediate cells of the core with softer material may further reduce back face
deflections.

Conduct experiments heating the front, shock impinging, surface and compare
to the results of current research or simulation. This will investigate sandwich
panel response with the temperature dependant gradation of elastic modulus in
a different configuration; grading the structure opposite to what was tested in
the current study. To fully understand the temperature distribution within the
panel, imbedding thermocouples within the core might provide valuable
information. With this information, boundary conditions can be established and
the heat transfer through the specimen can be modeled with programs like
COMSOL.

Numerically investigating the relation between the decrease in flow stress due
to elevated temperature and the stiffness of the core with a gradation of elastic
modulus throughout the panel thickness will help predict panel deflection as a
function of temperature. M.H. Sadd has investigated plane non-homogeneous
elasticity problems with various boundary conditions basing solution schemes
using the Airy stress function, however, since dynamic loads applied by the
shock tube usually induce bending moments that exceed the yield stress of the
material, a deep understanding of plasticity will be required to formulate
displacement approximation for complex, non-monlithic, beam bending

problems.
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7. Utilizing different sandwich structure construction. The use of perforated face
sheets and corrugated layers may help diffuse blast energy by modifying the
total area in which the shock impinges the speimen. If using a visco-elastic
material to partially fill the panel, during core compression, energy may be
dissipated by forcing the filler to 'flow' into empty cells which might further
reduce deflections. Functionally grading the structure based on perforation or
fill pattern can be useful in tailoing structures. Improving upon the bonding
method for constructing sandwich panels will also prove beneficial. If brazing
or similar bonding process were utilized, creating a permanant, high
temperature resistant, adhesion across the specimen width, it is predicted that

the stiffness of the panel will improve.
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APPENDICES

APPENDIX A: PROCEDURE FOR MANUFACTURING PANELS

Preparing Corrugation

The test samples are sandwich panels consisting of a core and two face sheets. The
core is comprised of four corrugated sheets, stacked in alternating front/back-face
orientation. The galvanized steel corrugated sheets, as a raw material, is a commonly
found building material and was delivered by Mechanical Metals, Inc. in Newton,
Pennsylvania. For a visual reference, please refer to Figure 1. The sheets used in
fabrication of this series of specimens were pre-trimmed to a rough dimension of

approximately 60.96 centimeters (24 inches) by 91.44 centimeters (36 inches). The

specifications of the corrugation are as follows: 29 gauge, 31.75mm x 6.35mm (1& in

\

1. .
X in), galvanized.

Figure 1. - Corrugated sheet as delivered from Mechanical Metals, Inc.
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Four sheets, layered one on top of the other, were trimmed along the direction of the
peaks/valley of the corrugation such that six raised features of the corrugation, and
subsequently seven lower features. This resulted in three stacks of four corrugation
layers with a width of 19.05 centimeters (7.5 inches) and the remaining length of

91.44 centimeters (36 inches).

In the past works, some corrugated sandwich structures were created by cutting the
corrugations with a band saw. This causes major deformation and inconsistency since
the corrugated sheets are to be stacked in four layers, it is imperative that the curvature
of the corrugated sheets be preserved while cutting them into 50.8 millimeter (2 inch)
strips. If any deformation were to occur, the total stack height would not be consistent,
and would result in an non-symmetric core profile. A profile was created in
SolidWorks and form was created out of aluminum using a CNC machine (see
Schematic A and B). The form consisted of two parts, one component to be used as a
base, and the other to be used to be used as a contoured clamp for both the raw
material and the strip to be cut. Two counter bores were made in the base to allow for
fastening on the X-Y Table of a Bridgeport Milling Machine. Holes were drilled and

threaded into the base and the top was fastened using hex-cap bolts.

A 3 inch abrasive disc was used to cut the corrugated sheets, the first cut made to
create a clean edge along the back face of the form. Figure 2 shows the aluminum

form with the 90° Bridgeport attachment for the abrasive wheel.
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Figure 2. - Aluminum form to hold the corrugated sheets.

After the first cut was made, the table is indexed 50.8mm (2 inches) in the y-direction
and a pass is made to trim the raw sheet to the desired dimensions for core
construction. The corrugated layers were clamped together in various places to ensure
that they would be indexed together after every cut without shifting. After each pass,

the corrugated layers were indexed forward and aligned to the edge of the mold base.
Because the table is already indexed 54mm (2 % inches) from the edge of the mold

base each subsequent cut is made by mechanically translating the table in the X-
direction. Figure 3 shows the final configuration for cutting corrugations. The bulk
material as well as the piece to be trimmed are both clamped to reduce vibration and
maintain curvature. Images of the corrugated layers after being cut, seen in Figure 4,
show preserved curvature as well as smooth edges without requiring additional

machine processes.
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Figure 3. - Image of fixture and abrasive wheel in preparation to cut corrugations

Figure 4. - Image corrugations after cutting process
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Preparing Face Sheets

Flat bar stock was ordered with the following specifications: Mild Steel, 50.8mm (2

inches) width, 609.6mm (24 inches) length, 1.6mm (1—16 inches) thickness, Figure 5.

Figure 5. - Image of flat bar stock as ordered

The actual measured length was longer than 609.6mm (24 inches) therefore, the bar
stock was partitioned into three portions with measurements of roughly 206.4mm (8%

inches), Figures 6 and 7 This overage in length proved to be beneficial as the edges
were rough cut and would be made perpendicular using a Bridgeport. After marking

the remaining flat bar stock, they were cut using a band saw, Figure 8.
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Figure 7. - Image of bar stock marked and ready to be cut
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Figure 8. - Image of bar stock is cut using a band saw

With the face sheets cut, red marker was used to color both ends, Figure 10. This will
serve as a visual indicator of whether or not material was removed during the milling
process on the Bridgeport. The milling process is utilized to ensure that the ends are
perpendicular to the length, and since it is a precision process, the final length of each

face sheet will be consistent with one another.

Figure 9. - Image of face sheets after being cut on the band saw
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Figure 10. - Image of edges of face sheets marked with red marker

The face sheet with the smallest length is identified and placed in the vice of the
Bridgeport milling machine. A mill stop is positioned at the end of the face sheet,

depicted in Figure 11 .

Figure 11. - Image of mill stop positioned at the center of the face sheet
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With the shortest face sheet positioned in the vice, one pass is made removing a very
small amount of material. The process is repeated with each face sheet until all are
faced on one end, and now trimmed to similar lengths. The sheets are then reversed,
such that the freshly machined end is now in contact with the mill stop, and the X-Y
table is adjusted such that the edge of the end mill is located 8 inches from the mill
stop, thus removing the remaining material required to achieve the desired length for
the face sheets. The process is repeated until all face sheets have been machined on

both ends to the same specification and no red markings remain, shown in Figure 12.

Figure 12. - Image of face sheets after milling edges to desired length
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Preparing Sandwich Panel

A fixture comprised of two aluminum plates, one with a through clearance hole and
the other with threaded holes. The prepared corrugated layers are stacked back to back
in an alternating sinusoidal pattern and placed into the fixture while bolts are hand
tightened just enough to apply small compressive force. This allows the layers from
slipping drastically when trying to align the layers. The layers are then shifted
individually to ensure the layers meet at local maximum and minimums of the
sinusoidal shape. A Millermatic 250 metal inert gas welder (M.1.G.) is used to spot
weld the nodes where each corrugated layer meet, shown in Figure 13. The process is

repeated for the opposing side, thus completing the core element.

Spot welds

Figure 13. - Image of core being prepared in fixture
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The bolts in the fixture are loosened slightly, allowing the face sheets to be moved into
position. The center of the face sheet is marked on its edge and is then aligned to the

center of the core element. The face sheets are then welded in a similar fashion,

completing the sandwich structure, which can be seen in Figure 14.

Figure 14. - Image of completed sandwich panel
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Schematic B
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APPENDIX B: METHOD FOR EXTRUDING FILLER MATERIAL
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APPENDIX C: DETAILED SCHEMATIC OF EXPERIMENTAL SETUP
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Note: While the use of graphite rod/circuit break is most reliable for triggering, it was
later discontinued in favor of using an Oscilloscope capable of generating a negative
TTL pulse after a pressure spike was received by the pressure transducers. This was in
an effort to reduce any unnecessary transfer of kinetic energy as the graphite particles
would strike the specimen.
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APPENDIX D: MATLAB CODES

MATLAB Code to analyze side view images

%%%9%6%%%%%%% % % %% % % %% %% %% %% % %% %% %%

% This program is written by Erheng Wang. The copy right belongs the
% Dynamic Photo-Mechanics Laboratory.

%

% Code has been modified by Payam Fahr to add reference lines for load % area
based on muzzle configuration. July 2013

%

% This program is for calculating the deformation energy of the gas,

% the momentum and the kinetic energy of the specimen in a shock tube
% experiment.

%%%%0%%% %% %% % %%%% % %% %% %% %% % %% %% %%

clear all;
close all;
clc;

format long;

disp('%%%%%%%%%%%%% %% %% %%%%%%%% %% %% % %%");
disp('This program is for calculating the deformation energy of the gas,");
disp('the momentum and the kinetic energy of the specimen in a shock tube");
disp(‘experiment.”);

disp(');

disp(‘Please follow the instruction.”);
disp('%%%6%%%%%%%%%% %% %% %% %% %%%%%% %% %% %");
disp(' );

disp('%%%%%%%%%%%%% %% %% %% %% %%%%%%% %% %%");
disp('First Step: load the reflection pressure profile.");

disp(" );

disp('The reflection pressure profile should have following form:");
disp('0.00001 124%;

disp('0.00002 160;

disp('0.00003 215%;

disp('0.00004 260;

disp('0.00005 302;

disp('The first column is time. And second column is pressure.’);
disp("You need to input the unit of time and pressure. Please check the unit carefully.");
disp('Please follow the instruction.’);

disp(*);

eval(['load ref_sp.dat;)
disp("");
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disp(‘'We have following time unit:");
disp('1. second’);
disp(‘2. millisecond");
disp('3. microsecond’);
unit_judge=true;
time_unit=0; % this number can be any integer except 1, 2 and 3.
while unit_judge==true
time_unit=input('Please choose the unit you use (input the No. before the unit):");
if time_unit==1
disp(* );
disp('The time unit you use is second;");
eval(['ref_sp(:,1)=ref_sp(:,1);1)
unit_judge=false;
elseif time_unit==2
disp(*);
disp('The time unit you use is millisecond;");
eval(['ref_sp(:,1)=ref _sp(:,1)./1000;7)
unit_judge=false;
elseif time_unit==3
disp(*);
disp('The time unit you use is microsecond;");
eval(['ref_sp(:,1)=ref_sp(:,1)./1000000;7)
unit_judge=false;
else
disp("Wrong input. Please choose again.");
unit_judge=true;
end
end

disp(*);

disp("We have following pressure unit:");
disp('1. psi');
disp('2. MPa");
disp('3. Pa’);
unit_judge=true;
pressure_unit=0; % this number can be any integer except 1, 2 and 3.
while unit_judge==true
pressure_unit=input('Please choose the unit you use (input the No. before the
unit):";
if pressure_unit==1
disp(');
disp('The pressure unit you use is psi;);
eval(['ref_sp(:,2)=ref _sp(:,2);'])
unit_judge=false;
elseif pressure_unit==2
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disp(');
disp('The pressure unit you use is MPa;");
eval(['ref_sp(:,2)=ref_sp(:,2).*1000000./6894.7;)
unit_judge=false;

elseif pressure_unit==3
disp(*);
disp('The pressure unit you use is Pa;");
eval(['ref_sp(:,2)=ref _sp(:,2)./6894.7;)
unit_judge=false;

else
disp("Wrong input. Please choose again.");
unit_judge=true;

end

end

disp(*);

disp('The pressure data has been resaved into variable ref_sp.");

disp(‘There are two columns in ref sp. The first column is time and unit is s
(second).”;

disp('The second column is pressure and unit is psi.");

disp('First Step end");
disp("%%%%%%%%%%%% % %% %% %% %% %%%% % %% % %%%");

disp(* );

disp("%%%%%%%%%%%%%%%%%%%% %% %% % %%%%%%%");
disp('Second Step: load the time series of the images.");
disp(* );

disp("You have three ways to load the time series of the images.");

disp('1. The time between two frames is same.");

disp(" You can input total number of frames and time between two frames.")
disp(" The code will generate the time series automatically.");

disp(*);

disp(‘2. The time between two frames is not same.");
disp("  You can input total number of frames and input time between two frames
frame by frame.")

disp(*);

disp('3. The time between two frames is not same.");
disp(" And you have saved the time series into one data file.")
disp(" Then you can just load that time series data file.");

disp(*);

time_series_judge=true;
time_series=0; % this number can be any integer except 1, 2 and 3.
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while time_series_judge==true
time_series=input('Please choose which method you want to use (input the No.
before the method):";
if time_series==1
frames=input('Please input the total number of frames for calculating(integer): ;
% the number of images for calculating
frame_time=input('Please input the time between two frames (unit: microsecond):
")/1000000;
for i=1:frames
t_frame(i,1)=(i-1)*frame_time;
end
time_series_judge=false;
elseif time_series==2
frames=input('Please input the total number of frames for calculating(integer): ;
% the number of images for calculating
sum_time=0;
for i=1:frames
disp(‘recent frame is")
i
disp(‘frame.")
disp(‘'Please input 0 when i=1;');
sum_time=input('Please input the time between this frame and one frame
before(unit: \mus): ')/1000000+sum_time;
t frame(i,1)=sum_time;
end
time_series_judge=false;
elseif time_series==
time_series_name=input('Please input the filename of the time serise (without
extension):','s")
time_series_extension=input('Please input the extension of the time serise:','s")
eval(['load ',time_series_name,".",time_series_extension,";"])
eval(['t_frame='time_series_name,";'])
time_series_judge=false;
else
disp("Wrong input. Please choose again.");
time_series_judge=true;
end
end

disp(*);

disp('Second Step end");
disp("%%%%6%%% %% %% %% %%%% % %% % %% %% %% %% % %%");
disp(*");

disp('%%%%%%%%%%%%% %% %% %% %% %%%%%% %% %% %");
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disp('Third Step: length calibration.");

disp(*);

disp('you can choose any image for length calibration.");

disp('On the image, you need to choose two points and the vertical distance between
these two points will be used to calibrate the length’);

disp(‘Therefore, you need to know one real vertical scale in the image.");
disp('For example:');

disp(‘the span of the supports is 6 inches’);

disp(‘the outer diameter of the shock tube is 5 inches’);

disp(");

disp('The process will repeat three times. Thus, totally you will pick six times');
disp(‘Please follow the instruction.”);

disp("");

disp(‘Please enter image filename for length calibration:");
I=input('(for example: calibration.jpg) ','s");
Judgel="n";
while Judgel=="n'
% load the jpg file
imshow();
hold on

xlabel('Length Calculation’)

title('Please pick first point for calibration’);
[xc(1),yc(1)] = ginput(1);

title('Please pick second point for calibration’);
[xc(2),yc(2)] = ginput(1);

title('Please pick third point for calibration’);
[xc(3),yc(3)] = ginput(1);

title('Please pick fourth point for calibration’);
[xc(4),yc(4)] = ginput(1);

title('Please pick fifth point for calibration');
[xc(5),yc(5)] = ginput(1);

title('Please pick sixth point for calibration’);

[xc(6).yc(6)] = ginput(1);

title('Please go to the matlab main window and input the real distance’);
% average point between two calibration points

Y(1) = abs(yc(1)-yc(2));

Y(2) = abs(yc(3)-yc(4));

Y(3) = abs(yc(5)-yc(6));

measured = mean(Y);

% determine the middle position of the shock tube

ym(1)=(yc(1)+yc(2))/2;
ym(2)=(yc(3)+yc(4))/2;
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ym(3)=(yc(5)+yc(6))/2;
midy=mean(ym);

% real distance between two calibration points. unit: m
true = input('Please input the real distance between two points you choose (in):
)*0.0254;

% The transform from the pixels to distance

%~Payam Fahr 7/18/2013

scale = measured/true

innerdia = (.75*0.0254*scale); %Select this for SMALL MUZZLE
%innerdia = (1.5*0.0254*scale) % Select this for LARGE MUZZLE
%~Payam Fahr 7/18/2013

xlabel(™)
title('Length Calculation End');

Judgel=input('ls calibration OK? (y/n)'",'s");

close all;
end

disp('Third Step end’);
disp("%%%%%%%%%%%%%%%%%%%% %% %% % %%%%%%%");
disp(*");

disp('%%%%%%%%%%%%% %% %% %% %% %%%%%% %% %% %");
disp('Fourth Step: real measurement.");

disp(" ’);

disp('you need to measure the deformation shape of front face for every image.");
disp('For each image, you need to choose seven points on the front face.");
disp(‘'There will be a symmetric line on the image.’);

disp('lt is better to choose these points symmetric to this line.");

disp(‘Please follow the instruction.");

disp(*);

frames = input('Please input the total number of frames for calculating(integer): "); %
the number of pictures for calculating

%Tube_d=0.0762; % the real scale of the large muzzle diameter of shock tube -
Payam Fahr

Tube_d=0.0762/2 % the real scale of the large muzzle diameter of shock tube -
Payam Fahr

% point_number=input('How many points will you choose for face shape fitting?
(integer) );
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point_number=7;

x=zeros(point_number,frames);
y=zeros(point_number,frames);
for i = 1:frames

disp(*);
ifi==1
disp(‘Please enter the first image filename for measurement:);
I=input('(for example: measure_image.jpg) ','s");
else
I=input('Please enter next image filename for measurement: ','s’);
end

% Simulate the Front Surface Shape with Cubic Spline interpolation method
Judge2="n";
while Judge2=="n"

imshow();

hold on;

xlabel('Simulate the Front Surface’);

%~Payam Fahr 7/18/2013

plot ([0;1200],[midy;midy],'r"), hold on

plot ([0;1200],[midy+innerdia;midy+innerdia],'r'), hold on

plot ([0;1200],[midy-innerdia;midy-innerdia],'r'), hold on

% Given the scale based on picked points and length input, this
% will project horizontal markers on the centerline of specimen and
% the upper and lower boundaries of the inner diameter of the

% muzzle depending on which has been selected above (large or
% small) This will aid in keeping all profile measurements about
% the loading area

%~Payam Fahr 7/18/2013

title('Please pick the top point for shape calculation’);

[x(L,i),y(1,1)] = ginput(1);
plot(x(1,i),y(1,i),'go"),hold on;

title('Please pick the bottom point for shape calculation’);

[x(7.1),y(7.))] = ginput(1);
plot(x(7,i),y(7,i),'go"),hold on;

for j=1:point_number

yfl(j,1)=(y(1,1)+y(7,i))/2-abs(y(1,i)-y(7,i))/2+(j-1)*abs(y(1,i)-
y(7,1))/(point_number-1);

106



%
%
%
%
%

end
x1=linspace(0,1200);
for j=1:point_number
clear y1;
y1=linspace(yfl(),yfl(j));
plot(x1,y1,'c"), hold on;
end
if i==1
else
plot(xx(:,(i-1)),yy(:,(i-1)),'y",'linewidth',0.25), hold on;
legend('symmetric line','previous shape’);
end

% choose seven points for the surface shape fit

title('Please pick the second point for shape calculation’);

[x(2,i),y(2,1)] = ginput(1);
plot(x(2,i),y(2,i),'go"),hold on;

title('Please pick the third point for shape calculation’);

[x(3,1),y(3,))] = ginput(1);
plot(x(3,1),y(3,i),'go"),hold on;

title('Please pick the fourth point for shape calculation’);

[x(4,1),y(4,1)] = ginput(1);
plot(x(4,i),y(4,i),'go"),hold on;

title('Please pick the fifth point for shape calculation’);

[x(5,1),y(5,1)] = ginput(1);
plot(x(5,i),y(5,i),'go"),hold on;

title('Please pick the sixth point for shape calculation’);

[x(6,i),y(6.1)] = ginput(1);
plot(x(6,i),y(6,i),'go"),hold on;

% d=Tube_d*scale;
% the pixes scale of the diameter of shock tube

dD=abs(y(1,1)-y(7,i))/100;
dd=Tube_d*scale/100;
for m=1:101

yy(m,i)=(y(L,i)+y(7,i))/2-abs(y(L,i)-y(7,i))/2+(m-1)*dD;

% the range of shock applied

yys(m,i)=midy-(Tube_d*scale/2)+(m-1)*dd;

% the range of shock applied

end
xX(:,D)=spline(y(:,i),x(:,),yy(,1);
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% cubic spline data interpolation
xxs(:,1)=spline(y(:,1),X(:,i),yys(:,1));

% cubic spline data interpolation
plot(xx(:,i),yy(:,i),'r"), hold on;
plot(xxs(:,i),yys(:,1),'g"), hold on;

title('Press any key to continue'’);
pause;

Judge2=input('ls that curve OK? (y/n)','s");

close all;
end
end

disp(‘Fourth Step end");
disp("%%%%%%%%%%%%%%%%%%%% %% %% % %%%% % %%");
disp(*");

disp("%%%%%%%%%%%% % %% %% %% %% %%%% % %% % %%%");

disp(‘'Fifth Step: real measurement.");

disp(" );

disp('The measured position of the specimen will be used to calculate the force
displacement, *);

disp('velocity of the specimen.”);

disp('Most parts of this step are automatic.");

disp(‘Please follow the instruction.”);

disp(*);

% calculate the surface position of every frame
xf=xx(:,1);

yf=yy(:,1);

xfs=xxs(:,1);

yfs=yys(:,1);

specimen_M=input('Please input the total mass of the specimen (g): ')/1000;
sumimpulse(:,1)=t_frame;
sumyimpulse(:,1)=t_frame;
sumKE(:,1)=t_frame;
for i = 1:frames
sumimpulse(i,2)=0;
sumyimpulse(i,2)=0;
sumKE(i,2)=0;
for j=1:101
xd(j,D)=(xx(j,i)-xf(i))/scale;
yd(j.D)=(yy(.i)-yf(i))/scale;
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xds(j,1)=(xxs(j,i)-xfs(i))/scale;
yds(j,i)=(yys(j,i)-yfs(i))/scale;
ifi==1
xv(j,i)=0;
yv(j,i)=0;
average_Vv(j,1)=0;
else
xv(j,1)=((xx(j,i-1)-xx(j,i))/scale)/frame_time;
w(,0)=((yy(j,i-1)-yy(j,i))/scale)/frame_time;
average_V(j,h)=sqrt(xv(j,i)"2+yv(j,i)"2);
end
sumimpulse(i,2)=sumimpulse(i,2)+(specimen_M/101)*xv(j,i);
sumyimpulse(i,2)=sumyimpulse(i,2)+(specimen_M/101)*yv(j,i);
sumKE(i,2)=sumKE(i,2)+((specimen_M/101)*average v(j,i)"2)/2;
end
end

% calculate the deflection for every points of every frame

for j=1:101;
for i=1:frames
xdd(j,i)=abs(xd(j,i)-xd(j,1));
ydd(j,i)=abs(yd(j,i)-yd(j,1));
xdds(j,i)=abs(xds(j,i)-xds(j,1));
ydds(j,i)=abs(yds(j,i)-yds(j,1));
end
end

% figure(2)

% for i=1:frames;

%  plot(-xdd(:,i),yy(:,i)/scale,'’k"),hold on
% plot(-xdd(:,2),yy(:,1)/scale,'k--"),hold on
% plot(-xdd(:,3),yy(:,1)/scale,'r),hold on
% plot(-xdd(:,4),yy(:,1)/scale,'r--"),hold on
% plot(-xdd(:,5),yy(:,1)/scale,'g"),hold on
% plot(-xdd(:,6),yy(:,1)/scale,'g--"),hold on
% plot(-xdd(:,7),yy(:,1)/scale,'b"),hold on
% plot(-xdd(:,8),yy(:,1)/scale,'b--"),hold on
% plot(-xdd(:,9),yy(:,1)/scale,'m"),hold on
% end

% plot(-xdd(:,10),yy(:,1)/scale,’'m--"),hold on
% plot(-xdd(:,11),yy(:,1)/scale,'y"),hold on

% plot(-xdd(:,12),yy(:,1)/scale,'c’),hold on

% plot(-xdd(:,13),yy(:,1)/scale,'c--"),hold on
% xlabel('unit: m’);

% ylabel('unit: m');
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% title('Deflection Sketch');
% axis tight

% choose the biggest time to normalize data

for i=1:10000
t(i,1)=(i-1)*2E-6;
if (t(i,1)>=t_frame(frames,1))
break;
end
end

ref=spline(ref_sp(:,1),ref_sp(:,2),t);

% normalize the time for deflection data
for j=1:101
De(:,j)=spline(t_frame,xdd(j,:),t);
Des(:,j)=spline(t_frame,xdds(j,:),t);
end

S_x_impulse(:,1)=t;
S_x_impulse(:,2)=spline(sumimpulse(:,1),sumimpulse(:,2),t);

%~Payam Fahr 7/18/2013

%S _y_impulse(:,1)=t;
%S_y_impulse(:,2)=spline(sumyimpulse(:,2),sumyimpulse(:,2),t);
%This is causing error possibly because there is no deviation in'y
%direction if points are selected on the projected horizontal points
%~Payam Fahr 7/18/2013

S KE(:,1)=t;
S_KE(:,2)=spline(sumKE(:,1),sumKE(:,2),t);

% calculate the energy increase between every two closed frame
n0=length(t);
egy(1)=0;
delta_d=(Tube_d*0.99)/99;
for i=2:n0
A(i)=0;
for j=1:100
B(j)=((ref(i)+ref(i-1))*6894.7)*(Des(i,j)-Des(i-1,j))*delta_d*(sqrt((Tube_d/2)"2-
((Tube_d/2)-j*delta_d)"2)+sqrt((Tube_d/2)"2-((Tube_d/2)-(j-1)*delta_d)"2))/2;
Ai)=B()*+A();
end
egy(i)=A(i);
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end

% calculate the energy increase between every frame and initial frame
for i=1:n0
Al1=0;
for j=1:i
Bl=egy(j);
Al=A1+B1,
end
energy(i,1)=Al;
end

DFLE(:,1)=t;
DFLE(:,2)=energy(:,1);

Center(:,1)=t;
Center(:,2)=De(:,51);

figure(1)

plot(t,De(:,51),'r",'linewidth',3),hold on
ylabel('Deflection (m)’);

xlabel('Time (s)");

grid on;

title('Maxi Deflection-Time Curve(Middle Point)");

figure(2),plot(t,S_x_impulse(:,2),r",'linewidth’,3);
xlabel("'Time (s)");

ylabel("Horizontal momentum (kgm/s or Ns));

% axis tight;

grid on;

%~ Payam Fahr 7/18/2013
%figure(3),plot(t,S_y_impulse(:,2),r",'linewidth’,3);
%xlabel('Time (s));

%ylabel("VVertical momentum (kgm/s or Ns)");

% axis tight;

%grid on;

%~ Payam Fahr 7/18/2013

figure(3),plot(t,S_KE(:,2),'r','linewidth’,3);
xlabel("'Time (s)");

ylabel('Kinetic Energy (J));

% axis tight;

grid on;

figure(4),plot(t,energy(:,1),'r','linewidth’,3);
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xlabel("Time (s)");
ylabel('Deformation Energy (J));
% axis tight;

grid on;

disp(");

disp(‘After runing this code, there will be Five dat files with following name: *);
disp(‘filename_deformation_E.DAT Deformation energy’);
disp(‘filename_x_momentum.DAT Horizontal momentum’);

%~ Payam Fahr 7/18/2013

%disp(‘filename_y_momentum.DAT Vertical momentum’);

%~ Payam Fahr 7/18/2013

disp(‘filename_Kinetic_E.DAT Kinetic energy");

disp(‘filename_center_displacement. DAT Center displacement”);
disp(*);
disp(‘All of other data have been save into the file entitled filename_specimen.mat.");

filename=input('Now, please input the filename you want to save the final data into:
I,ISI);

eval(['save ', filename,’_specimen.mat')

eval(['save ' filename,'_deformation E.DAT',' DFLE',’ /ascii'])
eval(['save ', filename,’ x_momentum.DAT",' S_x_impulse',' /ascii'])
%~ Payam Fahr 7/18/2013

%eval(['save ' filename,' y_momentum.DAT',' S_y_impulse',' /ascii'])
%~ Payam Fahr 7/18/2013

eval(['save ', filename,’_Kinetic_ E.DAT''S_KE'," /ascii'])

eval(['save ', filename,'_center_displacement.DAT'," Center',' /ascii'])

disp(‘Fifth Step end’);

disp('%%6%6%%%%%6%%6%%%%%6%% %% %% %6%6% % %% %% %% %');
disp("*);
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APPENDIX E: 3M™ Glass Bubbles (Types A and D) MSDS and Data Sheet

Safety Data Sheet

Copyright,2013,3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is
allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from
3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document Group: 11-4410-4 Version Number: 37.07
Issue Date: 12/13/13 Supercedes Date: 11/25/13

| SECTION 1: Identification

1.1. Product identifier
3M™ Glass Bubbles, Types A and D

Product Identification Numbers
70-0704-8395-6, 70-0704-8396-4, 70-0704-8398-0, 75-0299-0514-0, 75-0299-0517-3, 75-0299-0521-5, 75-5410-0014-9, 75-
5800-0032-3, 75-5800-0035-6

1.2. Recommended use and restrictions on use

Recommended use
Lightweight Filler

1.3. Supplier’s details

MANUFACTURER: 3M

DIVISION: Advanced Materials Division

ADDRESS: 3M Center, St. Paul, MN 55144-1000, USA
Telephone: 1-888-3M HELPS (1-888-364-3577)

1.4. Emergency telephone number
1-800-364-3577 or (651) 737-6501 (24 hours)

| SECTION 2: Hazard identification

2.1. Hazard classification
Not classified as hazardous according to OSHA Hazard Communication Standard, 29 CFR 1910.1200.

2.2. Label elements
Signal word

Not applicable.

Symbols
Not applicable.

Pictograms
Not applicable.

2.3. Hazards not otherwise classified
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None.

| SECTION 3: Composition/information on ingredients

Ingredient C.A.S. No. % by Wt
Soda Lime Bororsilicate Glass 65997-17-3 >99
Chromium, Aqua Chloro Hydroxy Methacrylate 111031-82-4 <1

| Complexes

| SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:
No need for first aid is anticipated.

Skin Contact:
Wash with soap and water. If signs/symptoms develop, get medical attention.

Eye Contact:
Flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. If signs/symptoms persist, get
medical attention.

If Swallowed:
Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed
See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required
Not applicable

| SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media
Material will not burn. Non-combustible. Use a fire fighting agent suitable for surrounding fire.

5.2. Special hazards arising from the substance or mixture
None inherent in this product.

5.3. Special protective actions for fire-fighters
No unusual fire or explosion hazards are anticipated.

| SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures
Ventilate the area with fresh air. Refer to other sections of this SDS for information regarding physical and health hazards,
respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions
Avoid release to the environment.

6.3. Methods and material for containment and cleaning up
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Collect as much of the spilled material as possible. Use wet sweeping compound or water to avoid dusting. Sweep up. Place
in a closed container approved for transportation by appropriate authorities. Clean up residue. Seal the container. Dispose of
collected material as soon as possible.

| SECTION 7: Handling and storage

7.1. Precautions for safe handling
For industrial or professional use only. Avoid breathing dust/fume/gas/mist/vapors/spray. Do not eat, drink or smoke when
using this product. Wash thoroughly after handling.

7.2. Conditions for safe storage including any incompatibilities
No special storage requirements.

| SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

Ingredient C.A.S. No. Agency Limit type Additional Comments
CHROMIUM (III) 111031-82- US Dept of TWA(as Cr):0.5 mg/m3
COMPOUNDS 4 Labor - OSHA
Chromium, insoluble salts 111031-82- US Dept of TWA(as Cr):1 mg/m3
4 Labor - OSHA
Soda Lime Bororsilicate Glass 65997-17-3 Manufacturer ~ TWA(as dust):10 mg/m3
determined

Amer Conf of Gov. Indust. Hyg. : American Conference of Governmental Industrial Hygienists

American Indust. Hygiene Assoc : American Industrial Hygiene Association

Chemical Manufacturer Rec Guid : Chemical Manufacturer's Recommended Guidelines

US Dept of Labor - OSHA : United States Department of Labor - Occupational Safety and Health Administration
TWA: Time-Weighted-Average

STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Provide local exhaust ventilation at transfer points. Use general dilution ventilation and/or local exhaust ventilation to control
airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapors/spray. If ventilation is not
adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)
Eye/face protection

Wear eye/face protection. Select and use eye/face protection to prevent contact based on the results of an exposure
assessment. The following eye/face protection(s) are recommended:
Safety Glasses with side shields

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the
results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the
substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions.
Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective
clothing. Wear appropriate gloves to minimize risk of injury to skin from contact with dust or physical abrasion from
grinding or sanding.
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Gloves made from the following material(s) are recommended: Neoprene
Nitrile Rubber

Respiratory protection

Wear respiratory protection if ventilation is inadequate to prevent overexposure. An exposure assessment may be needed to
decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program.
Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for particulates

For questions about suitability for a specific application, consult with your respirator manufacturer.

| SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

General Physical Form: Solid

Specific Physical Form: Low Density Fine Powder (< 200 microns)
Odor, Color, Grade: White, Odorless
Odor threshold Not Applicable
Melting point No Data Available
Boiling Point Not Applicable
Flash Point Not Applicable
Evaporation rate Not Applicable
Flammability (solid, gas) Not Classified
Flammable Limits(LEL) Not Applicable
Flammable Limits(UEL) Not Applicable
Vapor Pressure Not Applicable
Vapor Density Not Applicable
Density 0.1-0.6 g/lem3
Specific Gravity 0.1-0.6 [RefStd: WATER=1]
Solubility in Water Negligible
Solubility- non-water Not Applicable
Partition coefficient: n-octanol/ water No Data Available
Autoignition temperature Not Applicable
Decomposition temperature Not Applicable
Viscosity Not Applicable
Volatile Organic Compounds Not Applicable
Percent volatile < 0.5 % weight
Softening point >=600 °C

VOC Less H20 & Exempt Solvents Not Applicable

| SECTION 10: Stability and reactivity

10.1. Reactivity
This material is considered to be non reactive under normal use conditions.

10.2. Chemical stability
Stable.
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10.3. Possibility of hazardous reactions
Hazardous polymerization will not occur.

10.4. Conditions to avoid
None known.

10.5. Incompatible materials
None known.

10.6. Hazardous decomposition products
Substance Condition
None known. Not Specified

| SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient
classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be
reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be
present below the threshold for labeling, an ingredient may not be available for exposure, or the data may not be
relevant to the material as a whole.

11.1. Information on Toxicological effects
Signs and Symptoms of Exposure
Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:
No health effects are expected.

Skin Contact:
Mechanical Skin irritation: Signs/symptoms may include abrasion, redness, pain, and itching.

Eye Contact:
Mechanical eye irritation: Signs/symptoms may include pain, redness, tearing and corneal abrasion.

Ingestion:
May be harmful if swallowed.
Gastrointestinal Irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhea.

Additional Information:

This product, when used under reasonable conditions and in accordance with the 3M directions for use, should not present a
health hazard. However, use or processing of the product in a manner not in accordance with the product's directions for use
may affect the performance of the product and may present potential health and safety hazards.

Toxicological Data

Acute Toxicity
Name Route Species Value
Overall product Ingestion No data available; calculated ATE 2,500 mg/kg
Soda Lime Bororsilicate Glass Dermal LD50 estimated to be > 5,000 mg/kg
Soda Lime Bororsilicate Glass Ingestion LD50 estimated to be 2,000 - 5,000 mg/kg
Chromium, Aqua Chloro Hydroxy Methacrylate Complexes Data not available or insufficient for classification
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ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name Species Value

Soda Lime Bororsilicate Glass No significant irritation

Chromium, Aqua Chloro Hydroxy Methacrylate Complexes Data not available or insufficient for classification
Serious Eye D ge/Irritation

Name Species Value

Soda Lime Bororsilicate Glass No significant irritation

Chromium, Aqua Chloro Hydroxy Methacrylate Complexes Data not available or insufficient for classification
Skin Sensitization

Name Species Value

Soda Lime Bororsilicate Glass Data not available or insufficient for classification

Chromium, Aqua Chloro Hydroxy Methacrylate Complexes Data not available or insufficient for classification
Respiratory Sensitization

Name Species Value

Soda Lime Bororsilicate Glass Data not available or insufficient for classification

Chromium, Aqua Chloro Hydroxy Methacrylate Complexes Data not available or insufficient for classification
Germ Cell Mutagenicity

Name Route Value

Soda Lime Bororsilicate Glass In Vitro Some positive data exist, but the data are not

sufficient for classification

Chromium, Aqua Chloro Hydroxy Methacrylate Complexes Data not available or insufficient for classification
Carci g i ::‘y

Name Route Species Value

Soda Lime Bororsilicate Glass Inhalation | Multiple | Some positive data exist, but the data are not

animal sufficient for classification
species
Chromium, Aqua Chloro Hydroxy Methacrylate Complexes Data not available or insufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name Route Value Species Test Result Exposure
Duration
Soda Lime Bororsilicate Glass Data not available or insufficient for
classification
Chromium, Aqua Chloro Hydroxy Data not available or insufficient for
Methacrylate Cc classification
Target Organ(s)
Specific Target Organ Toxicity - single exposure
Name Route Target Organ(s) Value Species Test Result Exposure
Duration
Chromium, Aqua Chloro Data not available or insufficient
Hydroxy Methacrylate for classification
Specific Target Organ Toxicity - repeated exposure
Name Route Target Organ(s) Value Species Test Result Exposure
Duration
Soda Lime Bororsilicate Inhalation | respiratory system Some positive data exist, but the Human NOAEL not occupational
Glass data are not sufficient for available exposure
classification
Chromium, Aqua Chloro Data not available or insufficient
Hydroxy Methacrylate for classification
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| Complexes ] ] [ I

Aspiration Hazard

Name Value
Soda Lime Bororsilicate Glass Not an aspiration hazard
Chromium, Aqua Chloro Hydroxy Methacrylate Complexes Not an aspiration hazard

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information
on this material and/or its components.

| SECTION 12: Ecological information

Ecotoxicological information
Please contact the address or phone number listed on the first page of the SDS for additional ecotoxicological information on this material
and/or its components.

Chemical fate information

Please contact the address or phone number listed on the first page of the SDS for additional chemical fate information on this material
and/or its components.

| SECTION 13: Disposal considerations

13.1. Disposal methods
Dispose of contents/ container in accordance with the local/regional/national/international regulations.

Dispose of waste product in a permitted industrial waste facility.

EPA Hazardous Waste Number (RCRA): Not regulated

[ SECTION 14: Transport Information

Not regulated per U.S. DOT, IATA or IMO.

These transportation classifications are provided as a customer service. As the shipper YOU r in responsible for
complying with all applicable laws and regulations, including proper transportation classification and packaging. 3M
transportation classifications are based on product formulation, packaging, 3M policies and 3M understanding of
applicable current regulations. 3M does not guarantee the accuracy of this classification information. This information
applies only to transportation classification and not the packaging, labeling, or marking requirements. The original 3M
package is certified for U.S. ground shipment only. If you are shipping by air or ocean, the package may not meet
applicable regulatory requirements.

| SECTION 15: Regulatory information

15.1. US Federal Regulations

Contact 3M for more information.
311/312 Hazard Categories:
Fire Hazard - No  Pressure Hazard - No  Reactivity Hazard - No Immediate Hazard - Yes  Delayed Hazard - No

15.2. State Regulations

Contact 3M for more information.
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California Proposition 65

Ingredient C.A.S. No. Classification
GLASS FILAMENTS None Carcinogen

WARNING: This product contains a chemical known to the State of California to cause cancer.

15.3. Chemical Inventories
This product is an article as defined by TSCA regulations, and is exempt from TSCA Inventory listing requirements.

This product complies with the New Zealand Hazardous Substances and New Organisms Act (1996).

Contact 3M for more information.

15.4. International Regulations
Contact 3M for more information.

[ This SDS has been prepared to meet the U.S. OSHA Hazard Communication Standard, 29 CFR 1910.1200. |

| SECTION 16: Other information |

NFPA Hazard Classification
Health: 1 Flammability: 0 Instability: 0 Special Hazards: None

National Fire Protection Association (NFPA) hazard ratings are designed for use by emergency response personnel to address
the hazards that are presented by short-term, acute exposure to a material under conditions of fire, spill, or similar
emergencies. Hazard ratings are primarily based on the inherent physical and toxic properties of the material but also include
the toxic properties of combustion or decomposition products that are known to be generated in significant quantities.

HMIS Hazard Classification
Health: | Flammability: 0 Physical Hazard: 0 Personal Protection: X - See PPE section.

Hazardous Material Identification System (HMIS® III) hazard ratings are designed to inform employees of chemical hazards
in the workplace. These ratings are based on the inherent properties of the material under expected conditions of normal use
and are not intended for use in emergency situations. HMIS® III ratings are to be used with a fully implemented HMIS® 11
program. HMIS® is a registered mark of the American Coatings Association (ACA).

Document Group: 11-4410-4 Version Number: 37.07
Issue Date: 12/13/13 Supercedes Date: 11/25/13

DISCLAIMER: The information in this Safety Data Sheet (SDS) is believed to be correct as of the date issued. 3M MAKES
NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR
USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable
for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product,
some of which are uniquely within the user's knowledge and control, it is essential that the user evaluate the 3M product to
determine whether it is fit for a particular purpose and suitable for user's method of use or application.

3M provides information in electronic form as a service to its customers. Due to the remote possibility that electronic transfer
may have resulted in errors, omissions or alterations in this information, 3M makes no representations as to its completeness
or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available
directly from 3M
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Product Information

3M™ Glass Bubbles
Floated Product Series

Introduction

3M™ Glass Bubbles are engineered hollow glass microspheres
that are alternatives to conventional fillers and additives such as
silicas, calcium carbonate, talc, clay. etc.. for many demanding
applications. These low-density particles are used in a wide
range of industries to reduce part weight, lower costs and
enhance product properties.

The spherical shape of 3M glass bubbles offers a number of
important benefits, including: higher filler loading, lower
viscosity/improved flow, and reduced shrinkage and warpage.

It also helps the 3M glass bubbles blend readily into compounds,
and makes them adaptable to a variety of production processes,
including spraying, casting and molding. In addition, they offer
greater survivability under demanding processing conditions,
such as injection molding, and also produce stable voids, which
results in low thermal conductivity and a low dielectric constant.

The chemically stable soda-lime-borosilicate glass composition

of 3M glass bubbles provides excellent water resistance, to create
more stable emulsions. They are also non-combustible and
non-porous, so they do not absorb resin. And, their low alkalinity
gives 3M glass bubbles compatibility with most resins, stable
viscosity and long shelf life.

3M Glass Bubbles Floated Series offer the same combination of
strength and light weight as standard 3M glass bubbles, with an
added surface treatment of special coupling agents, for use in high-
tech applications such as aerospace and hydrospace syntactic foam,
radomes and printed wire boards.

They are available in a variety of sizes and grades for various
product and processing requirements.
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Typlcal Properties (Not for specification purposes)
Nitrogen Isostatic Crush Strength (3M QCM 14.1.5)

Test  rarget Fractional Minimum Fractional
Product "’f;;‘)"‘ "OSurvival Survival
A16/500 500 90% 80%
A20/1000 1,000 90% 80%
H20/1000 1,000 90% 80%
D32/4500 4,500 90% 80%
H50/10,000 EPX* 6,000 90% 90%

*Per ASTM D3102-78 In glycerol.

True Density (3M QCM 14.24.6)

True Density (g/cc

Product Typical

Minimum Maximum
A16/500 0.16 0.14 018
A20/1000 0.20 018 0.22
H20/1000 0.20 0.18 0.22
D32/4500 0.32 0.30 0.34
H50/10,000 EPX 0.50 0.48 0.52
Chemical Resistance

In general, the chemical properties of 3M glass bubbles resemble
those of a soda-lime-borosilicate glass.

Surface Treatment

A16/500, A20/1000 and D32/4500 glass bubbles have methacrylato
chromic chloride surface treatment, H20/1000

and H50/10,000 EPX glass bubbles have epoxy silane

surface treatment.

Packing Factor (Ratio of bulk density to true particle density)
Varies from 55% to 68%.

0il Absorption

31-36 g 0il/100 cc of 3M glass bubbles, per ASTM D1483.
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Typical Properties (continued)

Thermal Properties: Conductivity

0.06-0.16 W/meK at 68°F (20°C), based on theoretical calculations.
Conductivity increases with temperature and product density. The
thermal conductivity of a composite will depend on the matrix
material and volume loading of 3M glass bubbles.

Thermal Properties: Stability
Appreciable changes in bubble properties may occur above 1112°F
(600°C) depending on temperature and duration of exposure.

Flotation (3M QCM 37.2)
Floaters
Product (% by bulk volume)
Minimum
A16/500 99%
A20/1000 99%
H20/1000 99%
D32/4500 99%
H50/10,000 EPX 99%
Volatile Content (3M QCM 1.5.7)
Maximum of 0.5 percent by weight.
Alkalinity (3M QCM 55.19)
Maximum of 0.3 milliequivalents per gram
pH

Because 3M™ Glass Bubbles are a dry powder, pH is not defined.
The pH effect will be determined by the alkalinity as indicated
above. When 3M glass bubbles are mixed with deionized water at
5 volume percent loading, the resulting pH of the slurry is typically
9.1t0 9.9, as measured by a pH meter.

Dielectric Constant

1.3 to 1.5 @ 100 MHz, based on theoretical calculations. The
dielectric constant of a composite will depend on the matrix
material and volume loading of 3M glass bubbles.

A16/500 30 60 95 115
A20/1000 25 60 90 105
H20/1000 25 60 90 105
D32/4500 20 4 65 80
H50/10,000 EPX 15 30 55 70
Hard Particles (3M QCM 93.4.3)

No hard particles (e.g., glass slag, flow agent, etc.) greater than U.S.
number 40 (420 microns) standard sieve will exist.

Sieve Analysis (3M QCM 93.4.4)

For A416/500, A20/1000, H20/1000 glass bubbles: Using a

10 gram sample on a U.S. number 80 standard sieve (177 microns),
amaximum of five percent by weight glass bubbles will be retained
on the sieve.

For D32/4500, H50/10,000 EPX glass bubbles: Using a 10 gram
sample on a U.S. number 200 sieve (74 microns), a maximum of
three percent by weight glass bubbles will be retained on the sieve.
Appearance (3M QCM 22.85)

White to the unaided eye. 416/500, A20/1000, and D3L/4500 have a
green tint from the surface treatment.

Flowability (3M QCM 22.83)

3M glass bubbles remain free flowing for at least one year from the
date of manufacture if stored in the original, unopened container in
the minimum storage conditions of an unheated warehouse.
Labeling

3M glass bubbles will be packaged in suitable containers to help
prevent damage during normal handling and shipping. Each
container will be labeled with:

1. Name of manufacturer

2. Type of 3M glass bubbles

3. Lot number

4, Quantity in pounds

122



Storage and Handling

To help ensure ease of storage and handling while maintaining
free flowing properties, 3M™ Glass Bubbles have been made
from a chemically stable glass and are packaged in a heavy duty
polyethylene bag within a cardboard container.

Minimum storage conditions should be unopened cartons in an
unheated warchouse.

Under high humidity conditions with the ambient temperature
cycling over a wide range, moisture can be drawn into the bag as the
temperature drops and the air contracts. The result may be moisture
condensation within the bag. Extended exposure to these conditions
may result in “caking” of the 3M glass bubbles to various degrees.
To minimize the potential for “caking’™ and prolong the storage life,
the following suggestions are made:

1. Carefully re-tie open bags after use.

2. If the polyethylene bag is punctured during shipping or handling,
use this bag as soon as possible, patch the hole,
or insert the contents into an undamaged bag.

3. During hot and humid months, store in the driest, coolest
space available.

4. 1f controlled storage conditions are unavailable, carry a
minimum inventory, and process on a first in/first out basis.

Dusting that may occur while handling and processing can be
minimized by the following procedures:

1. For eye protection wear chemical safety goggles. For respiratory
system protection wear an appropriate NIOSH/MSHA-approved
respirator. (For additional information about personal protective
equipment, refer to Material Safety Data Sheet.)

2. Use appropriate ventilation in the work area.

3. Pneumatic conveyor systems have been used successfully
to transport 3M glass bubbles without dusting from shipping
containers to batch mixing equipment. Static eliminators
should be used to help prevent static charges.

Diaphragm pumps have been used to successfully convey
3M glass bubbles. Vendors should be consulted for specific
recommendations.
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3M glass bubble breakage may occur if the product is improperly
processed. To minimize breakage. avoid high shear processes such
as high-speed Cowles™ Dissolvers, point contact shear such as gear
pumps or 3-roll mills, and processing pressures above the strength
test pressure for each product.

Health and Safety Information

For product Health and Safety Information, refer to product label
and Material Safety Data Sheet (MSDS) before using product.

Packaging Information

Mini-Box

A single corrugated box with a plastic liner.

Box dimensions are 16 in. x 16 in. x 20 in.

Small Box (10 Cubic ft.)

A single corrugated box with a plastic liner. All boxes are banded
together and to the wooden pallet. 4 boxes per pallet.

Box dimensions are 22 in. x 19 in. x 39 in.

Pallet size is 42 in. x 48 in.

Box Weights

Product Mini-Box Small Box
A16/500 10 Ib. 50 Ib.
A20/1000 101b. 50 Ib.
H20/1000 10 Ib. 50 Ib.
D32/4500 101b. 100 Ib.
H50/10,000 EPX 101b. 100 Ib.
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Additional Information

3M™ Glass Bubbles are supported by global sales, technical and
customer service resources, with fully-staffed technical service
laboratories in the U.S., Europe, Japan, Latin America and
Southeast Asia. Users benefit from 3M’s broad technology base and
continuing attention to product development, performance, safety
and environmental issues.

For additional technical information on 3M glass bubbles in the
United States, call 3M Energy and Advanced Materials Division,
800-367-8905.

For other 3M global offices, and information on additional 3M
products, visit our web site at: www.3M.com/oilandgas.

Notice: The i ion in this publication is based on tests that we believe are reliable. Your results may vary due to differences in test types and conditions. You must evaluate
and determine whether the product is suitable for your intended application. Since conditions of product use are outside of our control and vary widely, the following is made in lieu of all
express and implied warranties (including the implied warranties of merchantability and fitness for a particular purpose): Except where prohibited by law, 3M's only obligation and your only
remedy, is replacement or, at 3M's option, refund of the original purchase price of product that is shown to have been defective when you received it. In no case will 3M be liable for any
direct, indirect, special, incidental, or consequential damages (including, without limitation, lost profits, goodwill, and business opportunity) based on breach of warranty, condition or contract,
negligence, strict tort, or any other legal or equitable theory.

Energy and Advanced

Materials Division Please recycle. Printed in USA.

3M Center, Building 223-65-04 Issued: 9/08 © 3M 2008. COWLES is a trademark of MorehouseCowles.
St. Paul, MN 55144-1000 Allrights reserved. 6317HB 3Mis a trademark of 3M. Used under license
www.3M.com/oilandgas 98-0212-4117-3 by 3M subsidiaries and affiliates.
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APPENDIX F: Quickrete MSDS and Data Sheet

m MATERIAL SAFETY DATA SHEET

CEMENT & CONCRETE PRODUCTS™

Masonry Mortars

MATERIAL SAFETY DATA SHEET
(Complies with OSHA 29 CFR 1910.1200)

SECTION I: PRODUCT IDENTIFICATION

The QUIKRETE® Companies Emergency Telephone Number T e

One Securities Centre (770) 216-9580 5 R 3

3490 Piedmont Road, Suite 1300 “ e

Atlanta, GA 30329 Information Telephone Number A .
(770) 216-9580 i g

MSDS E1 2 B

Revision: May-12 ; §

QUIKRETE® Product Name Code # | o 4

MORTAR MiX 1102 £ Safety Glasses, Gloves |3

MASON Mix 1136 4 and Dust Respirator |2

GLASS BLOCK MORTAR 1610 = SIS ;

ROOF TILE MORTAR 1140

CSC-4 1191-84

VENEER STONE MORTAR 1137

POLYMER MODIFIED VENEER STONE MORTAR 1137-85

QUIKRETE®e PRO-FINISH BLENDED MORTAR MiX 1136-58

ALL-STAR MORTAR MIX 1122

ALL-STAR MASON MIX 1136

ALL-STAR VENEER STONE MORTAR 1137

HANDICRETE MORTAR MIX

NATURAL STONE MORTAR

RED-E-CRETE MORTAR

BULK MASONRY MORTARS: MIX 101M, 102 S, 104 N, 112 M, 112N, 112§, 122 M, 122 N, 122 §, 132 S, 142, 201 M, 202 PLN,
202 'S, 203 PLS, 203 S, 203 N, 204 N, 205 P/L type O, 203 M, 212 M, 212 N, 212 S, 222 M, 222 S, 253 S, 294 N

PRODUCT USE: MASONRY MORTARS FOR CONSTRUCTION WITH BLOCK, BRICK, VENEER STONES, ETC.

SECTION Il - HAZARD IDENTIFICATION

Route(s) of Entry: Inhalation, Skin, Ingestion

Acute Exposure: Product becomes alkaline when exposed to moisture. Exposure can dry the skin, cause
alkali burns and affect the mucous membranes. Dust can irritate the eyes and upper respiratory system.
Toxic effects noted in animals include, for acute exposures, alveolar damage with pulmonary edema.
Chronic Exposure: Dust can cause inflammation of the lining tissue of the interior of the nose and
inflammation of the cornea. Hypersensitive individuals may develop an allergic dermatitis.

Carcinogenicity: Since Portland cement and blended cements are manufactured from raw materials mined
from the earth (limestone, marl, sand, shale, etc.) and process heat is provided by burning fossil fuels, trace,
but detectable, amounts of naturally occurring, and possibly harmful, elements may be found during chemical
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analysis. Under ASTM standards, Portland cement may contain 0.75 % insoluble residue. A fraction of
these residues may be free crystalline silica. Respirable crystalline silica (quartz) can cause silicosis, a
fibrosis (scarring) of the lungs and possibly cancer. There is evidence that exposure to respirable silica or the
disease silicosis is associated with an increased incidence of Scleroderma, tuberculosis and kidney
disorders.

Carcinogenicity Listings: NTP: Known carcinogen
OSHA: Not listed as a carcinogen
IARC Monographs: Group 1 Carcinogen

California Proposition 65: Known carcinogen

NTP: The National Toxicology Program, in its “Ninth Report on Carcinogens” (released May 15, 2000)
concluded that “Respirable crystalline silica (RCS), primarily quartz dusts occurring in industrial and
occupational settings, is known to be a human carcinogen, based on sufficient evidence of carcinogenicity
from studies in humans indicating a causal relationship between exposure to RCS and increased lung cancer
rates in workers exposed to crystalline silica dust (reviewed in IAC, 1997; Brown et al., 1997; Hind et al.,
1997)

IARC: The International Agency for Research on Cancer (“IARC”) concluded that there was “sufficient
evidence in humans for the carcinogenicity of crystalline silica in the forms of quartz or cristobalite from
occupational sources”, and that there is “sufficient evidence in experimental animals for the carcinogenicity of
quartz or cristobalite.” The overall IARC evaluation was that “crystalline silica inhaled in the form of quartz or
cristobalite from occupational sources is carcinogenic to humans (Group 1).” The IARC evaluation noted that
“carcinogenicity was not detected in all industrial circumstances or studies. Carcinogenicity may be
dependent on inherent characteristics of the crystalline silica or on external factors affecting its biological
activity or distribution of its polymorphs.” For further information on the IARC evaluation, see IARC
Monographs on the Evaluation of carcinogenic Risks to Humans, Volume 68, “Silica, Some Silicates.” (1997)

Signs and Symptoms of Exposure: Symptoms of excessive exposure to the dust include shortness of
breath and reduced pulmonary function. Excessive exposure to skin and eyes especially when mixed with
water can cause caustic burns as severe as third degree.

Medical Conditions Generally Aggravated by Exposure: Individuals with sensitive skin and with
pulmonary and/or respiratory disease, including, but not limited to, asthma and bronchitis, or subject to eye
irritation, should be precluded from exposure. Exposure to crystalline silica or the disease silicosis is
associated with increased incidence of scleroderma, Tuberculosis and possibly increased incidence of kidney
lesions.

Chronic Exposure: Dust can cause inflammation of the lining tissue of the interior of the nose and
inflammation of the cornea. Hypersensitive individuals may develop an allergic dermatitis. (May contain
trace (<0.05 %) amounts of chromium salts or compounds including hexavalent chromium, or other metals
found to be hazardous or toxic in some chemical forms. These metals are mostly present as trace
substitutions within the principal minerals)

Medical Conditions Generally Aggravated by Exposure: Individuals with sensitive skin and with
pulmonary and/or respiratory disease, including, but not limited to, asthma and bronchitis, or subject to eye
irritation, should be precluded from exposure.

SECTION IIl - HAZARDOUS INGREDIENTS/IDENTITY INFORMATION

Hazardous Components CAS No. PEL (OSHA) TLV (ACGIH)
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mg/M? mg/M?

Portland Cement 65997-15-1 5 5

Silica Sand, crystalline 14808-60-7 10 0.05 (respirable)
%Si0,+2

May contain one or more of the following ingredients:

Lime 01305-62-0 5 5

Pulverized Limestone 01317-65-3 5 5

Iron Oxide Pigments 01309-37-1 5 5

Clay 01332-58-7 5 5

Other Limits: National Institute for Occupational Safety and Health (NIOSH). Recommended standard
maximum permissible concentration=0.05 mg/M?® (respirable free silica) as determined by a full-shift sample
up to 10-hour working day, 40-hour work week. See NIOSH Criteria for a Recommended Standard
Occupational Exposure to Crystalline Silica.

SECTION IV - First Aid Measures

Eyes: Immediately flush eye thoroughly with water. Continue flushing eye for at least 15 minutes, including
under lids, to remove all particles. Call physician immediately.

Skin: Wash skin with cool water and pH-neutral soap or a mild detergent. Seek medical treatment if irritation
or inflammation develops or persists. Seek immediate medical treatment in the event of burns.

Inhalation: Remove person to fresh air. If breathing is difficult, administer oxygen. If not breathing, give
artificial respiration. Seek medical help if coughing and other symptoms do not subside. Inhalations of large
amounts of Portland cement require immediate medical attention.

Ingestion: Do not induce vomiting. If conscious, have the victim drink plenty of water and call a physician
immediately.

SECTION V - FIRE AND EXPLOSION HAZARD DATA

Flammability: Noncombustible and not explosive.
Auto-ignition Temperature: Not Applicable
Flash Points: Not Applicable

SECTION VI - ACCIDENTAL RELEASE MEASURES

If spilled, use dustless methods (vacuum) and place into covered container for disposal (if not contaminated
or wet). Use adequate ventilation to keep exposure to airborne contaminants below the exposure limit.

SECTION VII - PRECAUTIONS FOR SAFE HANDLING AND STORAGE

Do not allow water to contact the product until time of use. DO NOT BREATHE DUST. In dusty
environments, the use of an OSHA, MSHA or NIOSH approved respirator and tight fitting goggles is
recommended.

SECTION Viil - EXPOSURE CONTROL MEASURES

ONE SECURITIES CENTRE, 3490 PEDMONTROAD NE, SUITE 1300, ATLANTA, GA 30305 TEL 404-634-9100 WWW.QUIKRETE.COM

127



m MATERIAL SAFETY DATA SHEET

CEMENT & CONCRETE PRODUCTS™

Engineering Controls: Local exhaust can be used, if necessary, to control airborne dust levels.

Personal Protection: The use of barrier creams or impervious gloves, boots and clothing to protect the skin
from contact is recommended. Following work, workers should shower with soap and water. Precautions
must be observed because burns occur with little warning -- little heat is sensed.

WARN EMPLOYEES AND/OR CUSTOMERS OF THE HAZARDS AND REQUIRED OSHA PRECAUTIONS
ASSOCIATED WITH THE USE OF THIS PRODUCT.

Exposure Limits: Consult local authorities for acceptable exposure limits

SECTION IX - PHYSICAL/CHEMICAL CHARACTERISTICS

Appearance: Gray to gray-brown colored powder;

Specific Gravity: 2.6t03.15 Melting Point: >2700°F

Boiling Point: >2700°F Vapor Pressure: Not Available
Vapor Density: Not Available Evaporation Rate: Not Available
Solubility in Water: Slight Odor: Not Available

SECTION X - REACTIVITY DATA

Stability: Stable.

Incompatibility (Materials to Avoid): Contact of silica with powerful oxidizing agents such as fluorine,
chlorine trifluoride, manganese trioxide, or oxygen difluoride may cause fires

Hazardous Decomposition or By-products: Silica will dissolve in Hydrofluoric Acid and produce a
corrosive gas — silicon tetrafluoride.

Hazardous Polymerization: Will Not Occur.

Condition to Avoid: Keep dry until used to preserve product utility.

SECTION XI - TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation, Ingestion
Toxicity to Animals:

LD50: Not Available

LC50: Not Available
Chronic Effects on Humans: Conditions aggravated by exposure include eye disease, skin disorders and
Chronic Respiratory conditions.
Special Remarks on Toxicity: Not Available

SECTION XIl - ECOLOGICAL INFORMATION

Ecotoxicity: Not Available

BODS5 and COD: Not Available

Products of Biodegradation: Not available

Toxicity of the Products of Biodegradation: Not available

Special Remarks on the Products of Biodegradation: Not available

SECTION XIIl - DISPOSAL CONSIDERATIONS
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Waste Disposal Method: The packaging and material may be land filled; however, material should be
covered to minimize generation of airborne dust. This product is not classified as a hazardous waste under
the authority of the RCRA (40CFR 261) or CERCLA (40CFR 117&302).

SECTION XIV — TRANSPORT INFORMATION

Not hazardous under U.S. DOT and TDG regulations.

SECTION XV — OTHER REGULATORY INFORMATION

US OSHA 29CFR 1910.1200: Considered hazardous under this regulation and should be included in the
employers’ hazard communication program

SARA (Title Ill) Sections 311 & 312: Qualifies as a hazardous substance with delayed health effects

SARA (Title Ill) Section 313: Not subject to reporting requirements

TSCA (May 1997): Some substances are on the TSCA inventory list

Federal Hazardous Substances Act: Is a hazardous substance subject to statues promulgated under the
subject act

California Regulation: WARNING: This product contains chemicals known to the State of California to
cause cancer, birth defects or other reproductive harm.

Canadian Environmental Protection Act: Not listed

Canadian WHMIS: Considered to be a hazardous material under the Hazardous Products Act as defined by
the Controlled Products Regulations (Class D2A, E- Corrosive Material) and subject to the requirements of
Health Canada’s Workplace Hazardous Material Information (WHMIS). This product has been classified
according to the hazard criteria of the Controlled Products Regulation (CPR). This document complies with
the WHMIS requirements of the Hazardous Products Act (HPA) and the CPR.

SECTION XVI - OTHER INFORMATION

HMIS-III: Health— 0 = No significant health risk
1 = Irritation or minor reversible injury possible
2 = Temporary or minor injury possible
3 = Major injury possible unless prompt action is taken
4 = Life threatening, major or permanent damage possible
Flammability- 0 = Material will not burn
1 = Material must be preheated before ignition will occur
2 = Material must be exposed to high temperatures before ignition
3 = Material capable of ignition under normal temperatures
4 = Flammable gases or very volatile liquids; may ignite spontaneously
Physical Hazard- 0 = Material is normally stable, even under fire conditions
1 = Material normally stable but may become unstable at high temps
2 = Materials that are unstable and may undergo react at room temp
3 = Materials that may form explosive mixtures with water
4 = Materials that are readily capable of explosive water reaction

Abbreviations:
ACGIH American Conference of Government Industrial Hygienists
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CAS
CERCLA
CFR

RCRA
SARA
TLV
TWA
WHMIS

Last Updated: May 8, 2012

Chemical Abstract Service

Comprehensive Environmental Response, Compensation and Liability Act
Code of Federal Regulations

Controlled Products Regulations (Canada)
Department of Transportation

International Agency for Research

Mine Safety and Health Administration

National Institute for Occupational Safety and Health
National Toxicity Program

Occupational Safety and Health Administration
Permissible Exposure Limit

Resource Conservation and Recovery Act
Superfund Amendments and Reauthorization Act
Threshold Limit Value

Time-weighted Average

Workplace Hazardous Material Information System

NOTE: The information and recommendations contained herein are based upon data believed to be correct.
However, no guarantee or warranty of any kind, express or implied, is made with respect to the information
contained herein. We accept no responsibility and disclaim all liability for any harmful effects which may be
caused by exposure to silica contained in our products. END OF MSDS.
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IMORTAR MiX

ProbucT No. 1102
PRODUCT DESCRIPTION

QUIKRETE® Mortar Mix is a construction grade mortar mix designed for laying brick,

concrete masonry units and stone.

PRODUCT USE

QUIKRETE® Mortar Mix is a construction grade mortar mix designed
for laying brick, concrete masonry units and stone. QUIKRETE®
Mortar Mix is a pre-blended, sanded product. The standard
formulation meets ASTM C 270 and C 1714 for Type N mortar.

COLORS

QUIKRETE® Mortar Mix is available in gray and additional colors by
special order. Color can also be added to the product as it is mixed by
adding QUIKRETE® Stucco and Mortar Color (#1319) to the mixing
water. Twenty standard colors are available.

SIZES

+ QUIKRETE® Mortar Mix -
+60 Ib (27.2 kg) bags
+80 b (36.3 kg) bags

YIELD

+ Each 80 Ib (36.3 kg) bag of QUIKRETE® Mortar Mix will lay up to 37
standard bricks or 13 standard (8" x 8" x 16" [200 x 200 x 400 mmj)
blocks.

TECHNICAL DATA

APPLICABLE STANDARDS

ASTM International

+ ASTM C 270 Specification for Mortar for Unit Masonry

+ ASTM C 387 Specification for Packaged, Dry, Combined Materials
for Mortar and Concrete

+ ASTM C 1714 Specification for Preblended Dry Mortar Mix for Unit
Masonry

PHYSICAL/CHEMICAL PROPERTIES

QUIKRETE® Mortar Mix meets or exceeds the property requirements
of ASTM C 270, ASTM C 387 and ASTM C 1714 for the type
selected. Refer to Appendix XI of ASTM C270 for guidance in
selecting the proper mortar type. See Table 1.

INSTALLATION

SURFACE PREPARATION

Surfaces to receive Mortar Mix should be clean and free of dirt, loose
debris, grease, oil, etc., for the best possible bond.

Masonry Mortaring
04 0513

MIXING

« For each 80 Ib (36.3 kg) bag, add 9 pt (4.3 L) of fresh water to mixer
» Turn the mixer on and begin adding bags of Mortar Mix

+ If the material becomes too difficult to mix, add additional water until
a workable mix of trowelable consistency is obtained

Note - Final water content should be 9 - 14 pt (4.3 - 6.6 L) for each 80
Ib (36.3 kg) bag and 7 - 10 pt (3.3 - 4.7 L) for each 60 Ib (27.2 kg)

bag.

INSTALLATION

« Apply a full bed of mortar onto the base, approximately 1/2" - 3/4"

(12.7 - 19.1 mm) thick

+ Push downward into the mortar bed and sideways against the
previously laid block with a slight twisting motion

* Tool the mortar joints when they become thumbprint hard. This will
make the mortar joint watertight and provide a neat appearance

Hydraulic Cement- Lime Mortars or Cement Mortars

Table 1

Type Minimum Compressive
Strength, psi (MPa)

M 2500 (17.2)

S 1800 (12.4)

N 750 (5.2)

0 350 (2.4)

Masonry Cement Mortars

Type Minimum Compressive
Strength, psi (MPa)

M 2500 (17.2)

S 1800 (12.4)

N 750 (5.2)

0 350 (2.4)

Water Retention Air content
Minimum % Maximum %
75 12

75 12

75 141

75 141

Water Retention Air content
Minimum % Maximum %
75 18

75 18

75 202

75 202

When structural reinforcement is included, the maximum air content shall be 12%
2When structural reinforcement is included, the maximum air content shall be 18%

CURING

Curing of masonry mortars is required only if conditions are very hot,
dry or windy. In such cases, a gentle mist of water applied to the
surface will prevent premature drying and improve the strength of the

mortar.

w
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its product (as purchased) found to be defective, or at the shipping

PRECAUTIONS companies’ option, to refund the purchase price. In the event of a
Variations in mix water amount, mix time, curing conditions and claim under this warranty, notice must be given to The QUIKRETE®
finishing will cause color variations. Companies in writing. This limited warranty is issued and accepted in

lieu of all other express warranties and expressly excludes liability for
WARRANTY consequential damages.

The QUIKRETE® Companies warrant this product to be of

& ;
merchantable quality when used or applied in accordance with the g:]eéosgtl:ﬁf;iTsEceiz?pames

instructions herein. The product is not warranted as suitable for any 3490 Piedmont Rd.. NE. Suite 1300, Atlanta, GA 30305
purpose or use other than the general purpose for which it is (404) 634-9100 - Fax: (404) 842-1425

intended. Liability under this warranty is limited to the replacement of

* Refer to www.quikrete.com for the most current technical data, MSDS, and guide specifications
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