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ABSTRACT 

Interpersonal physiology is the study of relationships between people’s 

physiological activates during social interactions. Converging evidence indicates that 

interdependencies develop between peoples’ autonomic systems, and can be indicative of 

psychosocial constructs such as empathy and attachment. These interdependencies, often 

referred to as physiological linkage, are theorized to be key components of social process. 

Research in the area is limited however, and there is little consensus for best practices. 

The mechanisms involved in the emergence of linkage, terminology, and methodology 

and statistics have not been adequately addressed. This dissertation aimed to 

systematically address these issues through four manuscripts. The first addresses 

potential generating mechanisms using a controlled, laboratory based study.  Results 

indicate that matched activity and dialog are not necessary for physiological interactions 

to emerge between romantic couples during passive activity. In the second manuscript, 

analytical issues are addressed through the application of cointegration, an advanced time 

series modeling procedure designed to handle multivariate, nonstationary data. However, 

results suggested that the analysis is not well suited to these data.  The third manuscript 

addresses the informational divide through a systematic literature review designed to both 

create a centralized resource, and offer recommendations for the field at large.  In the 

final manuscript, the inconsistent timescales in which physiological relationships appear 

to occur is addressed through the use of a novel method of data decomposition in the time 

domain.  The method is applied to an idiographic example of data collected in-vivo from 

a student with autism spectrum disorder and his teacher. Findings suggest that running 

analyses on different time windows of data can significantly impact results.  
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PREFACE  
 
 The following dissertation was prepared using the manuscript format.  It consists 

of four manuscripts focused on interpersonal physiology.  Manuscripts 1 and 2 focus on 

the analysis of a controlled research study designed to assess basic generating 

mechanisms of physiological linkage.  Manuscript 3 is a comprehensive systematic 

literature review including extensive recommendations for future research.  Mansucript 4 

introduces a general methodological approach for decomposing data in the time domain.  

The approach is applied to both intrapersonal and interpersonal questions using data 

collected in-vivo from a student with autism spectrum disorder and his teacher during 

class. Overall conclusions are offered at the end of the dissertation.    



	
  

v 

 
TABLE OF CONTENTS 

ABSTRACT.......................................................................................................................ii 

ACKNOWLEDGEMENTS.............................................................................................iii  

PREFACE..........................................................................................................................iv  

TABLE OF CONTENTS..................................................................................................v  

LIST OF TABLES...........................................................................................................vii  

LIST OF FIGURES........................................................................................................viii 

INTRODUCTION.............................................................................................................1 

MANUSCRIPT 1, Assessing Physiological Linkage In Romantically Involved Dyads 

During Nonverbal Conditions...........................................................................................3  

Abstract....................................................................................................................4 

Introduction..............................................................................................................5 

Method.....................................................................................................................9 

Results....................................................................................................................12 

Discussion..............................................................................................................12 

References..............................................................................................................15  

MANUSCRIPT 2, Assessing Physiological Linkage Through Cointegration  

Analysis.............................................................................................................................19  

Abstract..................................................................................................................20 

Introduction............................................................................................................21 

Method...................................................................................................................27 

Results....................................................................................................................30 

Discussion..............................................................................................................30 



	
  

vi 

References..............................................................................................................42  

MANUSCRIPT 3, Interpersonal Physiology: A Systematic Review Of The 

Literature..........................................................................................................................45 

Abstract..................................................................................................................46  

Introduction............................................................................................................47 

Method...................................................................................................................49 

Results....................................................................................................................50 

Discussion..............................................................................................................71 

References..............................................................................................................91  

MANUSCRIPT 4, Assessing Interpersonal Physiology Through Time-Based Data 

Decomposition…………………………………..............................................................98 

Abstract..................................................................................................................99  

Introduction..........................................................................................................100 

Method.................................................................................................................108  

Results..................................................................................................................112  

Discussion............................................................................................................115 

References............................................................................................................125  

CONCLUSIONS FROM STUDIES……………………………………………….....127 

 References………………………………………………………………………131 

 

 

  



	
  

vii 

LIST OF TABLES 

 

TABLE           PAGE 

Table 2.1. Augmented Dickey-Fuller Unit Root Test Results: Acclimation Phase...........33 

Table 2.2. Augmented Dickey-Fuller Unit Root Test Results: Back-to-Back Phase…....34 

Table 2.3. Augmented Dickey-Fuller Unit Root Test Results: Face to Face-1 Phase…...35 

Table 2.4. Augmented Dickey-Fuller Unit Root Test Results: Face to Face-2 Phase...…36 

Table 2.5. Cointegration Results: Acclimation Phase…………………………………...37 

Table 2.6. Cointegration Results: Back to Back Phase…………………………………..38 

Table 2.7. Cointegration Results: Face to Face 1……………………………………..…39 

Table 2.8.	
  Cointegration Results: Face to Face 2………………………………………...40 

Table 2.9. Cointegration Results: Random Dyads……………………………………….41 

Table 3.1. Systematic Literature Review Results……………………………….……….86 
 

 

  



	
  

viii 

LIST OF FIGURES 

 

FIGURE           PAGE 

Figure 1.1. Skin conductance levels of couple 1……………….………………………..14 

Figure 4.1. Plots of the student’s windowed mean skin conductance (Su), windowed 

variance in skin conductance (Svar), and windowed slope in skin conductance 

(Ss)……………………….……………………………………………………...119  

Figure 4.2. Plots of the teachers windowed mean skin conductance (Tu), windowed 

variance in skin conductance (Tvar), and windowed slope in skin conductance 

(Ts)………………….……………………………………………………...……120 

Figure 4.3.  Student’s and teacher’s skin conductance (SC)…………………………....121 

Figure 4.4. Euclidian distance between student and teacher’s windowed mean skin 

conductance (Eu), windowed variance in skin conductance (Evar) and windowed 

slope in skin conductance (Es)……………………………………………...…..122 

Figure 4.5. Plots of the 5-second windowed variance, mean, and slope of the student’s 

skin conductance (SC).  Behavioral problems are overlaid in red……………...123 

 

 

 

 

 



 

1 

 
INTRODUCTION 

 

Interpersonal physiology is the study of relationships between people’s 

physiological activity (e.g., heart rate, breathing rate) during social interactions. 

Converging evidence indicates that interdependencies can develop between peoples’ 

autonomic systems, during which the activities of one person are partially dependent on 

another. Interpersonal measures of physiology have been used to show that a couple is 

locked into a heated argument, a therapist is empathizing with her patient, and that one 

individual is leading the behaviors of his teammates. Whether it is family dynamics or 

group behaviors, psychotherapy or team leadership, a better understanding of the 

influence of physiology on social relationships can lead to important new insights. 

Though interpersonal physiological interactions are currently underexplored, the field is 

undergoing a rapid expansion, and nearly all research to date suggests that these are 

critical processes underlying all social interactions (see manuscript 3). 

Despite increased interest, inconsistencies in the field have led to a number of 

issues.  Varied terminology and methods have caused an information divide, as few 

researchers appear to be aware of the extent of the current literature.  Due to the 

complexity involved in the statistical analysis of nonstationary multivariate time series of 

physiology, analytical procedures applied to these data are often inappropriate or 

misinterpreted.  Most importantly, the lack of studies addressing the basic generating 

mechanisms have left questions of how and when physiological relationships emerge 

unanswered, hindering all other interpretations.  The combination of these systemic 
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issues has inhibited the progress of research in this field, and will continue to do so unless 

resolved.  

The following dissertation aims to address these issues in a systematic way. The 

first manuscript undertakes the question of generating mechanisms.  This is done through 

a controlled, laboratory based study that assessed whether conditions such as matched 

activity or dialog were necessary for physiological interactions to emerge. In the second 

manuscript, analytical issues are addressed though the application of an advanced time 

series modeling procedure designed to handle multivariate, nonstationary data. The third 

manuscript addresses the informational divide through a systematic literature review 

designed to both create a centralized resource, and offer recommendations for the field at 

large.  The final manuscript addresses a general analytical problem, namely the 

inconsistent timescale in which physiological relationships appear to occur, through the 

use of a novel method of data decomposition in the time domain.  The method is applied 

to an idiographic example of data collected in-vivo from a student with autism spectrum 

disorder and his teacher.  
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MANUSCRIPT 1 

 

Assessing Physiological Linkage In Romantically Involved Dyads During Nonverbal 

Conditions 

 

 

Manuscript prepared for submission to the journal Psychophysiology 
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Abstract 

Recently, there has been an increase in research on interpersonal physiology, the study of 

physiological activities as interpersonal, rather than intrapersonal processes. Findings 

suggest that across a range of dyads, under different conditions, and using different 

designs and analysis, interactions can be observed in the physiology of pairs, known as 

physiological linkage.  Although correlated with psychosocial constructs including 

empathy and attachment, physiological linkage may be an independent, ubiquitous 

processes.  To explore whether physiological linkage would develop under controlled 

conditions, the skin conductance of romantically involved couples was assessed while 

they were quietly seated back to back, and face to face.  Results indicated linkage in skin 

conductance when couples were face to face, but not when back to back.  Implications of 

findings, limitations, and recommendations for future research are presented. 

 

 

 

 

 

 

 

 

Keywords: interpersonal physiology, physiological linkage, physiological synchrony, 

physiological coherence, skin conductance, dyadic interactions, couples 



 

5 

Assessing Physiological Linkage In Romantically Involved Dyads During Nonverbal 

Conditions 

In recent years, there has been an increase in research on interpersonal 

physiology, the study of physiological activities as interpersonal, rather than 

intrapersonal processes.  Dyadic studies of physiology have shown that relationships 

develop between people’s autonomic activity, suggesting that physiological components 

underlie social dynamics.  Across published examples, whether different populations or 

conditions, using various physiological measures and statistical analyses, relationships 

have been found in the autonomic activities of dyads (Guastello, Pincus,	
  &	
  Gunderson, 

2006).  Whereas some theories suggest that this physiological linkage (PL) is a 

coregulatory processes emerging from specific conditions such as secure attachments or 

empathy (Butler, 2011; Diamond, 2008; Sbarra & Hazan, 2008), other findings indicate 

that these processes operate independent of higher order constructs, and are an underling 

component of social interactions (Ferrer & Helm, 2012).   

Previous Findings  

Research on interpersonal physiology began over half a century ago, when a 

series of studies found correlations in the skin conductance (SC) of therapists and patients 

during therapy (Coleman, Greenblatt, & Solomon, 1956; DiMasco, Boyd, Greenblatt, 

1957; DiMasco, Boyd, Greenblatt, & Solomon, 1955).  Observed patterns included 

concordance, when SC moved together, and discordance, when SC moved in opposition 

(DiMasco et al., 1955).  The authors discussed the possibility of using these measures as 

a reflection of therapeutic rapport, or as a physiological marker of empathy (Coleman et 

al., 1956; DiMasco et al.,1957; DiMasco et al., 1955).  Despite this early cluster of 
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research, the field of social-psychophysiology trended towards intrapersonal responses to 

social situations, rather than interpersonal interactions (Adler, 2002).  Beyond a few 

scattered reports (e.g., Kaplan, Burch, Bloom, & Edelberg, 1963; Stanek, Hahn, & 

Mayer, 1973), it was over 25 years until the next advancements in interpersonal 

physiological research.   

In their seminal work on the topic, Levenson and Gottman (1983) applied a 

bivariate time series analysis to an index of cardiac, electrodermal, and somatic measures 

from married couples. When couples discussed high conflict topics, the resultant 

synchronizations in physiology accounted for 60% of the variance in marital satisfaction, 

an accuracy beyond any other measures of the time (Levenson and Gottman, 1983).  The 

authors concluded that negative valance led to PL, a finding replicated elsewhere in the 

literature (Kaplan et al., 1963; Messina et al., 2012).   

Alternative conclusions about the role of valance were advanced in a study of 

attachment in depressed and non-depressed mothers with their infants (Field et al., 1989).  

Using a cross spectral analysis, PL was found in the heart rates (HR) of mothers and 

infants, regardless of the emotional state of the mother.  Other studies of mothers and 

infants support these findings, suggesting that basic components of social interactions, 

such as shared gazing, lead to PL rather than emotional states (Feldman et al., 2011; Ham 

& Tronick, 2008).  For example, Ham and Tronick (2008) analyzed the correlations of 

slopes in the SC of mothers and infants engaged in the face to face, still face paradigm. In 

this three phase procedure, mothers interact normally with infants, then sit quietly with a 

stilled facial expression, then reengage in normal interaction. Analysis showed that PL 

occurred across conditions, but correlated with different social engagements. In the still 
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face period, video showed that PL in SC was significantly related to negative infant 

behaviors, such as fussing or protesting.  During reengagement PL was significantly 

correlated with behavioral synchrony between the mother and infant, but not negative 

behaviors.   

Attention was assessed more directly in a study of perceived empathy (Marci & 

Orr, 2006).  Interviews between a therapist and participants were monitored in two 

conditions.  In the first condition, the therapist read scripted questions in a neutral tone 

and attended to participants in a clinically accurate and typical manner, including eye 

contact and head nodding.  In the second condition, the therapist read the same questions 

in a similar manner, but made conscious attempts to distract himself with breathing 

techniques and decreased eye contact during participant responses.  Correlations in SC 

slopes indicated that decreased therapist attention was associated with a significant 

decrease in PL.  Through the conscious act of averting his gaze and attention, the 

therapist was able to disrupt the physiological relationship as well as to decrease the 

experience of empathy reported by participants.   

A recent series of studies support findings that attention contributes to PL (Ferrer 

& Helm, 2012; Helm et al., 2012; McAssey et al., 2011).  Combining advanced statistics 

and a simple design, trials were run to assess PL in romantic couples.  Couples completed 

three conditions in which they sat next to each other while quiet and still: a 5 minute 

baseline, where couples were blindfolded; a 3 minute gazing task, where they were asked 

to maintain eye contact; and a 3 minute in-sync task, in which they were asked to attempt 

to synchronize their physiologies. Measures included respiration, thoracic impedance, 

and HR. Overall, analyses found PL in all conditions.  Across measures and analyses, the 
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in-synch task produced significantly greater linkage than the other two conditions.  The 

gazing task resulted in significantly more PL than the baseline in all physiological 

measures across all 4 analyses.  Analyses showed significantly more PL in baseline HR 

than randomly paired control dyads, whereas respiration was no more related than 

chance.  These findings indicate that PL occurs across contexts in nonverbal interactions, 

and suggests that proximity may be a sufficient condition for relationships in HR to 

develop. 

Interpreting Interpersonal Physiological Research 

Though interpersonal physiological research holds a great deal of promise, there 

are some important limitations that should be addressed.  First, physiological recordings 

reflect arousal, but not valance.  Profiles of physiological activity are not mood specific, 

so PL is not indicative of shared emotional states (Cacioppo, Tssinary, & Berntson, 

2007).  A second consideration is that physiological measures are complimentary rather 

than redundant (Cacioppo et al., 2007).  Each measure reflects uniquely innervated 

systems, so linkage in one measure does not denote similar relationships in other systems.  

For example, studies have found that under some conditions, HR but not in breathing rate 

synchronizes (Ferrer & Helm, 2012). Linkage in certain measures might therefore 

indicate distinct components of an interaction, but this has not yet been explored. Finally, 

statistical procedures assess specific parameters of PL, so effectively become the basis of 

its operational definition. Whereas some techniques test for shared long term, linear 

trends (e.g., correlations), others evaluate momentary synchronizations in high frequency 

activity (e.g., coherence).  Therefore, the operational definition of PL is inconsistent 

across studies, and analyses may be addressing different types of processes.    
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Despite such limitations, evidence from previous work suggests that across dyads, 

measures, and analyses, PL emerges in the absence of coordinated behaviors such as 

shared activities or dialog.  The aim of the present study was to assess whether proximal 

conditions were sufficient for PL to develop. For purposes of cross study comparisons, 

the most commonly used measure (i.e., SC) and analysis (i.e., windowed correlation of 

slope) were used to assess PL in romantically involved couples.  The combination of skin 

conductance, considered a reflection of sympathetic nervous system activity (Dawson, 

Schell, & Filion, 2007), and windowed correlation of slope has been successfully 

interpreted in a number of studies (Ham & Tronick, 2008; Marci & Orr, 2006; Marci et 

al., 2007; Messina et al., 2012).  Similar to recent trials (Ferrer & Helm, 2012; Helm, 

Sbarra, & Ferrer, 2012; McAssey et al., 2011), the current study assessed dyads during 

inactive, nonverbal conditions in which visual cues were available in one condition but 

not the other.  Based on previous research, it was hypothesized that PL in the SC of 

couples in both conditions would be greater than chance, and that visual cues would 

significantly increase measures of linkage. 

Method 

Participants 

Participants included 18 romantically involved heterosexual couples.  One 

member from each dyad was an undergraduate psychology student, and received class 

credit for participation. Due to technical issues, data from 16 dyads was available for 

analysis. Recruitment and procedures were approved by the University of Rhode Island’s 

institutional review board for the protection of human subjects.  

Procedure 
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Each couple was brought into a quiet room, seated, and fitted with surface 

electrodes on the distal phalanges of the third and forth fingers of the nondominant hand, 

as well as the left and right forearm. A respiration sensor was placed over the diaphragm. 

Participants were asked to sit still and remain quiet for thirty-two minutes, during which 

physiological measurements were taken. For seventeen minutes, participants were seated 

back to back in separate chairs.  The first two minutes was considered an acclimation 

phase, followed by the back to back phase (BB). At the fifteen minute mark, a tone 

sounded alerting participants to turn their chairs to face each other.  The face to face 

period (FF) continued for the remaining 15 minutes of the trial. Following the trial, 

participants were debriefed, and all electrodes were removed. Individuals were asked to 

complete a survey assessing age, gender, length of relationship, mood, and intensity of 

mood during the trial, though these measures were not analyzed due to inadequate sample 

size. 

Measurement Tools 

A J+J Engineering I-330-C2+, 12 channel biofeedback unit was used to take 

simultaneous physiological measures at a sampling rate of 10 measures per second. Gel 

free surface electrodes were used to take measurements of SC, HR, respiration rate, and 

skin temperature, though only SC was analyzed for this report.  

Statistical Analysis 

The most commonly reported analysis of dyadic relationships in SC is a 

windowed correlation of slope, first developed by Marci and Orr (2006).  The technique 

was designed to assess incremental shifts in slope, as change in level is considered a 

better indicator of sympathetic activity than mean level (Marci & Orr, 2006). This 
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approach has been successfully applied in a number of studies (Marci & Orr, 2006; Marci 

et al., 2007; Ham & Tonick, 2008; Messina et al., 2012), suggesting its viability as a 

measure of PL.   

For each series of SC, slope is calculated in a continuous, running 5-second 

window.  Thus, the slope of the first 50 data points is calculated (t = 1:50) using a least 

squares regression.  The window is then shifted forward by 1 data point, and slope is 

calculated again (t = 2:51).  The continuation of this procedure results in a vector of slope 

parameters.  Following this step, lag-0 Pearson correlations of the SC slopes are 

calculated for each dyad using a continuous, running 15 second window.  Here, the 

correlation for the first 15 second segment is calculated (t = 1:150), the window is shifted 

forward by 1 data point, and the correlation is calculated again (t = 2:151). The 

continuation of this step results in a vector of correlations of slope for the dyad (R = 

r1…rn).  For aggregation, an index of overall linkage for a session is calculated by 

dividing the sum of positive correlations by the absolute value of the sum of negative 

correlations, and standardized with a natural log transform (see equation 1).   

[1]                          𝐿𝐼 =   log  ( ∑ !!!
∑ !!!

) 

This linkage index (LI) is considered a reflection of the synchrony in SC during the trial.   

To test for linkage beyond chance, control data was created by following the 

above procedures with 16 randomly matched pairs from the total data.  Indexes were 

calculated for time matched periods to reflect the BB and FF phases, giving random BB 

indexes (RBB), and random FF indexes (RFF). Statistical significance was tested using 

independent samples t-tests comparing the indexes from BB to RBB, FF to RFF, and FF 
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to BB. Confidence intervals and effect sizes using Cohen’s d (Cohen, 1988) are reported 

for each comparison. 

Results 

 The hypothesis that the index of linkage during the FF condition (m = .65; SD = 

.50) would be significantly greater than the RFF control data (m = .06; SD = .25) was 

supported (t (30)= 4.18, p < .05; 95% CI [.30, .88]) with a large effect size (d = 1.78).  

The hypothesis that the index of linkage during the BB phase (m = .31, SD = .33) would 

be significantly greater than the RBB control data (m = .12; SD = .24) was not supported 

(t (30) = 1.85, p = .08, 95% CI [-.02, .40]), though the moderate effect size suggests a 

potentially important result (d = .71). Results showed that the linkage index during the FF 

phase was significantly greater than the linkage index during the BB phase (t (30) =         

-2.2411, p < .05; 95% CI [-.65, -.03]; d = -.88). 

For the purpose of illustration, the raw SC for couple 1 are displayed in figure 1.1.  

The linkage index for this couple was relatively high at .47 for the BB phase and .26 for 

the FF, whereas the mean index for RBB was .12, and the mean index for RFF was .06. 

Discussion 

 Results suggest that when couples are quietly facing each other, PL is detectable 

in sympathetic activity.  Despite a number of limitations, the significant results and 

moderate effect size support previous findings (e.g., Ferrer & Helm, 2012), suggesting 

that visual proximity is sufficient for PL to develop.  

 There are, however, significant limitations to this study.  To begin, a small 

convenience sample of undergraduates was used, so results should be considered trends 

rather than generalizable evidence.  Additionally, the serial dependence in the data was 
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not accounted for, violating the assumption of independence required for correlation 

analysis. This increases the potential of type I errors.  In the original paper, Marci and Orr 

(2006) cite previous work by Robinson et al. (1982) which cautions against removing the 

autocorrelation with this type of data, suggesting that important information regarding the 

true dyadic relationship would be removed. Though our results were validated by testing 

against random pairs, without systematic simulation studies, the effects of autocorrelation 

are unknown.   

An additional limitation to the present design is the use of nomothetic (group 

level) aggregations across data that is clearly heterogeneous.  Whereas high linkage 

indexes were found for some couples in both conditions, others were low in both, 

suggesting that the aggregate does not represent the PL in each dyad.  It would be more 

appropriate to analyze each dyad as an idiographic case study using intensive longitudinal 

designs.  Vector autoregressive models that deal with autocorrelation, such as 

cointegration or dynamic systems modeling, may be more suited to the bivariate analysis 

of SC.   

Future interpersonal physiological research methods should account for the 

findings reported here, as well as the interpretive limitations to PL.  Though theories of 

attachment, empathy, and coregulation may accurately describe a consequence of PL, 

they do not appear to account for its emergence.  The finding here suggest that PL is an 

unconscious autonomic response to social situations, but additional research is needed to 

further investigate its basic components.    
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Figure 1.1 Skin conductance levels of couple 1. 
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Abstract 

 

Interpersonal physiology, the study of social interactions through physiological measures, 

is an underexplored yet potentially important methodology.  Research has shown that 

physiological relationships that develop during interpersonal interactions are indicative of 

psychosocial constructs such as empathy and attachment.  However, few studies have 

attempted to address the mechanisms that drive these physiological relationships, so little 

is known about the processes involved.  Additionally, the complexities involved in 

analyzing these data prohibit the use of most statistics, and viable methods are needed.  

To address the need for basic data, the current study assessed physiological relationships 

in the skin conductance of romantically involved partners during passive, nonverbal 

conditions.  Physiological interactions were assessed using cointegration analysis, a well 

validated, multivariate time series analysis that tests for shared stochastic trends between 

data sets.  However, due to constraints of the analysis, less than half of the data was 

analyzable.  Additionally, results indicated that randomly matched skin conductance data 

exhibited cointegration, suggesting that the analysis is not well suited to these processes. 

 

 

 

 

Keywords: interpersonal physiology, physiological linkage, physiological synchrony, 

physiological coherence, dyadic interactions, cointegration, multivariate time series  
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Assessing Physiological Linkage Through Cointegration Analysis 

 

Interpersonal physiology refers to the study of interpersonal dynamics through 

physiological activity. The approach requires the joint assessment of simultaneously 

collected time series of physiological data from multiple people.  This method has 

revealed complex bi-directional processes in the physiological activities of dyads and 

groups, known as physiological linkage (PL). PL has been observed across relationships 

(e.g., couples; Levenson & Gottman, 1983; teammates; Henning, Boucsein, & Gil, 2001) 

and conditions (e.g., play; Ham & Tronick, 2008; therapy; Marci, Ham, Moran, & Orr, 

2007), and found to correlate with psychosocial constructs including empathy (Marci et 

al., 2007) and attachment (Field et al., 1989).  Findings suggest that a component of 

interpersonal interaction is operating at the physiological level, and is not dependent on 

observable behaviors.  Though an increasing number of studies are incorporating 

interpersonal physiology into their research, the mechanisms that drive PL have not been 

directly addressed.  More importantly, there are a limited number of viable analyses 

applicable to these data. The following pilot study aims to address these two issues by 

first investigating PL in the absence of shared activities such as coordinated behaviors or 

dialog. The development of PL under such conditions would indicate that future research 

can minimize confounds to more accurately assess its dynamics. Second, cointegration 

analysis will be evaluated as a measure of PL.  Cointegration is a multivariate time series 

analysis that can show coregulatory relationships. It is a validated technique used most 

often in econometrics to assess shared stochastic trends in nonstationary data, and 

appears well suited for the analysis of PL.  
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Methodological Issues in Interpersonal Physiological Research 

Interpersonal physiological research began over half a century ago, when a series 

of studies included physiological measurements from both clients and therapists during 

counseling (Coleman, Greenblatt, & Solomon, 1956; DiMasco, Boyd, Greenblatt, 1957; 

DiMasco, Boyd, Greenblatt, & Solomon, 1955).  Results suggested that there were 

periods of synchronization in the heart rates (HR) and skin conductance (SC) levels of the 

dyads. Contextual data indicated that sessions with higher levels of PL were experienced 

as more empathic, prompting the researchers to conclude that there was a physiological 

component of empathy.  Most research to date has followed these early works, using PL 

as a means to assess broader psychosocial constructs.  For example, Levenson and 

Gottman (1983) assessed an index of PL as a marker of marital satisfaction.  Creaven et 

al. (2014) and Feldman (2012) have used it as an indicator of relationship type in mother-

child dyads, whereas Henning et al. (2001) and others (e.g., Chanel, Kivikangas, & 

Ravaja, 2012; Järvelä, Kivikangas, Kätsyri, & Ravaja, 2013) are leading the way using 

PL to explore components of teamwork.  Nearly all studies to date have resulted in 

finding of PL, and it is generally considered to be a useful tool indicative of a range of 

constructs (Butler, 2011).    

One problem stemming from these findings is the prevalence of contrary 

conclusions.  Though some studies connect PL to negative contexts only (e.g., Levenson 

& Gottman, 1983), many observe it during positive valance (e.g., Marci et al., 2007, Ham 

& Tronick, 2008).  Some conclude that it is limited to attachment relationships (Sbarra & 

Hazan, 2008), whereas others have observed it in strangers (Silver & Parante, 2004).  

Greater linkage has been associated with better teamwork (Henning et al, 2001), but also 
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with arguments and dissatisfaction (Levenson & Gottman, 1983). It is often assumed to 

be a result of behavioral coordination (Feldman et al., 2011), though it has been observed 

in dyads participating in unmatched activities (Elkins et al., 2009).  Multiple factors 

likely contribute to these issues.  First, there are few papers that adequately integrate the 

published research. This appears to be in part due to the segregation in the literature, as 

the terms, designs, statistics, and measures are inconsistent across disciplines, making it 

difficult to compile relevant work. Review papers on the topic are needed, and could help 

inform future research questions and designs.  Second, most analyses use nomothetic 

techniques, which address the data in the aggregate looking for mean differences in PL 

across groups or conditions. However, nomothetic methods treat individual variation as 

error in exchange for estimates of group level tendencies.  Though potentially 

informative, these methods obscure individual level dynamics, a significant problem 

when dealing with heterogeneous data. The complexities inherent to PL call for analyses 

with a temporal resolution that can only be achieved through idiographic methods. Newly 

developed idiographic analyses focus on patterns of relationships over time within a 

given unit (e.g., a dyad). Third, as each physiological measure reflects unique internal 

processes, research is needed to determine whether specific measures differentiate 

between interpersonal conditions.  For example, linkage in respiratory sinus arrhythmia, a 

measure of parasympathetic activity, may be more informative of positive valance 

compared to measures of sympathetic activity, such as skin conductance (SC).  Finally, 

most studies make no attempts to explore PL as an independent process, instead relying 

on a given measure of linkage as an indicator of some other construct.  This approach 

inherently assumes that the mechanisms driving PL are related to the mechanisms of a 
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given construct.  However, PL has been found to underlie a wide range of constructs, so 

cannot be assumed to be caused by the given conditions.  Research designs that assess PL 

as an independent dynamic process with unknown mechanisms are needed to better 

understand how these interactions develop.  

Statistical Issues in Physiological Linkage 

An important caveat in interpersonal physiological research is that the analysis 

used to identify PL effectively dictates its operational definition.  Variations in the 

statistical approach can address different components in the data, redefining the 

mathematical definition of what is considered ‘same’ versus ‘different’.  Therefore, the 

concept of linkage is defined by the analysis used, and inferences made about the 

relationship between people hinge on the statistical approach.  For example, techniques 

such as correlations test for linear relationships between two series, indicating whether a 

change in one co-occurs with a change in the other. Alternatively, coherence assesses 

whether the same frequency components are present in the data, indicating the presence 

of similar cycles.  More advanced procedures such as directed transfer functions can 

show directional influences, and indicate whether a specific pattern in one leads to a 

similar pattern in the other. Though findings may correspond across analyses, 

fundamentally different procedures are likely to produce divergent results. Recent 

publications suggest a variety of new techniques (Ferrer & Helm, 2012; Helm, Sbarra, & 

Ferrer, 2012; McAssey et al., 2011), however, few have been well validated, and there 

are currently no clear solutions for how PL should be assessed.   

Cointegration 
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One potential solution is to adapt techniques hat have been validated using similar 

data, such as cointegration.  Well established in econometrics, cointegration is designed 

to identify shared stochastic trends in nonstationary time series.  A well known 

theoretical example of a cointegrated relationship is the shared path of a drunk walking 

his dog (Murray, 1994). In this example, the steps taken on the walk by both the man and 

the dog are random, so the path of each is stochastic and individually unpredictable. 

However, there is a shared trend between them, as both the man and the dog regulate 

their movements based on the position of the other.  The man is never too far from his 

dog, and the dog never moves too far away from his owner.  Similarly, cointegration has 

been described as a way to determine that two distant ships, each with their own unique 

movements, are drifting on the same current. These shared movements despite random 

positions create a linear trend, or cointegration, which can be calculated using a vector 

error correction model (VECM).   

To be eligible for cointegration analysis, each time series must be nonstationary 

and integrated of the same order.  Nonstationary data has an inconsistent mean and 

variance, and is integrated (I) if it becomes stationary after differencing to a given order, 

d.  Differencing is a simple transformation of a time series (X), reflecting the change in 

scores between consecutive measurements (Δxt = xt – xt-1).  The number of times data 

must be differenced for the resultant series (ΔX) to become stationary, is the order that it 

is integrated.  This is denoted as I(d), where I indicates that the integrated data (ΔX) is 

stationary after being differenced (d) times.  Stationary data can be denoted as I(0). Most 

commonly, integrated data becomes stationary after first order differencing, meaning it is 

integrated to the first order, denoted as I(1).  For time series to be tested for cointegration, 
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each series must be nonstationary and integrated of the same order with normally 

distributed residuals (ϵ ~ I(0)).  Due to these constraints, some data may not be 

appropriate for cointegration analysis.    

If time series vectors are integrated of the same order (d), they can then be tested 

for cointegration by determining whether they share a common stochastic trend (Engle & 

Granger, 1987).  If analyses indicate that the series share a common trend (i.e., are 

cointegrated), then a VECM can be used to calculate the parameters of their relationship.  

The VECM, as defined by Stroe-Kunold and colleagues (2012), first assumes that the 

common trend (CT) has a unique influence on each variable, λ, and each variable has a 

white noise error (ϵ) around the trend. So, the series X, can be represented as:  

xt = λ1CTt + ϵ1t ,  

and the series Z can be represented as : 

zt = λ2CTt + ϵ2t,  

where ϵ is a white noise error (ϵ1t , ϵ2t ~ I(0)), CT is the shared stochastic trend, and λ is 

the weighted influence of the CT on each original series (X, Z).  If the shared stochastic 

trend, CT is removed, and there is a stationary, linear combination of the remaining terms 

(e.g., λ2 ϵ1t − λ1 ϵ2t, ~ I (0)), then the two series are cointegrated. The general VECM is 

written as: 

[1]  ΔYt = ΠYt-1 + Γ1ΔYt-1 +…+ Γp-1ΔYt-p+1 + Ut 

Where ΔYt = a K-variate process (e.g., X, Z) with r shared stochastic trends 

(multivariate systems can have multiple cointegrating trends, though r = 1 in a bivariate 

cointegrated system); Π = αβ/, where α is the K x r error correction mechanism, and 

β/ΔYt-1 is the K x r matrix of error correction weights, the equilibrium of the system. 
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Combined, these terms represent the shared common trend. Γ = the K x K loading matrix 

of lagged weights (λi), and represents the autocorrelation structure. p = the number of 

lags in the model; and U = the error matrix (ϵit). When solved, terms such as β and α can 

be used to interpret the dynamics of the system.  For example, if αi > 0, then deviations 

from the trend in the previous period are enhanced, whereas if αi < 0, then deviations are 

reduced.   

Overview Of The Current Study 

It has been theorized that physiological level interactions are ubiquitous (Butler, 

2011), and can therefore be explored regardless of the contextual environment.  If this is 

the case, then the inclusion of multifaceted conditions and interactions may obscure 

patterns in the already complex data.  In the current study, the first aim will be addressed 

by simplifying the conditions under which PL is assessed so that confounding variables 

that may inhibit the measurement of physiological interactions can be reduced. The 

second aim will be addressed by using cointegration analysis to assess PL.  

Methods 

Participants  

Participants included 18 romantically involved heterosexual couples. One 

member from each dyad was an undergraduate psychology student, and received class 

credit for participation. Due to technical issues, data from 16 dyads were available for 

analysis. Recruitment and procedures were approved by the University of Rhode Island’s 

institutional review board for the protection of human subjects.   

Procedure  
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Each couple was brought into a quiet room, seated, and fitted with surface 

electrodes on the distal phalanges of the third and forth fingers of the nondominant hand, 

as well as the left and right forearm. A respiration sensor was placed over the diaphragm. 

Participants were asked to sit still and remain quiet for thirty-two minutes, during which 

physiological measurements were taken. For seventeen minutes, participants were seated 

back to back in separate chairs. The first two minutes was considered an acclimation 

phase (AC), followed by the back to back phase (BB). At the fifteen minute mark, a tone 

sounded alerting participants to turn their chairs to face each other. The face to face 

period continued for the remaining 15 minutes of the trial, with the first five minutes 

(FF1) separated from the final ten minutes (FF2) due to movement artifact. Following the 

trial, participants were debriefed, and all electrodes were removed. Individuals were 

asked to complete a survey assessing age, gender, length of relationship, mood, and 

intensity of mood during the trial, though these measures were not analyzed due to 

inadequate sample size.  

Measurement Tools  

A J+J Engineering I-330-C2+, 12 channel biofeedback unit was used to take 

simultaneous physiological measures at a sampling rate of 10 measures per second. Gel 

free surface electrodes were used to take measurements of SC, HR, respiration rate, and 

skin temperature, though only SC was analyzed for this report.  

Statistical Analysis 

 Prior to testing for cointegration, data were transformed using a log(10) to meet 

the assumption of normally distributed residuals. All data were then reduced using a one 

second moving average, so that each data point represented one second. Each time series 
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was then split into four segments as defined above: AC, BB, FF1, and FF2. Unit root tests 

were performed on each segment of each time series using the Augmented Dickey Fuller 

test (ADF, Dickey & Fuller, 1979) using an alpha of 0.025, so that an alpha of 0.05 was 

maintained for each dyad.  Initial test lag was set at: Max Lag = (t-1)(1/3) , then rerun with 

lags derived from the Akaike information criteria (AIC) and the Schwarz Criterion 

(SWC). Each unit root test then was first run without a trend (tau-3 and phi-3).  If a unit 

root was detected, it was rerun with a trend (tau-2, phi-2), and again with a drift (tau-1). 

A unit root indicates nonstationary data. If ADF tests indicated that a segment was 

nonstationary and integrated to the same order (d) for both series from a dyad, then 

procedures continued.  Otherwise, the two series could not be cointegrated so no further 

tests were done on the given segment for that dyad.  

Cointegration was then tested using the Johansen trace test (Johansen, 1995), with 

the alpha of the likelihood ratio, r, set to 0.05.   For these tests, trends in data were first 

assessed using a procedure for statistical testing of deterministic trends described in Pfaff 

(2008) and were carried out using the statistical software R (R Development Core Team, 

2012)  

If neither time series had a trend, the Johansen trace test included a constant. If 

one series had a trend and the other did not, then the test included a constant and a trend. 

If both series had trends with a similar slope, then an orthogonal trend was used. If both 

series had trends and the slopes were not the same, then a constant and a trend were 

included. The Johansen trace test was rerun accordingly using each lag indicated by the 

AIC and SWC. 
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 If Johansen trace tests indicated that the null hypotheses H0: r ≤ 0 (i.e., no 

integration) or H0:r >1 (i.e., both time series are stationary, and have no unit root) were 

rejected, and that the null hypothesis H0: r ≤ 1 (i.e., integration) was not, then the series X 

and Z were considered cointegrated, and were eligible to be fit by a VECM.  

To validate the results, all analyses were run using random pairs created from all 

eligible individuals (i.e., I(1)) from FF1.  

Results 

 Of the 64 segments assessed for cointegration, 31 had unit roots of the same 

order. All were I(1). Twelve dyads were integrated during AC (Table 2.1), 6 during BB 

(table 2.2), 8 during FF1 (table 2.3), and 5 during FF2 (Table 2.4).  Of those, 8 were 

cointegrated: 1 during AC (Table 2.5), 0 during BB (Table 2.6), 5 during FF1 (Table 2.7), 

and 1 during FF2 (Table 2.8).    

Random pairs were then generated from all individuals in FF1.  Of those random 

pairings, 7 dyads were I(1), and eligible for cointegration tests.  Five of the random dyads 

were cointegrated (Table 2.9), equal to the number of cointegrated dyads from the 

nonrandomized data. Therefore, none of the planned VECMs were run, as interpretation 

of coefficients would be speculative at best.  

Discussion 

The application of cointegration analyses to physiological data for the assessment 

of PL appeared to be a good match.  Cointegration is designed to handle nonstationary 

multivariate data, and assesses shared long term trends while capturing momentary 

system dynamics.  It has been validated and used extensively in econometrics, and has 

been recommended as a viable tool for analyzing psychological processes (Stroe-Kunold 
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et al., 2012). However, due to the strict requirement that all series are integrated of the 

same order, less than half of the current data could be analyzed. Of those testable, only 6 

were cointegrated, less than 10% of the original segments.  Additionally, due to 

nonstationary error variance (i.e., U ≠ I(0)), data needed to be log (10) transformed and 

split into segments to meet the assumption of normal residuals (U ~ I(0)). More active 

conditions would likely amplify this problem, further reducing the analyzable data.  

More importantly, cointegration tests using randomly matched eligible dyads 

from the FF1 condition resulted in the same number of cointegration relations as with the 

true dyads. This suggests that findings of cointegration are most likely due to shared 

context or statistical artifact, rather than direct interpersonal influences. As model 

parameters cannot be considered reflective of an interpersonal relationship, the VECM 

parameters would not be interpretable as descriptions of the interaction.  Due to these 

issues, VECMs were not run. One potential cause of these issues is the complexity of the 

interactions, which may not be captured by a static model even under controlled 

conditions.  Cointegration assumes, as most models do, that the relationships being tested 

are fixed, so parameters such as the alpha weights at given lags are constants.  If this is 

not the case, then a fixed model is being fit to a heterogeneous set of processes. If this is 

the case, then the estimated model will be as much a misrepresentation of the data as 

nomothetic models are of an individual participant.  For example, if one partner 

repeatedly laughs, and the other has a lagged and measured response (i.e., laughing a few 

seconds later to a lesser degree), the interaction in SC may show a good fit using a 

constant model.  However, if the interaction morphs into both partners laughing at similar 

levels simultaneously (i.e., synchronized SC), then different model parameters would be 
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needed to fit this new relationship. If a single model is fit to the total interaction, the 

aggregated estimate of the two dynamics will not be a good representation of either 

interaction, even if the model is accurate enough to fit the data as a whole.  

A significant limitation is that this study applied an analysis that has not been 

validated with physiological data, to test a hypothesis (i.e., PL) that has not been 

confirmed under these conditions. Therefore, it is unclear whether the analysis is capable 

of finding meaningful relationships in these data, or whether there were relationships for 

it to find. Given the small sample size, it is difficult to draw general conclusions about the 

viability of this approach with these data.  However, few segments met the required 

assumptions for the analysis (i.e., matched unit roots and I(0) residuals), and more active 

trial conditions would likely produce less usable data.  Unless such issues can be 

resolved, it seems unlikely that cointegration is a viable analysis for these complex data.  
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Table 2.1 
Augmented Dickey-Fuller Unit Root Test Results: Acclimation Phase 

  Test-Statistic  

          With Trend            With Drift     No Trend  

Dyad Participant 
Tau-3 

(-3.76) 
Phi-3 
(7.4) 

Tau-2 
(-3.23) 

Phi-1 
(5.56) 

Tau-1 
(-2.32) Conclusion 

1* Male -1.35 1.23 -0.41 1.00 1.36 Unit root 

 Female -2.14 2.51 -1.67 1.56 -0.58 Unit root 

2* Male -2.94 4.37 -2.12 2.33 -0.57 Unit root 

 Female -1.85 1.76 -0.58 9.72 -4.43 Unit root 

3 Male -2.42 12.42 -4.93 17.63 -4.01 No unit root 

 Female -2.30 2.96 -1.12 0.96 0.79 Unit root 

4* Male -2.10 2.22 -1.10 1.33 -1.24 Unit root 

 Female -1.97 2.42 -0.34 0.76 -1.19 Unit root 

5* Male -2.49 3.11 -2.51 3.18 -0.38 Unit root 

 Female -2.44 4.50 1.86 9.89 -2.68 Unit root 

6* Male -3.50 6.13 -1.67 2.41 -1.46 Unit root 

 Female -2.69 3.66 -2.53 3.24 -0.39 Unit root 

7* Male -3.11 4.86 -2.01 2.04 0.14 Unit root 

 Female -1.86 1.95 -1.31 0.88 -0.22 Unit root 

8* Male -2.33 2.75 -1.50 1.16 -0.36 Unit root 

 Female -2.71 3.78 -2.44 3.04 -0.40 Unit root 

9* Male -2.92 4.32 -2.00 2.00 0.01 Unit root 

 Female -1.92 1.92 -1.71 1.51 0.27 Unit root 

10* Male 12.60 4.89 13.08 13.09 -5.03 Unit root 

 Female -3.74 4.67 -3.04 4.65 -0.36 Unit root 

11 Male -1.97 2.04 -1.73 1.63 -0.57 Unit root 

 Female -3.53 6.41 -3.53 6.25  No unit root 

12 Male -1.83 1.71 -1.65 3.10 1.79 Unit root 

 Female -4.08 9.50    No unit root 

13* Male -3.04 4.62 -1.49 1.48 -0.94 Unit root 

 Female -2.27 2.68 -1.53 1.29 -0.58 Unit root 

14 Male -1.79 2.53 0.87 4.46 -2.41 No unit root 

 Female -1.04 4.14 -2.89 9.67 -3.60 No unit root 

15* Male -2.87 4.18 -2.88 4.19 -0.32 Unit root 

 Female -2.75 4.82 -2.33 2.71 -0.14 Unit root 

18* Male -2.08 2.16 -2.04 2.15 -0.56 Unit root 

 Female -3.08 4.75 -1.06 1.60 -1.53 Unit root 

*Dyad I(1) 
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Table 2.2 
Augmented Dickey-Fuller Unit Root Test Results: Back-to-Back Phase 

  Test-Statistic  

          With Trend            With Drift     No Trend  

Dyad Participant 
Tau-3 

(-3.74) 
Phi-3 

(7.16) 
Tau-2 

(-3.19) 
Phi-1 

(5.38) 
Tau-1 

(-2.32) Conclusion 
1* Male -1.15 2.49 0.92 1.70 1.70 Unit root 

 Female -0.79 0.88 -0.31 0.80 -1.24 Unit root 

2 Male -3.63 6.66 -3.61 6.53 -0.88 No unit root 

 Female -1.41 3.04 -1.71 1.75 -1.38 Unit root 

3 Male -2.85 4.59 -2.60 3.39 -0.24 Unit root 

 Female -3.28 5.59 -3.26 5.38 0.29 No unit root 

4* Male -3.55 6.65 -1.71 1.54 0.20 Unit root 

 Female -2.88 4.33 -2.50 3.12 -0.02 Unit root 

5 Male -4.58 10.59 -3.79 7.33 0.11 No unit root 

 Female -2.97 5.49 -3.22 5.24 -1.12 No unit root 

6 Male -3.80 7.39 -3.30 5.57 0.31 No unit root 

 Female -2.58 3.35 -2.57 3.32 -0.58 Unit root 

7 Male -0.95 1.61 -0.86 0.43 0.24 Unit root 

 Female -3.88 7.62 -2.38 3.08 0.52 No unit root 

8 Male -3.25 5.30 -2.95 4.36 -0.15 Unit root 

 Female -3.88 7.62 -1.56 1.31 0.12 No unit root 

9 Male -4.02 8.08 -2.25 2.63 -0.79 No unit root 

 Female -2.88 4.36 -2.86 4.13 -0.49 Unit root 

10* Male -2.47 3.05 -2.43 2.94 -0.40 Unit root 

 Female -2.62 2.37 -1.73 1.61 0.18 Unit root 

11 Male -6.64 22.06    No unit root 

 Female -4.60 10.80    No unit root 

12* Male -3.47 6.07 -2.23 3.04 0.67 Unit root 

 Female -2.35 3.30 -2.53 3.19 -0.71 Unit root 

13 Male -3.56 6.35 -3.19 5.38  No unit root 

 Female -2.84 4.17 -1.16 0.99 0.48 Unit root 

14* Male -2.30 2.65 -1.63 1.61 -0.32 Unit root 

 Female -2.54 3.24 -1.99 2.05 -0.26 Unit root 

15 Male -6.60 21.81    No unit root 

 Female -4.33 9.48    No unit root 

18* Male -2.08 2.16 -2.04 2.15 -0.56 Unit root 

 Female -2.29 2.66 -2.31 2.69 -0.24 Unit root 

*Dyad I(1) 
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Table 2.3 
Augmented Dickey-Fuller Unit Root Test Results: Face to Face-1 Phase 

  Test-Statistic  

          With Trend            With Drift     No Trend  

Dyad Participant 
Tau-3  

(-3.75) 
Phi-3 

(7.24) 
Tau-2  

(-3.21) 
Phi-1  

(5.44) 
Tau-1  

(-2.32) Conclusion 
1* Male -1.33 1.19 -1.33 1.30 -1.01 Unit root 

 Female -2.63 3.91 -2.77 3.90 0.12 Unit root 

2* Male -1.60 1.52 -1.75 1.81 -1.03 Unit root 

 Female -1.71 2.20 -1.91 3.00 -1.94 Unit root 

3 Male -2.75 4.18 -2.43 3.53 -1.26 Unit root 

 Female -4.72 11.49    No unit root 

4 Male -2.40 7.99    No unit root 

 Female -3.74 8.70    No unit root 

5 Male -3.99 8.02    No unit root 

 Female -2.64 4.55 -1.19 0.72 -0.24 No unit root 

6* Male -3.49 6.33 -3.10 5.24 -0.99 Unit root 

 Female -2.80 3.91 -1.99 2.25 -0.89 Unit root 

7* Male -2.20 2.69 -1.52 1.25 0.33 Unit root 

 Female -3.14 5.01 -3.07 4.73 -0.27 Unit root 

8 Male -4.13 8.80 -3.98 7.92 -0.22 Unit root 

 Female -5.33 14.19    No unit root 

9 Male -3.95 7.81    No unit root 

 Female -3.93 7.96    Unit root 

10 Male -3.06 3.49 -3.11 5.05 -0.86 Unit root 

 Female -3.94 8.39    No unit root 

11 Male -3.19 5.77 -3.28 5.46  No unit root 

 Female -1.82 3.09 -2.34 2.98 -0.81 No unit root 

12* Male -1.82 1.80 -1.83 1.75 0.21 Unit root 

 Female -2.47 3.50 -2.60 3.74 0.32 Unit root 

13* Male -0.42 3.39 -1.66 1.42 -0.49 Unit root 

 Female -1.74 2.47 -2.16 2.36 -0.48 Unit root 

14* Male -0.27 4.46 -0.78 0.33 0.03 Unit root 

 Female -1.95 1.97 -1.72 1.55 -0.08 Unit root 

15 Male -5.03 12.74    No unit root 

 Female -3.19 5.11 -2.42 3.11 -0.86 No unit root 

18* Male -1.99 3.05 -2.28 2.68 -0.40 Unit root 

 Female -3.19 5.16 -2.89 4.19 -0.11 Unit root 

*Dyad I(1) 
 



 

36 

Table 2.4 
Augmented Dickey-Fuller Unit Root Test Results: Face to Face-2 Phase 

  Test-Statistic  

          With Trend            With Drift     No Trend  

Dyad Participant 
Tau-3  

(-3.74) 
Phi-3 

(7.16) 
Tau-2  

(-3.19) 
Phi-1  

(5.38) 
Tau-1  

(-2.32) Conclusion 
1* Male -1.90 1.80 -1.85 1.80 0.29 Unit root 

 Female -3.33 5.58 -1.71 2.17 -1.37 Unit root 

2* Male -3.20 5.14 -2.37 2.82 -0.24 Unit root 

 Female -2.82 3.97 -2.01 2.13 0.02 Unit root 

3 Male -3.21 5.20 -2.69 3.76 -0.68 Unit root 

 Female -5.88 17.74 -4.48 10.05 0.16 No unit root 

4* Male -1.37 1.06 -1.43 1.23 0.53 Unit root 

 Female -3.04 4.63 -3.05 4.64 -0.05 Unit root 

5 Male -4.88 11.98 -4.27 9.11 -0.33 No unit root 

 Female -2.09 2.30 -1.93 2.00 0.20 Unit root 

6 Male -3.09 4.85 -3.10 4.80 -0.20 Unit root 

 Female -4.76 11.35 -4.71 11.20 0.28 No unit root 

7 Male -3.43 5.94 -2.98 4.57 -0.64 Unit root 

 Female -4.07 8.64 -4.03 8.34 0.52 No unit root 

8 Male -2.92 4.28 -2.83 4.02 -0.45 Unit root 

 Female -5.35 14.33 -3.74 7.11 0.28 No unit root 

9 Male -3.29 5.43 -1.79 1.60 -0.05 Unit root 

 Female -5.97 17.85    No unit root 

10* Male -2.53 3.80 -2.37 2.84 0.06 Unit root 

 Female -2.42 3.00 -2.36 2.80 -0.12 Unit root 

11 Male -4.59 10.68    No unit root 

 Female -3.37 5.83 -3.17 5.02  No unit root 

12 Male -3.43 5.92 -3.06 4.68 -0.31 Unit root 

 Female -3.82 7.33    No unit root 

13 Male -2.34 3.08 -1.78 1.63 0.10 Unit root 

 Female -3.45 6.06 -3.42 5.88  No unit root 

14* Male -2.93 4.28 -2.05 2.10 -0.49 Unit root 

 Female -3.46 6.31 -0.39 0.73 -1.21 Unit root 

15 Male -6.07 18.44    No unit root 

 Female -1.74 1.52 -1.68 1.61 0.36 Unit root 

18 Male -3.49 6.46 -1.13 0.73 -0.79 Unit root 

 Female -4.44 9.85    No unit root 

*Dyad I(1) 
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Table 2.5 
Cointegration Results: Acclimation Phase 

Dyad Lag Criterion (lag used) H0 Likelihood Ratio p-value Critical Value (95%) 
1 AIC (4) r ≤ 0 16.94 0.136 20.16 
  r ≤ 1 3.13 0.567 9.14 
 SWC (4)     
      
2 AIC (4) r ≤ 0 23.71 0.090 20.16 
  r ≤ 1 7.83 0.274 9.14 
 SWC (3)  18.48 0.319  
   6.41 0.421  
4 AIC (3) r ≤ 0 12.35 0.427 20.16 
  r ≤ 1 2.74 0.637 9.14 
 SWC (3)     
      
5 AIC (4) r ≤ 0 15.18 0.221 20.16 
  r ≤ 1 7.22 0.118 9.14 
 SWC (3) r ≤ 0 16.07 0.174 20.16 
  r ≤ 1 5.70 0.223 9.14 
6 AIC (3) r ≤ 0 10.03 0.643 20.16 
  r ≤ 1 1.75 0.820 9.14 
 SWC (3)     
      
7 AIC (4) r ≤ 0 20.08 0.052 20.16 
  r ≤ 1 3.26 0.543 9.14 
 SWC (4)     
      
8 AIC (3) r ≤ 0 9.46 0.695 20.16 
  r ≤ 1 3.97 0.429 9.14 
 SWC (3)     
      
9 AIC (3) r ≤ 0 14.06 0.292 20.16 
  r ≤ 1 3.23 0.548 9.14 
 SWC (3)     
      
10 AIC (3) r ≤ 0 40.78 0.000 0.00 
  r ≤ 1 13.90 0.005 1.00 
 SWC (3)     
      
13 AIC (3) r ≤ 0 11.45 0.507 20.16 
  r ≤ 1 1.57 0.850 9.14 
 SWC (3)     
      
15* AIC (3) r ≤ 0 13.18 0.358 20.16 
  r ≤ 1 2.67 0.650 9.14 
 SWC (2) r ≤ 0 23.05 0.018 0.00 
  r ≤ 1 3.81 0.453 1.00 
18 AIC (3) r ≤ 0 5.72 0.954 20.16 
  r ≤ 1 2.13 0.751 9.14 
 SWC (3)     
	
   	
   	
   	
   	
   	
  

*Cointegrated; AIC = Akaike information criteria; SWC = Schwarz criterion 
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Table 2.6	
  
Cointegration Results: Back to Back Phase 

Dyad Lag Criterion (lag used) H0 Likelihood Ratio p-value Critical Value (95%) 
1 AIC (5) r ≤ 0 12.61 0.404 20.16 
  r ≤ 1 4.41 0.367 9.14 
 SWC (5)     
      
4 AIC (6) r ≤ 0 11.54 0.500 20.16 
  r ≤ 1 3.15 0.563 9.14 
 SWC (4) r ≤ 0 13.28 0.350 20.16 
  r ≤ 1 3.25 0.546 9.14 
10 AIC (3) r ≤ 0 10.58 0.590 20.16 
  r ≤ 1 2.75 0.634 9.14 
 SWC (3)     
      
12 AIC (4) r ≤ 0 10.39 0.608 20.16 
  r ≤ 1 3.55 0.494 9.14 
 SWC (4)     
      
14 AIC (6) r ≤ 0 11.00 0.550 20.16 
  r ≤ 1 3.21 0.553 9.14 
 SWC (5) r ≤ 0 10.16 0.630 20.16 
  r ≤ 1 2.84 0.620 9.14 
18 AIC (6) r ≤ 0 12.14 0.445 20.16 
  r ≤ 1 3.86 0.445 9.14 
 SWC (4) r ≤ 0 13.13 0.362 20.16 
  r ≤ 1 4.60 0.342 9.14 

*Cointegrated; AIC = Akaike information criteria; SWC = Schwarz criterion 
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Table 2.7	
  
Cointegration Results: Face to Face 1 

Dyad Lag Criterion (lag used) H0 Likelihood Ratio p-value Critical Value (95%) 
1* AIC (4) r ≤ 0 30.07 0.001 20.16 
  r ≤ 1 3.01 0.588 9.14 
 SWC (3) r ≤ 0 35.32 0.000 20.16 
  r ≤ 1 4.65 0.336 9.14 
2* AIC (4) r ≤ 0 24.02 0.013 20.16 
  r ≤ 1 6.50 0.161 9.14 
 SWC (4)     
      
6 AIC (3) r ≤ 0 31.81 0.001 20.16 
  r ≤ 1 13.00 0.008 9.14 
 SWC (3)     
      
7* AIC (5) r ≤ 0 19.21 0.068 20.16 
  r ≤ 1 3.90 0.439 9.14 
 SWC (3) r ≤ 0 23.69 0.015 20.16 
  r ≤ 1 6.76 0.144 9.14 
12 AIC (4) r ≤ 0 12.51 0.413 20.16 
  r ≤ 1 5.14 0.278 9.14 
 SWC (3) r ≤ 0 13.82 0.309 20.16 
  r ≤ 1 5.17 0.275 9.14 
13 AIC (5) r ≤ 0 15.26 0.216 20.16 
  r ≤ 1 2.14 0.749 9.14 
 SWC (3) r ≤ 0 16.67 0.1473 20.16 
  r ≤ 1 1.39 0.8801 9.14 
14* AIC (6) r ≤ 0 22.66 0.021 20.16 
  r ≤ 1 0.98 0.939 9.14 
 SWC (4) r ≤ 0 14.73 0.248 20.16 
  r ≤ 1 0.71 0.968 9.14 
18* AIC (4) r ≤ 0 25.51 0.007 20.16 
  r ≤ 1 6.83 0.140 9.14 
 SWC (3) r ≤ 0 27.03 0.004 20.16 
  r ≤ 1 6.62 0.153 9.14 

*Cointegrated; AIC = Akaike information criteria; SWC = Schwarz criterion 
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Table 2.8	
  
Cointegration Results: Face to Face 2 

Dyad Lag Criterion (lag used) H0 Likelihood Ratio p-value 95% 
1 AIC (6) r ≤ 0 9.77 0.667 20.16 
  r ≤ 1 3.66 0.477 9.14 
 SWC (4) r ≤ 0 8.81 0.755 20.16 
  r ≤ 1 3.25 0.544 9.14 
2 AIC (5) r ≤ 0 9.85 0.659 20.16 
  r ≤ 1 4.44 0.362 9.14 
 SWC (4) r ≤ 0 12.97 0.374 20.16 
  r ≤ 1 5.84 0.211 9.14 
4* AIC (6) r ≤ 0 16.86 0.139 20.16 
  r ≤ 1 2.29 0.721 9.14 
 SWC (3) r ≤ 0 26.06 0.006 20.16 
  r ≤ 1 2.66 0.651 9.14 
10 AIC (6) r ≤ 0 16.77 0.143 20.16 
  r ≤ 1 4.31 0.380 9.14 
 SWC (3) r ≤ 0 18.37 0.090 20.16 
  r ≤ 1 7.47 0.106 9.14 
14 AIC (6) r ≤ 0 14.24 0.280 20.16 
  r ≤ 1 2.73 0.639 9.14 
 SWC (5) r ≤ 0 14.62 0.255 20.16 
  r ≤ 1 2.55 0.672 9.14 

*Cointegrated; AIC = Akaike information criteria; SWC = Schwarz criterion 
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Table 2.9 
Cointegration Results: Random Dyads 

Dyad Lag Criterion (lag used) H0 Likelihood Ratio p-value 95% 
1* AIC (5) r ≤ 0 28.24 0.003 20.16 
  r ≤ 1 2.46 0.690 9.14 
 SWC (5)     
      
2 AIC (5) r ≤ 0 15.84 0.185 20.16 
  r ≤ 1 2.07 0.761 9.14 
 SWC (3) r ≤ 0 15.21 0.219 20.16 
  r ≤ 1 1.13 0.920 9.14 
3* AIC (6) r ≤ 0 19.14 0.070 20.16 
  r ≤ 1 4.04 0.418 9.14 
 SWC (4) r ≤ 0 30.95 0.001 20.16 
  r ≤ 1 2.07 0.761 9.14 
4* AIC (5) r ≤ 0 21.48 0.030 20.16 
  r ≤ 1 9.01 0.053 9.14 
 SWC (4) r ≤ 0 27.38 0.004 20.16 
  r ≤ 1 10.95 0.021 9.14 
5 AIC (5) r ≤ 0 10.57 0.591 20.16 
  r ≤ 1 3.72 0.468 9.14 
 SWC (3) r ≤ 0 11.88 0.470 20.16 
  r ≤ 1 3.61 0.485 9.14 
6* AIC (4) r ≤ 0 39.87 0.000 20.16 
  r ≤ 1 3.17 0.558 9.14 
 SWC (4)     
      
7* AIC (3) r ≤ 0 27.09 0.004 20.16 
  r ≤ 1 7.27 0.116 9.14 
 SWC (3)     
      

*Cointegrated; AIC = Akaike information criteria; SWC = Schwarz criterion 
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Abstract 

 

This systematic review concerns research on interpersonal physiology, the study of 

relationships between people’s physiological activities during social interactions. 

Converging findings from this methodology indicates that interdependencies emerge 

between the physiological activities of people during interactions, often referred to as 

physiological linkage.  Physiological linkage has been found to correlate with 

psychosocial constructs including empathy, attachment, and dissatisfaction, and has been 

observed in both new and established relationships.  Due to such findings, interpersonal 

physiological interactions are theorized to be ubiquitous social processes underlying 

observable behavior.  The literature on interpersonal physiology however, is highly 

fragmented, with different researchers using idiosyncratic terminology, methods, and 

analyses. This disconnect has complicated cross-discipline collaboration.  The following 

systematic review therefore aimed to generate a centralized resource of the existing work, 

and offer recommendations for future research. We first define terminology, followed by 

explanations of the review methods.  Results of the systematic review are then detailed 

including key themes and findings from the literature.  Finally, we discuss pros and cons 

of methodological and analytical approaches, review current limitations, and propose 

guidelines for best practices. 

 

Keywords: interpersonal physiology, physiological linkage, physiological synchrony, 

physiological coherence, dyadic interactions, social psychophysiology  
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Interpersonal Physiology: A Systematic Review of the Literature 

 

The following report is a systematic review of the research on interpersonal 

physiology, the study of relationships between people’s physiological activities during 

social interactions. Converging evidence indicates that peoples’ autonomic system 

activities can be interdependent with the autonomic systems of the people around them. 

Interpersonal analyses of physiology have been used to show that a couple is locked into 

a heated argument (Levenson & Gottman, 1983), a therapist is empathizing with a patient 

(Marci, Ham, Moran, & Orr, 2007), and that one individual is leading the behaviors of 

others (Müller, & Lindenberger, 2011). Whether it is family dynamics or group 

behaviors, psychotherapy or team leadership, a better understanding of the influence of 

physiology on social relationships can lead to important new insights and interventions. 

Though interpersonal physiological interactions are currently underexplored, nearly all 

research to date indicates that these are critical processes underlying all social 

interactions. Advancements in wireless telemetrics and dynamic multivariate time series 

analysis allow complex questions about interpersonal dynamics to be addressed.  

Ambulatory data collection and reliable analyses have generated a new opportunity to 

explore mechanisms of social relationships underlying observable behaviors.   

Despite a recent increase in the interpersonal physiological methods, this small 

field is currently fragmented as research groups use idiosyncratic terminologies, 

measures, and analyses, complicating cross-discipline collaboration. Lack of awareness 

of previous work has led to replications of known procedural issues, as well as 

uninformed conclusions.  Without a general format for reseachers to communicate, these 
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issues will continue to hinder progress. The following literature review is therefore 

intended to be a reference source by both compiling previous research, and highlighting 

issues deemed to be critical to future work.  This review is organized as follows:. first, we 

operationally define basic terminology, followed by the details of our methods for search 

and retrieval, and eligibility criteria.  Second, we review key themes identified in the 

literature including general findings in the Results section. Lastly, we discuss pros and 

cons of methodological and analytical approaches, review current limitations, and 

propose guidelines for best practices. 

Operational Definition of Key Terms 

The general methodology of studying temporal interactions in the physiological 

processes of multiple people is viewed herein as “interpersonal physiology”. At 

minimum, these techniques require a bivariate analysis of physiological measures 

simultaneously collected from two individuals over time.  Though distinct from other 

social process research such as behavioral (e.g., linguistics), biological (e.g., cortisol) or 

neurological (e.g., electroencephalograph [EEG]), these fields are only separable in 

concept.  As co-occurring intrapersonal processes are inherently symbiotic, it is assumed 

that there are associations between all of these research areas. For example, affect and 

emotional contagion, described by some as the transference of emotional states (e.g., 

Hatfield, Cacioppo, & Rapson, 1994; Waters, West, & Mendes, 2014), is typically 

assessed through self report or behavioral assessment, and rarely includes measures of 

physiology. Still, differentiating characteristics including rapidity of response, 

interpretability of measures, and the potential for continuous passive data to be collected 

in-vivo make physiology uniquely adaptable to social research.  
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A common observation resulting from interpersonal physiological research is the 

development of different types of interdependencies between partners’ autonomic 

activities. References to these interdependencies are nonspecific and idiosyncratic, 

making cross-study comparisons difficult.  For the purposes of this review, we generalize 

the term physiological linkage (PL) to refer to any type of identified interaction in the 

physiological processes of individuals.  Linkage is therefore imposed as a general 

categorization, under which more specifically defined patterns are included.  

Methods 

Search and Retrieval 

We conducted a systematic literature review according to the guidelines presented 

by Okoli and Schabram (2010).  All researchers underwent protocol training to search 

and identify relevant articles. Our goal was to identify and retrieve all interpersonal 

physiological research published in peer-reviewed journals. Several search terms were 

chosen based on previously identified research. These terms were: physiological 

synchrony; interpersonal physiology; physiological linkage; physiological coherence; and 

physiological covariation.  Following the initial search, the following five search terms 

were added based on relevant articles that used alternate language: physiology & 

contagion; social psychophysiology; attunement & physiology; and attunement & 

physiological. Keywords were entered into four bibliographic databases: PsycINFO, 

PsycARTICLES, MEDLINE, and Science-Direct.  Reverse citation was performed on 

each relevant paper obtained using Google Scholar (i.e., a search for studies that cite the 

obtained article).  Relevant articles referenced in the text of identified research were also 

obtained.  Searches were performed between January and March, 2014.   
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Eligibility Criteria 

Studies selected for the review were based on the following criteria: 

1) The study was published in English. 

2) The study was published in a peer-reviewed journal. 

3) The study simultaneously and continuously collected physiological measures (e.g., 

heart rate [HR]; skin conductance [SC]; respiration rate [RR]) from two or more 

proximal individuals. 

a. Studies using only biological (e.g. cortisol), neural (e.g., 

electroencephalograph), or behavioral (e.g. daily affect) measures were 

excluded. 

b. Studies which only assessed physiological interactions between individuals 

who were not simultaneously proximal (e.g., watching a tape of a previous 

interaction) were excluded. 

4) The study quantitatively assessed temporal relationships in physiological measures 

simultaneously collected from two or more people (e.g., bivariate correlations). 

a. Studies assessing only intrapersonal physiological activity, without an 

assessment of interpersonal physiological interactions, were excluded.  

b. Studies that did not assess a temporal relationship (e.g., heart rate measured at 

or aggregated to 1 occasion) were excluded.  

c. Studies assessing mother-fetal relationships were excluded. 

5) The sample included human subjects. 

Results 
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A total of 35 studies were identified that met the defined eligibility criteria for 

interpersonal physiological research (see table 3.1).  In order to establish a centralized 

reference highlighting the research to date, as well as identify critical issues for future 

work, the following characteristics of included studies are presented: terminology, 

physiological measures, statistical assessment of PL, methodological approach, and study 

findings. 

Terminology 

Over a dozen different terms were used to describe research on interpersonal 

physiology (see table 3.1).  Most studies identified an observed phenomenon such as 

synchrony (e.g., McAssey, Helm, Hsieh, Sbarra, & Ferrer, 2013), though some used 

terms such as sociophysiology (Di Mascio, Boyd, Greenblatt, & Solomon, 1955) to 

describe a general methodological approach.  Others did not give a clear definition or 

term in reference to the method or a phenomenon (e.g., Kaplan, Burch, Bloom, & 

Edelberg, 1963).  

Terminology largely varied by the population being studied. For example, 75% of 

studies using the term physiological concordance (n=8) addressed therapist-client dyads, 

and 100% using physiological compliance (n=6) examined teammates. However, the 

operational definition assigned to a given term was inconsistent across studies.  For 

example, Henning and colleagues (Henning, Boucsein, & Gil, 2001) coined the term 

physiological compliance in reference to coherence and correlations in cardiac, 

respiratory, and electrodermal measures.  More recently, Järvelä and colleagues (Järvelä, 

Kivikangas, Kätsyri, & Ravaja, 2013) used the same statistical approaches and 

operational definitions as Henning (2001), but instead used the term physiological 
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linkage. Similarly, Gottman and Levenson (1983) developed an index of physiological 

and motor activity, and referred to synchronizations between people’s index as 

physiological linkage. Reed and colleagues (Reed, Randall, Post, & Butler, 2013) used 

physiological linkage in reference to lagged interdependencies in specific cardiac and 

electrodermal measures.  The broad use of the term led us to generalize the operational 

definition of physiological linkage to include any observed interdependence in 

physiology. 

More specific terms were also used to define types of PL. In the first study of 

interpersonal physiology, synchronized patterns in physiology were described as 

concordance, in reference to observations of matched HR. Findings of synchrony, 

however, are dependent on the analysis used to define it.  For example, where Henning et 

al. (2001) used coherence to test for the presence of similar frequency bands, Levenson 

and Gottman’s (1983) bivariate time series analyses tested for shared linear trends. 

Though physiological synchrony has been measured using a number of analyses, and 

defined by a number of terms, moving forward we use the term concordance as a more 

general indication of matched states.  

Another pattern observed in the original studies was co-occurring changes in 

opposite directions (i.e., a negative correlation), which they defined as discordance. As 

with concordance, other researchers have observed similar patterns, but used different 

analyses and terminology (e.g., Helm, Sbarra, & Ferrer, 2012; Reed et al., 2013).  For 

example, Reed and colleagues found discordance using multilevel models, but defined 

the patterns as anti-phase synchrony. Moving forward, we refer to any measure of 

negative relationships as discordance.  
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The third pattern of physiological relationship described in the literature is a 

lagged concordance. This is a distinctly different type of PL that can only be assessed 

when using time as a variable. Lagged-concordance indicates that a change in one person 

is followed by a similar change in the other, and has been used to test for leadership roles. 

Müller and Lindenberger (2011) used wavelet analysis, a time-frequency procedure, to 

show that changes in the respiration of a conductor were followed by similar changes in 

the respiration of individuals in the choir.  

A relationship theorized to develop out of lagged concordance is physiological 

coregulation. Coregulation is defined as the interdependence between partners’ 

physiological activities, leading to a maintained stable state (Butler & Randall, 2013). 

Whereas lagged concordance may occur as a momentary, unidirectional influence, 

coregulation refers to a bidirectional interaction that leads to a stable state over time 

(Butler & Randall, 2013). Ferrer and colleagues have used statistical models capable of 

identifying this form of interdependence, and found that coupled oscillations between 

romantic partners’ HR and RR maintain stable patterns (Ferrer & Helm, 2013; Helm et 

al., 2012). 

A final term in the literature is “asynchrony”, used to describe a lack of 

observable PL (Reed et al., 2013).  Though difficult to substantiate without the use of 

multiple models to test for PL, the concept of asynchrony is an important one, as it 

describes periods that do not exhibit signs of physiological interactions between people.  

Asynchrony has been found to be predictive of specific relationship types (Reed et al., 

2013), suggesting that the identification of periods that lack PL can also be informative of 

an interaction.   
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Physiological Measures Used 

Physiological measures used to detect PL included cardiac and electrodermal 

activity, respiratory rates, and skin temperature (see table 3.1).   The majority of studies 

used multiple physiological measures in their research, running separate analyses on each 

(n=13).  For example, Henning et al. (2001) used three techniques to test for PL: cross-

correlations in SC; weighted cross-coherence in HR; and weighted cross-coherence in RR 

A total of 12 studies relied on a single physiological measure to test for PL, and 2 studies 

created indexes that incorporated numerous measures into a single analysis. Indexes 

consisted of summations of multiple physiological measures, and were analyzed as a 

more general indication of autonomic state. Levenson and Gottman’s (1983) research has 

become the most well known study in the field, and used a bivariate time series analysis 

to assess PL in an index of normalized scores of HR, pulse transmission time, SC level, 

and somatic movement. 

Statistical Analysis of Physiological Linkage 

As PL is largely a mathematical construct, its observation is dependent on the 

analytical procedures used to measure it.  To help elucidate the approach used to identify 

PL, these procedures were separated into two components: statistical category and 

analytical approach (see table 3.1).   

Six basic categories of statistical analyses of PL were performed: correlational 

(n=23); frequency based (n=7); time-series analysis (n=4); nonlinear modeling (n=2); 

dynamic systems (n=2); and multilevel modeling (n=1).  Note that a number of studies 

assessed PL using multiple approaches. These strategies can be further differentiated as 

static (n=35) or dynamic (n=4) analytical approaches.  Static approaches result in a single 
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measure or model of PL for each trial, and describe the general state of a relationship 

over a trial (e.g., a correlation).  These results are typically aggregated across participants 

to represent PL at the group (i.e., experimental or control group) or condition level. In 

contrast, dynamic approaches track changes in PL in a single unit (i.e., a dyad or team) 

over time, leading to detailed observations of temporal patterns. For example, Ferrer and 

Helm (2013) used coupled differential equation models to assess PL in HR, RR and 

thoracic impedance. Ferrer and Helm (2013) were therefore able to assess conditional 

differences within dyads over time, rather then depending on aggregates of the trials.  

Methodological Approaches 

Both idiographic and nomothetic methodologies have been used in interpersonal 

physiological research (see table 3.1). Idiographic designs focus on the individual unit 

over time (i.e., a dyad or team), whereas nomothetic techniques combine the data to 

assess group level trends. The large majority of studies reviewed report nomothetic 

findings (n=32), despite only 2 assessing PL using purely nomothetic analyses (i.e., 

multilevel models). For example, Marci and Orr (2006) measured a running correlation in 

the slope of SC in dyads.  This led to a vector showing changes in the correlations of 

slope over time for each dyad.  However, this dynamic, idiographic measure was then 

aggregated into a ‘linkage index’ score, followed by a nomothetic comparison of mean 

differences in linkage by condition, effectively collapsing the temporal resolution.  

Nomothetic studies assessed differences in PL between groups (n=9), or across 

conditions (n=21).  Group differences were found in 7 studies, and 17 studies found 

differences between conditions.  
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Four studies reported idiographic results, which allowed a more detailed 

assessment of patterns and trends present in the data. For example, Müller, & 

Lindenberger (2011) used a combination of advanced statistical analyses (e.g., wavelet 

analysis and Granger causality) to assess physiological interdependences in a choir.  They 

were able to determine group dynamics including leadership (i.e., that a physiological 

change in one person is followed by the same physiological change in the group) and 

subgrouping (i.e., individuals whose physiological activity is significantly more related to 

each other than to the rest of the group), as well as track the changes in those roles over 

time (i.e., when the leader becomes a follower).  

Findings of PL, regardless of the analytical procedures applied, are difficult to 

interpret without a null hypothesis for comparison.  Seemingly high correlations in 

physiology may occur due to random or contextually based conditions, rather than 

coordinated interpersonal interactions. For example McFarland (2001) notes that 

statistically significant correlations as high as .80 could be found in the RR of randomly 

matched data from the sample. To account for this, many studies developed a null 

hypothesis test to determine whether results significantly differed from random (n = 8).  

This was done by creating random dyad pairings, and then rerunning analyses on data 

from unmatched participants (i.e., random pairs).  Comparative analyses such as t-tests 

were then used to determine whether PL in the true pairs significantly differed from the 

random pairs. All eight studies that assessed PL in comparison to a null hypothesis found 

PL to be significantly greater in actual dyads compared to random dyads. Though 

impressive on the surface, these findings may be the result of publishing bias (e.g., 

studies with nonsignificant findings having difficulty being published), or type I errors. 
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Findings by Population 

 Four distinct populations have been studied to date using interpersonal 

physiological methods (see table 3.1): therapist-clients (n=8), couples (n=5), mother-

child (n=7), teammates (n=8), and friends-strangers (n=7).  This categorization emerged 

as a key factor under which other categories were grouped.  For example, the terminology 

and statistical procedures used to define and identify PL was largely restricted by 

population. The following sections therefore organize results by population. 

Therapist-Client Dyads. Research on interpersonal physiology began over half a 

century ago, when a series of studies found evidence of PL in the skin conductance (SC) 

and heart rates (HR) of therapists and patients during therapy (Coleman, Greenblatt, & 

Solomon, 1956; DiMasco, Boyd, Greenblatt, 1957; DiMasco et al., 1955).  Moments of 

positive and negative correlations in the SC of therapists and patients were observed, 

respectively defined as concordance and discordance (DiMasco et al., 1955).  The authors 

concluded that these relationships were potential indicators of therapeutic rapport and 

empathy (Coleman et al., 1956; DiMasco et al.,1957; DiMasco et al., 1955).  Further 

analysis showed that therapist notes from sessions with high concordance had fewer 

references to being distracted from therapy than session with low concordance (Coleman 

et al., 1956).  Additionally, the authors noted that clients showed reduced HR with one 

particular therapist. Though results were limited by small sample sizes and rudimentary 

statistical procedures, these works introduced and defined ‘interpersonal physiology’ as a 

research methodology decades before most others would find its utility. 

In an interesting early advancement of these procedures, Robinson and colleagues 

(Robinson, Herman, & Kaplan 1982) assessed the relationship between empathy and PL 
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in SC and finger skin temperature between therapists and clients during therapy.  The 

researchers found that large amplitude SC responses occurring in both the clients and 

therapists within a short lag (< 7 seconds apart) were significantly correlated with 

empathy, but that measures of PL in finger skin temperature were not. Robinson and 

colleagues concluded that the affective matching process that is related to empathy is 

evident in short lagged SC responses, but not long lagged or tonic affective activity.   

Building off this earlier work, Marci and Orr (2006) conducted a preliminary 

analysis on the effect of ‘emotional distance’ on PL.  They assessed the PL in SC level of 

a therapist interviewing clients in either a neutral or distracted manner.  For the analysis 

they developed the linkage index, the proportion of positive to negative correlations 

derived from a windowed analysis of slope, which has since become a common 

technique. Results suggested significantly greater PL and empathy during the neutral 

versus the distracted condition.  In a second study, Marci et al. (2007) assessed the 

relationship between empathy and PL in SC level during therapy using a dynamic 

adaptation of the linkage index.  Significant positive correlations were found between 

empathy & PL.  Analysis of video from the sessions showed that patients and therapists 

displayed significantly more solidarity and positive regard during periods of high versus 

low PL.   

Two publications by Stratford, Lal and Meara (2009, 2012) used Marci et al.’s (2007) 

dynamic linkage index to identify neural activity during ‘high empathy’ moments 

between therapists and patients.  During periods of peak PL during therapy sessions, 

electroencephalograph (EEG) data was assessed in an attempt to trace the neurological 

correlates of the therapeutic alliance.  Extensive relationships between neural activity and 
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PL were reported, such as high alpha and beta activity in the temporal region. However, 

periods of high PL were labeled as empathy with no additional measures, yet extensive 

work suggests that PL is only contextually bound to positive affect.  Though this 

procedure limits conclusions that can be drawn from their results, findings suggest that 

neurological states may accompany PL. 

In summary, therapist-client relationships have received only minimal investigation 

through these techniques. Most studies have used measures of SC, and all recent studies 

employed the linkage index to assess PL.  Findings consistently show that transient 

periods of PL develop during therapeutic relationships, and that these periods are 

significantly correlated to empathy.   

Couples. In their seminal work exploring PL in couples, Levenson and Gottman 

(1983) devised a unique index combining cardiac, electrodermal, and somatic measures 

of couples discussing neutral and conflictual topics.  A bivariate time series analysis 

showed that couples’ PL during arguments could account for 60% of the variance in 

marital satisfaction, but did not detect PL between couples discussing neutral topics.  

They concluded that PL only developed during negative interactions, postulating that 

dissatisfied couples could not disengage from the arousal of a conflict, whereas satisfied 

couples were able to ‘step back’ and listen.  Likely due to results that indicated that PL 

was only marginally predictive of future relationship status (i.e., divorce), most later 

work by these researchers  focused on intraindividual processes rather than interpersonal 

physiology. 

A recent series of papers involving romantic couples assessed the mechanisms of 

PL and developed advanced procedures for the analysis of PL (Ferrer & Helm, 2013; 
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Helm et al., 2012; Helm Sbarra, & Ferrer, 2014; McAssey et al., 2013).  Trials for these 

studies consisted of three conditions in which romantic partners sat next to each other 

while quiet and still: a 5 minute baseline, in which couples were blindfolded; a 3 minute 

gazing task, where they were asked to stare at each other; and a 3 minute in-sync task, in 

which they were asked to attempt to synchronize their physiologies.  In their first paper 

on the subject, McAssey et al. (2013) applied idiographic methods and two novel 

statistics to data from four couples.  The first analysis, an empirical mode decomposition 

followed by a windowed cross-correlation, was used to assess PL in respiration and 

thoracic impedance. In the second approach, a structural heteroscedastic measurement-

error model was adapted to detect linear associations between dyads HR.   Across 

measures and analyses, results suggested that PL increased from baseline to trials. No 

significant effects were found when analyses were run using randomly paired individuals 

from the trials.  

 In the second and third reports, the group applied dynamic systems models to the 

HR and RR from 32 couples (Ferrer & Helm, 2013; Helm et al., 2012).  An important 

advancement with these approaches is their capability of tracking bidirectional patterns of 

interdependence within a dyad over time. This important advancement allows constant 

assessment of changes in the interdependencies between physiological processes.  This is 

a significant improvement over techniques that give an aggregate measure of the 

relationship for a given time period.  Overall, these analyses revealed PL in both 

measures for each face to face condition, as well as a number of specific patterns of 

interaction. Unexpectedly, analyses also showed significant PL in the cardiac activity of 

dyads during the baseline phase.  Baseline procedures were therefore unsuccessful at 
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eliminating physiological interactions, prompting the authors to recommend that future 

studies use alternative approaches, such as pairing data from unmatched individuals, 

keeping participants separate, or simulating data (Ferrer & Helm, 2013). Results from the 

analysis of randomly paired data suggested that none of the findings were due to 

methodological artifact.   

Reed et al. (2013) explored the influence of negative partner interactions on PL 

between romantic partners. In the trials, romantically involved couples discussed healthy 

lifestyle issues while video, cardiac, and electrodermal measures were continuously 

collected. Following the sessions, participants used the video to code their own affect. 

Observers coded the dyads for demand and withdraw behaviors (i.e., when partners were 

demanding of the other, or withdrawing from the interaction) and negative partner 

influence tactics (e.g., using guilt or ridicule).  Results suggested that negative partner 

influence moderated PL in blood pressure, as low influence was associated with 

discordance and high levels were associated with asynchrony.  Demand and withdraw 

behaviors also appeared to moderate PL, as their presence coincided with concordance, 

and their absence with discordance.  The authors suggested that discordance may 

therefore result from turn taking during dialog, and could be a key component in any 

conversation.   

At first glance, the existing literature addressing PL in couples appears contradictory. 

Some findings suggest that PL, and concordance in particular, only develops during 

negative interactions, whereas other results suggest that it develops in neutral conditions 

as well.  Potential reasons for these inconsistencies include the differences in 
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physiological measures and statistical approaches used, as well as the variations in 

methodology.   

Mother and Child. Mother-infant. The first study to assess mother-child dyads was 

completed by Field, Healy and LeBlanc (1989), who conducted a study of depressed and 

non-depressed mothers. They assessed coherence and cross-coherence between 

behavioral states, HR, and behavioral states and HR of mothers and their infants during 

3-minute sessions of normal play. Results revealed coherence across behaviors for both 

depressed and non-depressed dyads. Concordant heart rates were found in more than half 

of the dyads, with no significant differences across depressed and non-depressed dyads. 

Ham & Tronick (2009) examined physiological and behavioral linkage between 

mother and their 5-month old male infants. The SC of dyads was recorded while they 

participated in the face-to-face still-face paradigm.  This procedure included three 

successive two-minute episodes of regular interaction, a perturbation episode where 

mothers could not respond, and a soothing episode. PL was assessed via Marci and Orr’s 

(2006) linkage index. Concordance in SC was observed during the still face paradigm 

when infants displayed negative behaviors.  Additionally, when mothers engaged in 

subsequent soothing of infants, greater concordance occurred in relation to behavioral 

synchrony.  The authors concluded that mothers calm themselves to calm their infants, 

and that concordance may be more likely to occur when at least one partner is attending 

to the other partner. 

Feldman and colleagues  (Feldman, Magori-Cohen, Galili, Singer, & Louzoun, 

2011) examined the effects of face-to-face interactions on PL of HR between mothers 

and 3-month-old infants. Micro assessments of gaze, affect, and vocal synchrony were 
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conducted on mother and infant dyads during two-minutes of baseline and three-minutes 

of free play. PL of maternal and infant interbeat interval (IBI) were measured using 

autoregressive integrated moving average (ARIMA) models and cross correlation 

functions. Statistically significant levels of PL were found during face-to-face 

interactions. Time periods involving vocal synchrony, affect synchrony, or the co-

occurrence of vocal and affect synchrony significantly related to increased concordance 

in IBI between mother and infant compared to periods without behavioral synchrony.  

Most recently, Waters, West, and Mendes (2014) assessed affect contagion 

between mothers and infants by assigning mothers to one of three conditions: a social 

evaluation with positive or negative feedback, or a neutral condition. PL was found 

between infant HR and mother ventricle contractility. Greater PL along with an 

increasing trend was observed in dyads in the negative feedback condition, but not the 

neutral or positive conditions. Therefore, the researchers concluded that stressful affect is 

contagious across mothers and infants.  

Mother-child. Creaven and colleagues (Creaven, Skowron, Hughes, Howard, & 

Loken, 2014) explored the effect of child maltreatment on the PL of mother-child HR and 

RSA. HR and RSA were collected while the pairs watched a video. Zero-order 

correlations of mother and child resting HR and RSA were used to measure PL. Results 

revealed PL in the HRs of non-maltreating mothers and their children, and discordant PL 

in the HR and RSA of both groups. Additionally, mothers’ resting HR was found to 

moderate PL, as higher average resting HR was associated with lower PL.  

Two studies recently assessed PL in facial skin temperature between mothers and 

children.  Procedures involved women watching their own or another child participating 
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in a series of play and stress phases through a one-way mirror.  Ebisch et al. (2012) 

assessed stress conditions, and found correlations in skin temperatures of mothers and 

their children using both idiographic and nomothetic methods. Manini and colleagues 

(2013) expanded this work by comparing the PL of thermal signals of mother-child dyads 

to other woman-child dyads during stress conditions. Results indicated that PL occurred 

between women and children regardless of parenting status. However, correlations were 

significantly higher, and cross correlation lags were shorter between mothers and their 

own versus other child dyads. The authors concluded that these findings demonstrate that 

a child's distress evokes a spontaneous autonomic response in women, but that maternal 

bonds may modulate the timing of response. 

Mother-adolescent. To date, only one study has examined PL in mother-

adolescent dyads. Ghafar-Tabrizi (2008) examined PL of HR and finger pulse amplitude 

in low-conflict and high-conflict mother-adolescent daughter conversations. PL was 

analyzed via a bivariate time series analysis.  Close assessment of the interactions 

revealed a number of specific patterns in PL over the course of the trials.  For example, 

levels of felt arousal were associated with the strength of PL during dyadic interaction, 

suggesting an experiential component was associated with these periods. When daughters 

led the conversation, their HR predicted the response pattern of mothers better than 

mothers predicted daughter, and vice versa. In the high-conflict group, however, when 

daughters led the conversation, the HR of daughters predicted HR of mothers 

significantly better than when mothers led the conversation. Equivalent levels of PL were 

demonstrated across varied conversation topics. Finally, high-conflict dyads did not 

demonstrate higher levels of PL than lower level conflict dyads. PL, however, was 
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stronger during conflictual conversation than pleasant conversation for the high-conflict 

group only. 

In summary, preliminary research examining PL among mothers and children 

suggests that PL is likely to develop during an interaction (Ham & Tronick, 2009). It 

appears equally across depressed and non-depressed mother-child dyads (Field et al., 

1989), but is more pronounced when mothers are under stress (Waters et al., 2014).  

Multiple studies indicate that individual physiological profiles moderate the development 

of PL (Ebisch, 2012; Ghafar-Tabrizi, 2008; Maninni et al, 2013; Waters et al., 2014), 

suggesting that a better understanding of group dynamics may be achieved by 

assessments of intrapersonal patterns associated with interpersonal dynamics. 

Additionally, there may be an experiential component of PL, suggesting the possibility 

that dyads could report when they are more or less linked. 

Teammates. Video games. In a series of interpersonal physiological studies 

examining teammates, Henning et al. (2001) tested whether PL is a determinant of team 

performance.  Pairs of gender-matched undergraduate students participated in variations 

of a jointly controlled video game, with and without visual or verbal contact with their 

partner. Measures of team performance and coordination, as well as continuous measures 

of interbeat interval, breathing rate, and SC were continuously collected. A weighted 

cross-coherence, as well as cross-correlations (lag-0), were used to assess PL.  Results 

suggested that socio-visual contact was not a significant predictor of team performance or 

coordination, indicating that direct contact with partners was not required for teams to do 

well. PL in SC and interbeat interval significantly predicted task completion time.  

Multiple assessments of PL were found to be predictive of team performance scores, but 
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not of team coordination.  These findings suggest that PL could play a significant role in 

how well teams perform, but is not dependent on coordinated behaviors.  

 In a follow-up study, Henning and Korbelak (2005) adapted the earlier procedures 

by randomly changing joystick controls (e.g., left/right became up/down).  Teammates 

were again seated adjacent, but could not see each other’s joystick movements. Interbeat 

interval was continuously recorded from team members while scores were kept on team 

performance.  Weighted coherence scores in interbeat interval were used as the measure 

of PL.  Results suggested that PL prior to controller change negatively predicted post-

change tracking error, explaining 3.8 percent of performance variance across all teams 

and conditions. The authors concluded that there was enough empirical evidence to 

suggest that PL can be used to predict future team performance. 

Chanel, Kivikangas, and Ravaja (2012) also measured team performance during 

video game play.  Measures of electrodermal activity, RR, and interbeat interval were 

continuously recorded while teams of friends played a video game. Games were set to 

either cooperative or competitive mode, and replayed in the lab and the home, followed 

by a questionnaire on gaming experience.  Assessment of PL followed Henning 

Armstead, and Ferris’s (2009) approach of cross-correlations and weighted coherence.  

Results indicated that PL increased with players’ self-reported involvement in the social 

interaction, suggesting that it could be used as an objective measure of social presence. 

For most measures, PL was higher for competitive versus cooperative play.  

In another assessment of PL in teams playing video games, Jarvela et al. (2013) 

investigated whether social interaction and PL are affected by (a) 

competition/cooperation, and (b) computer opponents in games.  Volunteer dyads of 
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friends played a turn-based artillery game while cardiac and electrodermal activity were 

continuously recorded. Each team completed four conditions that varied by cooperative 

and competitive modes, both with and without a computer player. Henning et al.’s (2009) 

techniques of weighted cross coherence scores and cross-correlations were again used to 

assess PL.  Results from a series of analyses suggested that on average, PL was present in 

all cardiac and electrodermal measures of teammates playing video games.  The presence 

of a computer controlled character in the game was associated with significantly less PL, 

suggesting that players were not as focused on each other during those periods. Increased 

empathy and understanding between players was associated with significantly greater 

cardiac PL, though changes in conditions and self-reports were not associated with 

differences in PL of electrodermal activity.  

Walker and colleagues (Walker, Muth, Switzer, & Rosopa, 2013) looked at PL 

between teams working on computer based problems to determine whether PL is an 

index of cognitive readiness. Two person teams were tasked with maintaining safe levels 

of operation in a simulated chemical plant across a variety of conditions. Performance 

was based on multiple calculations of team errors.  Cardiac, electrodermal, and 

respiratory measures were continuously collected during the trials. Measures of PL were 

calculated using regressions and correlations. Though results did not yield a significant 

relationship between PL and team errors, no assessments were made to determine 

whether PL was present during the tasks.  

In-vivo teamwork. Henning et al. (2009) assessed whether PL in heart rate variability 

(HRV) in team members could be used as a measure of teamwork. Speech and HRV were 

monitored in a preexisting 4-person graduate research group during regular meetings over 
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6 months. Following each meeting, team members completed a 7-item questionnaire on 

teamwork. Cross correlations (lag-0) were used to assess a number of indices of PL 

between group members.  Results suggested that PL negatively predicted team ratings of 

their ability to work together, suggesting that in some contexts, increased PL can inhibit 

group cohesion.  

Elkins et al. (2009) completed the most physical study of PL to date by collecting 

interbeat interval from soldiers training to clear buildings of enemy combatants.  Ten 

teams of four soldiers completed six trials in which they moved through a building, 

identifying live actors as combatants or non-combatants, and eliminating combatants 

using simulated firearms.  Team performance was measured using a number of indices 

related to task success.  Only 1-pair from each team was analyzed.  Four measures 

derived from participants’ interbeat intervals during the trials were assessed using four 

different measures of PL (a total of 16 measure-analysis combinations).  Results from 

each measure-analysis combination were compared to visual inspection of the data.  Six 

combinations were able to discriminate between visually categorized incidents of high PL 

and asynchrony, suggesting that these measure-analysis pairs were sufficient tests of 

existing PL.  One measure-analysis pair identified significant differences between high 

and low performing teams (i.e., correlations of the log of participant’s respiratory sinus 

arrhythmia), though no other significant differences in performance were observed 

through PL.  

In the most in-depth study of PL to date, Müller and Lindenberger (2011) applied a 

series of advanced statistical procedures to assess group interactions in an eleven-person, 

conductor-led choir.  The choir participated in 12 singing conditions that were video-
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recorded while HRV and respiration were continuously recorded. Tasks included singing 

in unison and in parts, and singing a canon in unison or in parts while participants’ eyes 

were open and closed, both with and without the conductor singing. Physiological linkage 

was assessed by calculating difference in the coefficients of wavelets from each possible 

pair in the group.  These differences in coefficients were then assessed using multiple 

techniques to create a set of 6 PL scores.  A graph-theoretical network analysis was also 

run to determine group and sub-group relationships. Results showed that PL was greater 

in singing versus the rest periods, and when singing in unison versus singing in parts. 

When the choir was singing in parts, network analyses detected subgroups with greater 

PL that corresponded to the sections being sung. Additionally, the analysis indicated that 

physiological changes in the conductor predicated similar changes in choir members.  

These results were relatively consistent across multiple measures of PL.  

Though multiple studies suggest a positive relationship between PL and task 

performance (Elkins et al., 2009; Henning et al., 2001), others indicate an inverse one 

(Chanel et al., 2012; Henning & Korbelak, 2005), or none at all (Henning et al., 2009).  

Further, whereas some works suggest that greater PL is associated with significant 

improvements in empathy and social interaction (Chanel et al., 2012; Jarvela et al., 2013), 

others indicate the opposite (Henning et al, 2009). Contradictions may be caused by 

differences in methodological and statistical approaches as well as differences in 

physiological measurements.  Regardless, more work is needed to determine how PL 

relates to teamwork.   

Friends and Strangers. The subgroup of friends and strangers is a general 

categorization of participant relationships that do not fall under other sample types.  
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Therefore, it is not necessarily independent of other categorizations, as teammates could 

also be friends, and therapist and clients may be meeting for the first time during a trial.   

The first study to assess PL in casual relationships was completed by Kaplan and 

colleagues in 1963. They analyzed the conversations of medical students engaged in 

conversations in a group setting, with a-priori reports of affective relationships between 

group members.  They found significantly greater correlations in SC responses when 

dyads reported strong affective ties (i.e., liked or disliked each other), than when they 

reported a neutral relationship.  

Field and colleagues (1992) compared PL in the HRs of children playing using 

autoregressive integrated moving average (ARIMA) models and correlations. They failed 

to find significant differences between friends versus acquaintance dyads.  However, they 

did not assess whether the levels of PL were significantly greater than zero, only whether 

the levels detected differed by group. Similarly, Shearn and colleagues (Shearn, 

Spellman, Straley, Meirick, & Stryker, 1999) assessed differences in PL in SC and facial 

blushing between friends and strangers. Groups of three participants (two friends with a 

stranger) watched a video in which one individual from the group was singing. Results 

from analysis of blushing were not clear-cut.  However, significant PL in SC was only 

observed between friends.  

McFarland (2001) assessed PL as the cross-correlation of respiration of friends 

during conversations.  Results indicated that the relationships in the breathing patterns of 

these dyads were significantly greater than chance. However, claims were not well 

supported with quantitative results.  In a similarly small study, Silver and Parente (2004) 

assessed PL as the correlation of SC during conversations between male and female 
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strangers as a test of first impressions. They found significant correlations across all 

dyads, but few quantitative results were reported. 

In a methodologically focused study of PL, Guastello and colleagues (2006) 

compared linear and nonlinear models capabilities to detect concordance in SC of friends 

during conversations. Physiological linkage was detected during all conversation 

conditions, with no statistically significant difference between high conflict and neutral 

topics.  Nonlinear analyses identified considerably more evidence of PL between 

partners, prompting the authors to conclude that physiological interdependencies are 

multilevel processes with both linear and nonlinear characteristics.    

Konvalinka et al. (2011) examined the PL of HR between fire-walkers and 

familial versus non-familial spectators. PL was measured via phase space modeling (i.e., 

cross-recurrence quantification analysis), and indicated PL between related pairs but not 

between unrelated pairs, indicating familiarity may mediate PL during the collective 

ritual experience. 

Nearly all research on friend and stranger dyads has resulted in findings of PL, 

though comparisons between these types relationships have led to mixed results.  There is 

some indication that the level of PL is significantly greater between friends and family as 

compared to strangers (e.g., Konvalinka et al., 2011; Shearn et al., 1999).  However, PL 

has also been detected in conversations between strangers (e.g., Silver & Parente, 2001). 

Findings suggest that PL between friends may be moderated by arousal level (Kaplan et 

al., 1963), and involve both linear and nonlinear patterns (Guastello et al., 2006). 

Nonlinear models that include arousal level as a moderator may help to clarify such 

discrepancies in future research. 
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Discussion 

Based on the results of this systematic review, a number of important findings can be 

extracted.  First, the development of PL does not appear to be dependent on valance, 

preexisting relationships, or specific sensory cues. Mounting evidence indicates that 

physiological interactions can be observed between individuals meeting for the first time 

(e.g., Marci & Orr, 2006), as well as in dyads or groups with established relationships 

(e.g., Ham, & Tronick, 2009; Müller, & Lindenberger, 2011). It has also been observed 

across positive (e.g., empathy; Marci et al., 2007) and negative (e.g., conflictual 

relationships; Levenson & Gottman, 1983) contexts, as well as relatively neutral 

conditions (e.g., couples sitting together quietly; Ferrer & Helm, 2013). Additionally, PL 

has been observed in studies that limit physical, visual, and auditory cues, indicating that 

multiple pathways can lead to the development of these interactions. For example, Helm 

et al. (2013), Henning et al. (2001), Creaven et al. (2014) and others have found PL in the 

absence of visual cues, suggesting that PL is not dependent on visual information.  

However, other studies have observed PL when participants were separated by a one-way 

mirror (e.g., Ebisch et al., 2013; Mannini et al., 2014). Physical contact has also been 

indicated as an isolatable mode of transmission (Creaven et al., 2014), though less work 

has been done in this area. These results suggest that physiological interactions between 

people can be generated through multiple sensory systems, but is not dependent on any 

one.  At this point, more work is needed to determine the importance of each. 

Second, the present findings suggest that PL is a transient state.  Studies showing 

differences in PL across contexts and conditions indicate that physiological relationships 

change over time.  This is evident in studies by Müller and Lindenberger (2011) and 
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Ghafar-Tabrizi et al. (2008), who showed that during a given time period, measures of 

concordance and lagged concordance are not static.  This is an important consideration, 

as attempts to apply statistical models that assume a constant state may be problematic. 

For example, if a dyad shifts between periods of concordance and discordance during a 

trial, but the entire interaction is assessed using a single linear model, then results will be 

an aggregate of two heterogeneous processes and will misrepresent the patterns of both. 

Guastello et al. (2006) and Helm et al. (2014) address this issue well, highlighting the 

need for flexible statistical models capable of identifying multiple types of physiological 

relationships occurring during a single interaction.  

A third implication in the literature is that autonomic activation may moderate PL.  

Findings indicate that differences in arousal can influence the levels of PL (Craven et al., 

2014; Ebisch, 2012; Ghafar-Tabrizi, 2008; Maninni et al., 2013; Reed et al., 2013; 

Waters et al., 2014).  For example, multiple studies suggest that average resting HR can 

moderate PL (Creaven et al., 2014; Ghafar-Tabrizi et al., 2008). Future studies should be 

designed to explore whether combinations of partners physiological levels, and states 

such as stability and lability, influence PL (e.g., does the combination of a high and low 

arousal increase the probability of a given type of PL?).  

Finally, and perhaps most importantly, interpersonal physiological processes have 

been found to be predictive of other variables. However, results appear to be dependent 

on the combination of the type PL, and the context in which it occurs.  For example, 

physiological concordance during conflict was found to be predictive of dissatisfaction in 

marriages, whereas concordance during psychotherapy and gamming was found to 

correspond to greater empathy and improved team performance. This type of synchrony 
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has been interpreted as a feeling of being ‘locked into’ a negative conflict (Levenson & 

Gottman, 1983), but as a feeling of being connected and understood during positive 

interactions (Marci et al., 2007).  In another context, discordance was associated with 

positive interactions during partner conflict, which was interpreted as coordinated turn-

taking leading to more balanced communication (Reed et al., 2013).  The type of PL 

observed during a given context can therefore be predictive of the outcome, though 

extensive work is needed to further explore the typologies of PL, and their relationships 

with context and valance.  

Critical Issues for Future Research 

Beyond these findings, a number of issues critical to future work were identified.  The 

following sections highlight some of these issues, including terminology, physiological 

variables measured, idiographic versus nomothetic methods, laboratory versus in-vivo 

designs, and statistics analyses.  

Terminology. The review of the literature identified terminological variation across 

the field, including inconsistent operational definitions. This issue is more than mere 

semantics, as the methodological and statistical approaches used in a study are dependent 

on the definition of the phenomenon they aim to identify.  A number of authors have 

highlighted this issue and made attempts to resolve terminological ambiguities by 

operationally defining specific types of physiological relationships (e.g., Butler & 

Randall, 2013; Field, 2012; Helm et al., 2014).  Two example of this are morphogenic 

and morphostatic interactions (Helm et al., 2014). The first refers to continual shifts in 

arousal levels away from an optimal set point.  For example, an escalating argument 

when the increase in arousal of each partner extends beyond the current state of the other, 
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persistently increasing the arousal level of both.  The latter term indicates a stable 

coregulatory process, when each partner’s arousal level serves to maintain the state of the 

other, creating a mutually maintained homeostasis.  For example, during a stressful 

period, each partner works to calm the other, and as a pair remain more stable than either 

would alone.   

The need for clearly operationalized definitions is in part due to the number of 

interpersonal patterns that have been theorized and observed (e.g., concordance, 

discordance, morphogenic, morphostatic), and the assumption that many others are 

possible. Quantitatively assessable definitions of distinct interpersonal patterns will help 

ensure that heterogeneous processes are not inappropriately aggregated.  

  Physiological Variables. Different measures of physiological relationships have 

been found to reflect unique components of interactions. For example, concordance has 

been found to occur in both RR and HR under some conditions, whereas in another 

condition, HR, but not RR, is synchronized (Ferrer & Helm, 2013; Helm et al., 2012).  

Such findings suggest that PL is systemically differentiated, in that each internal system 

reflects unique variance related to social encounters. Whereas some measures reflect 

specific autonomic systems, such as sympathetic (e.g., SC) or parasympathetic activities 

(e.g., HRV), other measures cannot discriminate between generating causes, and are 

therefore less specific (e.g., HR; Cacioppo, Tassinary, & Berntson, 2007).   

Collecting data from multiple measures can lead to greater specificity of the 

processes involved in social contexts.  An example of the successful use of multiple 

measures can be seen in Creaven et al. (2014).  They found that the PL between mothers’ 
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HR and their children’s respiratory sinus arrhythmia differed by group assignment, 

indicating that the physiological systems involved in linkage may differ across contexts.  

In addition to the specific measures used, there are a number of complications in 

collecting, analyzing and interpreting physiology.  The interested reader is therefore 

referred to other resources (e.g., Cacioppo et al., 2007; Goodwin, 2012) for more details.   

Idiographic Versus Nomothetic Methods. When designing or interpreting 

interpersonal physiological research, it is important to consider the difference between 

idiographic and nomothetic designs.  Results from the two approaches only correspond 

when all conditions of the ergodic theorems are met (e.g., multivariate normal data with 

equal autocorrelation and trends across the data; Molenaar, 2004a). Because nomothetic 

techniques model the data as a whole, results indicate the trend of the group, but obscure 

the unique patterns of the individuals. Nomothetic generalizations can therefore be 

interpreted as the tendency of the sample as a whole, and can be used to answer a variety 

of population level research questions.  For example, nomothetic designs are well suited 

to determining whether a certain type of video game increases PL between players.  As 

the game will be played by a specified population and cannot be tailored to the individual 

gamer, nomothetic results are appropriate. Alternatively, if the researcher is interested in 

the processes that lead to PL during gaming, then detailed temporal results from 

idiographic methods are needed.  

Ferrer and Helm (2013) review this discrepancy when discussing the 

heterogeneity of results from idiographic models of dyads. The researchers note that had 

a single model been fit to pooled data from all the dyads, it would represent an 

aggregated pattern, and not accurately represent the characteristics of dyads in the 
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sample.  Manini et al. (2013) observed this issue more directly by comparing findings 

from idiographic and nomothetic analyses completed on the same data.  They noted that 

idiographic results indicated statistically significant levels of PL were present in dyads at 

varying lags, but that nomothetic results were non-significant.  The authors discussed the 

heterogeneity of time lags in PL, which were could not be differentiated when data were 

pooled. 

Though some nomothetic techniques (e.g., multilevel modeling) attempt to correct 

for these differences, they remain group level aggregates and are not able to represent 

idiographic trends (Molenaar, 2004b). Therefore, generalizations from idiographic results 

require different goals.  For example, detailed analyses of dyads can be used to identify 

patterns of PL, then assess whether those patterns are recurrent across time, contexts, and 

dyads.  A simplified example of this approach can be seen in Ghafar-Tabrizi et al. (2008), 

who assessed PL at the dyadic level, but presented results as the percentage of dyads 

observed with given characteristics. More quantitative generalization techniques, such as 

cluster analysis, also are available. For a more detailed discussion of the ergodic 

theorems and related issues, see Molenaar (2004a) or Velicer et al. (2014). 

Controlled laboratory designs: The current lack of research identifying 

mechanisms and processes involved in PL is problematic. Controlled laboratory designs 

aimed at discovering the building blocks that lead to these interactions is therefore 

needed.  The goal of finding mechanisms of PL requires distinctly different procedures 

than those designed to utilize PL as an indicator of other constructs.  For example, most 

studies to date use PL as a measure of group differences, with the aim of observing 

variations in interpersonal characteristics depending on a given condition.  This 



 

78 

methodology can be seen in studies such as Messina et al. (2013), where the goal was to 

determine whether different levels of therapeutic training were associated with different 

levels of PL between therapists and clients. Alternatively, research can be designed to 

identify how PL changes over time. For example, Müller and Lindenberger (2001) 

showed that the direction of dependence between people’s RRs changed as activities and 

roles changed.  Similar approaches can be used to explore whether specified components 

are necessary for PL to develop, and whether specific patterns result from given 

conditions. Controlled, systematic research protocols designed to address components 

theorized to contribute to these interactions are therefore required.  Accurate 

interpretations of results will be difficult until such research is completed (Sbarra & 

Hazan, 2008).  

In-vivo Studies: In addition to laboratory experiments, in-vivo designs that 

incorporate ambulatory assessments of participants in daily life may expose patterns that 

can only be assessed over longer periods of time. Longitudinal assessments may reveal 

ecologically valid processes that would not be obtainable through laboratory-based 

research. Tracking individual and interpersonal patterns over time may be the only way to 

establish the ecological validity of conclusions about processes such as coregulation, and 

may reveal a more complete picture of the emergence and consequences of PL. Though a 

few studies have taken longitudinal data in-vivo (e.g., Marci et al., 2007), none to date 

have analyzed longitudinal trends, or taken advantage of the noninvasive telemetric 

measures that are now available. 

Statistical Analyses. Another critical issue for interpersonal physiological 

research is statistical analysis.  The analysis of multivariate, nonstationary, intensive time 
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series of physiology is wrought with complexities as these data violate a number of 

assumptions of parametric statistics.  Though many viable analytic approaches are 

available, no ‘best practices’ have been established in this emerging field.  

Stationarity and autocorrelation.  Two data conditions commonly overlooked are 

stationarity and autocorrelation. Data that is stationary maintains a relatively consistent 

mean and standard deviation over time. This is a rare condition in most physiological 

measures, but is a critical assumption for many analyses. Autocorrelation is the degree to 

which data is dependent on previous measurements, an unavoidable result of intensive 

sampling.  This serial dependence violates of the assumption of independence of 

measurements required by most parametric statistics. Though some researchers maintain 

that data transformations used to account for autocorrelation (e.g., ARIMA modeling) 

remove important information (e.g., Henning & Korbelak, 2005; Maric & Orr, 2007), 

serial dependence can inflate variance estimates, leading to spurious results in any 

analysis that depends on variance or covariance structures (Chatfield, 2004; Levenson & 

Gottman, 1983).  

The problem with correlation.  When serial dependence and stationarity are 

ignored, results can be significantly affected (Chatfield, 20004). This is especially the 

case when analyses are either dependent on accurate estimates of variance, or assume that 

nonstationary data can be represented by a linear model. These critical issues are apparent 

in the most commonly employed measure of PL, correlation.  This bivariate linear 

analysis requires both stationarity and independence of measurements (Chatfield, 20004; 

Levenson & Gotman, 1983).  Ignoring these violations significantly increases the chances 

of spurious results. Though studies that compare results to a null hypothesis (e.g., results 
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from random pairs) may indicate that a real effect is present, the size of that effect is not 

likely to be accurate.  

 This problem is amplified with the addition of moving windows. These popular 

procedures first designate a subset (or window) of the data, then calculate the correlation 

(or other bivariate analysis) of the subset, rather than for the entire data set.  A running 

correlation results from iteratively shifting the window forward in time and rerunning the 

analysis.  The technique is designed to generate a greater temporal resolution of the 

bivariate relationship (e.g., a low correlation in one window, and a high correlation in 

another). However, the same issues of stationarity and autocorrelation apply to any given 

window, regardless of its length.  As a result, the findings in each window may be 

inaccurate. This problem is exacerbated when specific segments are extracted for further 

analysis (e.g., choosing the period with the ‘highest correlation’), as the potential for type 

I error is compounded each time the analysis is calculated on a window (there may be 

hundreds of windows). 

An extension of the windowing technique is the use of overlapping windows, in 

which some percentage of data is shared between adjacent windows.  Overlaps are 

designed to further increase the temporal resolution of results by highlighting where 

changes occur in time.  Unfortunately, this procedure has the potential to exponentially 

increase serial dependence.  With these procedures, correlations calculated from serially 

dependent data are serially dependent, since they are assessing much of the same data, 

further complicating findings. Though all of these issues can be dealt with by statistically 

(e.g., removing autocorrelation through ARIMA models), a number of alternative 

statistical procedures are available. 
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One simple method to control for these issues is to use the first derivative, rather 

than the raw data.  This method is typically an effective way to deal with stationarity.  

Simulation studies indicate that when correlations of differenced data are nalized 

nomothetically (e.g., assessing group differences in correlations), effects from 

autocorrelation are negligible (Kettunen & Ravaja, 2000).  Autocorrelation remained an 

issue for idiographic assessments, so alternative analyses are necessary. 

Alternative statistics.  There number of viable statistical procedures applicable to 

interpersonal physiological research is rapidly increasing. Many studies have made 

attempts to develop strategies tailored to these data.  Some examples of method that have 

been applied include dynamic systems models (Ferrer et al., 2013), cross-lagged panel 

models (Helm et al., 2014), state-space modeling (Guastello et al., 2006), Granger 

causality (Müller, & Lindenberger, 2011), and wavelet analysis (Müller, & Lindenberger, 

2011). It is important that the researcher matches the statistical approach to the research 

question, as the interpretation of results can differ substantially. Though there is not 

currently a clear and proven approach for the assessment of any form of PL, 

consideration of previously discussed issues are necessary for findings to adequately 

answer the given research questions.   

Theoretical Explanations 

 A number of theorists have described potential mechanisms and implications of 

interpersonal physiological relationships.  These processes have been considered 

evidence of empathy (Adler, 2002; 2007), attachment (Diamond, 2008), and emotional 

regulation (Butler, 2011; Field, 2012; Sbarra & Hazan, 2008), though there is not 

currently enough evidence to fully support any conclusions.   
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Empathy is the most commonly considered explanation of physiological 

interactions.  From the original studies (Dimasco et al., 1955) to the most recent reports 

(Stratford et al., 2012), researchers (Marci & Orr, 2006; Messina et al., 2012) and 

theorists (Adler, 2007; Sbarra & Hazan, 2008) have considered the possibility that the 

experiential connections that define emotional empathy (Hatfield et al., 1994; Preston & 

de Waal, 2002) are mirrored in physiology.  These ideas suggest that the autonomic 

system is at the root of shared experience, and that a critical component of empathy is 

physiological concordance. Adler (2007) makes recommendations for doctors to 

consciously control their physiological responses to improve interactions with patients, 

and to recognize the state of their patients to increase understanding. Grove (2007) made 

similar recommendations, proposing an exploration of the therapeutic utility of PL 

through biofeedback.  Though repeated findings show an association between PL and 

empathy, other results indicate that these constructs are independent. Empathy may be 

dependent on a type of PL (e.g., concordance), but the same physiological relationships 

are observable in other contexts as well.  Future research should be done to help 

disentangle this association, such as exploring whether a subtype of PL is specific to 

empathy.  

 Feldman (2012) has considered PL to be a component of a multisystemic 

biobehavioral synchronization that begins in gestation and continues throughout life.  In a 

recent review incorporating her extensive work assessing biological, psychological, and 

behavioral synchrony, mainly between mother and infants, she considered any synchrony 

as a regulating process.  This research indicates that interpersonal biobehavioral 

synchronization is required for healthy interaction, and this has been found to be an 
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integral component of coregulation, empathy, and attachment (Feldman, 2012).  Feldman 

(2012) concluded that physiological concordance results from facial cues, and that if such 

behavioral synchronizations do not develop between mothers and infants, children will 

have lasting issues with attachment and self regulation. Though a number of studies have 

contradicted the assertion that PL is dependent on facial cues (e.g., Chatel-Goldman et 

al., 2014; Ferrer and Helm, 2013; Helm et al., 2012;), the importance of synchronistic 

relationships remains.  

Sbarra and Hazan (2008) consider physiological concordance to be a coregulatory 

process unique to attachment relationships. They argue that each individual is the primary 

physiological regulator for their partner, resulting in an interpersonal maintenance of 

emotional homeostasis.  They cite evidence from a series of animal studies by Hofer 

(e.g., Hofer, 1995; Polan & Hofer, 1999) that showed that the removal of an attachment 

figure creates dysregulation in physiology and behavior.  As this implies that autonomic 

functioning is synergetic rather than independent, they recommend modeling physiology 

as a bivariate system in which physiological processes are dependent on previous 

physiological measures of a partner. The authors recommend experimental procedures 

that systematically remove certain components of an attachment relationship during stress 

inducing tasks, such as controlling visual or olfactory cues.  The presumption is that 

dysregulation in physiological concordance is most likely to occur during stress, and that 

by systematically interrupting channels through which the synchrony may be based, the 

mechanisms of the system could be discovered.  Though their presumptions that 

concordance will only occur in secure attachment relationships and will be disrupted 
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during stress have been contradicted, their recommendations for systematic exploration 

of interpersonal physiology are well founded needs. 

Sbarra and Hazan’s (2008) theories are mirrored by Field (2012), who considers 

synchronization to be a psychobiological attunement in attachment relationships, 

assumed to increase in coordination over time. This model addresses the regulatory role 

of relationships, and proposes that explorations of interactions should assess what is 

missing when attachment figures are removed and synchronization is no longer evident.  

Butler (2011) discusses physiological concordance as an underexplored anomaly 

in her theoretical paper on temporal interpersonal emotion systems (TIES). In her review, 

she considers human interactions as multimodal self-organizing dynamic systems.  

Within that model, PL is considered an integral aspect of attachment. In later a work, 

Butler and Randall (2013) defined physiological coregulation as the bidirectional linkage 

of oscillating signals within optimal bounds, and discussed the potential of numerous 

additional types of PL (Butler & Randall, 2013; Helm et al., 2014). Though coregulatory 

interactions are descriptive of important processes, they are defined by long term patterns 

of PL, rather than conditions necessary for its development.  

Another potential result of PL is interpersonal understanding.  A study by 

Levenson and Ruef (1992) suggested that higher PL led to greater recognition of 

another’s emotional state.  A component of affective awareness may therefore be 

dependent on introceptive awareness (i.e., recognition of one’s own state as an indicator 

of the state of another).  As an extension of this concept, techniques used to engage, 

influence, and even ignore others may be physiologically based social strategies.  Ham & 

Tronick (2009) discuss this idea in relation to their findings indicating that mothers calm 



 

85 

their children by first calming themselves.  If this hypothesis is more generally accurate, 

in that individuals strategically adjust their own physiology in an effort to influence 

others, then a typology of social strategies may be operating at the physiological level.  

Methodologies designed to observe and define this level of interaction could therefore 

shed new light on all social encounters.  

Conclusions 

Results from this review of the interpersonal physiological literature indicate that 

social processes are operating at the physiological level.  The research to date has shown 

that physiological interactions are not limited to instances of synchrony, and the presence 

or absence of specific types of PL can be informative of the state of a relationship.  

Sensory and contextual information has been shown to influence the level and presence 

of PL, but additional work is needed to identify the conditions that lead to these changes. 

Controlled experiments designed to explore the components that generate PL are 

therefore needed. In addition, in-vivo designs are needed to explore these processes under 

natural conditions, and to add external validity to lab-based research.  

The application of an inductive strategy is recommended to identify and define a 

typology of PL, followed by systematic replication of studies across contexts and time, 

both within and across people. Though converging evidence suggests that physiological 

interdependencies are robust enough to be detected using correlational analyses and 

nomothetic methods, results from these strategies may be too general to identify the 

mechanisms that lead to PL.  Combining idiographic designs with dynamic time series 

analyses offers the greatest potential to explore these processes.  Although physiological 

relationships have far reaching implications concerning the nature of human interactions, 
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interpersonal physiology is a highly underexplored area, and extensive systematic 

research is required for these interactions to be well understood.   
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Table 3.1 
Systematic Literature Review Results 

Reference Population 

Term for 
Physiological 

Linkage 

Statistic of 
Physiological 

Linkage 
Statistical 
Category 

Statistical 
Approach 
(static or 
dynamic) 

Methodology 
(idiographic 

or 
nomothetic) 

Null 
Hypothesis 

Tested 
Physiological 

measures 
Chanel, Kivikangas, & 
Ravaja (2012)  

Teammates Compliance Correlation and 
weighted coherence 

Correlational; 
Frequency 
based 

Static Nomothetic No Respiration 
amplitude; 
IBI; HRV 

Coleman, Greenblatt, 
& Solomon (1956) 

Therapist/client Physiological 
relationship 

Correlation Correlational Static Idiographic No HR 

Creaven, Skowron, 
Hughes, Howard, & 
Loken (2014) 

Mother/child Concordance Correlations Multilevel 
model 

Static Nomothetic No HR; RSA 

Dimasco, Boyd, 
Greenblatt, & 
Solomon (1955) 

Therapist/client Sociophysiolog
y 

Correlation Correlational Static Idiographic No Pulse Rate 

Ebisch et al., (2012) Mother/child Synchrony Correlations Correlational Static Nomothetic No Facial 
temperature; 
RR 

Elkins et al., (2009) Teammates Compliance Signal Matching; 
Instantaneous 
derivative 
Matching; 
Directional 
agreement; 
Correlation 

Correlational Static Nomothetic No IBI; RSA 

Feldman, Magori-
Cohen, Galili, Singer, 
& Louzoun (2011) 

Mother/child Biological 
synchrony 

ARIMA model 
with cross 
correlation function 

Time series 
analysis 

Static Nomothetic Yes IBI 
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Table 3.1 (continued) 

Reference Population 

Term for 
Physiological 

Linkage 

Statistic of 
Physiological 

Linkage 
Statistical 
Category 

Statistical 
Approach 
(static or 
dynamic) 

Methodology 
(idiographic 

or 
nomothetic) 

Null 
Hypothesis 

Tested 
Physiological 

measures 
Ferrer, & Helm (2013) Couples Covariation Differential 

equation models 
Dynamic 
systems 

Static Both Yes HR 

Field, Healy, & 
LeBlanc (1989) 

Mother/child Synchrony Coherence and 
cross-coherence 

Frequency 
based 

Static Nomothetic No HR 

Field (1992) Friends/strangers Coherence Coherence Frequency 
based 

Static Nomothetic No IBI; HR 

Ghafar-Tabrizi (2008) Mother/child Linkage Bivariate time 
series analysis 

Time series 
analysis 

Static Both No Finger pulse 
amplitude; 
SCL 

Guastello, Pincus, & 
Gunderson (2006) 

Friends/strangers Linkage Linear regression; 
Nonlinear 
regression 

Time series 
analysis; 
Nonlinear 
modeling 

Dynamic Both No EDA 

Ham, & Tronick 
(2009) 

Mother/child Concordance Windowed 
correlation of slope 

Correlational Dynamic Nomothetic No RSA 

Helm, Sbarra, & 
Ferrer (2012) 

Couples Covariation Coupled oscillator 
models 

Dynamic 
systems 

Static Nomothetic Yes HR 

Henning, Armstead, & 
Ferris (2009) 

Teammates Compliance Cross-correlation Correlational Static Nomothetic No HRV 
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Table 3.1 (continued) 

Reference Population 

Term for 
Physiological 

Linkage 

Statistic of 
Physiological 

Linkage 
Statistical 
Category 

Statistical 
Approach 
(static or 
dynamic) 

Methodology 
(idiographic 

or 
nomothetic) 

Null 
Hypothesis 

Tested 
Physiological 

measures 
Henning, Boucsein, & 
Gil (2001) 

Teammates Compliance  Cross-correlation; 
Weighted cross-
coherence 

Correlational; 
Frequency 
based 

Static Nomothetic No HRV; RR 

Henning, & Korbelak 
(2005) 

Teammates Compliance Cross-correlation Correlational Static Nomothetic No IBI   

Jarvela, Kivikangas, 
Kätsyri, & Ravaja 
(2013) 

Teammates Linkage Cross-correlation; 
Weighted 
coherence 

Correlational; 
Frequency 
based 

Static Nomothetic No SCL; SCR; 
IBI; HF-HRV 

Kaplan, Burch, 
Bloom, & Edelberg 
(1963) 

Friends/strangers Covariation Correlation Correlational Static Nomothetic No SCR 

Konvalinka et al. 
(2011) 

Friends/strangers Synchronized 
arousal 

Cross-recurrence 
quantification 
analysis  

Nonlinear Dynamic Both No IBI 

Levenson, & Gottman 
(1983) 

Couples Linkage Bivariate time 
series analysis 

Time series 
analysis 

Static Nomothetic No HR; PTT; 
SCL; ACT; 
An index 
(HR; PTT; 
SCL; ACT) 

Manini et al. (2013) Mother/child Attunement Correlations Correlational Static Both No Facial 
temperature 
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Table 3.1 (continued) 

Reference Population 

Term for 
Physiological 

Linkage 

Statistic of 
Physiological 

Linkage 
Statistical 
Category 

Statistical 
Approach 
(static or 
dynamic) 

Methodology 
(idiographic 

or 
nomothetic) 

Null 
Hypothesis 

Tested 
Physiological 

measures 
Marci, Ham, Moran, 
& Orr (2007) 

Therapist/client Concordance Windowed 
correlation of slope 

Correlational Dynamic Nomothetic Yes SCL 

Marci & Orr (2006) Therapist/client Concordance Windowed 
correlation of slope 

Correlational Static Nomothetic No SCL 

Mcassey, Helm, 
Hsieh, Sbarra, & 
Ferrer (2013) 

Couples Synchrony Structural 
heteroscedastic 
measurement-error 
model; 
Empirical mode 
decomposition 

Time series 
analysis; 
Correlational 

Static Idiographic Yes HR 

Mcfarland (2001) Friends/strangers Synchrony Cross-correlation Correlational Static Nomothetic Yes RR 

Messina et al. (2013) Therapist/client Concordance Windowed 
correlation of slope 

Correlational Dynamic Both No SCL 

Muller, & 
Lindenberger (2011) 

Teammates Synchrony Wavelet analysis; 
Granger causality 
(multivariate 
autoregressive 
model) 

Frequency 
based; Time 
series analysis 

Dynamic Both No HRV; 
Respiration 

Reed, Randall, Post, & 
Butler (2013) 

Couples Linkage Longitudinal 
multilevel dyadic 
model 

Multilevel 
model 

Static Nomothetic Yes BP; IBI  

	
  



 

91 

Table 3.1 (continued) 

Reference Population 

Term for 
Physiological 

Linkage 

Statistic of 
Physiological 

Linkage 
Statistical 
Category 

Statistical 
Approach 
(static or 
dynamic) 

Methodology 
(idiographic 

or 
nomothetic) 

Null 
Hypothesis 

Tested 
Physiological 

measures 
Robinson, Herman, & 
Kaplan,  (1982) 

Therapist/client Concordance Correlation; 
Discrete 
categorizations of 
SCR 

Correlational; 
other 

Static Nomothetic No SCR 

Shearn, Spellman, 
Straley, Meirick, & 
Stryker (1999) 

Friends/strangers Shared 
physiology 

Correlations Correlational Static Nomothetic No EDA; Facial 
blushing 

Silver, & Parente 
(2004) 

Friends/strangers Shared 
physiological 
reaction 

Correlation Correlational Static Nomothetic No EDA 

Stratford, Lal, & 
Meara (2009) 

Therapist/client Concordance Windowed 
correlation of slope 

Correlational Dynamic Nomothetic No EDA 

Stratford, Lal, & 
Meara (2012) 

Therapist/client Concordance Windowed 
correlation of slope 

Correlational Dynamic Nomothetic No EDA 

Abbreviations. ACT: somatic movement; BP: blood pressure; EDA: electrodermal activity; IBI: interbeat interval; HF-HRV: high-frequency heart rate 
variability; HRV: heart rate variability; PTT: pulse transmission time; RR: respiration rate; RSA: respiratory sinus arrhythmia; SCL: skin conductance level; 
SCR: skin conductance response
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Abstract 

 

Interpersonal physiology is the study of interdependencies between people’s 

physiological activity, often referred to as physiological linkage.  Converging evidence 

indicates that physiological linkage is an important social process underlying observable 

behavior, and may be indicative of engagement in an interaction.  A significant issue 

when analyzing interpersonal physiological data is its nonstationarity.  As social 

dynamics change, so do physiological processes, so analyses that assume stationarity are 

not appropriate. To address this issue, a general approach for decomposing multivariate 

time series data in the time domain is proposed, and applied to data collected in-vivo 

from a student on the autism spectrum and his teacher. Results suggest that the data 

decomposition procedure is an effective and useful approach, but there is limited 

statistical support for the development of physiological linkage between the student and 

teacher.   

 

 

 

Keywords: interpersonal physiology, physiological linkage, physiological synchrony, 

physiological coherence, skin conductance, dyadic interactions, autism spectrum 

disorder, multivariate time series analysis 

  



	
  

101 

Assessing Interpersonal Physiology Through Time-Based Data Decomposition 

 

Interpersonal physiological research is the study of interactions between peoples’ 

physiology during social interactions. Converging findings indicate that these 

interactions, often referred to as physiological linkage (PL), are indicative of social 

processes including empathy (Marci,	
  Ham,	
  Moran,	
  &	
  Orr,	
  2007), attachment (Feldman, 

2012), and satisfaction (Levenson & Gottman, 1983). Though a small number of viable 

techniques have been used to analyze these data, the statistical methods most commonly 

applied are problematic. This is in part due to autocorrelation and nonstationarity inherent 

to physiological data (Levenson & Gottman, 1983; Chatfield, 2004).  Autocorrelated data 

is serially dependent, violating the statistical assumption of independence required by 

most parametric procedures.  Nonstationary data has an inconsistent mean and variance, 

so is not well represented by procedures that require these parameters to remain constant 

(i.e., stationary). Analyses that assume stationarity will typically model the data as a 

constant, and obscure the stochasticity and heterogeneity of social interactions (Helm et 

al., 2014). Therefore, dynamic idiographic techniques are needed to describe the temporal 

patterns at both univariate and multivariate levels.  

As a first step in the assessment of any data, descriptive statistics and data 

visualization procedures are invaluable.  However, descriptive statistics and many data 

visualizations are static aggregates that obscure temporal patterns. If the timescale 

represented by a statistic or a graph is not well matched to the temporal phase of a given 

process, patterns of interest may not be apparent. For example, if trying to study whether 

an intervention increases heart rate, a visual or statistical analysis of 10 milliseconds of 
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heart rate (i.e., shorter than 1 heart beat) is unlikely to reveal the answer because the time 

scale is too short.  An aggregate of 1 week of heart rate (i.e., thousands of heart beats 

aggregated together) will be equally uninformative, because the time scale is too long. 

The appropriate timescale of the process of interest is hidden somewhere in between.  

Though such a conclusion may be apparent in this example, the timescale in which many 

processes occur is unknown. To address this issue, the following paper offers a simple 

solution through a method of data decomposition in the time domain, defined as time 

series descriptive statistics (TSDs).  The technique is designed to identify the timescale at 

which dynamic shifts occur in parameters of univariate and multivariate time series data. 

The paper is organized in the following way.  First, the problem with analysis of 

interpersonal physiology is reviewed in the literature.  Second, details of TSDs are 

defined and discussed. Third, the procedure is applied to an example using data collected 

from a student on the autism spectrum and his teacher in-vivo. Fourth, limitations are 

discussed along with potential advancements and applications. 

Review of the Problem 

A key finding from the interpersonal physiological research is the random, 

transient nature of PL. Multiple studies show that lead-lag relationships and synchrony 

measures vary over time (Ghafar-Tabrizi et al., 2008; Müller, & Lindenberger, 2011), 

indicating that the timescale of physiological interactions is inconsistent.  This inhibits 

the utility of fixed statistical procedures that assume a stable state over a given period of 

time (Ferrer & Helm, 2013; Guastello et al., 2006). For example, Levenson and Gottman 

(1983) used bivariate time series analysis to assess PL during two, 15 minute 

conversations (one neutral and one negative).  However, it is likely that during each 
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condition, the social dynamics involved in the conversations generated stochastic changes 

in the underlying physiological relationships.  Using an analysis that assumes the pattern 

in each condition remains consistent (i.e., a linear regression coefficient), thereby treating 

variation in time as error, the temporal dynamics of PL are effectively ignored. Guastello 

et al. (2006) and Helm et al. (2014) address this problem well, highlighting the need for 

flexible, dynamic analyses capable of identifying multiple types of physiological states, 

each with a unique timescale, occurring throughout a single interaction.  

Time Series Descriptive Statistics 

 In order to explore temporal patterns in dynamic, nonstationary, multivariate data, 

an interpretable quantitative method is needed. One solution is to decompose the data in 

the time domain using two standard statistical procedures: descriptive statistics and 

moving windows. Moving windows procedures are a method of reassessing a statistic in 

forward shifting, equally sized subsets of data.   For example, rather than assessing the 

variance of an entire time-series, these procedures first segment the series into fixed sized 

windows (e.g., 5-second subsets), then assess the variance of each segment.  The result is 

a vector of temporal changes in the stability of the data, identifying the variability in the 

variance.  This type of windowing is designed to generate greater temporal resolution in a 

measure, and has been used to transform physiological data into the frequency domain.  

For example, short time Fourier transforms are frequency decompositions calculated in 

moving windows that have been used to acquire univariate estimates of the cyclical 

patterns of respiratory sinus arrhythmias as they vary over time (e.g., Blain, Meste, & 

Bermon, 2005; Pichon et al., 2004).  
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A critical decision when implementing a fixed windowing procedure is 

determining the appropriate length of the window.  Window size refers to the length of 

the data in each subset, and determines the temporal resolution of results. Longer 

windows aggregate more data so give less temporal resolution, but may obscure short-

term dynamics.  Shorter windows increase temporal resolution, but may unnecessarily 

segment homogeneous trends into multiple parts. A solution to this problem is to use a 

range of window lengths rather than choosing a single fixed window length.  With this 

approach, the same windowing procedure is performed as previously described, but it is 

iteratively repeated, each time increasing the window length.  The result is a matrix (W) 

of a given statistic (e.g., variance) being calculated on windows of increasing length. The 

first row of W therefore begins with the given statistic (e.g., the variance) being 

calculated on subsets of the smallest appropriate window size (Wmin).  This row might 

show how variance, as calculated on 5-second windows, changes over the length of the 

data set. In the second row, the window length increases by a given length, (I), and the 

same statistic is calculated on the larger subsets.  This procedure is iteratively repeated up 

to a given maximum window length (Wmax).  Whereas window length increases by row, 

window origination remains constant by column. This means that looking down the 

columns of W, the first data point that the window assesses, regardless of the given row 

(i.e. window length), is always the same.  The windows from every row in the first 

column begin with the first data point of the original time-series. The first row assesses 

the shortest windows (e.g., observations 1 through 5), and the last row assesses the 

longest window length (e.g., observations 1 through n).  This leads to a triangular shape 

in W, as shorter windows lead to longer vectors (more windows are needed to capture the 
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data), and longer windows lead to shorter vectors (fewer windows are needed to capture 

the data).  

A similar triangular pattern is applied in wavelet analysis, a time-frequency 

decomposition.  In wavelet analysis, shorter windows are associated with higher 

frequencies, which can be captured in full in a short time.  Longer windows are used to 

assess lower frequencies, as they take a longer time to complete a cycle.  Wavelet 

analyses are useful procedures when the generating function of the data is cyclical, and 

consists of relatively few frequency bands. However, stochastic data is less well 

represented in the frequency domain, as results can be difficult to interpret when the 

modeled process is not cyclical. 

By decomposing the data in the time domain, a number of effects of time can be 

observed using statistics more suited to stochastic time series. For example, if a process 

remains constant for a long period of time, then the variance, mean, and slope of shorter 

and longer windows will be relatively equal.  However, if a process is changing, there 

will be fewer similarities between shorter and longer windows.  Similarly, processes that 

occur in short time periods will be obscured when assessing longer windows, whereas 

longer processes may appear as random noise in short windows.  

Descriptive Statistics in Windows 

The analyses conducted within each window can be nearly any descriptive 

statistical analysis. As each descriptive statistic represents specific mathematical 

parameters, applying multiple techniques can lead to a better understanding of the data.  

Univariate Descriptive Statistics. Univariate descriptive statistics used in 

windows can include any combination of measures determined to be useful aggregates of 
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a time-series. For example, three standard descriptive statistics used to analyze time 

series are the mean, variance, and slope.  Whereas each measure is informative on its 

own, the combination provides a more robust understanding of where the data is located, 

its stability, and the direction in which it is changing. 

Multivariate Descriptive Statistics. To explore multivariate data, bivariate 

measures of distance can be used to assess similarities between univariate TSDs. One 

technique commonly used to assess similarities in time series data is Euclidian distance. 

Typically used in procedures such as dynamic cluster analysis, Euclidian distance 

measures the length of the line connecting two data points. This can be assessed as the 

distance between two matrices (i.e.,   (𝑊! −𝑊!)2).  These can then be plotted using 

procedures such as heat-maps. Heat maps are graphical techniques where the values in a 

matrix are hierarchically represented by colors, allowing simple visual inspection of the 

change in value throughout the data.   

Analyzing Multivariate Time Series Descriptive Statistics 

Visualization.  Matrices of TSDs can be analyzed using a variety of approaches.  

Most simply, each matrix can be plotted for visual inspection using heat-map procedures.  

These plots may help to identify distinct changes in a given parameter, and the timescales 

at which they occur.  For example, if a process maintains a constant mean for a long 

period of time, then shorter and longer windows will be relatively equal.  This leads to 

‘fields’ of the same color, as the results remain stable over time.  However, if the mean is 

changing, there will be fewer similarities between shorter and longer windows, leading to 

shifts in the color from left to right, and top to bottom.  Similarly, short-term changes in 

slope may give the impression of stochasticity when assessing shorter windows (i.e., the 
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first rows). However, if a longer trend is present, more pronounced fields of consistent 

color may emerge in longer windows (i.e., later rows). Whereas stabile periods show as 

consistent colors, short-term perturbations leave a ‘pointing effect’ in the color scheme, 

as highly localized events are isolated in short windows, but ‘spread’ as the event is 

aggregated into longer windows.  

Statistical Analyses.  After decomposing a data set in the time domain, the 

resultant data can be analyzed using a wide range of statistical procedures. Interrupted 

time series analysis is one viable approach, as it enables assessment of changes in time-

series data while accounting for autocorrelation (Chatfield, 2004). It can therefore be 

used to determine whether segments from any vector of data are significantly different 

from each other.  For example, if an event is theorized to induce a significant change in 

mean skin conductance, interrupted time series analysis can be used to test whether the 

skin conductance is significantly different before and after the event.  If the event is 

believed to induce a short term change in the variance of skin conductance, the analysis 

may be run on a short timescale (e.g., 5-second windows).  If it hypothesized to induce 

long-term changes, a longer timescale (e.g., 50-minutes) may be assessed instead.  

An Application 

One area of research that serves to benefit from assessment of physiological 

interactions during social relationships is autism spectrum disorder, as deficits in 

interpersonal communication are a main component of the disorder (American 

Psychiatric Association, 2013).  In severe cases, individuals on the autism spectrum are 

alexithymic and nonverbal, causing extreme difficulties expressing or reporting their own 

state (American Psychiatric Association, 2013).  Seemingly unpredictable behavioral 
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problems can result in such cases, leading to significant issues in nearly any setting.  This 

problem is amplified in the classroom, as unpredictable and erratic student behavior has 

the potential to lead to expulsion from standard schools.  

 Ambulatory physiological measures that identify internal states may be useful to 

both ascertain an individual’s functioning, and to track their social engagement with 

others in the classroom. For example, increased arousal, often unobservable through an 

individual’s behavior, could be associated with an increased probability of problem 

behaviors.  Similarly, the degree to which a student is following the ebb and flow of 

social activities in the classroom may not be apparent through their actions, but may be 

identifiable through PL with others in the room.  

A useful measure of physiological arousal is skin conductance. Reflective of 

sympathetic nervous system activity, skin conductance measures changes in eccrine 

sweat gland activity by tracking the electrical conductivity of the skin (Dawson, Schell, 

& Filion, 2000). Ambulatory measures of skin conductance are well suited to in-vivo 

study of autism spectrum disorder, as they are unobtrusive devices that have been found 

to be tolerable by most individuals in this population (Goodwin, Intille, Albinali, & 

Velicer, 2011).  In the following sections, TSDs are applied to skin conductance 

measures collected from a student on the autism spectrum and his teacher during class in 

a specialized school for students with severe developmental disabilities.  

The aim of this application is to explore whether intra and interpersonal patterns 

in skin conductance are informative of the student’s behavior, and social engagement 

with his teacher. Towards that end, the following hypotheses are explored: First, that 

patterns of intra and interpersonal physiological interactions can be described using 
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TSDs. Second, that a significant change in the variance, slope, or mean of skin 

conductance will be associated with increased behavioral problems in the student.  Third, 

that student behavioral problems are associated with significant changes in the 

similarities between the student and teacher’s skin conductance mean, variance, and 

slope.  

Methods 

Population 

 The following idiographic procedures address one student on the autism spectrum 

and his teacher during one 22-minute class. The school in which the class was held is 

involved in a larger, ongoing study of physiology and challenging behaviors in autism 

spectrum disorder.  The dyad was selectively chosen because their skin conductance data 

was adequately clean (e.g., minimal noise and missingness) and the student presented a 

sufficient number of behavioral incidents.  For the larger study, the student, a seventeen 

year old male, was required to meet standard classroom selection criteria based on 

intellectual ability, communication ability, behavioral characteristics, and tolerance 

wearing physiological monitors.  His teacher was a thirty-five year old white male with a 

college degree. The teacher was employed at the school, and consented to be recorded 

with video, audio, and physiological sensors during classroom and standardized 

assessment activities. The two had been working together for approximately five years. 

Procedures 

Data were collected at the school as part of a larger study designed to evaluate the 

physiological, behavioral, and learning responses of children on the autism spectrum to 

intervention and instruction. Novel procedures utilizing advanced telemetrics in the 
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school setting, including discretely mounted video cameras and microphones, and 

wireless sensors to record physiological states.  Additionally, direct observations, 

psychosocial coding of behavior and functioning, and student records were collected. 

Synchronized recordings of physiology, physical activity, video, and audio of classroom 

activities were collected from the student and staff during standard classroom protocols.  

Wireless physiological and physical activity recording devices were fitted to the wrist, 

ankle, and/or around the chest of the student and teacher prior to classroom activities, and 

left on for the duration of the school day.  

Measurement Tools 

Multiple technologies were used to collect video, audio, physical activity, and 

physiological data.  For the current study, physiological data was taken exclusively from 

The Q Sensor, manufactured by Affectiva.  This sensor wirelessly records electrodermal 

activity, motor movements, and skin temperature.  Data analysis was run using multiple 

statistical packages, including SAS, R, Matlab, and Excel.  

Data Management of Skin Conductance 

Each skin conductance time series was first assessed using visual inspection to 

determine its potential validity. Data were chosen for analyses if skin conductance from 

both the student and teacher showed appropriate levels and variability, had minimal 

missingness and artifacts, and occurred during videoed time periods.  All selected data 

then underwent a series of data cleaning procedures.  First, all data below a minimum 

threshold of .05uS was removed. Data was then smoothed using a 1 second (30 sample) 

Gaussian window using ledalab in Matlab (i.e., a low pass filter).  Next, data was 

subsampled to 1-Hz (i.e., 1-data point per second).  Visually identified artifacts (e.g., 
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extreme peaks and drops) were then manually removed, and missing data was imputed 

using spline-type interpolation. 

Video Coding 

 A set of operationally defined problem behaviors unique to the student were 

defined as a part of the larger study.  Behaviors included jumping in his seat, elopement 

(i.e., leaving the area), holding his hands on his ears, being out of seat when not 

instructed to be, and biting his own hand.  Two observers with masters degrees were then 

trained to identify these behaviors, and independently coded the video that accompanied 

the skin conductance data.  

Analyses 

Univariate Time Series Descriptive Statistics. Univariate TSDs were computed 

on the student and teacher’s skin conductance.  Three analyses were used: the mean (u), 

variance (var), and slope (s). This resulted in a matrix of each statistic for both the 

student, and the teacher.  Student matrices are written as, Su, Svar, and Ss. Teacher 

matrices are denoted Tu, Tvar, and Ts.  A minimum window size of 1-second was used, 

with a step of 1 (i.e., the window moved 1-data point forward, and recalculated the given 

statistic).  This procedure results in the first row of Su and Tu being equal to the original 

skin conductance data (S, T), and the first row of Svar, Tvar, Ss and Ts being equal to zero.  

Since the window increase was 1, the window length in each row is 1 data point longer 

than the previous.  The maximum window length was the length of the original series, 

resulting in the last row being an aggregate of the entire series.  

Multivariate Time Series Descriptive Statistics. Euclidian distance was 

computed on the univariate TSDs to give an indication of the difference in the skin 
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conductance activities of the student and teacher. This led to a matrix of the Euclidian 

distance (E) for each univariate parameter (Eu, Evar, Es).  

Analysis of Student Problem Behaviors and Skin Conductance. To determine 

the relationship between univariate TSDs and the student’s behaviors, an interrupted time 

series analyses was run.  Interrupted time series analysis is a class of autoregressive 

integrated moving average (ARIMA) models designed to remove serial dependence in 

the data, then compare pre and post interruption (Glass, Willson, & Gottman, 2008).  Pre 

interruption was defined as all periods without a behavior problem, and post interruption 

was defined as all periods during a behavior problem.  Interrupted time series analyses 

were used to assess whether there was a change in Su, Svar, and Ss when behavioral 

problems occurred. Based on visual analysis of the plots of S, all analyses were run using 

5-second windows  (i.e., row 5 of each S matrix).  Though the TSDs were run using a 

step of 1, for the time series analysis, a step of 5 was used (i.e., 0-overlap between 

windows) to ensure that the same data was not assessed both before and after the 

interruption.  

A second set of interrupted time series analyses were then run to determine 

whether behavioral problems influenced the distance between student and teacher skin 

conductance. This analysis assessed whether the means of Eu, Evar, and Es were 

significantly different when problem behaviors occurred. The same time-scales were used 

as in the previous analysis.  In addition, cross-correlations between student and teacher 

skin conductance, and cross-correlations between student and teacher TSDs were also 

computed using the same time-scales. 
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Results 

Video Coding 

 Following the data processing of skin conductance and video coding, only one 

video of the student and teacher fit the necessary criteria (i.e., adequate skin conductance 

from both student and teacher, during a class in which the student presented operationally 

defined behavior problems on video).  Coding of the video reached high inter-rater 

reliability (kappa = 0.94), and a high number of behaviors were coded during a 22 minute 

class period (n = 23).  Due to the infrequency of most operationally defined behaviors, 

the codes were combined to create a single variable for behavioral problems.   

Univariate Time Series Descriptive Statistics 

Univariate time series descriptive statistics (u, var, s) were computed for both the 

student’s skin conductance (i.e., Su, Svar, Ss, Figure 4.1) and the teacher’s skin 

conductance (i.e., Tu, Tvar, Ts; Figure 4.2).  A plot of the student’s (mean = .63, SD= .52) 

and teacher’s (mean = 5.32, SD = -.46) skin conductance can be seen in Figure 4.3.  The 

student’s raw skin conductance shows relatively minor variance in the first third, a large 

spike in activity in the middle third, and an abrupt return to lower levels in the last third.  

This pattern is reflected in Su, Svar, and Ss. It is clear from all of these representations of 

the student’s skin conductance, that the middle period involves the most change, and the 

period before is slightly more erratic than the period after.  This indicates that the 

student’s arousal level was labile, then spiked, and following a rapid recovery, was 

notably more stabile.  

Plots of the student’s TSDs indicate significant differences in the representation 

of student arousal level depending on the timescale used.  For example, in Ss, the first 
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rows (< 1 minute window length), representative of short windows, show high variability 

in the slope (i.e., inconsistent coloring), suggesting frequent shifts in the direction and 

steepness of change in physiological arousal.  However, when assessed at window 

lengths of approximately two to five minutes, a more stable trend emerges. This more 

general trend indicates a slight slope in the beginning, a steep pitch towards the middle, 

and near zero slope (i.e., no change) at the end. The consistency of this pattern through 

most window lengths indicates that it was relatively stable over time.  This suggests that 

the student’s experience during this time underwent three distinct regime shifts.   

The TSDs of the teacher’s skin conductance show that the mean, variance, and 

slope are more stable than the student’s throughout the class period.  The more 

pronounced shift in color from top to bottom rather than from left to right indicates 

greater stationarity.  Though more subtle than the student’s, the horizontal shifts in color 

scheme suggest change over time. However, there are some signs of similarity with the 

student.  For example, in Ts, the first rows (< 1 minute) again indicate more variability in 

the speed and direction of change in slope.  When assessed as slightly longer trends (e.g., 

approximately 2-6 minutes window lengths), three shifts are also apparent.  In the first 

segment, there is evidence of inconsistent periods of decreasing slope, as observable in 

the shifts to colors in the negative scale.  Towards the middle of the plot, a near zero 

slope is maintained, followed by a consistent negative trend.  

Multivariate Time Series Descriptive Statistics 

Multivariate TSDs were computed for each univariate TSD to assess the 

Euclidian distance between the student and teacher (i.e., Eu, Evar, Es; Figure 4.4). In these 

plots, there is a relatively stable, large distance in the means of the two series, indicating 



	
  

115 

that the physiological arousal levels are consistently dissimilar.  It is important to note 

here that the skin conductance was not standardized, and there may be limited 

interpretability when comparing mean levels across participants (Dawson et al., 2000).  

Of more relevance, the variances of the two series remain closer during the first quarter 

and second half of the data, though these descriptive differences may not be meaningful. 

Interestingly, the more general patterns of distance in slope (see Figure 4.4, Es) indicate 

that the slopes of the two are markedly similar when assessed over the entire length of the 

class, suggesting that despite short term fluctuations, the speed and direction in which the 

student and teacher’s physiological arousal levels change are similar over time. 

Time Series Analysis 

 Interrupted time series analyses were calculated to determine whether student’s 

behavioral problems led to significant changes in the variance, mean, or slope in the 

students skin conductance.  Figure 4.5 includes plots of the 5-second windowed variance, 

mean, and slope of the student’s skin conductance.  Overlaid in red are periods when a 

behavioral problem was occurring.  Two models were calculated on each of these series.  

The first was a general transformation ARIMA model (5,0,0), which is designed to 

account for the autocorrelation regardless of the specific model in the data (Velicer & 

McDonald, 1991). Due to nonstationarity in the windowed-means, a differenced model 

was called for (i.e., 5,1,0). A second ARIMA model was determined through assessment 

of autocorrelation and partial autocorrelation of each series. The variance and slope 

called for the same model (1,0,0), whereas a differenced model (1,1,0) was needed for the 

mean. All results were non-significant using both models, indicating that the 5-second 
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windowed variance, slope, and mean of the students skin conductance was not 

significantly different during behavior problems. 

 Cross-correlations (lag-25) were then computed using ARIMA models (5,1,0 and 

1,1,0) comparing the student’s and the teacher’s skin conductance.  Cross-correlations 

from both models were nonsignificant. 

 A second set of cross-correlations (lag-25) was then computed on the 5-second 

windowed variance, mean, and slope of the student and teacher’s skin conductance. Both 

the general transformation model (5,0,0) and a fitted (1,0,0) model were used.  All cross-

correlations were again non-significant. 

Discussion 

Interpersonal physiological interactions have been found to occur between 

partners under a variety of conditions, and shown to be indicative of specific relationship 

types (Palumbo, 2014). Autism spectrum disorder, often accompanied by alexithymia, 

has not been assessed using these methods.  The hypothesis that interpersonal 

relationships between a student and teacher would be observable in their skin 

conductance activities was suggested in graphs of the Euclidian distance in skin 

conductance slope (i.e., Es), but was not supported through statistical analysis.  

Additionally, the hypothesis that the student’s behavioral problems would be 

accompanied by significant changes in his skin conductance was not supported. 

Despite the lack of findings in this idiographic example, the novel approach used 

to visualize the temporal scale of both univariate and multivariate data proved to be a 

useful technique.  Through TSDs, the temporal scale of the data is presented in a form 

that allows visual identification of stability, lability, and regime shifts.  This is a simple 
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procedure that reduces a complex problem to an interpretable format.  Beyond visual 

analysis, the matrices that result from these procedures are available for statistical 

analysis.  Though often poorly understood, time is an important variable in a wide range 

of processes.  By exploring the effect of changes in timescale, the period in which a 

process occurs can be assessed.  Though similar to methods such as frequency 

decomposition (e.g., Fourier transform and wavelet analysis), such procedures are less 

suited to stochastic data as they address the range of cyclical patterns, rather than 

descriptions of the time components.  With TSDs, the effect of time is decomposed, 

allowing visual and statistical assessment of the resulting data. Future studies may adapt 

additional statistical procedures.  For example, recurrence analysis and cross recurrence 

analysis, dynamic systems analyses designed to find stable periods within and across data 

sets, are well suited to TSDs. These techniques can be used to determine the percentage 

of time that the same variance recurs from window to window and row to row, thereby 

testing for periods of stationarity. Adaptations to TSDs are also possible, such as the 

inclusion of lags to assess temporally distant relationships. For example, where the 

current study only assessed time-synchronized relationships between the student and 

teacher, lags could also be incorporated to test whether a change in one led to a similar 

change in the other across different timescales. Modeling procedures can also be used 

with TSDs. By mathematically defining theorized or observed patterns (e.g., a mean and 

variance above a given threshold lasting for a period of time), fit statistics could be used 

to test whether the data matched the model.  Here, a researcher may theorize that an 

increase in the students slope above a given threshold, lasting for longer than a given 

period of time, would lead to greater behavioral incidents.  Fit statistics (e.g., the Akaike 
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information criterion) could then be used to test whether the given parameters were 

observable in the TSDs.  

Despite the potential applications of TSDs, a number of limitations exist in the 

method, and in this application.  First, this is an idiographic example of the relationship 

between a student, his teacher, and behavioral problems during a single class.  There is 

therefore limited data and low power, so results can only be interpreted as descriptions of 

this specific data set.  As such, despite statistical evidence indicating no significant 

relationships between these variables, there are no internally or externally generalizable 

results, only descriptions of one interaction.  Second, though TSDs appear useful, 

systematic simulation studies will be necessary to test and develop the approach. Due to 

the number of calculations inherent in the iterative procedure, it is computationally 

expensive, so may not be appropriate with big data (e.g., skin conductance from a week, 

rather than 20 minutes). Due to the nature of visual analysis, plots can be deceptive.  

Simply changing the scale of the data or the color scheme of a heat-map plot can lead to 

substantial differences in the appearance of the plots.  Therefore, plots of TSDs must be 

well understood and appropriately presented to be interpretatively informative, and at 

best are only descriptions of the data they represent.  Still, these are adaptive procedures 

that can be computed in a variety of ways, and the temporally decomposed data is 

available for statistical testing.  

 The research described herein defines an idiographic procedure designed to 

decompose both univariate and multivariate data in the time domain.  The procedure was 

used to analyze continuously collected skin conductance from a student on the autism 

spectrum and his teacher during routine classroom activities in a specialized school. 
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Though no significant relationships were found between the student’s skin conductance 

and his own behavior problems or the teacher’s skin conductance, the methodology 

applied proved to be informative.  Additional work is needed to further develop these 

procedures, but their flexibility, simplicity, and interpretability potentiate their future 

utility.   
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Figure 4.1. Plots of the student’s windowed mean skin conductance (Su), windowed 

variance in skin conductance (Svar), and windowed slope in skin conductance (Ss).  
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Figure 4.2 Plots of the teachers windowed mean skin conductance (Tu), windowed 
variance in skin conductance (Tvar), and windowed slope in skin conductance (Ts). 
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Figure 4.3.  Student’s and teacher’s skin conductance (SC). 
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Figure 4.4. Euclidian distance between student and teacher’s windowed mean skin 

conductance (Eu), windowed variance in skin conductance (Evar) and windowed slope in 

skin conductance (Es). 
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Figure 4.5. Plots of the 5-second windowed variance, mean, and slope of the student’s 

skin conductance (SC).  Behavioral problems are overlaid in red. 
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CONCLUSIONS FROM STUDIES  

The findings presented here indicate that interpersonal physiological research has 

the potential to lead to significant insights in social psychology. As the presence or 

absence of PL may be informative, autonomic activities can be useful measures of any 

social interaction. Recent advances in telemetrics have enabled intensively sampled 

longitudinal data to be unobtrusively collected, making extensive research of 

interpersonal physiological processes possible in nearly any setting. 

Chapter 1 

Results from the first chapter show that PL is not dependent on dialog.  Similar 

findings have been observed in other dyads (e.g. mothers and infants; Feldman, 2012) 

and under different conditions (i.e., Ferrer & Helm, 2013), suggesting that proximity is 

sufficient for PL to develop. This implies that complex interactions are not necessary for 

social interactions to be observable in physiological processes.  Future work aimed at 

identifying the fundamental components of PL can therefore continue to study simple 

social encounters to reduce confounding variables.  

Chapter 2 

In the second chapter, results showed that stationarity, though problematic for 

most analyses, is not a consistent condition with all skin conductance data.  This prohibits 

the standard use of analyses that assume nonstationarity (e.g., cointegration). These 

results also point to the problem of the statistical constant required by most analyses.  The 

general assumption that a specific model is able to define a process may not hold with 

these complex data.  Social interactions are dynamic and unpredictable, and the 

physiological processes underlying them are inherently more complex. Statistical 
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modeling approaches may therefore be attempting to define a heterogeneous set of 

processes as a single, constant condition.  Taking this into account, future works have 

two potential options.  The first is to continue using defined models, but rather than 

attempting to fit them to data from arbitrary time periods, using procedures to determine 

when a process begins and ends, and testing whether a given model fits that defined 

period.  For example, the time series descriptive statistics presented in chapter four may 

be used to identify when a constant state begins and ends, followed by standard modeling 

procedures to statistically define those states.  Alternatively, algorithmic search 

procedures can be employed to test whether a predefined condition is present, and label a 

given section of data as an example of that definition.  For example, if a pattern of 

interest was defined (e.g., synchronized slopes of skin conductance of two people for 10 

seconds or more), an algorithm could be used to test whether that pattern occurred in the 

data.  Once a given pattern is located in the data, analyses could be run to assess the 

probability that other variables co-occur.  Such an approach could lead to the 

identification of more specific patterns, along with covarying variables.   

Chapter 3 

The systematic review of the literature presented in third chapter showed that 

there is significant variability in the methods, analyses, and terminology used in studies 

of interpersonal physiology.  Despite these circumstances, the field as a whole is moving 

toward more advanced analyses, and is beginning to generate convergent results.  Results 

indicate that PL can be identified across populations and conditions, making interpersonal 

physiological methods an important addition to any social research. 
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In addition, the identification of specific patterns, such as concordance and 

discordance, suggest that there are generalizable types of PL that can be quantitatively 

defined and explored. Though PL appears to be a heterogeneous set of complex and 

potentially randomly occurring states, there are likely to be specific interaction types that 

recur within and across dyads and groups.  

Chapter 4 

The fourth study returns to the problem of analyses, but this time addresses the 

inconsistent timescale at which these processes appear to emerge and devolve.  The 

method presented is a general technique designed to decompose multivariate time series 

data in the time domain.  The approach was applied to measures of skin conductance 

taken from a student with autism spectrum disorder and his teacher during classroom 

activities.  Though cross-correlations were not significant, plots suggested that periods of 

PL emerged.  These exploratory findings suggest that individuals with autism spectrum 

disorder may experience a degree of social engagement, despite apparent alexithymia. 

This study also indicates that physiological data can be collected in-vivo, and externally 

valid data can be generated and explored in challenging conditions. 

Implications 

Four important implications can be derived from the research to date.  First, PL 

does not appear to be dependent on a specific context or relationship type. This implies 

that conditions can be met for PL to occur between any dyad or group under a wide range 

of contexts. This extends the utility of these processes, as they may be indicators of 

consequential dynamics underlying all social encounters.  Second, there is a distinct 

typology of PL, with each definable pattern or set of patterns carrying unique 
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implications. By exploring the different ways in which people interact at the 

physiological level, we can significantly enhance our understanding of social 

relationships. Third, findings that relate PL to constructs such as empathy suggest that 

there is a concurrent experiential component.  Individuals may both recognize when they 

experience PL, and depend on it as a reference for interpersonal understanding. A 

component of intersubjectivity may therefore depend on mutual experience (i.e., PL), 

paired with accurate interoception.  Finally, there is evidence that some social strategies 

are dependent on PL.  Studies have shown that when a partner intends to influence the 

state of another, they first make a change in themselves (e.g., Ham et al., 2006; Muller et 

al., 2011).  These results imply that individuals intuitively adapt their own physiological 

processes as a driver of social interactions.  Such findings potentiate the utility of PL as a 

technique to improve therapeutic intervention (Adler, 2002), and as an end goal of 

treatment (Grove, 2006).  Additional research is required to determine whether 

individuals already employ such strategies, and whether adaptations to them are clinically 

beneficial.  However, should such techniques prove effective, they could lead to 

significant insights and advances in interpersonal understanding and influence. 

At this point, it is clear that interpersonal physiology is an important research area 

with significant potential to enhance the field of social psychology. However, this is an 

emerging area, in need of advancements in research methods and analysis.  Still, these are 

worthwhile endeavors with profound implications regarding the underlying nature of 

social behavior. 
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