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ABSTRACT

The research represented in this thesis pertains to applying digital control

to that of a Quadruple-Tank Process via implementation of State-Space theory.

Having arranged the tank apparatus into the desired configurations of both the

Coupled and Quadruple-Tank Processes, a mathematical model was applied that

properly represented each systems’ dynamics. From these dynamical equations

linearized state-space models were formed, which would be the basis for computer

aided control and simulation. Through software application of a linear state feed-

back tracking system both tank processes were able to be successfully controlled.

Complex control issues regarding plant saturation and integrator wind-up are ad-

dressed giving way to a more responsive system that is stable under a larger range

of unanticipated modeling errors. Analysis of the systems performance has shown

good results in both simulation and experimental application to the Quanser Lab

Tank Systems.



ACKNOWLEDGMENTS

This work would not have been possible without the continued support of my

major advisor, Professor Richard J. Vaccaro. His willingness to guide me in the

journey through my graduate studies has afforded me the opportunity to continue

learning at a higher level. The instruction he has supplied over the past two years

has answered many elusive questions. Through his teachings my perspective on

the aspects of control have become substantially more thorough, and for that I am

grateful.

I also wish to thank both of my committee chair members, Professor Musa

Jouaneh and Professor David Chelidze. Their comments have improved both the

level of understanding this thesis will bring to the outside reader and have shown

me what is entailed when presenting material at a professional level.

I look now to continue my education in industry, where I may institute the

teachings learned in academia toward real world problems.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Model Development and Auto-Calibration . . . . . . . . . . . . 4

2.1 Coupled Tank System Dynamics . . . . . . . . . . . . . . . . . . 4

2.1.1 Coupled Tank Linearization . . . . . . . . . . . . . . . . 4

2.2 Quadruple Tank System Dynamics . . . . . . . . . . . . . . . . 7

2.2.1 Quad Tank Linearization . . . . . . . . . . . . . . . . . . 8

2.3 Automatic Dynamic Calibration . . . . . . . . . . . . . . . . . . 10

2.3.1 Calculating α and β . . . . . . . . . . . . . . . . . . . . 12

3 Coupled-Tank Process Control . . . . . . . . . . . . . . . . . . . 19

3.1 Linear State-Feedback Tracking System . . . . . . . . . . . . . . 19

3.1.1 State-Space Tracking System Architecture . . . . . . . . 19

3.2 Integrator Wind-up . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Pump Saturation . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Tank Level Saturation . . . . . . . . . . . . . . . . . . . 26

iv



Page

v

3.3 Anti-Windup Scheme . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Application to Hardware - Simulink . . . . . . . . . . . . . . . . 31

4 Quadruple-Tank Process Control . . . . . . . . . . . . . . . . . . 38

4.1 Higher Order State Feedback Tracking System . . . . . . . . . . 38

4.1.1 Multi-Variable State-Space Tracking System Architecture 38

4.1.2 Closed-Loop Pole Placement . . . . . . . . . . . . . . . . 40

4.1.3 Robust Feedback Gain Calculation . . . . . . . . . . . . 42

4.2 QTP Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion and Recommendations . . . . . . . . . . . . . . . . . 48

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . 50

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



LIST OF TABLES

Table Page

1 Steady state tank fluid heights recorded at constant pump voltage 11

2 Steady state tank fluid heights recorded at constant pump volt-
age - 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Parameter Values for the Quanser Lab Quadruple Tank Process
- 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Steady state tank fluid heights recorded at constant pump volt-
age - 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Parameter Values for the Quanser Lab Quadruple Tank Process
- 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Steady state tank fluid heights recorded at constant pump volt-
age - 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Parameter Values for the Quanser Lab Quadruple Tank Process
- 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Roots of Normalized Bessel Polynomials 1st thru 6th Order Sys-
tems With 1-Second Settling Time [6] . . . . . . . . . . . . . . 22

9 Parameter Values for the Quanser Lab Quadruple Tank Process 40

vi



LIST OF FIGURES

Figure Page

1 Schematic of Quadruple Tank Process and Parameter Values.[1] 1

2 Sensor voltage of Tank 1 under constant inlet flow and no outlet
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Calibrated sensor voltage to reflect fluid height of Tank 1 under
constant inlet flow and no outlet flow. . . . . . . . . . . . . . . 14

4 The connection between the nonlinear plant and linear control
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 A tracking system for the linear plant model. . . . . . . . . . . 23

6 Tracking system applied to the nonlinear plant. . . . . . . . . . 23

7 Simulated tank heights without physical limits. . . . . . . . . . 28

8 Simulated plant input with no consideration for physical limits. 29

9 Plant input with physical limits and without xa updated. . . . . 30

10 Input to plant using L3 antiwindup gain CTP. . . . . . . . . . . 31

11 Block Diagram of Tracking System in Simulink for CTP. . . . . 32

12 Smart Integrator Function . . . . . . . . . . . . . . . . . . . . . 33

13 A comparison of commanded reference input to simulated fluid
height CTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

14 Simulated comparison of tank fluid heights CTP. . . . . . . . . 36

15 A comparison of commanded reference input to actual fluid
height CTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

16 Actual comparison of tank heights during experiment CTP. . . 37

17 Model perturbation in state feedback tracking system. . . . . . 42

vii



Figure Page

viii

18 A simulated comparison of commanded reference input to tank
fluid height QTP. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

19 Simulated tank fluid height responses QTP. . . . . . . . . . . . 46

20 Actual comparison of commanded reference input to tank fluid
height QTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

21 Actual tank fluid height responses QTP. . . . . . . . . . . . . . 47



CHAPTER 1

Introduction

The Quadruple-Tank Process is a system which involves an interconnection of

four fluid tanks. Each of these tanks has an orifice located in the bottom so that

fluid may drain by way of gravity. These orifices are removable and constructed

with various diameters allowing the system to have different sets of parameters.

In this arrangement the tanks are split into two vertical sets so that one tank is

positioned over another allowing fluid to drain from one tank to the second and

then finally to a basin for recycling. The fluid flow from two positive displacement

pumps is split between an upper tank and the opposing sets bottom tank as shown

in Figure 1 [1]. The main focus of this system is to mandate the height of fluid

in the bottom two tanks via a control system. This control system uses the tanks

current fluid height as input to make proper height adjustments by varying the

output of pump voltage, which imparts an inlet flow to the tanks.

Figure 1. Schematic of Quadruple Tank Process and Parameter Values.[1]
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Since its introduction in 1996 at the Lund Institute of Technology, Sweden the

Quadruple-Tank Process (QTP) has been influential in illustrating several aspects

of multi-variable control. Among these significant contributions is the systems

ability to demonstrate the effects that multi-variable zero locations can cause in

control design [2]. The traditional procedure for controlling the QTP has involved

the use of predictive control, also referred to as cascade control. This mode of

control is common because of its ability to actively adapt to both restrictions in

modeling and physical capabilities of a system.

In predictive control the measured output from a system is fed to a control

algorithm, which through a variety of methods attempts to predict the future state

of the system given its current trajectory. The controller then adjusts the systems

inputs in a manner to best satisfy the system approaching the desired state [3].

The desired result is a control system which responds faster than that of a standard

feedback loop. However, this system is predicated on the accuracy and efficiency

of the algorithm to predict the systems future state.

This current study seeks to employ digital state-space control on the QTP in

the form of a full state feedback tracking system. In doing so the non-linear dy-

namics of the plant system will be linearized about an equilibrium point allowing a

linear model to be introduced for analysis. Proper pole placement, gain calculation

and stability will then be considered in order to produce both a working simulation

in software as well as a working hardware model.

The hardware model used is constructed by Quanser Consulting and is com-

mercially available as an open platform experimental apparatus. It is supplied with

the necessary hardware items such as the pumps, amplifier, tanks and orifices to

design a variety of tank processes. Also supplied with the module is the software

drivers to interface between the control system and pressure sensors.
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Furthermore, the QTP is representative of a higher order multi-variable con-

trol problem whose characteristics are inherent in a wide array of other applica-

tions. Topics discussed in this research will have a far reaching scope beyond the

limits of this model. In order to facilitate a more complete understanding of the

fundamental factors at work, a simplification of the QTP is first examined. This

simplification being the Coupled-Tank System or CTP. This system shares similar

dynamics with the QTP, but the order of difficulty is reduced in the sense that

there are two tanks and only one pump to source a single inlet flow. The key

aspects discovered in the CTP are thus able to be carried over into the QTP.

Included in this study is the discussion of Integrator Windup, a scenario where

the integrator of the control system integrates the error function faster than the

system can respond, essentially commanding the system to act beyond its physical

means [4]. This is represented in the QTP system by the commanded pump output

voltage. The pump itself has a limited operating range and techniques have to

be implemented to avoid saturation. This condition of integrator windup is a

commonly misunderstood concept of control theory and yet it must be accounted

for in almost every controller that uses an integrator. Further understanding of

this phenomena and methods to counteract its effects are in high demand and thus

discussed in the following report.
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CHAPTER 2

Model Development and Auto-Calibration

2.1 Coupled Tank System Dynamics

The coupled tank apparatus can be described by a 2nd order non-linear state

space model. The state variables for this system are represented by the level of

liquid in each tank as follows:

x1 = liquid level upper tank 1 (2.1.1)

x2 = liquid level bottom tank 2

In order to accurately model the physical characteristics of the system a basic

mass rate balance is performed relating the rate of fluid both entering and exiting

each respective tank. This equates to the overall rate of tank fluid level change

represented by ẋ1 and ẋ2.

Change in Tank Fluid Height = Mass Rate In - Mass Rate Out

ẋ1 = β1u1 − α1

√
2gx1 (2.1.2)

ẋ2 = α1

√
2gx1 − α2

√
2gx2

Here g represents the acceleration due to gravity. β1 is the pump coefficient

and u is the input voltage to the pump. Both α1 and α2 represent the respective

tank orifice coefficients. Note that the model shows a nonlinear relation between

the height of liquid in the tank and the rate at which it empties.

2.1.1 Coupled Tank Linearization

In order to apply linear control theory to this nonlinear system the model must

first be linearized. This is accomplished by selecting an equilibrium point about
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which to linearize. A linear approximation such as this becomes less accurate the

further away from the equilibrium point the system goes. Considering that each

tank has a maximum height of 30 cm an equilibrium of 15 cm is chosen for tank

one to best minimize the severity of error at both extremes of the tank. The

equilibrium height for tank two can then be calculated.

xe =

[
xe(1)
xe(2)

]
=

[
15
xe(2)

]
. (2.1.3)

This constant equilibrium vector can then be plugged into the tank level rate

Equation 2.1.2 with u = ue, an unknown constant equilibrium pump voltage. With

the constant tank height mandated the rate of change of heights is zero.

0 = β1ue − α1

√
2gxe(1) (2.1.4)

0 = α1

√
2gxe(1)− α2

√
2gxe(2)

Rearranging terms of the first equation yields the equilibrium pump voltage, or

plant input:

ue =
α1

√
2gxe(1)

β1
(2.1.5)

A similar rearrangement of the second equation yields the equilibrium height of

tank two:

xe(2) =
α1

2xe(1)

α2
2

(2.1.6)

The linear control system implemented will control deviations of the plant state

variables from the selected equilibrium point. In order to obtain a linear state

space model for the deviations, let

x = xe + w, or x1 = xe(1) + w1 and x2 = xe(2) + w2 (2.1.7)

Here w is a vector of deviations from the equilibrium tank liquid levels. Similarly,

deviations in the pump voltage, or plant input, from its equilibrium value can be

5



modeled using a deviation term v.

u = ue + v (2.1.8)

Substituting these equations, which account for deviations from equilibrium, back

into the original state space model yields:

ẇ1 = β1(ue + v)− α1

√
2gx1 (2.1.9)

ẇ2 = α1

√
2gx1 − α2

√
2gx2

Using a Taylor series expansion of the square root functions in the previous equa-

tions, a linear approximation may be formed as follows:√
2gx1 ≈

√
2gxe(1) +

√
g

2xe(1)
w1 (2.1.10)

Thus substituting this approximation into the state space model yields:

ẇ1 = −α1

√
2gxe(1)− α1

√
g

2xe(1)
w1 + β1ue + β1v (2.1.11)

ẇ2 = α1

√
2gxe(1) + α1

√
g

2xe(1)
w1 − (α2

√
2gxe(2) + α2

√
g

2xe(2)
w2)

Using the steady state relations of Equation 2.1.4 the preceeding can be further

simplified to:

ẇ1 = −α1

√
g

2xe(1)
w1 + β1v (2.1.12)

ẇ2 = α1

√
g

2xe(1)
w1 − α2

√
g

2xe(2)
w2

The linearized state-space model that describes the deviations from the equilibrium

point is [
ẇ1

ẇ2

]
=

[
−λ1 0
λ1 −λ2

] [
w1

w2

]
+

[
β1
0

]
v

(2.1.13)

where

λ1 = α1

√
g

2xe(1)
, λ2 = α2

√
g

2xe(2)
(2.1.14)
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2.2 Quadruple Tank System Dynamics

As an expansion of the coupled tank the quadruple tank system is represented

by a 4th order nonlinear state space model. The state variables are thus expanded

to include:

x1 = liquid level tank 1

x2 = liquid level tank 2

x3 = liquid level tank 3

x4 = liquid level tank 4

Performing a similar mass rate balance as was done on the coupled tank for the

quadruple tank system reveals a nonlinear state space model as follows.

ẋ1 = β1u1 − α1

√
2gx1 + α3

√
2gx3

ẋ2 = β2u2 − α2

√
2gx2 + α4

√
2gx4 (2.2.1)

ẋ3 = β3u2 − α3

√
2gx3

ẋ4 = β4u1 − α4

√
2gx4

Here u1 and u2 represent two inputs to the system as voltages applied to pump

one and pump two respectively. α and β values represent the orifice and pump

coefficients for each tank. As before, this system has a non-linearity with regard

to each tank emptying proportional to the square root of tank level height.

7



2.2.1 Quad Tank Linearization

The solution is then to choose an equilibrium point using a fixed input ue to

obtain a constant state vector xe.

xe =


xe(1)
xe(2)
xe(3)
xe(4)

 , ue =

[
ue1
ue2

]
(2.2.2)

Inputing these equilibrium values into the state space model and assuming a

steady state condition yields

0 = β1ue1 + α3

√
2gxe(3)− α1

√
2gxe(1)

0 = β2ue2 + α4

√
2gxe(4)− α2

√
2gxe(2) (2.2.3)

0 = β3ue2 − α3

√
2gxe(3)

0 = β4ue1 − α4

√
2gxe(4)

The elements of the constant state vector may now be solved through simple al-

gebraic manipulation and substitution. These efforts together reveal the elements

to be of the form:

xe(1) =
1

2g
(
β1ue1 + β3ue2

α1

)2

xe(2) =
1

2g
(
β2ue2 + β4ue1

α2

)2 (2.2.4)

xe(3) =
1

2g
(
β3ue2
α3

)2

xe(4) =
1

2g
(
β4ue1
α4

)2

Having found the equilibrium point around which to linearize, a linear state space

model can now be constructed, which approximately describes the deviations of

the state variables and inputs from the equilibrium. Once again this is performed

by equating the actual state vector x to that of the equilibrium state vector xe

8



plus some vector of deviations w.

x(t) = xe + w(t)

The plant input vector u can also be described in this manner as the sum of

equilibrium plant input vector ue and deviations vector v.

u(t) = ue + v(t)

Substituting these terms into the non-linear state space returns the following.

ẇ1 = β1(ue1 + v1)− α1

√
2gx1 + α3

√
2gx3

ẇ2 = β2(ue2 + v2)− α2

√
2gx2 + α4

√
2gx4 (2.2.5)

ẇ3 = β3(ue2 + v2)− α3

√
2gx3

ẇ4 = β4(ue1 + v1)− α4

√
2gx4

Linear approximations for the powered terms can be found using the first

order expansion of the Taylor series as follows.

f(x) = (2gx)1/2 ≈
√

2gxe +

√
g

2xe
(x− xe)

or√
2gxe +

√
g

2xe
w

Substituting these linear approximations back into the previously solved model

with deviations from equilibrium yields

ẇ1 = β1ue1 + β1v1 + α3

√
2gxe(3) + α3

√
g

2xe(3)
w3 − α1

√
2gxe(1)− α1

√
g

2xe(1)
w1

ẇ2 = β2ue2 + β2v2 + α4

√
2gxe(4) + α4

√
g

2xe(4)
w4 − α2

√
2gxe(2)− α2

√
g

2xe(2)
w2

ẇ3 = β3ue2 + β3v2 − α3

√
2gxe(3)− α3

√
g

2xe(3)
w3 (2.2.6)

ẇ4 = β4ue1 + β4v1 − α4

√
2gxe(4)− α4

√
g

2xe(4)
w4

9



Referencing back to the elements of constant state vector xe in Equation 2.2.3,

it can be shown that these equilibrium relations simplify the above deviatoric

equations to the following:

ẇ1 = β1v1 + α3

√
g

2xe(3)
w3 − α1

√
g

2xe(1)
w1

= −λ1w1 + λ3w3 + β1v1

ẇ2 = β2v2 + α4

√
g

2xe(4)
w4 − α2

√
g

2xe(2)
w2

= −λ2w2 + λ4w4 + β2v2

ẇ3 = β3v2 − α3

√
g

2xe(3)
w3 (2.2.7)

= −λ3w3 + β3v2

ẇ4 = β4v1 − α4

√
g

2xe(4)
w4

= −λ4w4 + β4v1

where

λ1 = α1

√
g

2xe(1)
, λ2 = α2

√
g

2xe(2)
, λ3 = α3

√
g

2xe(3)
, λ4 = α4

√
g

2xe(4)

From these simplified equations a linear state space model may be formed.

This model will be the basis for the control of the Quadruple Tank.

ẇ =


−λ1 0 λ3 0

0 −λ2 0 λ4
0 0 −λ3 0
0 0 0 −λ4

w +


β1 0
0 β2
0 β3
β4 0

 v (2.2.8)

2.3 Automatic Dynamic Calibration

Due to uncontrollable variables such as barometric pressure and other envi-

ronmental influences the sensors used in this system require calibration in order to

10



supply accurate information to the control system. This calibration is performed

in a dynamic nature in order to best simulate the real world use of the sensor. It

is known that the sensor responds to water pressure in a linear manner i.e. the

voltage signal sent from the sensor is linearly proportional to the height of water

acting on the sensor. The pressure sensors signal voltage thus follows the form:

x = g ∗ SensorV oltage+ b (2.3.1)

Here the variable x correlates to the height of water in the respective tank where

the variables g and b represent the gain and offset of the pressure sensor signal

voltage. By experimentally calculating these values the pressure sensors of the

system can be effectively zeroed yielding a much more accurate measurement of

the system to be fed to the control law.

The dynamic calculation of these values is performed by commanding a fixed

voltage to the pump, which in turn supplies a fixed volumetric rate of water to

both tanks. After an arbitrarily long time the height in both tanks reach their

steady state values. This value along with the pressure sensor voltage is recorded

and the experiment is repeated with a new fixed pump voltage. Table 1 supplied

below demonstrates the trend of data taken when the Quanser Consulting medium

diameter orifices are inserted in both the upper and lower tanks of the CTP.

Pump Voltage (V) Time to SS (s) Height 1 Sensor 1 Height 2 Sensor 2
4 125 3.5cm 0.5864 V 3.25cm 0.2892 V
5 250 7.5cm 1.3422 V 7.25cm 1.0359 V
6 375 12.25cm 2.2396 V 12cm 1.9148 V
7 500 17.75cm 3.2051 V 17.75cm 2.8947 V

Table 1. Steady state tank fluid heights recorded at constant pump voltage

These four data points are then folded back into the linear equation solving
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for g and b with a least squares method:
x1
x2
x3
x4

 =


v1 1
v2 1
v3 1
v4 1

[ gb
]

For an arbitrary matrix A: [A]L = (ATA)−1AT
v1 1
v2 1
v3 1
v4 1


L 

x1
x2
x3
x4

 =

[
g
b

]

Inputting the experimental values found in Table 1 into this linear relation reveals

gain and offset values for pressure sensors 1 and 2 as follows:
0.5864 1
1.3422 1
2.2396 1
3.2051 1


L 

3.5
7.5

12.25
17.75

 =

[
g1 = 5.4310
b1 = 0.2391

]
(2.3.2)


0.2892 1
1.0359 1
1.9148 1
2.8947 1


L 

3.25
7.25
12

17.75

 =

[
g2 = 5.5558
b2 = 1.5420

]
(2.3.3)

These values can then be put back into the control system to properly scale the

sensor voltage to tank height.

2.3.1 Calculating α and β

As previously discussed the governing equations that represent the dynamics

of the Coupled Tank System are as follows:

ẋ1 = −α1

√
2gx1 + βu

ẋ2 = α1

√
2gx2 − α2

√
2gx2

When constant pump voltage ū1 is supplied to the apparatus the height in

Tank 1 and Tank 2 reach Steady State values x̄1 and x̄2. The resulting dynamics

12



then follow:

0 = −α1

√
2gx̄1 + βū1

0 = α1

√
2gx̄2 − α2

√
2gx̄2

In order to solve for the orifice coefficients α1 and α2 the pump coefficient β

must first be found through a separate analysis. Blocking the orifice at the bottom

of Tank 1 limits the dynamics to a single equation with only one unknown. This

equation relates the input voltage and pump volumetric coefficient linearly to the

change in tank fluid height.

ẋ1 = βū1

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (s)

P
re

ss
ur

e 
S

en
so

r 
V

ol
ta

ge
 (

V
)

Pressure Sensor Output − Constant Pump Voltage (tested at 11 volts) 

Figure 2. Sensor voltage of Tank 1 under constant inlet flow and no outlet flow.

By blocking the orifice of Tank 1 and applying a known fixed voltage to the

pump, data from the pressure sensor can now be collected as shown in Figure 2.

It is important to note that this voltage sensor data must first be scaled by the
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gain and offset calculated previously in order for an accurate β calculation to be

made. Performing this experiment at a constant voltage of 11 volts yields the linear

data found in both Figure 2 and 3. Notice that due to the delay and turbulence

experienced in the initial filling of the tank the first 3 seconds of data are stricken

from this calculation. This cutoff represented in Figure 2 by the vertical line.

Applying a linear fit to the cropped and calibrated data in Figure 3 reveals ẋ,

which can then be divided by the constant voltage ū1, or 11 volts, to solve for β.
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Figure 3. Calibrated sensor voltage to reflect fluid height of Tank 1 under constant
inlet flow and no outlet flow.

Applying this methodology to the calibrated sensor data in Figure 3 yields a

value of:

β = 0.24813

Calculation of α1 and α2 incorporates the data taken from Table 1 also used

to calculate g and b earlier for sensor calibration. However this time the relation-
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ship between the pump voltage and resulting steady state height in the tanks is

important. Re-writing the steady state equations of 2.1.4 reveals:

α1

√
2gx̄1 = βū1

α1

√
2gx̄1 − α2

√
2gx̄2 = 0

These steady state equations can be formulated into a linear system as follows

utilizing each of the four recorded data points.

c1 0
c1 −c3
c1 0
c1 −c3
c1 0
c1 −c3
c1 0
c1 −c3


[
α1

α2

]
= β



c2
0
c2
0
c2
0
c2
0


where

c1 =
√

2gx̄1

c2 = ū1

c3 =
√

2gx̄2

Solving for α1 and α2:

c1 0
c1 −c3
c1 0
c1 −c3
c1 0
c1 −c3
c1 0
c1 −c3



L

β



c2
0
c2
0
c2
0
c2
0


=



82.867 0
82.867 −79.853
121.31 0
121.31 −119.27
155.03 0
155.03 −153.44
186.62 0
186.62 −186.62



L

0.24813



4
0
5
0
6
0
7
0


=

[
α1

α2

]

[
α1

α2

]
=

[
0.0097909
0.0098811

]
Here the resulting values were: α1 = 0.0097909 and α2 = 0.0098811
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Because of the structure of this dynamic calibration there exists a deviance

of parameters each time they are calculated. As mentioned the pressure sensors

are susceptible to deviation depending on ambient pressure on any given day. Also

the pump’s volumetric output β can vary slightly given changes in water viscosity,

condition of seals and temperature. For these reasons the assumed constant α

values will also change simply because of the manner in which they are calculated.

Quanser Consulting issues constant values for the supplied orifices, but given the

nature of the system the newly calibrated and calculated parameters yield good

results when used together. The tables below demonstrate the deviation experi-

enced during calibration over an arbitrarily long length of time. The tables are

grouped by raw experimental and the parameters that were calculated as a result.

Pump Voltage (V) Time to SS (s) Height 1 Sensor 1 Height 2 Sensor 2
4 125 3.75cm 0.8044 V 3.5cm 0.1262 V
5 250 7.75cm 1.5890 V 7.5cm 0.9060 V
6 375 12cm 2.4885 V 11.75cm 1.7185 V
7 500 17cm 3.5150 V 17cm 2.6663 V

Table 2. Steady state tank fluid heights recorded at constant pump voltage - 1

Parameter Value
α1 0.0092892
α2 0.0093759
β 0.2337
g1 4.8693
b1 −0.0968
g2 5.3110
b2 2.7415

Table 3. Parameter Values for the Quanser Lab Quadruple Tank Process - 1

16



Pump Voltage (V) Time to SS (s) Height 1 Sensor 1 Height 2 Sensor 2
4 125 3.75cm 0.6851 V 3.25cm 0.3134 V
5 250 7.5cm 1.4334 V 7cm 0.9491 V
6 375 11.5cm 2.2809 V 11cm 1.7293 V
7 500 16.75cm 3.2831 V 16.75cm 2.7400 V

Table 4. Steady state tank fluid heights recorded at constant pump voltage - 2

Parameter Value
α1 0.0098486
α2 0.0099109
β 0.2457
g1 5.2342
b1 −0.1155
g2 5.6023
b2 1.7846

Table 5. Parameter Values for the Quanser Lab Quadruple Tank Process - 2

Pump Voltage (V) Time to SS (s) Height 1 Sensor 1 Height 2 Sensor 2
4 125 3.25cm 0.5565 V 3cm 0.0143 V
5 250 7cm 1.3023 V 6.75cm 0.7464 V
6 375 11.5cm 2.1669 V 11cm 1.5634 V
7 500 16.5cm 3.0661 V 16.5cm 2.4875 V

Table 6. Steady state tank fluid heights recorded at constant pump voltage - 3

Parameter Value
α1 0.0099184
α2 0.0099811
β 0.2474
g1 5.5177
b1 −0.0935
g2 5.6784
b2 2.8914

Table 7. Parameter Values for the Quanser Lab Quadruple Tank Process - 3

Though not shown here the α and β values are calculated in a similar manner

for the QTP. That is all tanks with an inlet flow have their orifices blocked in order
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to calculate their respective β. The gain, offset and α values are then collected by

examining the steady state heights as done with the CTP. Essentially the equations

used in the CTP are extended to encompass the QTP.
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CHAPTER 3

Coupled-Tank Process Control

3.1 Linear State-Feedback Tracking System

In order to mandate the fluid level in the bottom tank of the coupled-tank

apparatus a control method must first be determined. Since all state variables, or

tank fluid heights, are directly measured via pressure sensors full state-feedback

may be implemented using the linearized dynamics of the system. Because the

bottom tank fluid level will be a mandated series of step commands a tracking

based system is selected. In such systems a reference input is supplied to the

control algorithm and the output of the system is required to be equal, or close to

the value of the reference input. This follows the concept that once the reference

or commanded height of the bottom tank is designated the control algorithm will

track the system until the output reaches that of the reference value.

As previously stated in Chapter 2 the dynamics of the system have been

linearized around an equilibrium point so that a linear control scheme may be

applied. Considering the fact that these equilibrium values are known the tracking

system is then best suited to track the specified heights as they relate to the

determined equilibrium. This is to say that the control system will track deviations

from the equilibrium values.

3.1.1 State-Space Tracking System Architecture

A standard state-space tracking design may be created for the coupled tank

system as introduced in [5]. An nth order linear, single input, single output plant

has a state space model:

19



ẋ(t) = Ax(t) + bu(t) (3.1.1)

y(t) = cx(t)

Because the coupled tank process is controlled in discrete time the plant dy-

namics must be mapped into the z-plane using a zero order hold equivalent model.

A zero order hold, or ZOH, model digitally represents an analog system with D/A

and A/D converters operating with a sampling interval of T seconds. The equiva-

lent model is produced through the following transformation of the plant:

Φ = eAT (3.1.2)

Γ =

∫ T

0

eAτ dτ

For a sampling interval of T seconds the plant model then becomes:

x[k + 1] = Φx[k] + Γu[k] (3.1.3)

y[k] = cx[k]

where

x[k] = x(kT ), y[k] = y(kT )

and

u[k] = u(t), kT ≤ t ≤ (k + 1)T

Additional dynamics must be introduced to this model in order to obtain a

design where y[k] tracks the reference input r[k] with zero steady-state error. When

cascaded with the plant dynamics these additional dynamics form an augmented
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design plant that allows exact tracking to a specified zero-input trajectory [6].

Essentially from these additional dynamics a regulator is able to be formed that

instead of attenuating to zero allows the plant output to attain mandated levels.

The additional dynamics are represented by:

xa[k + 1] = Φaxa[k] + Γau[k] (3.1.4)

ya[k] = cxa[k]

Here Φa includes the poles of the z transform of r[k]. For step-input tracking

this is a pole at z = 1; that is, a digital integrator. The cascade architecture of the

additional and plant dynamics may be seen in Figure 5. This cascade structure

forms a design model that will be used to calculate the 1× n state-feedback gain

vector L1 and the integrator gain L2. The design model is given by:

Φd =

[
Φ 0

Γac Φa

]
,Γd =

[
Γ
0

]
(3.1.5)

Since the coupled tank system is representative of a SISO (Single Input Single

Output) system a desired set of n + 1 closed loop poles may be selected to calculate

the gain vector Ld using Matlab’s place command. In standard fashion closed loop

poles are chosen to be the roots of a n+1-order normalized Bessel polynomial,

as shown in Table 8, scaled to the desired settling time, Ts. A settling time of

20 seconds is chosen for the CTP and the resulting calculation for its third-order

design model takes the form:

eig(Φd − ΓdLd) = eT∗s3/Ts (3.1.6)

L1 consists of the first 2 elements of Ld, while the remaining element is the L2

gain.
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Variable Pole Locations
s1 −4.6200
s2 −4.0530,±j2.3400
s3 −5.0093,−3.9668± j3.7845
s4 −4.0156,±j5.0723,−5.5281± j1.6553
s5 −6.4480,−4.1104± j6.3142,−5.9268± j3.0813
s6 −4.2169± j7.5300,−6.2613± j4.4018,−7.1205± 1.4540

Table 8. Roots of Normalized Bessel Polynomials 1st thru 6th Order Systems With
1-Second Settling Time [6]

The interconnection of the established linear control system and the nonlinear

plant is shown in Figure 4 below. The system is nonlinear, but the system from v

to w is approximated by the linear system defined by Equation 2.1.13.

Figure 4. The connection between the nonlinear plant and linear control algorithm.

Here the equilibrium state vector xe is subtracted from the measured state

vector to yield w, the vector of state variable deviations, and the equilibrium plant

input ue is added to the output v. The resulting combination is a linear control

algorithm which governs the plants deviations from equilibrium.
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Figure 5. A tracking system for the linear plant model.

This basic loop outlined in Figure 5 shows the cascade structure of the linear

plant with the additional dynamics needed for this problem. The reference input

r[k] specifies the deviation of the liquid level in tank 2 from the value used to

linearize the model. In order to apply this algorithm to the nonlinear plant the

actual state variables must be converted to deviations from equilibrium as in Figure

4. Likewise the plant input v must be converted from a deviation term to the

actual total value of pump voltage by adding ue prior to being processed through

the plant. Thus the complete tracking system follows Figure 6:

Figure 6. Tracking system applied to the nonlinear plant.

From Figure 6 it can be shown that the input to the plant is represented by:

u[t] = ue + L2xa[t]− L1w[t] (3.1.7)

Here ue represents the pump voltage associated with the equilibrium height in the
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tanks, xa is the state variable of the additional dynamics and w[t] is the deviation

of the state variables from equilibrium. Further examination of the control loop

reveals that the initial value of the plant input is:

u[0] = ue + L2xa[0]− L1w[0] (3.1.8)

Because both tanks are empty at the onset of system initiation w[0] = −xe

u[0] = ue + L2xa[0] + L1xe (3.1.9)

Setting the initial plant input to zero and solving for the state variable of the

additional dynamics ensures a smooth startup value for the plant input.

xa[0] = −(ue + L1xe) ∗ L−12 (3.1.10)

3.2 Integrator Wind-up

As with any system there are limitations in its ability to respond to the de-

mands of an applied command signal. In the case of the coupled-tank process the

goal of the controller is to adjust the liquid height in the bottom tank by pump-

ing fluid into the upper tank via supplying a range of voltages to the pump. To

properly control this system the concept of Integrator Wind-up must be addressed.

The integrator is responsible for minimizing the set value error. The condition

of integrator wind-up occurs when a system experiences a large change in set-point.

The system is called to respond faster than its natural capacitance will allow

resulting in large accumulation of error by the integrator [4]. This error grows

large enough that even after the system has obtained its set value the integrator’s

momentum forces the system past the set-point. At this time error occurs in the

opposite direction and the integrator finally begins to unwind. The overall result

is an overshoot type scenario, which is an undesirable characteristic in matters of

control.
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The coupled-tank process demands set-points in discrete time and thus two

physical limitations of the system become immediately apparent. The first of which

deals with the range of voltage that the pump is able to accommodate. The second

pertains to the maximum amount of liquid the tanks, specifically the upper tank

is able to hold.

3.2.1 Pump Saturation

The Quanser Coupled-Tank system is supplied with a single electric powered

pump whose power amplifier operates on a range of 0 to 22 volts. This voltage

range sets a limit on the control systems ability to control the level of liquid in

the lower tank. At one extreme the tracking system could command an input

pump voltage higher than 22 volts in its attempt to mandate tank level under the

specified settling time. This scenario commonly appears when a rapid increase in

tank fluid height is required. A good technique to combat this problem is to set a

threshold, from here on referred to as Umax, on the total input voltage u[t] to the

plant. This solution is not without its own faults as will be discussed in Section

3.3.

At the other extreme the tracking system could command a negative input

value below that of 0 volts. This circumstance could occur if a drastic drop in

tank fluid height is required. The tracking system would be attempting to feed a

negative input value to the plant in the hopes of causing a vacuum to remove liquid

at a faster rate than that of gravity alone. This of course is beyond the capabilities

of the physical system. As such a second threshold must be implemented to limit

all negative commanded values of u[t] to a constant value of 0.
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3.2.2 Tank Level Saturation

The second major limitation on the Coupled-Tank system presents itself in the

upper tank’s fluid capacity. The arrangement of the Quanser Two Tank Module

is such that both the upper and lower tanks have an identical volume with orifices

located at the bottom of each tank to facilitate as drains. These orifices are able

to be adjusted in diameter allowing for increased and decreased draining for each

tank, respectively. When a drastic increase in fluid height is commanded in the

bottom tank a rapid inflow of fluid is introduced to the upper tank. Because the

flow into the tank can be much greater than the flow out, due to orifice size, a

scenario can occur where the tracking system commands a higher height in the

upper tank than is physically possible. This is referred to as tank level saturation.

While the tracking system is merely performing its best to track the second

tank height the physical system has reached its peak. As before with the saturation

of the pump the solution to this problem relies on setting a constant value for the

input to the plant, when the upper tank is commanded beyond its maximum value.

This constant value, named Ussmax, is the pump voltage at which the upper tank

obtains a steady state height that coincides with the maximum height allowed in

the tank. This value can be calculated provided the α coefficient of the orifice and

β coefficient of the pump are known. Referencing the first line of Equation 2.1.4:

0 = β1ue − α1

√
2gxe(1)

This equation describes the equilibrium upper tank height at steady state. Mod-

ifying the equation for the maximum allowable tank height, xmax(1) instead of

equilibrium height alters the equation as follows:

0 = β1Ussmax − α1

√
2gxmax(1) (3.2.1)
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Solving for Ussmax yields:

Ussmax =
α1

√
2gxmax(1)

β1
(3.2.2)

It is important to note that xmax(1) must be slightly less than the physical max-

imum tank height of the CTP. This is due to the loop implemented in the smart

integrator. Performing this step avoids an infinite loop.

3.3 Anti-Windup Scheme

As speculated in Section 3.2.2 the method used for limiting the saturation

of the input u[t] is not without flaw. While this technique does address the case

where the pump has been commanded beyond its maximum range it does not

consider the previous portion of control which mandated the command. For this

case an anti-windup scheme must be implemented. Here anti-windup refers to any

measures taken to provide local feedback that make the controller stable alone

when the main loop is opened by signal saturation [7]. Specifically this pertains

to the xa state variable of the additional dynamics. Under normal situations, i.e.

those without saturation, the xa variable is updated through the feedback loop

specifying the change in deviation from equilibrium. The controller then looks at

this updated state variable and adjusts the input voltage u[t] accordingly to force

the continued tracking of the system.

With the previous threshold scheme the normal order is disrupted by simply

mandating the input to be a constant. The xa state variable must then be properly

updated to reflect the desired change in the control system. Standard calculation

of xa would involve the previous iteration of the state variable, xaold summed

with the current total deviation from equilibrium signal e. Because the problem

encountered is an overwhelming demand for higher input, the best solution is

to adjust xa in a manner that will bring the controller back into the acceptable

range faster than would happen naturally. This is achieved by first calculating

27



the difference from the commanded input voltage and that set by the saturation

threshold. The difference of these values is then scaled by an experimentally found

L3 gain [7]. Subtracting this product from the value of xaold yields the updated

state variable xa.
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Figure 7. Simulated tank heights without physical limits.
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Figure 8. Simulated plant input with no consideration for physical limits.

As a starting point a simulation is performed using the same parameters calcu-

lated in Chapter 2. In this simulation the bottom tank received a series of desired

height step commands starting from empty and in series from 12cm to 20cm to

16cm at 45 second intervals respectively. This simulation uses the standard inte-

grator where the xa variable is updated with the error signal e and operates as if

no physical limitations exist. The system tracks the Tank 2 height exceptionally

well as seen in Figure 7. However this figure also demonstrates the concept dis-

cussed in Section 3.2.2, regarding tank saturation. The control system commands

the upper tank to obtain a 30 cm level when the accepted safe limit is physically

28 cm. The accompanying Figure 8 showcases the plant input or pump voltage

commanded during the same simulation. As mentioned in Section 3.2.1 the maxi-

mum allowable pump voltage is 22 volts, whose limit is exceeded twice during this

simulation.
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Figure 9. Plant input with physical limits and without xa updated.

A first attempt at remedying the saturations observed in simulation would

be to simply add limits to the integrator in order to bring the simulation closer

to the real system. Setting constant values for the pump voltage does not fully

address the situation as the additional dynamics must be dealt with. Figure 9

demonstrates the behavior of the plant input when the xa variable is not updated

in times of saturation and simply recycles the previous xa value. Notice the plant

input’s initial ramp up to fill the completely empty tank. The commanded pump

voltage exceeds the 22 volt threshold and a oscillation of signal is experienced,

which continues until the tank obtains the desired 12cm height and the commanded

input falls well below the threshold. At 45 seconds the second change in set-point

occurs once again resulting in a full pump value condition. This time however

the condition is short lived as the upper tank begins to saturate and the Smart

Integrator implements its Ussmax threshold, seen here at approximately 8 volts.

In comparison Figure 10 demonstrates the effectiveness of the L3 gain technique

30



when all other parameters are kept constant. This figure was taken from the same

experiment used to produce Figure 15 and 16 at the end of this chapter.
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Figure 10. Input to plant using L3 antiwindup gain CTP.

3.4 Application to Hardware - Simulink

The overall application of the previously mentioned control scheme for the

CTP is outlined below in Figure 11. The tracking system described by this block

diagram was constructed using a companion package to Matlab, referred to as

Simulink. This program allows predetermined values and equations that are setup

in standard Matlab syntax to be pictorially represented as a feedback diagram.

As a result once the overall control algorithm has the correctly calculated gains

Simulink has the provisions to allow review of the systems performance via sim-

ulation. More importantly the tracking system produced by this diagram can be

compiled by Simulink into C+ programming language and externally downloaded

onto the desired hardware.
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Figure 11. Block Diagram of Tracking System in Simulink for CTP.

Notice here the initial step command inputs which dictate the desired tank

fluid heights at specified time intervals. The step commands are first brought to

a summation junction where the deviation from the lower tank equilibrium height

is found. This value is the error signal from equilibrium or e which becomes

multiplexed with portions of the feedback loop prior to being input to the Smart

Integrator.

The Smart Integrator function box in this diagram represents the implemen-

tation of control law Equation 3.1.7. As previously discussed in this chapter there

exist certain cases where the use of 3.1.7 has to be modified in order to account

for pump and tank saturation. The tactics used in this function block help the

integrator of the controller minimize its accumulation of error and therefore limit

any overshoot behavior. The application of this method in Simulink is as follows:
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Figure 12. Smart Integrator Function

The output of each case is the determined change in pump voltage u1 and the

updated additional dynamics state variable xa. Notice here that xa is held from

each prior iteration through the integrator, renamed xaold, to be used in calculation

of the next additional dynamics state variable. The change in voltage u1 is summed

with the equilibrium voltage and fed to the hardware plant. From here the system

reacts and pressure sensor voltages are pulled from the hardware plant in order to

update the x1 and x2 state variables. The deviation from equilibrium tank height

is then recalculated and looped back to adjust both the difference from the desired

step command and the integrator’s next iterative response.

A demonstration of the results of this chapter are represented here via sim-

ulation and experimentally. The parameters which outline the Quanser Coupled

Tank Process are listed below.
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ẋ = Ax + bu

y = cx

where

A =

[
−0.055988 0
0.055988 −0.057025

]
, b =

[
0.24813

0

]
, c =

[
0 1

]
With a sampling interval of T = 0.1s.

Φ =

[
0.99442 0

0.0055673 0.99431

]
,Γ =

[
0.024744

0.000069201

]
,Φa = 1,Γa = 1

A selected settling time of Ts =20 seconds results in the following poles, pi:

pi = spoles = s3/Ts = [−0.19834± 0.18922i 0.25047]

Mapping the poles with the ZOH formula yields:

zpoles = epi∗T = [0.98019± 0.01855i 0.97526]

Supplied with the aforementioned data Matlab’s place returned the following gains:

Ld = [2.1179 9.9757 0.13191]

L1 = [2.1179 9.9757], L2 = [0.13191]

Gain and phase margins were as follows for this design model:

Upper Gain Margin = 30.1dB

Lower Gain Margin = −30.1dB

Phase Margin = 67degrees

Results were gathered using the following step commands over a total of 140 sec-

onds.
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r(t) = 12, 0 ≤ t < 45s

20, 45 ≤ t < 90s

16, 90 ≤ t < 140s

Simulation Results

0 20 40 60 80 100 120 140
0

5

10

15

20

25

Time (s)

T
an

k 
F

lu
id

 H
ei

gh
t (

cm
)

Reference Value vs Simulated Bottom Tank 2 Height

 

 
Simulated
Reference

Figure 13. A comparison of commanded reference input to simulated fluid height
CTP.
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Figure 14. Simulated comparison of tank fluid heights CTP.
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Figure 15. A comparison of commanded reference input to actual fluid height CTP.
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Figure 16. Actual comparison of tank heights during experiment CTP.
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CHAPTER 4

Quadruple-Tank Process Control

4.1 Higher Order State Feedback Tracking System

As introduced in the coupled tank process a linear state feedback tracking

system provides the desired level of control needed to effectively command tank

fluid height. The same basic architecture can be transplanted into the quadru-

ple tank process with provisions to accommodate the higher order of the system.

The quadruple tank process is representative of a Multiple-Input, Multiple-Output

(MIMO) system and therefore has a level of complexity not found in the CTP. The

defining difference here lies with the fact that in a multi-variable system there exist

an infinite number of different feedback matrices L that yield a given set of closed-

loop pole locations [6]. In contrast a SISO system has a unique L gain vector

associated with a given set of closed loop pole locations. In multi-variable prob-

lems it is therefore necessary to consider the robustness of the control system with

the selected L feedback gain matrices to ensure stability when inevitable model

errors are present.

4.1.1 Multi-Variable State-Space Tracking System Architecture

Because the linear tracking system architecture described in Chapter 3 remains

valid for the QTP, the zero-order hold equivalent model introduced in Equation

3.1.3 is also valid. Represented here in discrete time as:

x[k + 1] = Φx[k] + Γu[k] (4.1.1)

y[k] = Cx[k]

This equation holds true with the understanding that it follows the order of the

system, n, where the QTP is of the 4th order. This means that the matrices Φ
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and Γ will increase rank respectively to the linearized state space model described

in Equation 2.2.8.

For a multi-variable system the additional dynamics must be applied to each

of the system’s outputs. With each output the additional dynamics are replicated

into a parallel system. The QTP has two outputs that are represented by the

two bottom tanks and requires a two times replication. Therefore the additional

dynamics used for the Coupled -Tank

Φa = 1, Γa = 1,

are replicated for two outputs to obtain,

Φ̄ =

[
1 0
0 1

]
, Γ̄ =

[
1 0
0 1

]
. (4.1.2)

The replicated additional dynamics Φ̄ and Γ̄ form a similar relation to Equa-

tion 3.1.4 given by:

xa[k + 1] = Φ̄xa[k] + Γ̄u[k] (4.1.3)

ya[k] = Cxa[k]

Following the tracking system laid out in Chapter 3, when the replicated

additional dynamics of Equation 4.1.3 are cascaded with the ZOH model of the

plant, described in Equation 4.1.1, the result is a design model for the overall

system.

Φd =

[
Φ 0

Γ̄aC Φ̄a

]
,Γd =

[
Γ
0

]
(4.1.4)

where
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xd[k] =

[
x[k]
xa[k]

]
(4.1.5)

This design model allows calculation of the feedback gain matrix L which has

n+ 2 columns, where n = 4 for the QTP. The matrix L is partitioned into the first

4 and last 2 columns to obtain feedback gain matrices L1 and L2.

Parameter Value
α1 0.010949
α2 0.012142
α3 0.0040214
α4 0.0053157
β1 0.21009
β2 0.23525
β3 0.079938
β4 0.088820
g 981

Table 9. Parameter Values for the Quanser Lab Quadruple Tank Process

4.1.2 Closed-Loop Pole Placement

The QTP system with the additional integrator dynamics is a 6th-order sys-

tem, and care must be taken when choosing the closed-loop pole locations. Closed

loop pole locations must be chosen under certain guidelines as to encourage the

best output of performance. These guidelines are published in [8] and demonstrate

a solid basis for choosing the pole locations of any standard system. For a tracking

system these rules recommend normalized Bessel poles, shown in Table 8, scaled

by the settling time as an initial foundation. However rather than using Bessel

poles for all pole locations the stated rules suggest examining the natural poles

and zeros of the plant to see if they merit use as closed loop poles. The analog

plant poles of the QTP system used in the simulation at the end of this Chapter

are as follows:
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[−0.06758 − 0.07438 − 0.03308 − 0.05201] (4.1.6)

In order to be selected as a closed loop pole the plant poles must be sufficiently

damped in nature, that is they must have a real part which lies to the left of a first

order Bessel pole divided by the desired settling time. The desired settling time

for this QTP system is Ts = 25s. Therefore, sufficiently damped plant poles are

those that lie to the left of s1/Ts = −0.1848. Under these given constraints none

of the analog plant poles are a valid choice as closed loop pole locations.

The second applicable guideline for a tracking system recommends the se-

lection of ”slow”, stable zeros of the plant for use as closed loop poles. The

criteria for such zeros is that their real part be negative and lie to the right of

4 ∗ s1/Ts = −0.7392. Zeros of the plant were calculated to be:

[−0.06090 − 0.02419] (4.1.7)

Because both zeros satisfy the criteria they are deemed eligible for examination

as closed loop poles. From inspection it has been found that a slight modification

of these poles to -0.0575 and -0.0225 results in optimum performance in both

simulation and experimentation. The remaining poles will default to normalized

Bessel poles as performed in the CTP. The following vector represents all six poles

needed for the QTP with a settling time of Ts = 25s:

pi = [−0.0575 − 0.0225 s4/Ts] (4.1.8)

As the QTP is a tracking system in discrete time all poles must be mapped into

the z-plane using the ZOH pole mapping formula. This formula takes the selected

poles represented by pi and multiplies them by the sampling interval T before

finally taking their exponential. This is represented in the following formula:
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epiT (4.1.9)

4.1.3 Robust Feedback Gain Calculation

In Chapter 3 after having constructed the dynamic model and selected the de-

sired closed loop poles, the feedback gains were calculated using the place function

of Matlab. As previously mentioned, with a multi-variable system there exists an

infinite number of feedback gain matrices that can be formulated from the same

set of desired closed loop poles. While the place function will work with good

results for this system time must be taken to examine the robustness of the overall

system when these gains are used. Perturbation to the system can be caused by

model errors and therefore a level of robustness must be ladened within the control

system to account for the inaccuracies associated with modeling the dynamics of

the system.

Figure 17. Model perturbation in state feedback tracking system.

In order to perform this examination a discussion of model perturbation and

the small gain theorem must be introduced [9]. The diagram in Figure 17 repre-

sents a state-feedback tracking system with input-multiplicative plant perturba-
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tion. This closed loop system is said to be stable when ∆(s) = 0. This then implies

that the system will remain stable as long as all model perturbations satisfy:

||∆(s)||∞ < δ1 (4.1.10)

Here the system infinity norm is:

||∆(s)||∞ = supωσ̄(∆(jω)) (4.1.11)

σ̄(M) = maximum singular value of M

The value δ1 represents the reciprocal of the infinity norm of the system from w(t)

to v(t) [10]. From the tracking system shown the system from w(t) to v(t), with

r(t) set to zero, or G(s) can be described in state-space form as:

[
ẋ
ẋa

]
=

[
A−BL1 BL2

−BaC Aa

] [
x
xa

]
+

[
B
0

]
w (4.1.12)

v =
[
−L1 L2

] [ x
xa

]
The stability robustness bound for this tracking system is then given by:

δ =
1

||G(s)||∞
(4.1.13)

This robustness norm is then used to gage how well the model will remain stable

under a certain level of perturbation. Generally speaking the larger this number

the larger the inaccuracy the controller is able to handle while keeping the system

stable. The accepted region for a robustly stable system is as follows:

0.5 ≤ δ1 < 1 (4.1.14)

Utilizing Matlab’s place function to calculate feedback gains reveals a δ1 =

0.8451 for the simulated QTP calculated at the end of this chapter. This illustrates

that the system will have more than sufficient robustness to function even in the

face of model perturbation.
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4.2 QTP Simulation

A demonstration of the results of this chapter are represented here via sim-

ulation. The parameters which outline the Quanser Quadruple Tank Process are

outlined in Table 9.

ẋ = Ax + bu

y = cx

where

A =


−0.06758 0 0.03308 0

0 −0.07438 0 0.05202
0 0 −0.03308 0
0 0 0 −0.05202

 , b =


0.21009 0

0 0.23525
0 0.079938

0.088820 0



c =

[
1 0 0 0
0 1 0 0

]
, ue =

[
6
6

]
With a sampling interval of T = 0.1s.

Φ =


0.9933 0 0.003291 0

0 0.9926 0 0.005169
0 0 0.9967 0
0 0 0 0.9948

 , Γ =


0.02094 0.00001318

0.00002300 0.02344
0 0.007981

0.008859 0



Φa =

[
1 0
0 1

]
,Γa =

[
1 0
0 1

]
A selected settling time of Ts =25 seconds results in the following poles, pi:

pi = spoles = [−0.0225 − 0.0575 − 0.1606± 0.2029i − 0.2211± 0.0662i]

Mapping the poles with the ZOH formula yields:

zpoles = epi = [0.9978 0.9943 0.9839± 0.01996i 0.9781± 0.006476i]
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Supplied with the aforementioned data Matlab’s place returned the following gains:

L1 =

[
0.7046 −0.01568 0.5913 2.123
0.3090 0.8001 1.138 0.4038

]
, L2 =

[
0.02566 −0.0008726
−0.006911 0.02419

]
Using place for gain calculation returned a system with robustness norm δ =

0.8451.

Results were gathered using the following step commands over a total of 180

seconds.

r(t) =

[
12
12

]
, 0 ≤ t < 60s[

20
20

]
, 45 ≤ t < 120s[

16
16

]
, 90 ≤ t < 180s

Simulation Results
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Figure 18. A simulated comparison of commanded reference input to tank fluid
height QTP.
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Figure 19. Simulated tank fluid height responses QTP.

Experimental Results
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Figure 20. Actual comparison of commanded reference input to tank fluid height
QTP.
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Figure 21. Actual tank fluid height responses QTP.
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CHAPTER 5

Conclusion and Recommendations

Given the state-space tracking system architecture demonstrated in this study

the prowess of this type of control over the QTP has been made apparent. The

digital state-space control employed in this thesis effectively tracked the tank fluid

heights under the mandated constraints. The controller performed this task using

several techniques to combat many difficulties associated with the QTP including

non-linear system dynamics, integrator windup and actuator saturation. With a

substantial robustness from proper pole placement the stability and phase margins

reveal a system that has ample performance over a considerable bandwidth. This

is key when considering the perturbations that could arise should outside forces

change the plant model or the ability of the physical system to respond to the

controller.

Future work regarding the control the tank processes systems should contem-

plate the benefits of gain scheduling. This method establishes a range of equi-

librium or set points for which traditional feedback gains can be calculated. The

benefit to this method is that the control system does not have to rely on one set

of gains focused around one equilibrium and instead can actively update the gains

depending on the systems position to optimize control [11]. This method could

offer further enhancement of the QTP considering the linearized dynamics and a

viable addition to the techniques already discussed.

Further advancements in the study of the QTP should also focus on techniques

to deal with the Non-Minimum Phase behavior that occurs in a specified range of

inlet pump flow. The configuration used in this study was of the minimum phase

type. With minor modifications to the apparatus one could study this peculiar
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characteristic of the QTP and make provisions from a state-space approach to

attempt acceptable performance under the given constraints. Non-minimum phase

in the QTP occurs when the rate of inlet flow to the upper tanks exceeds that of the

inlet flow to the bottom tanks. As a result of this the non-minimum configuration

is significantly harder to control and requires settling times an order of magnitude

larger than a minimum phase counterpart.

It is important to note that given the dynamics of the apparatus it is essential

that to yield good experimental results that the apparatus be calibrated correctly

and often. The pressure sensors in both the CTP and QTP are temperamental to

changes in climate, such as barometric pressure changes. If not properly calibrated

the system will exhibit poor performance most likely in the form of steady state

error regarding the tank heights. Calibration of these sensors has been discussed

in Chapter 2, but it is the prominent culprit for control system failure in the tank

processes. With uncalibrated sensors the input to the control system is flawed,

and although the plant dynamics are still valid supplying the control law with

false readings will incur a performance error outside the scope of the tracking

system.
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