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ABSTRACT 

Aquaculture is a multi-billion dollar industry worldwide. The United States is a 

significant consumer to both fresh and marine aquaculture products. Aquaculture sales 

in Rhode Island have dramatically increased in the last 20 years. In Rhode Island 

nearly 4.3 million oysters were produced via aquaculture in 2012. Currently, 

hatcheries and nurseries in the United States produce large amounts of a variety of 

species of oysters, clams and scallops. Oysters are filter feeders and are exposed to 

many microbes in the hatchery. Infectious diseases from bacterial pathogens in the 

hatcheries can have serious impacts on production. Vibrio species are often 

responsible for vibriosis disease outbreaks in bivalve larviculture hatcheries 

worldwide. Another prevalent disease observed in oyster nurseries in the Northeastern 

US is Juvenile Oyster Disease (JOD).  

Probiotic agents are promising tools to reduce the risks of disease outbreaks in 

aquaculture facilities. Two marine bacteria, Bacillus pumilus RI0695 and Phaeobacter 

gallaeciensis S4, were previously reported to provide significant protection of the 

Eastern oyster larvae Crassostreae virginica when challenged with the shellfish 

pathogen Vibrio tubiashii. The goals of my dissertation research were to isolate and 

identify the antibiotic(s) secreted by Phaeobacter gallaeciensis S4, to chemically 

examine their mechanisms of action for probiotic activity, and to create probiotic 

formulations of Bacillus pumilus RI0695 and of Phaeobacter gallaeciensis S4 for 

delivery in shellfish larviculture facilities. 

Chapter 2 describes the isolation and identification of the antibiotic tropodithietic 

acid (TDA) from Phaeobacter gallaeciensis S4. Genes tdaA, tdaB, clpX and rpoE 



 

 

were previously found to be necessary for the biosynthesis of TDA in Silicibacter sp. 

TM104 (Geng, Bruhn et al. 2008, Karim, Zhao et al. 2013). Gene exoP is responsible 

for the exopolysaccharide biosynthesis (Zhao 2014).  Collaborative work suggests that 

TDA contributes to the probiotic activity of P. gallaeciensis S4 but that antibiotic 

production is not the sole mechanism of action. The basis for this finding was 

biological and chemical analysis of S4 wild-type and genetic mutant strains producing 

different levels of TDA (tdaA
-
, tdaB

-
, tdbD

-
, clpX, rpoE

-
, exoP

-
, and complement 

strains rpoE
-
, exoP

-
) by high pressure liquid chromatography (HPLC) and ultra high 

pressure liquid chromatography (UHPLC). HPLC analysis of culture extracts from the 

tdaA
-
, tdaB

-
 and tdbD

-
 mutants confirmed loss of TDA production as compared to S4 

wild type. Additional genetic mutant strains, clpX, rpoE
-
, exoP

-
, and complement 

strains rpoE
-
 and exoP

-
 were created by insertional mutagenesis to further explore the 

role of TDA and mechanisms regulating its production. UHPLC analysis of clpX 

stationary phase culture extracts confirmed the lost production of TDA when 

compared to a TDA standard.  UHPLC analysis of complement strains clpX 

demonstrated that TDA was present compared to a TDA standard.  The exoP
-
 mutant 

produced TDA similar to the wild-type strain.  Mutant strains that lack the production 

of TDA had less protection of Eastern oyster larvae C. virginica to bacterial challenge 

than the wild type or the genetic mutant strain that produced similar TDA 

concentrations as the wild type.  This research determined that TDA was necessary for 

optimal probiotic activity.  

Chapter 3 describes efforts to create a stable formulation of B. pumilus RI0695 

for delivery at shellfish hatcheries.  Currently there are no commercially available 



 

 

probiotics for shellfish aquaculture. Granulation is robust, cost effective, and simple 

proven method of formulation. A granular probiotic formulation of B. pumilus RI0695 

was created by extruding dried B. pumilus RI0695 cells through three particle size 

sieves (40s, 80s, and 325s).  Three granule sizes of 420 µ, 177 µ and 43 µ were 

successfully created. Granular (177 µ and 43 µ) formulations stored for 29 weeks and 

22 weeks at room temperature (RT) were able to reduce mortality in C. virginica 

larvae and seed, respectively, when challenged with V. tubiashii.  This study suggests 

the 43 µ granule formulation of B. pumilus RI0695 is a good candidate for commercial 

use in shellfish hatcheries.   

In Chapter 4, a study is presented showing an effort to create a lyophilized 

probiotic formulation of P. gallaeciensis S4 that provides reduced mortality of C. 

virginica larvae when exposed to the shellfish pathogen V. tubiashii RE22. Several 

lyophilized formulations were prepared using varying amounts of two cryoprotectants 

at two growth stage phases of the bacterium. The two best formulations used log phase 

cells lyophilized with either 30% or and 40% mannitol as a cryoprotectant.  The cell 

viabilities of the two formulations were measured under various storage conditions (27 

°C, 4 °C, 30 °C, and 30 °C with 75% humidity) over a 5-week period. S4 formulations 

(30-M and 40-M) were tested at 1 week for probiotic protection of C. virginica seed 

against V. tubiashii infection. Unfortunately, the lyophilization process and storage 

significantly decreased the cell viability of both formulations (30-M and 40-M). 

Further, there was no protection of the larvae when pre-exposed to either formulation.   

Based on the in vivo results, a liquid P. gallaeciensis S4 formulation under starvation 

conditions in NSS medium was prepared. The liquid formulation maintained a cell 



 

 

viability of 10
8
 CFU/mL over 8 weeks. Further research should be done to evaluate 

these formulations in a hatchery study. More research must be done to refine the 

formulation processes for commercial scale up. 
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PREFACE 

This dissertation was in accordance with the manuscript format guidelines 

established by the Graduate School of the University of Rhode Island. The dissertation 

includes an introduction and the following three manuscripts:  

1. Literature review: Probiotics for disease management in commercial aquaculture 

systems.  

2. Isolation, Purification and Quantification of Tropodithietic Acid a Major 

Contributor to the Probiotic Activity of Phaeobacter gallaeciensis S4 in Eastern 

Oyster Crassostrea virginica 

3. Preparation of a Granular Formulation of Bacillus pumilus RI0695 for Disease 

Management in Eastern Oyster Crassostrea virginica hatcheries. 

4.  Preparation of a Lyophilized Formulation of Phaeobacter gallaeciensis S4 for 

Disease Management in Eastern Oyster Crassostrea virginica hatcheries. 
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Aquaculture value 

Global aquaculture is a multi-billion dollar industry. Aquaculture is defined by 

NOAA as the production of freshwater fish, marine fish, shellfish, and marine plants    

(Elston, Hasegawa et al. 2008).  In 2014, the Fisheries and Aquaculture Organization 

(FAO) released an overview of major trends and issues which estimated aquaculture 

production to be worth 137.7 billion USD worldwide (FAO 2014). The United States 

is a significant contributor to both fresh and marine aquaculture sales, adding 

approximately one billion dollars to the worldwide total (Elston, Hasegawa et al. 

2008). Aquaculture sales in Rhode Island have dramatically increased from $83,518 in 

1995 to $4.2 million in 2013 (Beutel 2013).  In addition to this production boom, the 

number of oyster farms in Rhode Island has grown from six to fifty-two (Beutel 2013).  

In 2013, nearly 6.8 million oysters were produced via aquaculture in Rhode Island 

(Beutel 2013).    

Aquaculture production growth 

The growth of worldwide aquaculture production revenue increased average 

6.1 percent annually between 2001-2012 (FAO 2014). The total production of fish, 

crustaceans, mollusks and other aquatic animals around the world increased 

continuously to 158 million tonnes in 2010 (FAO 2014). In comparison, the capture 

production has remained around 90 million tonnes over the last 15 years (FAO 2014).  

Approximately 86% of seafood consumed by the U.S. is imported, around half of 

which is produced via aquaculture (FAO 2014).  According to The 2010 State of 

World Fisheries and Aquaculture by the FAO, sixty-two percent of all farmed seafood 

in the world is produced in China. An additional 26% of all farmed seafood is 
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produced in Asia outside of China. Europe and the Americas produced 4.5 percent 

each of all farmed seafood (NOAA 2012). 

United States Aquaculture Production 

United States’ aquaculture industry, both freshwater and marine, supplies five 

to seven percent of the national demand for seafood.  Wild catch and aquaculture, both 

imported and domestic, account for the sources of seafood production in the United 

States. Many of the existing farms are located on territorial waters in Maine, 

Washington, Hawaii RI and other states , and on land in ponds and tanks in several 

states (NOAA 2012).  

 The U.S freshwater aquaculture industry produces primarily catfish, trout, and 

tilapia.  Two-thirds of U.S. marine aquaculture production is comprised of molluscan 

shellfish such as oysters, clams, and mussels.  The other third consists mainly of 

shrimp, Atlantic salmon, steelhead trout, coho salmon, cod, sturgeon, red drum, 

Pacific threadfin (moi), Hawaiian yellowtail, and cobia, with lesser amounts of 

barramundi, seabass, seabream, and other species (NOAA 2012).   

Diseases in aquaculture   

Approximately 430 aquatic species have been domesticated for aquaculture 

(Duarte, Marba et al. 2007). Rigorous culture of bivalve shellfish on a production 

scale developed in the 1970’s. Currently, hatcheries and nurseries in the United States 

produce large numbers of a variety of species of oysters, clams and scallops (Elston 

1998). However, infectious diseases in the hatcheries have serious impacts on 
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production, with 45.5% of losses in aquaculture being due to diseases (Elston 1998, 

FDA 2012). 

Aquaculture hatchery operations are especially prone to bacterial diseases that 

rapidly kill larvae.  The hatchery environment has many factors that may impact the 

growth and survival of cultured species. There are a combination of controllable and 

chance factors that determine the composition of the resulting microflora in aquatic 

animals (Vine, Leukes et al. 2006). The controllable factors include: salinity; 

temperature; and feed quality (Vine, Leukes et al. 2006) . The gastrointestinal flora of 

aquatic animals reared in hatchery settings usually resemble the microflora initially 

present in the rearing water, microalgae, and livefood (Gatesoupe 1999, Riquelme, 

Jorquera et al. 2001, Vine, Leukes et al. 2006).  Diseases in bivalve shellfish 

hatcheries are caused by infectious organisms entering the hatchery from the same 

three sources as other microbes: brood stock; seawater source; and algal food source 

(Elston 1998). Once a pathogen has been introduced into the system, it can rapidly 

cause disease and death in the aquatic animal. Major causative factors for 

opportunistic infections in shellfish hatcheries are bacterial infections, which can enter 

the system through the seawater source and/or the algal food source (Elston 1998). 

Another source of opportunistic infections is viral. Viruses are generally transferred 

from infected brood stock (Elston 1998). Aside from bacteria and viruses, other 

pathogens include fungi and eukaryotic parasites.  

Prevalent diseases observed in Eastern oysters (Crassostrea virginica) in the 

Northeastern US and Atlantic Canada are multi-nucleated sphere X (MSX) disease, 

dermo disease, juvenile oyster disease (JOD) and bonamiasis (shown in Table 1). A 
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major player in the development of infectious disease in Pacific oyster larvae 

(Crassostrea gigas) hatcheries is Vibrio tubiashii.  
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Table 1. Diseases associated with the Eastern oyster Crassostrea virginica and the Pacific oyster Crassostrea gigas. 

 

Disease 

Pathogenic 

Agent 

 

Effects on Host 

 

Occurrence of Disease 

Mechanism of 

Virulence  

 

Reference 

 

Multi-nucleated 

Sphere X (MSX) 

disease  

Haplosporidium 

nelson 

Decreased meat 

quality, reduced 

reproductive 

capacity and 

mortality 

Observed from Maine to 

Florida in the late 

summer and early fall 

Unknown 

 

 

Elston 1990, Barber 

1999  

 

Dermo Disease  Perkinsus 

marinus 

 

Decreased growth, 

typically between 

60% and 80% after 

two years of 

exposure, and 

mortality 

 

Observed in Northeast 

US and Atlantic Canada, 

in increased temperatures 

of seawater (>20 °C) and 

salinity (> 15 parts per 

trillion) 

Infection through 

ingestion, because it is 

often observed in gut 

tissue 

 

 

 

Elston 1990, Barber 

1999, Ford 2011 

 

       

Juvenile 

(Roseovarious) Oyster 

Disease  

Roseovarious 

crassostreae 

Reduced growth of 

juveniles along 

with uneven shell 

growth. Mortalities 

of over 90% in 

infected areas. 

Observed in New York 

and New England, in 

mid- to late summer 

when water temperature 

is elevated (>25 °C) 

Unknown 

 

Gomez-Leon, 

Villamil et al. 

2008Romalde and 

Barja 2010 

 

Bonamiasis  Bonamia ostreae 

 

Inability to close 

shell completely. 

Decimation of 

infected hatchery. 

 

Washington State and 

Maine, outbreaks occur 

year round when 

seawater temperatures 

range from  

 12-20 °C. 

Infects the host blood 

cells, it can multiply 

within blood cells and 

spreads to all tissues  

 

 

Elston 1990, Barber 

1999 
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Disease 

 

Pathogenic Agent 

 

Effects on Host 

 

Occurrence of Disease 

 

Mechanism of action 

 

Reference 

 

Vibriosis  Vibrio tubiashii  

 

 

Larvae exhibit 

mantle and 

feeding disruption, 

and visceral 

damage infection, 

resulting in death 

within 24 hours. 

Infection have 

been attributed to 

59% decline in 

production 

 

Pacific oyster hatcheries, 

when seawater 

temperature is elevated 

(>20 °C) 

 

Two virulence factors 

associated with 

bacterium: 

Metalloprotease and 

hemolysin 

 

 

 

 

Decamp, Moriarty et 

al. 2008, Elston 2008 

 

Vibriosis 
Vibrio 

parahaemolyticus 

Human 

consumption of 

infected oysters 

can cause 

gastroenteritis and 

septicemia.. 

Abundant in marine 

environments, when 

seawater temperature is 

elevated (>20 °C) 

Clinical illness is 

associated with 

strains is  hemolysin  

 

 

DePaola, McLeroy et 

al. 1997  

 

Vibriosis V. vulnificus 

 

Distributed 

throughout the 

tissues of the 

oyster. 

Causative agent of 

gastroenteritis  

 and septicemia 

through human 

consumption.  

Abundant in mollucs in 

the Gulf coast. 

Virulence factor 

associated with 

bacterium is 

hemolysin  

 

 

 

 

DePaola, McLeroy et 

al. 1997 
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MSX disease is caused by the eukaryotic parasite Haplosporidium nelsoni. H. 

nelsoni cells usually appear first in gill tissue, indicating that the infective stage is 

waterborne, which can only be confirmed by microscopic examination of oyster tissue 

(Elston 1990, Barber 1999).  Effects of the disease include decreased meat quality, 

reduced reproductive capacity, and mortality (Elston 1990, Barber 1999). These 

outbreaks mainly occur in the late summer and fall and have been observed from 

Maine to Florida (Elston 1990, Barber 1999). The mode of transmission of this 

pathogen is unknown. 

Dermo disease of Eastern oysters, C. virginica, is caused by a highly infectious 

eukaryotic parasite Perkinsus marinus.  The presence of P. marinus is determined by 

microscopic examination of oyster gut tissue cultured in thioglycollate medium 

(Elston 1990, Barber 1999, Ford 2011). It has been reported that the primary route of 

infection is through ingestion, because it is often observed in gut tissue (Elston 1990, 

Barber 1999, Ford 2011). The primary effect of Dermo disease is a decrease in 

growth, typically between 60% and 80% after two years of exposure (Ford 2011). The 

disease can be directly passed from infected to uninfected oysters. It has been reported 

that P. marinus causes the greatest mortality at temperatures greater than 20 °C and at 

a salinity above 15 parts per trillion (ppt) (Ford 2011).  

Roseovarious crassostreae is another bacterium that causes serious infections 

in juvenile oysters.  This pathogen, the causative agent of Juvenile or Roseovarious 

Oyster Disease (JOD), is endemic to New York and the New England area (NOAA 

2009, Romalde and Barja 2010).  JOD has been responsible for population mortalities 

of over 90% in highly impacted areas. Outbreaks of R. crassostreae may be associated 
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with elevated water temperature (>25 °C) (Gomez-Leon, Villamil et al. 2008, NOAA 

2009) (NOAA 2009, Romalde and Barja 2010).  Indications of the disease are reduced 

growth of the oyster along with uneven shell growth. The disease is characterized by 

the presence of conchiolin deposits, or the presence of brown rings, on the inner shell 

surfaces. JOD follows a seasonal pattern, with most mortality occurring in mid- to 

late-summer, coinciding with warm water temperatures. The disease can be 

transmitted from oyster to oyster, but the toxins and virulence factors are still 

unknown for this pathogen (Romalde and Barja 2010).   

Bonamiasis, a disease that originated in the European oyster Ostrea edulis, is 

caused by the eukaryotic parasite Bonamia ostreae (Elston 1990, Barber 1999). It has 

been reported to occur in Washington State and in Maine (Elston 1990, Barber 1999). 

B. ostreae has been reported to multiply within blood cells and spreads to all tissues, 

interfering with physiological processes (Elston 1990, Barber 1999). A sign of early 

stage bonamiasis is the inability of the shell to close completely (Elston 1990, Barber 

1999). Diagnosis of B. ostreae requires microscopic examination of oyster blood or 

tissue (Elston 1990, Barber 1999). Outbreaks of bonamiasis can be devastating to a 

hatchery as it is highly infectious and is transmitted directly from oyster to oyster. It 

has been reported that mortality can approach 100% (Elston 1990, Barber 1999). 

These outbreaks can occur year round, with ideal temperature conditions for infections 

ranging from 12 °C to 20 °C. B. ostreae is reportedly found consistently in Maine with 

a low prevalence in some populations of O. edulis (Elston 1990, Barber 1999).  

A variety of Vibrio species are often responsible for disease outbreaks in 

bivalve larviculture hatcheries, including Vibrio coralliilyticus which has previously 
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been mistaken for V. tubiashii RE22 which cause bacillary necrosis in oyster larvae. 

Vibriosis outbreaks in larvae are characterized by mantle and feeding disruption, loss 

of motility, and visceral damage usually resulting in larval death within 24 hours 

(Porsby, Nielsen et al. 2008). This disease is particularly problematic in hatcheries that 

culture bivalves (Decamp, Moriarty et al. 2008, NOAA 2009, Romalde and Barja 

2010). From 2006 to 2007, increased water temperature, and bad water quality maybe 

the causative factors for several outbreaks of V. tubiashii in shellfish hatcheries and 

nurseries in North America (Elston, Hasegawa et al. 2008). These pathogenic 

outbreaks caused a 59% decline in oyster larvae production , thus affecting the overall 

production of cultured oysters for human consumption. In addition, although they 

don’t affect the shellfish hosts, V. parahaemolyticus and V. vulnificus have been 

linked to foodborne illnesses in humans such as gasterenteritis or in severe cases 

septicemia through consumption of raw oysters (DePaola, McLeroy et al. 1997, CDC 

2015). Both bacterial species are prevalent in seawater with elevated temperatures 

(>20 °C) (DePaola, McLeroy et al. 1997, CDC 2015).  

Studies by Hasegawa and coworkers determined two potential virulence 

factors in Vibrio tubiashii, metalloprotease and hemolysin, which they termed 

“extracellular products” (Hasegawa, Lind et al. 2008, Porsby, Nielsen et al. 2008).  

Both extracellular products are regulated by quorum sensing (Hasegawa, Lind et al. 

2008). Similar to Vibrio anguillarum, at high cell density in V. tubiashii the 

metalloprotease gene is expressed while the hemolysin gene is down regulated (Li, 

Rock et al. 2008). Toxicity in oyster larvae was diminished when V. tubiashii 

supernatants were treated with metalloprotease inhibitors. It was reported that 
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inhibition of hemolysin also caused a decrease in larval toxicity (Hasegawa, Lind et al. 

2008).  The study identified the structural genes encoding for metalloprotease (vtpA) 

and hemolysin (vthA) for V. tubiashii (Hasegawa, Lind et al. 2008). The vtpA gene 

encoded for a zinc metalloprotease, and had a high sequence similarity to genes found 

in other Vibrio species (Hasegawa, Lind et al. 2008). It is still unknown how vtpA 

contributes the bacillary necrosis. However, it has been suggested that vtpA 

contributes to the degradation of oyster larvae tissues.  The vthA gene from V. 

tubiashii has significant homology with the vvhA gene found in V. vulnificus 

(Hasegawa, Lind et al. 2008).  The virulence factor associated with the gastroenteritis 

in V. parahaemolyticus is thermostable direct hymolysin (TDH). It has been studied 

that both trh and tdh are significant in the virulence of V. parahaemolyticus (Shirai, Ito 

et al. 1990). 

Disease Management in Bivalve Aquaculture Facilities 

In the last two decades there has been an increased incidence of disease 

outbreaks due to bacterial pathogens in shellfish hatcheries (Boettcher, Geaghan et al. 

2005, Gomez-Leon, Villamil et al. 2008, USDA 2008, NOAA 2009). In particular, 

pathogen outbreaks of Vibrio spp. can have devastating effects on oyster production in 

shellfish hatcheries (Romalde and Barja 2010). Vibrio pathogenic outbreaks can cause 

a 59% decline in oyster larvae production (Balcazar, de Blas et al. 2006).  

The treatment of pathogenic disease in aquaculture is problematic due to 

limited resources and treatment options (Decamp, Moriarty et al. 2008). 

Aquaculturists have explored using filtration systems, ozonolysis, UV and electrolytic 



 

 12 

 

treatments of seawater, adjusting salinity, and selective breeding (Boettcher, Barber et 

al. 1999, Ford and Borrero 2001, Jorquera, Valencia et al. 2002, Wijesekara, Nomura 

et al. 2006, Park, Kim et al. 2011, FAO 2014). Additionally, investigations into the 

use of probiotics as a new disease management tool are being explored (Westerdahl, 

Olsson et al. 1991, Elston 1998, Rengpipat, Phianphak et al. 1998, Verschuere, 

Rombaut et al. 2000, Spanggaard, Huber et al. 2001, Farzanfar 2006, Vine, Leukes et 

al. 2006, Decamp, Moriarty et al. 2008, Kesarcodi-Watson, Kaspar et al. 2008). 

Vaccines are not feasible in bivalves because they lack an antibiody immune response 

(Gomez-Chiarri 1999). The use of antibiotics in aquaculture can have potentially 

detrimental effects for increasing the development of drug-resistant bacteria involved 

in human and other animal diseases (Vaseeharan and Ramasamy 2003, Farzanfar 

2006). 

 Disease reduction strategies can be matched to the pathogens of interest.  

Management of MSX disease is aided by the fact that H. nelsoni cannot tolerate 

salinity below 10 ppt and only causes severe mortality above 20 ppt. Sites that 

regularly experience salinity below 20 ppt are be less impacted by MSX than other 

areas. H. nelsoni can be eliminated from oysters by moving them into an environment 

of a salinity of 10 ppt or less. Research has also shown that MSX mortality can be 

reduced through selective breeding (Burreson and Ford 2004). Ford and Borrero 

(2001) reported that filtration of the seawater entering the hatchery with a 1µm filter 

cartridge and followed by exposure to UV irradiation (30,000 µWs
-1

cm
-2

) prevented 

infection by both eukaryotic parasites H. nelsoni, the causative agent for MSX disease, 

and P. marinus, the causative agent for Dermo disease (Ford and Borrero 2001). 
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Filtered sterilized seawater also yielded good results in preventing (82%) JOD in the 

eastern oyster C. virginica (Boettcher, Barber et al. 1999).  

Ozonation in freshwater recirculating hatchery systems has been widely used 

for almost 30 years to form oxidized organic matter to control bacterial diseases. 

There have been some conflicting reports that ozonation in seawater can have toxic 

effects due to a reaction with bromine.  Ozonation by-products are known to oxidize 

organic material forming total oxidized residual compounds (TRO). A TRO 

concentration of 0.06-0.1 mg/L is needed to inactivate microorganisms. Ozonation in 

seawater recirculation systems for black seabream, Acanthopargus schlegelii, fed at 

20g O3/kg feed day
-1

 significantly reduced heterotrophic bacteria in the inlet water 

measured after six consecutive days of treatment (Park, Kim et al. 2011). Electrolytic 

methods have been successful in reducing microalgae, bacteria, and viruses (Jorquera, 

Valencia et al. 2002, Wijesekara, Nomura et al. 2006, FAO 2014). This process uses a 

nonmembrane electrolytic cell to dissociate sodium chloride molecules in seawater to 

form hypochloride ion and sodium ion. (Jorquera, Valencia et al. 2002). A study using 

electrolytically treated seawater in aquaculture systems reported that an electrolytic 

current intensity of 1.3 A was able to reduce V. anguillarum to undetectable 

concentrations and produced minimal free chloride ions (Jorquera, Valencia et al. 

2002). Electrolysis of seawater at 4.0 A followed by neutralization with sodium 

thiosulfate was able to stimulate the growth of cultured Isochrysis galbana as 

compared to both the control (sterilized seawater) and UV treatments of seawater 

(Jorquera, Valencia et al. 2002). 
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  The methods for treating the hatchery water supply, including treatments with 

ozone, filtration, heat, UV irradiation, and electrolysis (Jorquera, Valencia et al. 2002), 

are effective for minimizing pathogenic diseases.  However, they can have a high cost 

due to the need for expensive equipment and high energy input (Park, Kim et al. 

2011).  Thus, they lack practicality for many hatchery facilities. 

Probiotics have shown promise as a disease management tool for aquaculture 

(Kesarcodi-Watson, Kaspar et al. 2008). Unlike chemical antibiotics, probiotics are 

provided to larvae prior to infection outbreaks in order to control pathogens in the 

hatchery. They are defined by the World Health Organization as “live microbes which 

have a beneficial effect on the host” (Liang 2003). They are a “green” alternative to 

the use of antibiotics since they are unlikely to contribute to the rising problem of 

antimicrobial resistance (Verschuere, Rombaut et al. 2000).  

Probiotics in shellfish aquaculture  

A full definition of a marine probiotic suggested by Vershuere et al. (2000) is:  

A live microbial adjunct which has a beneficial effect on the host by modifying the 

host-associated or ambient microbial community, by ensuring improved use of the 

feed or enhancing its nutritional value, by enhancing the host response towards 

disease, or by improving the quality of its ambient environment including water 

quality and interaction with phytoplankton (Verschuere, Rombaut et al. 2000). 

 

More widely stated, “a probiotic is an entire or component(s) of a microorganism that 

is beneficial to the health of the host” (Salminen, von Wright et al. 1998, Irianto and 

Austin 2002).  Additionally, immunostimulants or bacterial by-products, such as 

peptidoglycan and lipopolysaccharides that have been shown to promote an enhanced 

immune response from the host can be considered to be prebiotics (Itami, Asano et al. 

1998, Smith, Brown et al. 2003, Kesarcodi-Watson, Kaspar et al. 2008).  
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Investigations of probiotics in aquaculture have been aimed at improving 

survival rate and/or growth of various aquacultured animals (Table 1).  Probiotics that 

are chosen for aquaculture must be able to proliferate in an aquatic environment and 

there must be a consideration of the relationship of the aquatic animal and its external 

environment. Potential pathogens have the ability to proliferate in the seawater that 

may enter the hatcheries (Hansen and Olafsen 1999, Verschuere, Rombaut et al. 2000, 

Kesarcodi-Watson, Kaspar et al. 2008).    

Marine probiotics have several proposed modes of action, including the 

production of antimicrobial compounds, competition for adhesion sites and nutrients, 

stimulation of the host immune system, and providing enhanced nutrition to the host 

(Queiroz and Boyd 1998, Murthy and TJ 1999, Ziaei-Nejad, Rezaei et al. 2006, Cude, 

Mooney et al. 2012).  The most common examined mechanism of action in probiotic 

candidate bacteria has been investigating the production of inhibitory substances. Such 

studies seek to identify bacteria that secrete molecule(s) that limit the growth of 

pathogens in vitro as candidate probiotics that then are tested in vivo (Westerdahl, 

Olsson et al. 1991, Sugita, Shibuya et al. 1996, Bly, Quiniou et al. 1997, Sugita, 

Matsuo et al. 1997, Spanggaard, Huber et al. 2001, Chythanya, Karunasagar et al. 

2002, Sugita, Okano et al. 2002, Hjelm, Riaza et al. 2004).   

There are four methods that are commonly employed to screen for growth 

inhibitory substances in vitro: the double layer method, the well diffusion method, the 

cross-streak method, and the disc diffusion method. All methods are based on the 

principle that a bacterium (the producer) secretes an extracellular substance which is 

inhibitory to itself or another bacterial strain (the indicator). The inhibitory activity is 
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displayed by growth inhibition of the indicator in agar medium.  In some cases, initial 

in vitro screening was followed by small scale testing of short-listed candidates in vivo 

for either pathogenicity to the host (Makridis, Jon Fjellheim et al. 2000, Chythanya, 

Karunasagar et al. 2002, Hjelm, Riaza et al. 2004) or host protection when challenged 

with a pathogen (Rengpipat, Phianphak et al. 1998, Gram, Melchiorsen et al. 1999, 

Robertson, O'Dowd et al. 2000, Irianto and Austin 2002, Vaseeharan and Ramasamy 

2003, Lategan, Torpy et al. 2004, Lategan, Torpy et al. 2004). For example, Irianto et 

al. (2002) demonstrated that several candidate probiotics identified as Aeromonas 

hydrophila A3-51, V. fluvialis, Carnobacterium sp. displayed antagonistic properties 

towards the pathogen Aeromonas salmonicida  (Irianto and Austin 2002).  Many 

investigations have observed a positive protective effect in in vivo studies following 

positive antagonism assays in vitro (see Table 2) (Gibson, Woodworth et al. 1998, 

Rengpipat, Phianphak et al. 1998, Makridis, Jon Fjellheim et al. 2000, Robertson, 

O'Dowd et al. 2000, Chythanya, Karunasagar et al. 2002, Irianto and Austin 2002, 

Vaseeharan and Ramasamy 2003, Hjelm, Riaza et al. 2004, Lategan, Torpy et al. 

2004, Lategan, Torpy et al. 2004).  
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Table 2. Some examples of promising probiotics in shellfish larviculture and their effect on the host. 

Microbe Host Species Effect on Host Reference 

    

Arthrobacter sp. strain 77 Argopecten purpuratus 

 

Production of inhibitory compounds; 

Probiotic replaced resident microflora 

within 24 hours. 

 

Riquelme et al. (2000) 

Vibrio sp. strains 11 and C33 Argopecten purpuratus 

 

Colonize the digestive tract when 

administered with microalgae 

 

Avendano & Riquelme 

(1999) 

Vibrio sp. C33, Pseudomonas 

sp. 11 and Bacillus sp. strain 

B2 

Argopecten purpuratus 

 

Increased the number of larvae when 

compared to antibiotic treatment 

 

Riquelme et al. (2001) 

Aeromonas media strain 

A199 
Crassostrea gigas 

Increased survival rate when 

challenged with V. tubiashii; 

Gibson et al. (1998) 

 

Aeromonas media strain 

A199 

Anguilla australis 

Richardson 

Production of inhibitory substance 

inhibiting growth of Saprolegnia sp. 

Lategan et al. (2003) 

 

Bacillus S11 Penaeus monodon PL-10 

 

Post larvae survival was increased 

when challenged with V. harveyi; 

Probiont provided cellular and 

humoral immune defense responses 

 

Rengpipat et al. (2000) 
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Microbe Host Species Effect on Host Reference 

Scophthalmus maximus L. gut 

strains 4:44  PB52 

 

Brachionus plicatilis 

 

Colonization of the gut of larvae 

 

Makridis et al. (2000) 

Bacillus S11 Penaeus monodon 

Improvement in survival when 

coupled with ozonation treatments 

 

Meunpol et al. (2003) 

Lactobacillus sporogenes 
Macrobrachium 

rosebergii 

Improved growth rate and feed 

efficiency of post larvae when fed as a 

bio-encapsulated probiotic. 

Venkat et al. (2004) 

Bifidobacterium 

thermophilum 
Penaeus japonicus 

 

Improved survival by peptidoglycan 

against Vibrio penaecida 

 

Itami et al. (2002) 

Bacillus subtilis BT23 Penaeus sp. 

Reduced mortality by 90% when 

challenged with V. harveyi. 

 

Vaseeharan et al. (2003) 

Bacillus spp. 
Fenneropenaus 

indicus 

Increase in survival and wet weight, 

increases in specific activities of 

amylase, total protease 

Ziaei-Nejad (2006) 

Pseudomonas strain I-2 Penaeus monodon 

 

Production of inhibitory compounds 

against V. harveyi, V. fluvailis, Vibrio 

parahaemolyticus, Vibrio damsela 

and Vibrio vulnificus 

Chythanya et al. (2002) 
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Microbe Host Species Effect on Host Reference 

Pseudomonas sp. PM11 and 

Vibrio fluvalis sp. 
Penaeus monodon 

 

Increased survival of P. monodon 

because of its antagonistic effect 

towards V. harveyi 

 

Meunpol et al. (2003) 

Vaseeharan et al. (2003) 

Vibrio P62, and Bacillus P64 Penaeus vannamei 

Both showed inhibitory effects against 

Vibrio harveyi. However P64 showed 

immunostimulatory features  as well 

 

Gullian et al. (2004) 

Carnobacterium sp. 
Salmo salar L. and 

Oncorhynchus mykiss 

Reduction of disease by A. 

salmonicida in Oncorhynchus mykiss, 

V. ordalii in Salmo salar L., and 

Yersinia ruckeri in Salmo salar L. and 

Oncorhynchus mykiss 

 

 

Bacillus sp. RI0695 Crassostrea virginica 

Increased survival of larvae when 

challenged with Vibrio tubiashii, 

through production of inhibitory 

compounds and colonization. 

Karim et al. (2013) 

Claulobacter sp. PK654  

 

Demonstrated against two 

phytoplankton, Skeletonema costatum 

and Heterosigma akashiwo 

Kawano, Asada et al. 

1998 

Phaeobacter gallaeciensis S4 Crassostrea virginica 

 

Increased survival of larvae when 

challenged with Vibrio tubiashii. 

Through inhibitory compounds, 

colonization and biofilm formation. 

Karim et al. (2013) 
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Various microorganisms produce antimicrobial compounds that limit the 

growth of aquaculture pathogens.  While not a probiotic organism, Skeletonema 

costatum, a common phytoplankton used in larviculture of mollusks and crustaceans, 

produces an organic extract capable of inhibiting the growth of V. anguillarum and 

three Vibrio species (Kesarcodi-Watson, Kaspar et al. 2008).  Additionally, the 

antibiotic thiotropocin produced by Claulobacter sp. PK654 demonstrated inhibitory 

activity towards the fish pathogen Lactococcus garvieae, but also had activity against 

two phytoplankton, Skeletonema costatum and Heterosigma akashiwo (Kawano, 

Asada et al. 1998, Naviner, Bergé et al. 1999, Kesarcodi-Watson, Kaspar et al. 2008). 

A study by Meunpol et al. (2003) suggested that the probiotic Bacillus S11 was a 

contributing factor to the survival of black tiger shrimp (Penaeus monodon) in the 

presence of the bacterial pathogen V. harveyi  (Meunpol, Lopinyosiri et al. 2003). 

Certain Bacillus sp. have been shown to antagonize the growth of pathogenic Vibrio 

spp. (Vaseeharan and Ramasamy 2003), thus suggesting a possible mechanism of 

action for Bacillus S11. 

There are two major restrictions to the approach of only screening for the 

production of antimicrobial substances by potential probiotic microbes (Kesarcodi-

Watson, Kaspar et al. 2008). One is that other modes of probiotic activity, such as 

immunostimulation, digestive enzymes production, competition for attachment sites, 

and nutrient enhancement, are not revealed by these types of experiments. These could 

be major contributing mechanisms of action and would be otherwise overlooked.  

Another drawback is that positive results in vitro may not translate into the anticipated 

in vivo effects (Kesarcodi-Watson, Kaspar et al. 2008). For example, P. fluorescens 
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strain AH2 demonstrated inhibitory effects against the salmon pathogen A. 

salmonicida in vitro, but no protective effect was found when the probiotic was tested 

in vivo (Gram, Melchiorsen et al. 1999, Gram, Løvold et al. 2001). The same result 

was seen by Ruiz-Ponte et al. (1999), when in vitro antagonism of a putative probiotic 

bacterium did not translate to protection of scallop larvae once challenged by a 

pathogen. Similarly, a bacterium that is not inhibitory in the laboratory might actually 

be antagonistic in vivo (Ruiz-Ponte, Samain et al. 1999).  This suggests other traits that 

might be required, such as successful colonization of the host by the putative probiotic 

organism.  In other studies, probiotics have been tested further for properties such as 

bile resistance (Chabrillón, Arijo et al. 2006), attachment capacity (Olsson, 

Westerdahl et al. 1992, Hjelm, Riaza et al. 2004), immunostimulation (Rengpipat, 

Phianphak et al. 1998, Irianto and Austin 2002, Gullian, Thompson et al. 2004), 

competition for adhesion sites (Vine, Leukes et al. 2004, Chabrillón, Arijo et al. 2006) 

and competition for nutrients (siderophore production) (Gram, Melchiorsen et al. 

1999). In practice, these latter studies test whether or not a probiotic that produces 

diffusible inhibitory substances also possesses other modes of probiotic action.  

Although competition for adhesion sites has been widely suggested as a mode of 

action, this has been demonstrated only in vitro. There are studies reporting an 

adhesion of certain bacteria to intestinal mucus in vitro (Krovacek, Faris et al. 1987, 

Olsson, Westerdahl et al. 1992, Garcia, Otto et al. 1997, Jöborn, Olsson et al. 1997, 

Hansen and Olafsen 1999, Gullian, Thompson et al. 2004, Vine, Leukes et al. 2004). 

The attachment properties of potential probiotics measured in vitro cannot be 

presumed to exert the same effect in vivo (Vine, Leukes et al. 2004).  This study 
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examined the competitive exclusion effect of five probiotics isolated from the gut of 

the common clownfish, Amphirion percula, versus the pathogens A. hydrophila and V. 

alginolyticus on fish intestinal mucus.  Only one of the probiotic strains inhibited the 

attachment of one of the pathogens on the intestinal mucus of A. percula (Vine, 

Leukes et al. 2004).   

  

Another probiotic mechanism of action is the ability to outcompete a pathogen 

for attachment sites.  Probiotics that use this particular mechanism of action would 

have a distinct advantage if the addition of probiotic bacterium was introduced during 

the initial egg fertilization steps of larviculture (Irianto and Austin 2002). Several 

studies have suggested that a probiotic effect may be seen due to competition for 

energy sources with pathogenic bacteria (Rico-Mora, Voltolina et al. 1998, 

Verschuere, Rombaut et al. 1999, Verschuere, Rombaut et al. 2000). Enhanced growth 

and survival were observed in Artemia sp. pre-exposed to nine strains (LVS1–LVS9) of 

bacteria before challenge with V. proteolyticus.  The protective effect was attributed to 

the competition for energy sources and for adhesion sites between the probiotic 

bacteria and pathogen V. proteolyticus (Verschuere, Rombaut et al. 1999). 

 Competition for iron has been reported as an important factor in marine 

bacterial systems. Iron is necessary for the growth of most bacteria. However, the 

ferric Fe
3+

 form is found in limited amounts in the tissues and body fluids of the host 

animals (Verschuere, Rombaut et al. 2000).  Both probiotic and pathogenic bacteria 

may produce siderophores that bind iron, increasing microbial growth (Gram, 

Melchiorsen et al. 1999). It has been hypothesized that probiotics producing 

siderophores could compete with potential pathogens for iron (Kesarcodi-Watson, 
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Kaspar et al. 2008, Watson-Kesarcodi 2008). This may deprive pathogens of iron and 

limit their propagation (Gram, Melchiorsen et al. 1999, Kesarcodi-Watson, Kaspar et 

al. 2008). This was observed by Gram et al. (1999) who found that a culture 

supernatant of P. fluorescens inhibited the growth of V. anguillarum when incubated 

in low iron conditions (Gram, Melchiorsen et al. 1999, Kesarcodi-Watson, Kaspar et 

al. 2008). A similar result was observed in vivo.  Constant exposure of P. fluorescens 

either in feed or in the water reduced mortality in Calta calta when challenged with 

pathogenic Vibrio (Mohideen, Mohanb et al. 2010).  

Another mode of action that probiotics may provide protection to the host is an 

immunostimulant effect (Kesarcodi-Watson, Kaspar et al. 2008). Itami et al. (1998) 

found increased phagocytic activity of shrimp granulocytes compared to controls of 

Marsupenaeus japonicas, the Japanese tiger prawn, when treated with the 

peptidoglycan of Bifidobacterium thermophilum and then challenged with V. 

penaeicida (Itami, Asano et al. 1998). A study by Gullian et al. (2004) tested the 

immunostimulation of healthy wild shrimp by a live Vibrio sp. (P62 and P63) and 

Bacillus sp. (P64) using the pathogen V. alginolyticus (IIi) as a positive control 

(Gullian, Thompson et al. 2004). They concluded that Bacillus sp. P64 showed both 

probiotic and immunostimulatory effects (Gullian, Thompson et al. 2004, Kesarcodi-

Watson, Kaspar et al. 2008).  

There are many probiotic strains of Bacillus bacteria cited as useful for the 

treatment of bacterial disease in aquaculture (Rengpipat, Phianphak et al. 1998, 

Gatesoupe 1999, Murthy and TJ 1999, Riquelme, Jorquera et al. 2001, Meunpol, 

Lopinyosiri et al. 2003, Farzanfar 2006, Vine, Leukes et al. 2006, Ziaei-Nejad, Rezaei 
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et al. 2006, Decamp, Moriarty et al. 2008, Romalde and Barja 2010).  In particular, 

Bacillus spp. have shown promise in crustacean and mollusk aquaculture (Queiroz and 

Boyd 1998). Several species of Bacillus have been used to increase the survival of 

crustaceans (Queiroz and Boyd 1998, Rengpipat, Phianphak et al. 1998, Meunpol, 

Lopinyosiri et al. 2003, Vaseeharan and Ramasamy 2003, Cude, Mooney et al. 2012). 

These probiotic candidates were initially screened in vitro for inhibitory substances 

and many were further tested in vivo for their probiotic activity. For example, a study 

by Rengpipat et al. examined the growth of P. monodon and its resistance to Vibrio 

when fed with Bacillus (BS11) (Rengpipat, Phianphak et al. 1998). Their results 

suggested that the growth and survival rates of P. monodon were significantly higher 

than the controls due to probiotic stimulation of cellular and humoral immunity 

(Rengpipat, Phianphak et al. 1998).   

Bacteria belonging to the genus Phaeobacter have also shown promise as 

probiotic agents for aquaculture.  Phaeobacter are α-proteobacteria belonging to the 

Roseobacter clade, which comprises the majority of oceanic bacterioplankton 

(Brinkhoff, Bach et al. 2004, Bruhn, Nielsen et al. 2005, Porsby, Nielsen et al. 2008, 

Porsby, Webber et al. 2011).  Previous studies have reported several Roseobacter 

isolates that exhibit antagonistic effects against pathogenic Vibrio species that are 

problematic in cod and turbot larviculture (Brinkhoff, Bach et al. 2004, Porsby, 

Nielsen et al. 2008, Porsby, Webber et al. 2011).  Roseobacter clade isolates have 

been shown to produce tropodithetic acid (TDA), an antibiotic with potent effects 

against marine and human pathogens.  
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The structure of TDA was reported by Liang to be a tropolone fused to a four 

membered ring incorporating a disulfide (Brinkhoff, Bach et al. 2004, Bruhn, Nielsen 

et al. 2005, Porsby, Webber et al. 2011, D'Alvise, Lillebo et al. 2012).  TDA has been 

proposed to be a tautomer of thiotropocin, another broad-spectrum antibiotic (Bentley 

2008, Greer, Aebisher et al. 2008, Porsby, Webber et al. 2011, Seyedsayamdost, Carr 

et al. 2011).  The structure of thiotropocin is a tropolone attached to a five membered 

thiolactone ring (Figure 1), and was supported by 
13

C labeling studies by Cane and 

coworkers (Cane, Wu et al. 1992).  Tropodithietic acid (TDA) was first described by 

Liang from bacteria belonging to the Roseobacter clade (Liang 2003). The structure 

elucidation data included mass spectrometry,UV, 
1
H, 

13
C, HSQC, HMBC NMR, IR, 

and X-ray data.  Many papers that work with Roseobacter clade bacteria attribute the 

antibiotic activity to TDA and subsequently cite this dissertation (Brinkhoff, Bach et 

al. 2004, Bruhn, Nielsen et al. 2005, Porsby, Nielsen et al. 2008, Porsby, Webber et al. 

2011, Seyedsayamdost, Carr et al. 2011). Thiotropocin had broad spectrum antibiotic 

activity against human pathogens was previously isolated from Pseudomonas 

(Kintaka, Ono et al. 1984). In 2006 Laatsch cited that the unpublished data suggesting 

the structural assignments of TDA were incorrect (Laatsch 2006). Computational 

studies carried out by Greer et al. provided insight that tropodithietic acid and 

thiotropocin exist as isomers rather than a single structure with a symmetric hydrogen 

bond (Greer, Aebisher et al. 2008).    
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Figure 1. Antibiotic produced by certain bacteria belonging to the genera Phaeobacter, 

Ruegeria, and Roseobacter that exhibit probiotic activity against V. anguillarum. 

 

 

Several in vivo studies have shown promise toward the development of 

probiotic agents in shellfish, particularly in crustaceans. For example, Lactobacillus 

sp. was examined for activity against gram negative bacteria in freshwater prawns 

(Venkat, Sahu et al. 2004). Bifidobacterium thermophilum derived peptidoglycan 

proved to be successful in vivo against V. penaeicida in shrimp (Itami, Asano et al. 

1998). Several Bacillus sp. are active against V. harveyi in shrimp aquaculture 

(Vaseeharan and Ramasamy 2003) (Moriarty 1998, Meunpol, Lopinyosiri et al. 2003, 

Gullian, Thompson et al. 2004). Alavandi et al. (2004) examined two candidate 

probiotics, Pseudomonas sp. PM11 and Vibrio fluvalis sp. PM 17, for their ability to 

cause immunostimulation in shrimp (Alavandi, Vijayan et al. 2004). Gibson et al. 

demonstrated that probiotic candidate Aeromonas media sp. 199 produced an 

inhibitory substance that contributed to the antagonistic effects in vitro as well in vivo 

(Gibson, Woodworth et al. 1998). Aeromonas media sp. 199 increased the survival 
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rate of 2-6 day old Pacific oyster larvae Crassostrea gigas over five days in a V. 

tubiashii challenge (Gibson, Woodworth et al. 1998).  Karim et al. (2013) determined 

both Bacillus pumilus RI0695 and Phaeobacter gallaeciensis S4 exhibited 

antagonistic effects towards V. tubiashii in vitro (Karim, Zhao et al. 2013). 

Additionally the probionts were able to protect Crassostrea virginica larvae when 

challenged with V. tubiashii in vivo (Karim, Zhao et al. 2013). Karim et al. (2012) 

postulated that the potential mechanisms of action for B. pumilus RI0695 and P. 

gallaeciensis S4 could be the excretion of an antibiotic molecule, biofilm formation by 

the bacterium, immune modulation of the oyster larvae, and colonization of marine 

surfaces (Karim, Zhao et al. 2013).    

Use of probiotics in bivalve shellfish hatcheries 

Understanding the potential mechanisms of action of probiotics would be 

useful for determining the optimal modes of delivery in order to achieve disease 

management in commercial settings.  It is necessary to ensure that probiotic microbes 

are non-toxic to both the intended host and the microalgal feed. Microalgae are 

generally used as a food source in larviculture and probiotic epiphytes could promote 

phytoplankton growth (Haines and Guillard 1974, Ukeles and Bishop 1975, Fukami, 

Nishijima et al. 1992, Fukami, Nishijima et al. 1997, Kesarcodi-Watson, Kaspar et al. 

2008).  Probionts that attach to microalgae may also be delivered to larvae as algal 

epiphytes.  Gomez-Gil et al. (2002) co-cultured shrimp probiotic, V. alginolyticus 

strain C7b, with Chaetoceros muelleri, a feed for shrimp larvae, without having any 

adverse effect on the microalgae (Gomez-Gil, Roque et al. 2002).  Avendaño and 

Riquelme (1999) investigated the growth of seven bacterial strains co-cultured with 
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Isochrysis galbana (Avendaño and Riquelme 1999). The co-culture of bacterium 

Vibrio sp. C33 significantly enhanced the ingestion of the candidate probiotic 

bacterium in larval scallop, Argopecten purpuratus (Avendaño and Riquelme 1999). 

Bairagi et al. (2004) examined the benefit of adding two probiotic candidates, B. 

subtilis and B. circulans, derived from adult carp Cyprinus carpio, to the diet of Labeo 

rohita (rohu) (Bairagi, Sarkar Ghosh et al. 2004). They found that the addition of both 

Bacillus bacteria increased rohu’s growth, feed conversion ratio, and protein 

efficiency ratio (Bairagi, Sarkar Ghosh et al. 2004). It was hypothesized that this 

increase was due to the extracellular cellulolytic and amylolytic enzyme production by 

the bacteria (Bairagi, Sarkar Ghosh et al. 2004, Kesarcodi-Watson, Kaspar et al. 

2008). 

Commercially available probiotics for shellfish aquaculture 

 Although a number of potential probiotics have been studied in shellfish 

aquaculture, no commercial products are currently available.  This is despite the fact 

that probiotic agents have been developed for other aquacultured species, including 

penaeid shrimps, catfish, rotifers, and tilapia (Hirata, Murata et al. 1998, Queiroz and 

Boyd 1998, Murthy and TJ 1999, Irianto and Austin 2002, Cutting 2011, 

Parthasarathy, Ramasubramanian et al. 2012).  All of these commercial probiotics are 

derived from gram-positive bacteria, such as Bacillus spp.  

 It has been suggested that various gram positive and gram negative marine 

bacteria are possible candidate probiotics for commercial hatchery settings. However, 

more research, including the evaluation and development of various probiotic 

formulation techniques, must be performed in order to overcome the challenges of 
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creating a product that meets the criteria of a dry, stable, and viable formulation over 

time while inducing a safe and protective probiotic effect.  

Conclusion  

Aquaculture production is estimated to be worth 130.2 billion USD worldwide 

according to FAO overview of major trends and issues (FAO 2014) . Hatcheries and 

nurseries in the United States produce large numbers of a variety of species of oysters, 

clams and scallops (Elston 1998). These hatcheries can be infected with bacterial 

diseases and such infection can have serious impacts on production, with 45.5% of 

losses in hatchery aquaculture attributed to infectious diseases (FDA 2012). Losses in 

production due to disease may thus result in tremendous economic loss. Aquaculturists 

have explored using filtration systems, electrolytic, ozonolysis and UV treatments of 

seawater, adjusting salinity, and selective breeding as disease management tools.  

Vaccines are not feasible in bivalves. The use of antibiotics in aquaculture can have 

potentially detrimental effects, including the development of antibiotic-resistant 

organisms, including the development of drug- resistant bacteria that are causative 

factors for human and animal diseases (Vaseeharan and Ramasamy 2003, Farzanfar 

2006). Additionally, investigations into the use of probiotics as new disease 

management tools are being conducted. 

Karim et al. (2013) demonstrated that probiotic candidates Bacillus pumilus 

RI0695 and Phaeobacter gallaeciensis S4 were antagonistic against growth of V. 

tubiashii in vitro and were able to protect C. virginica larvae when challenged with V. 

tubiashii in vivo. Chapter Two presents a chemical investigation into the mechanism 

of action of candidate probiotic P. gallaeciensis S4. Although there has been much 
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promise in the study of potential probiotics in shellfish aquaculture, no commercial 

products are currently available, a situation which affords ample opportunities for the 

investigation and development of probiotics for this application. Chapters Three and 

Four summarize experiments based upon classic pharmaceutical techniques, including 

granulation and lyophilization, in order to formulate two promising probiotic bacteria, 

B. pumilus RI0695 and P. gallaeciensis S4, respectively, for eventual use in 

commercial aquaculture operations.  
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Abstract 

 

Previous studies have shown that the marine bacterium Phaeobacter 

gallaeciensis S4 can reduce mortality in larvae of the Eastern oyster Crassostreae 

virginica challenged with the pathogens Vibrio tubiashii and Roseovarious 

crassostreae. However, the mechanisms involved in this probiotic protection remain 

to be elucidated. In this study, secondary metabolites produced by P. gallaeciensis S4 

were investigated for their contributions to larval protection.  Using a bioassay-guided 

fractionation approach, it was found that the S4 strain produces tropodithietic acid 

(TDA) and that this compound has potent antibiotic properties against the marine 

pathogens V. tubiashii, R. crassostreae, and V. anguillarum. A series of mutants of S4 

(tdaA
-
, tdaB

-
, tdbD

-
, clpX

-
, rpoE

-
, exoP) were tested for their production of TDA.   The 

tdaA
-
, tdaB

-
, tdbD

-
, and clpX

-
 mutants lost the ability to produce TDA, while the rpoE

-
 

and exoP
-
 strains produced TDA at levels similar to the wild-type strain. The tdaA

-
, 

tdaB
-
, tdbD

- 
strains were deficient in TDA production and had 70-80% reduction in 

biofilm formation. The clpX
-
 strain maintained its ability to form a normal biofilm, 

while the exoP
-
 strain was biofilm deficient.  In further collaboration with the 

laboratory of Dr. Marta Gomez-Chiarri at URI, challenge assays were conducted using 

oyster larvae, V. tubiashii, and the clpX
-
, exoP

-
, and wild-type strains.   These in vivo 

experiments revealed that both TDA production and biofilm formation contribute to 

the probiotic activity of P. gallaeciensis S4. 
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Introduction 

Bacteria belonging to the genus Phaeobacter have shown promise as probiotic 

agents for aquaculture. Phaeobacter are α-proteobacteria belonging to the Roseobacter 

clade, which comprises the majority of oceanic bacterioplankton (Liang 2003, 

Brinkhoff, Bach et al. 2004, Porsby, Nielsen et al. 2008, Porsby, Webber et al. 2011). 

Previous studies have reported several Roseobacter isolates that exhibit antagonistic 

effects against pathogenic Vibrio species that are problematic in cod and turbot 

larviculture (Brinkhoff, Bach et al. 2004, Bruhn, Nielsen et al. 2005, Porsby, Nielsen 

et al. 2008, Porsby, Webber et al. 2011, D'Alvise, Lillebo et al. 2012).  

In the last two decades, there has been an increased incidence of disease 

outbreaks by oyster pathogens (Boettcher, Geaghan et al. 2005, Gomez-Leon, Villamil 

et al. 2008, USDA 2008, NOAA 2012). Some of these diseases are detrimental to 

hatchery production of larvae and can subsequently impact shellfish production by 

farmers. In particular, pathogen outbreaks of Vibrio spp. can have devastating effects 

on oyster larviculture (Romalde and Barja 2010). In 2006, Vibrio outbreaks were 

reported to have caused a 59% decline in oyster larvae production (Balcazar, de Blas 

et al. 2006). Other infectious diseases also affect the shellfish industry. Outbreaks of 

the bacterial pathogen Roseovarious crassostreae can cause up to 90% losses of total 

production. New disease management tools are required to combat pathogen outbreaks 

in shellfish aquaculture facilities.  

The treatment of pathogenic disease in aquaculture is problematic due to 

limited resources and treatment options (Decamp, Moriarty et al. 2008). Filtration, UV 
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irradiation, ozonolysis, and electrolysis of incoming seawater have all been explored 

to reduce the risk of introducing pathogens to hatcheries. However, all of these 

methods have drawbacks, mainly high costs (Meunpol, Lopinyosiri et al. 2003, Park, 

Kim et al. 2011). Seawater filtration using a 1µm filter cartridge and followed by 

exposure to UV irradiation (30,000 µWs
-1

cm
-2

) prevented infection of oyster juveniles 

by both eukaryotic parasites H. nelsoni and Perkinsus marinus, the causative agent for 

Dermo disease (Ford, Xu et al. 2001). Filter sterilized seawater has yielded good 

results in preventing Juvenile Oyster Disease JOD in cultures of the Eastern oyster C. 

virginica (Boettcher, Barber et al. 1999). Ozonation in freshwater recirculating 

hatchery systems has been used for almost 30 years to control bacterial disease (Park, 

Kim et al. 2011). There have been some conflicting reports that ozonation in seawater 

can have toxic effects due to a reaction with bromine (Park, Kim et al. 2011). 

Electrolytic methods have been successful in reducing microalgae, bacteria, and 

viruses (Jorquera, Valencia et al. 2002, Wijesekara, Nomura et al. 2006, FAO 2014). 

Despite some success in water treatment, shellfish hatcheries are still impacted by 

disease outbreaks.   Vaccines are not feasible in bivalves and overuse of antibiotics 

can promote drug resistance.  In order to minimize this threat, new alternatives must 

be sought out for disease management.   

Probiotics have shown promise as a disease management tool for aquaculture, 

particularly in shrimp (Rengpipat, Phianphak et al. 1998, Farzanfar 2006, Decamp, 

Moriarty et al. 2008). They are defined by the World Health Organization to be ‘Live 

microbes which have a beneficial effect on the host’(Liang 2003). They are a “green” 

alternative to the use of antibiotics since they are unlikely to contribute to the rising 
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problem of antimicrobial resistance. Marine probiotics have several proposed modes 

of action, including the production of antimicrobial compounds, competition for 

adhesion sites and nutrients, stimulation of the host immune system, and enhancement 

of nutrition for the host (Queiroz and Boyd 1998, Murthy and TJ 1999, Ziaei-Nejad, 

Rezaei et al. 2006, Kesarcodi-Watson, Kaspar et al. 2008, Cude, Mooney et al. 2012). 

Unlike chemical antibiotics, probiotics are provided to larvae prior to infection 

outbreaks in order to control pathogens in the aquaculture setting. 

Previously, Phaeobacter gallaeciensis S4 was isolated from the inner shell 

surface of an apparently healthy oyster.  Phaeobacter spp. can form rosettes, are 

excellent biofilm formers, and are considered to be dominant colonizers of surfaces in 

marine environments. When S4 was used as a potential probiotic treatment of oyster 

larvae, it showed strong antagonistic properties against pathogens and increased host 

survival in the presence of bacterial pathogens. S4 can be used to mitigate the effects 

of several important diseases, but little is known about the probiotic mechanisms of 

action (Karim, Zhao et al. 2013). In this study, we examined the roles of antibiotic 

production and biofilm formation in the probiotic activity of P. gallaeciensis S4.  

Bioassay-guided fractionation was used to isolate tropodithietic acid (TDA), a potent 

antibiotic against important marine pathogens.  Using a series of gene-knockout 

experiments and in vivo challenges with oyster larvae, the contributions of TDA and 

biofilm production by S4 were individually interrogated for their contributions to the 

probiotic activity of S4.   

Methods and Materials 
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General Experimental Procedures 

1
H NMR spectra were recorded in benzene-d6 at 20 °C on a Varian 500 MHz 

VNMRS spectrometer (Agilent Technologies, Wilmington, DE USA). Chemical shifts 

were referenced with to the solvent signal at δH 7.16. Data processing was performed 

using VNMRJ software (Agilent Technologies, Wilmington, DE USA). ESIMS of the 

purified compound was measured using an AB Sciex QSTAR Elite quadrupole time-

of-flight (qTOF) mass spectrometer (m/z 5-40,000) equipped with a Turbo Ion Spray 

source (AB Sciex, Framingham, MA USA). Preparative high-pressure liquid 

chromatography HPLC was conducted on a Hitachi Elite LaChrom system consisting 

of a L2130 pump, L-2200 autosampler and an L-2455 diode array detector. Data 

processing was performed on EZ Chrom Elite software (Hitachi Santa Clara, CA 

USA).   The HPLC analysis was carried out on a Waters Xterra 5µm C18 100 x 3.0 

mm column (Milford, MA USA). UHPLC experiments were conducted using a 

Hitachi La Chrom Ultra® equipped with a diode-array detector L2445U, a column 

oven L-2300, an auto sampler L-2200U, two L2160U pumps, and a Fortis® (Cheshire, 

CH64 3UG) 1.7µ 2.1x50 mm C18 column connected to a 3 µ C18 guard column.  

Bacteria strains and cultivation 

Phaeobacter gallaeciensis S4, R. crassostreae Cv 919-312
T 

and V. tubiashii 

RE22 were provided by Dr. Marta Gómez-Chiarri (University of Rhode Island), and 

Vibrio harveyi BB120 was provided by Dr. David Nelson (University of Rhode 

Island). P. gallaeciensis S4 mutant and complement strains (tdaA
-
, tdaB

-
, tdbD

-
, clpX 

-
 

and exoP
-
) were provided by Dr. Wenjing Zhao and Dr. David Nelson (University of 

Rhode Island). All bacteria were cultured in a seawater-based yeast extract-peptone 
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culture medium [YP; 5 g/L of peptone (Sigma Aldrich, St. Louis, MO USA), 1 g/L of 

yeast extract (Becton, Dickinson and Co, Franklin Lakes, NJ USA), and 30 g/L of 

Instant Ocean (United Pet Group Inc., Cincinnati, OH USA) in pure, reverse osmosis 

(RO) water] at 28 °C with shaking at 175 rpm.  Bacterial stocks were stored at −80 °C 

in YP broth with 25% glycerol until use. 

Purification and identification of bioactive molecule from Phaeobacter 

gallaeciensis S4 

P. gallaeciensis S4 was cultured in 7 x 1 L volumes of YP liquid culture 

medium at 28 °C with shaking at 175 rpm. After 96 h, the cells were pelleted by 

centrifugation at 10,000 rpm for 10 min. The resulting culture supernatants were 

acidified to pH 3 with formic acid (FA) (Sigma Aldrich, St. Louis, MO USA) and 

extracted with acidified (0.1% FA) ethyl acetate. The ethyl acetate extract was 

concentrated in vacuo to yield 0.673 g of crude extract. The extract was fractionated 

using C18 flash chromatography (Redi sep Rf high performance gold 30g hp 

combiflash column; linear gradient elution 5% - 100% CH3OH in H2O, 0.1% FA, 45 

min). This led to fractions containing pure TDA, which was identified based on 

comparison of 
1
H NMR and ESIMS data with literature values. To construct a 

standard curve for determining concentrations of TDA, solutions of pure TDA in 

methanol (MeOH) at various concentrations were analyzed by reversed-phased HPLC. 

Eluent A was Milli-Q water acidified with 0.1% FA and eluent B was HPLC grade 

methanol acidified with 0.1% FA. The method program was a linear gradient of 5% to 

100% eluent B over 9 min. The injection volume was 3 µL and the flow rate was 0.25 

mL/min. All chromatograms were analyzed at a wavelength of 302 nm for detection of 
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TDA (tR = 7.35 min). Each concentration was analyzed in triplicate, and averages were 

calculated for the peak areas. A standard curve was constructed by plotting peak area 

versus concentration.  

Disc Diffusion assay 

Extracts were dissolved in MeOH at 25 mg/mL and 10 µL of the sample was 

pipetted onto a paper disc and allowed to dry (250 µg/disc). Meanwhile, overnight 

culture of V. harveyi BB120 was swabbed onto YP plates. Discs were laid onto the 

agar surface and the plates were incubated for 24 h at 28 °C.  Zones of growth 

inhibition were measured in mm.  

Minimum inhibitory concentration (MIC) assay 

 

The MIC of TDA was determined against V. tubiashii and V. anguillarum 

following standard protocols (Andrew 2001). Briefly, 5 µL of a two-fold serial 

dilution of TDA in methanol was added to wells of a 96 well microtiter plate. The 

final concentration of TDA in the well ranged from 25 µg/mL to 0.196 µg/mL.  V. 

tubiashii RE22 or V. anguillarum (195 μL, 10
5 

CFU/ mL) was added to the wells 

containing TDA.  Control wells received 5 µL MeOH, tetracycline (antibiotic control, 

concentrations from 20 µg/mL to 0.391 µg/mL) or negative control (YP media only).  

All treatments or controls were tested in triplicate.  The plate was incubated at 30 °C 

for 24 h. The presence or absence of V. tubiashii RE22, V. anguillarum growth was 

determined visually after 24 h. The MIC was defined as the lowest concentration of 

antibiotic resulting in no visible bacterial growth. 

Construction of mutant strains of Phaeobacter gallaeciensis S4  
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S4 mutant strains were created to investigate the role of TDA in the probiotic 

activity of P. gallaeciensis S4. The mutant S4 strains (tdaA
-
, tdaB

-
, tdbD

-
, clpX

-
, rpoE

-
, 

exoP
-
) and complement strains (clpX

+
 and exoP

+
) were constructed and provided by 

the Nelson laboratory (Cell and Molecular Biology Department, University of Rhode 

Island).  Briefly described below are the methods for the construction of the mutant 

strains and the complement mutation strains by Dr. Wenjing Zhao and Dr. David 

Nelson.  

Insertional mutagenesis 

Insertional mutagenesis by homologous recombination was used to create 

interruptions within specific genes using a modification of the procedure described by 

Milton and Wolf-Watz (Milton, O'Toole et al. 1996, Li, Mou et al. 2011). Briefly, 

primers (Table 1) were designed to amplify specific Phaeobacter genes based on 

homologous sequences from P. gallaeciensis 2.10 (GenBank accession 

No.CP002972.1). A fragment of the selected gene was PCR amplified, then digested 

with SacI and XbaI restriction enzymes, and the DNA fragments separated on a 1% 

agarose gel. Subsequently, the gel-purified PCR fragment was ligated into the suicide 

vector pNQ705 after digestion with SacI and XbaI and the ligation mixture was 

introduced into E. coli Sm10 (λ pir) by electroporation with Bio-Rad Gene Pulser II. 

The resulting recombinant plasmids were confirmed by both PCR amplification and 

sequencing. The mobilizable suicide vector was transferred from E. coli Sm10 (λ pir) 

into S4Sm by conjugation. Transconjugants were selected by utilizing the 

chloramphenicol resistance gene located on the suicide plasmid. The incorporation of 

the suicide vector into the gene of interest was confirmed by PCR analysis and DNA 
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sequencing. 

Complementation of mutants 

P. gallaeciensis mutants were complemented by cloning the appropriate gene 

fragment into the shuttle vector pBBR1MCS4 (GenBank accession No. U25060), 

using a modification of the method described previously by Rock and Nelson (Rock 

and Nelson 2006). Briefly, primers (Table 1) were designed with a SacI or XbaI site 

added to the 5’ end of the appropriate primer. The primer pair was then used to 

amplify the entire gene plus ∼500 bp of the 5′ and 3′ flanking regions from genomic 

DNA sequences of P. gallaeciensis 2.10 (GenBank accession No.CP002972.1). The 

resulting amplicon was ligated into the pBBR1MCS4 plasmid after digestion with 

SacI and XbaI and the ligation mixture introduced into E. coli Sm10 (λ pir) by 

electroporation with Bio-Rad Gene Pulser II. Transformants were selected on LB10-

Amp100 agar plates and the recombinant plasmids confirmed by both PCR 

amplification and sequencing. The complementing plasmid, pBBR1MCS4-clpX or 

pBBR1MCS4-exoP, was transferred from E. coli Sm10 into clpX or exoP mutants by 

conjugation using the procedures described previously. The transconjugants were 

confirmed by PCR amplification. 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165693/table/T2/
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Table 1. Primers used to construct S4 genetic knock out mutants 

Primer 
Sequence (5' to 3', underlined sequences are engineered 

restriction sites) 
Description 

pw108 GAAGAGCTCGGACGACTATGTGATTGGTCAGGC For clpX insertional mutation, forward, with SacI site 

pw109 GGGTCTAGACGACGTTATATTCCGACGCCTGCA For clpX insertional mutation, reverse, with XbaI site 

pw153 GTATTAGAGCTCGAGCATAACCGCTTTGCCCGCCGCCCA For exoP insertional mutation, forward, with SacI site 

pw154 CGACTATCTAGACCATGCTGAGTGCAAGGTTGACGGCGG For exoP insertional mutation, reverse, with XbaI site 

pw127 GCATTAGAGCTCGTCAGATTGGCCGAAGCCCCTTTT  For clpX in trans complement, forward, with SacI site 

pw128 CGGCTATCTAGACGAACTCACCACCTGAGGAGATACGT For clpX in trans complement, reverse, with XbaI site 

pw166 GTATTAGAGCTCCCCGTCCGATGTGTCAAAATAGGT For exoP in trans complement, forward, with SacI site 

pw165 CGTCTTTCTAGAGGTGCCTGCGGTCATCACCATGAC For exoP in trans complement, reverse, with XbaI site 

pwGFP-F GCGGTACATATGTAAGGAGGAAAAACATATG For amplification of gfp ORF, forward, with NdeI site 

pwGFP-R CTATATGGATCCCAGATCTATTTGTATAGTTCATCCA For amplification of gfp ORF, reverse, with BamHI site 

Pm113 GGTACCTGTCTGTCGCCTCTTGT For amplification of PflaB, forward, with KpnI site 

Pm114 GGTACCATATCATTCCTCCATGAT For amplification of PflaB, forward, with KpnI site 

pwmO-F GCGGTACATATGATGGTGAGCAAGGGCGAGGAGAAT For amplification of ofp ORF, forward, with NdeI site 

pwmO-R CTATATGGATCCCTTGTACAGCTCGTCCATGCCGCC For amplification of ofp ORF, reverse, with BamHI site 
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Chemical Extraction of wild type strain and mutant strains  

S4 wild type and S4 mutant strains (tdaA
-
, tdaB

-
, tdbD

-
, clpX

-
, rpoE

-
, exoP

-
 and 

complement strains clpX
+
 and exoP

+
) were cultured in triplicate in 50 mL cultures 

(YP medium, 27 °C, 175 rpm) until stationary growth phase was reached as indicated 

by an OD600 absorbance of 0.7-0.8 (10
8
 CFU). The cells were pelleted by 

centrifugation (4,000 rpm, 10 min). The supernatants were passed through a 0.2 

micron filter, acidified to pH 3 with FA, and extracted twice with 50 mL of acidified 

(0.1% FA) ethyl acetate. The two organic layers for each culture were combined and 

dried in vacuo at 27 °C, yielding 27 crude extracts.  The procedure was additionally 

used to prepare and analyze culture extracts of the S4 wild type and tdaA
-
, tdaB

-
, tdbD

-

, clpX
-
, rpoE

-
, and exoP

- 
mutants at 6 h and 24 h time points, yielding an additional 42 

extracts.   

HPLC Detection of TDA in S4 wild type and tdaA-, tdaB
-
, tdbD

- 
extracts 

S4 culture extracts (wild type, tdaA
-
, tdaB

-
, and tdbD

-
) were prepared in 10 

mg/mL solutions in HPLC grade MeOH. The extracts were analyzed by reversed-

phase HPLC system equipped with a diode array detector (DAD) and Xterra 5µm C18 

100 x 3.0 mm column.  Eluent A was Milli-Q water acidified with 0.1% FA and eluent 

B was HPLC grade methanol acidified with 0.1% FA. The program was a linear 

gradient of 5% to 100% eluent B over 24 min. The injection volume was 10 µL and 

the flow rate was 0.5 mL/min. Spectra were analyzed at a wavelength of 302 nm for 

optimal detection of TDA. 

UHPLC Detection and Quantification of TDA in P. gallaeciensis S4 culture 

extracts  
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The analysis of the crude extracts was also conducted using reversed-phase UHPLC.  

S4 culture extracts (wild type, clpX
-
, rpoE

-
, and exoP

-
) were prepared in 10 mg/mL 

solutions in HPLC grade MeOH.  Eluent A was Milli-Q water acidified with 0.1% FA 

and eluent B was HPLC grade MeOH acidified with 0.1% FA. The program was a 

linear gradient of 5% to 100% eluent B over 9 min. The injection volume was 3 µL 

and the flow rate was 0.25 mL/min. All chromatograms were analyzed at a wavelength 

of 302 nm for detection of TDA. Each strain was analyzed in triplicate. TDA 

concentrations were determined based on a standard curve.  

Oyster larvae bacterial challenges 

Oyster larvae challenges were performed by Sae Bom Sohn and Dr. Marta 

Gomez-Chiarri (URI) as previously described (Karim, Zhao et al. 2013). Briefly, 

oyster larvae (25-30) were placed in each well of a 6 well plate containing 5 mL of 

fresh sterile seawater (FSSW) at 28 psu. Each treatment was run in triplicate. The wild 

type S4 or mutants were added to wells at a final concentration of 10
5
 CFU/mL. 

Oyster larvae were fed with commercial algal paste (Reed Mariculture Inc., San Jose, 

CA, USA) in order to promote ingestion of probiotics by the larvae while feeding. 

Plates were incubated at 22-23 °C for 24 h with gentle rocking. Water was changed 

after 24 h of incubation with the probiotic and V. tubiashii RE22 was added to 5 mL of 

FSSW to achieve a final concentration of 10
5
 CFU/mL. Larvae and pathogen were 

incubated for an additional 24 h. In order to determine the survival of larval oysters, 

200 µL of neutral red (stock concentration 13.3 mg/L) was added to each well (final 

concentration of 0.53 mg//L in each well) and incubated for 2 h. The neutral red 

staining technique helps to distinguish the live (stained) and dead (unstained) oysters 
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(Gomez-Leon, Villamil et al. 2008). Both the survival rate (SR) and relative percent 

survival (RPS) were calculated using the following formulas:  

SR= (number of survivors/total number of oysters) x100 

RPS = [1-(%survival challenge control oysters/% survival challenged treatment 

oysters)] x100 

Statistical analysis  

All experiments were performed in triplicate, and a q-test was performed on 

the area underneath the curve for each data set for all concentrations of the TDA 

analysis. As previously described (Karim, Zhao et al. 2013), oyster challenge assays 

were analyzed using One Way Analysis of Variance (ANOVA ) and multiple 

comparison tests (Tukey Test) was used to determine significant level between groups. 

Statistics were analyzed using Sigmastat 3.1 software (Systat) (Karim, Zhao et al. 

2013). 

Results  

P. gallaeciensis S4 wild-type produces the antibiotic tropodithietic acid 

P. gallaeciensis S4 was previously shown to inhibit the growth of several 

oyster pathogens (Karim, Zhao et al. 2013). However, the identity of the putative 

antibiotic was unknown. P. gallaeciensis S4 was cultured in 7 x 1 L scale for 96 h and 

the cells were removed by centrifugation to prevent emulsion formation during liquid-

liquid partitioning. The resulting cell-free broths were extracted with acidified ethyl 

acetate to yield 1.26 g of a crude extract that contained the antibiotic activity. 

Antibiotic activity was assessed using a disc diffusion assay and found to reside in the 

organic fraction. Further bioassay-guided fractionation was pursued by C18 medium 
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pressure chromatography yielding 6 fractions.  The disc diffusion tests indicated only 

one active fraction (F5), which was further analyzed by analytical HPLC. This fraction 

appeared to contain a single compound with a retention time of (tR= 15.1 min) and a 

characteristic UV absorbance at 302 nm. Thus, this fraction afforded compound 1 

shown in Figure 1 with a yield of 0.71 mg/L. The molecule was also analyzed by 

UHPLC monitored at 302 nm (tR =7.35 min) as shown in Figure 2. Compound 1 was 

obtained as a copper orange solid. ESIMS data showed an [M+H]
+
 ion at m/z 212.9, 

[M+Na]
+
 ion at m/z 234.9, [M-COOH]

+
 ion at m/z 164.0 and [M-H2O]

+
 ion at 194.0 

(Figure 3). The 
1
H NMR spectra (Figure 4) had three aromatic protons [δH 5.36, 5.89, 

and 6.67] and one proton downfield at δH 16.77 (Table 1). The 
1
H NMR data and the 

ESIMS data were consistent with literature values for tropodithietic acid (TDA) which 

has a molecular formula of C8H4O3S2 (Figure 1) (Liang 2003). Pure TDA had a MIC 

of 6.25 µg/mL (29.5 µM) against V. tubiashii and 2.38 x10
-3

 µg/mL (0.011 µM) 

against V. anguillarum. 

 

 

 

          (1) 

Figure 1. Structure of Tropodithietic Acid (1) 
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Figure 2. UHPLC chromatogram of pure TDA monitored at 302 nm. 
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Figure 3. ESIMS of purified TDA in the positive ion mode. 
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Figure 4. (a) 
1
H NMR of spectrum for purified TDA in C6D6. Region of spectrum showing resonances shown. (b) Expanded 

1
H NMR of spectrum for purified TDA in C6D6 from 5-7 ppm. 

(b) 



 

 58 

 

Table 2. 
1
H NMR spectroscopic data of TDA (1)  

H δH, m, J=Hz literature (Liang 

2003)  

δH m, J=Hz experimental 

5  1H, 5.38, d, J=8.9 1H, 5.36, d J=9.0 

6 1H, 5.90, dd, J=12.2, 8.9 1H, 5.89, dd, J=12.1, 8.8 

7 1H, 6.63, d J=12.2 1H, 6.67, d, J=12.5 

8 1H, 16.80 s 1H, 16.77 s 

 

 

 

 

Construction and chemical extraction of mutant strains of P. gallaeciensis S4   

Mutant strains were constructed to understand the contribution of biofilm 

formation and antibiotic production toward probiotic activity. Target genes were those 

associated with biofilm production and antibiotic production. Six mutant strains of P. 

gallaeciensis S4 (tdaA
-
, tdaB

-
, tdbD

-
, clpX

-
, rpoE

-
, and exoP

-
) were created and 

provided by Dr. Wenjing Zhao and Dr. David Nelson. Organic extracts were generated 

from 50 mL cultures and analyzed by analytical HPLC and/or UHPLC for the 

presence of TDA. HPLC analysis of tdaA
-
, tdaB

-
 and tdbD

-
 extracts confirmed the lost 

production of TDA when compared to S4 wild type crude extract (Figure 5). UHPLC 

analysis of clpX
-
 extract also confirmed the lost production of TDA (Figure 9). Thus, it 

was concluded that the tdaA, tdaB, tdbD and clpX genes are all required for the 

biosynthesis of TDA. UHPLC analysis of the rpoE
-
 and exoP

-
 mutants confirmed that 

these genes are not required for TDA production. TDA was produced at all-time 
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points (6h, 24h and stationary phase) with a retention time of TR = 7.35 min (Figure 

6). 

 

 

 

 

Figure 5. HPLC analysis of P. gallaeciensis S4 wild type and mutant strains 

tdaA
-
, tdaB

-
, tdbD

-
 monitored at 290 nm.
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Figure 6. (a). UHPLC of S4 wild type and mutant strains rpoE
-
 and exoP

-
  at stationary phase monitored at 302 nm (b) UHPLC 

of P. gallaeciensis S4 wild type and rpoE
-
  and exoP

-
  mutant strains at 6 hours. TDA production (peak at TR= 7.35 minutes) 

was monitored at 302nm. (c) UHPLC of P. gallaeciensis S4 wild type, rpoE
-
 and exoP

-
 strains at 24 hours. 
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P. gallaeciensis S4 wild-type is an excellent biofilm former 

The crystal violet staining assay was used to demonstrate that S4 wild-type 

produced thick biofilms. The absorbance (OD580 value) for S4 wild type strain was 

measured to be 3.89+0.06 at 27 C under static conditions after 60 h (Table 3). As 

expected, the absorbance of (OD580 value) of rpoE
-
 and clpX 

– 
 strains were similar to 

the S4 wild-type. The exopolysaccharide exoP gene was predicted to be involved in 

biofilm formation. This was confirmed by a low absorbance (OD580 value = 1.60+ 

0.09) of the mutant exoP 
–
 strain when compared to the wild type shown in Table 3. 

The complement mutant exoP
+
 should have re-inserted the gene exoP, thus restoring 

biofilm formation. The complement mutant exoP
+
 demonstrated that gene exoP was 

successfully re-inserted, due to biofilm formation similar to the wild type, as shown in 

Table 3. In contrast, all three pathogens (V. anguillarum, V. tubiashii, and R. 

crassostreae) used in this study had biofilms that were between 13.4-14.9% of the S4 

wild type (Table 3). These data suggested S4 has the ability to form thick and dense 

biofilm matrix on glass coverslips.  

Creation of a standard curve of pure TDA 

A standard curve was constructed using pure TDA to quantify concentrations 

of the antibiotic in bacterial culture extracts. A total of 11 concentrations of TDA 

ranging from 1000 µg/mL to 0.97 µg/mL were prepared in 2-fold serial dilution. The 

analysis of all TDA concentrations was carried out by reversed-phase UHPLC in 

triplicate. Before the standard curve was constructed a q-test was performed on the 
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area underneath the peak for each data set for all concentrations (1000 µg/mL – 0.97 

µg/mL). All concentrations were determined to have a 95% confidence interval. The 

variation between each sample was <10% difference. A graph was constructed of 

average peak area versus concentration and a linear regression trend line was added 

(Figure 7). All of the concentration data points fit well with the linear regression trend 

line, shown by the r
2
 value = 0.998.  

Table 3. Quantification of biofilm formation by measuring OD580 of crystal violet 

dye assay. 

 

 

 

 

*Biofilm formation quantified by crystal violet dye assay as described in the Materials 

and Methods. The data presented are the average of two independent experiments and 

each independent experiment has three replicates.  

a
Statistically significant difference compared to S4 wild-type. 

 

Strains OD580* 

P. gallaeciensis S4Sm 3.89±0.06 

P. gallaeciensis WZ10 (clpX-) 3.90±0.12 

P. gallaeciensis WZ11 (clpX+) 4.0±0.06 

P. gallaeciensis WZ20 (exoP-) 1.60±0.09
a
 

P. gallaeciensis WZ21 (exoP+) 3.90±0.10 

V. anguillarum NB10Sm 0.58±0.02
a
 

V. tubiashii RE22Sm 0.54±0.02
a
 

R. crassostreae CV919Sm 0.52±0.08
a
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Figure 7. Standard curve of TDA based on UHPLC analysis of pure TDA in concentrations ranging from 1000 µg/mL to 

0.97µg/mL.
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Quantification of TDA in S4 wild-type and mutant strains of rpoE
-
 and exoP

-
 

UHPLC analysis of S4 wild type, rpoE
-
, and exoP

-
 extracts at all-time points 

confirmed the production of TDA (Table 4).  At the first time point (6 hours), the S4 

wild type had produced the highest amount of TDA at all time points (Table 4 and 

Figure 8). The concentration of TDA at both 24 h and the stationary phase is 4-5 times 

the MIC against V. tubiashii. 

 

 

Table 4. Quantification of TDA in strains of P. gallaeciensis S4 in 50 mL cultures at 

three time points. 

 

Bacterial Strain Quantity of TDA produced (µg/mL) 

 6h 24h 27h 

Wild type S4 

 

4.16+0.07 

 

32.60+0.73 

 

21.80+2.35 

 

exoP
-
 

 

0.45+0.12 

 

30.70+2.61 

 

18.70+0.08 

 

rpoE
-
 2.47+0.11 24.80+1.61 14.20+0.52 

 

TDA production detected using UHPLC analysis and compared to a standard curve 

described in the Materials and Methods. The data presented are the average of two 

independent experiments and each independent experiments has three replicates.   
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Figure 8. TDA production by S4 wild type, rpoE
-
 and exoP

-
 strains cultured in 50 mL scale, YP medium, at 6h, 24 h, and 

stationary phase (~27 h).  
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Detection of TDA in culture supernatants of clpX
- 
and exoP

-
 strains and 

complement clpX
+ 

and exoP
+
 strains  

 UHPLC analysis of culture extracts from the clpX
 –

 mutant confirmed that this 

gene is required for optimal TDA production. Analysis of the clpX
+
 strain confirmed 

that reinsertion of this gene restored TDA biosynthesis.  TDA production was 

observed for both the exoP
-
 and exoP

+
 strains (Figure 9). Together, these results 

confirm that genes tdaA, tdaB, tdbD and clpX, but not exoP, are necessary in the 

biosynthesis of TDA by P. gallaeciensis S4. These results were in agreement with 

Geng et al (Geng, Bruhn et al. 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Detection of TDA in culture supernatants of clpX
-
 and exoP

- 
strains and 

complement strains clpX
+ 

and exoP
+
. 
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Mutations in tdaA, tdaB and tdbD affect probiotic activity of P. gallaeciensis 

against V. tubiashii in oyster larvae. 

Karim et al. (2013) demonstrated that S4 wt provides protection to oyster 

larvae against infections by V. tubiashii RE22 (Karim, Zhao et al. 2013). Oyster 

challenge assays were performed with both wt and mutant strains to determine if TDA 

production and biofilm formation are necessary for probiotic activity against V. 

tubiashii.  P. gallaeciensis S4 mutants tdaA
-
, tdaB

-
 and tdbD

- 
provided partial 

protection to the oysters against V. tubiashii challenge compared to wild-type S4. The 

tdaA
-
, tdaB

-
 and tdbD

- 
mutants showed a >50% decline in oyster larvae survival 

compared to S4 wild-type as shown in Table 4. S4 mutants tdaA
-
, tdaB

-
 and tdbD

-
 

provided slight protection of the oyster larvae compared to the survival of larvae 

treated only with the RE22 pathogen. 

Mutations in clpX and exoP affect probiotic activity of P. gallaeciensis against V. 

tubiashii in oyster larvae. 

To further assess if mutations in TDA production or biofilm formation would 

affect the probiotic activity of S4 against V. tubiashii in vivo, oyster challenge assays 

were performed with the exoP (biofilm deficient) and clpX (TDA deficient) mutants. 

Both P. gallaeciensis mutants showed a partial protection of the oysters against V. 

tubiashii challenge compared to wild type. The clpX mutant exhibited a >50% decline 

in oyster larvae survival compared to S4 wild type (RPS, S4 wild type: 72% ± 1% vs. 

clpX
-
: 35% ± 3%), while the exoP mutant provided almost 70% of the protection as 

wild type (wild type: 72% ± 1%; exoP
-
: 50% ± 8 %) (Table 5). The RPS increases in 
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larval survival provided by clpX
-
 and exoP

-
 mutants were equal to 35% ± 3% and 50% 

± 8%, respectively.  

Table 5. Effect of a 24 h preincubation with Phaeobacter gallaeciensis S4 wild-type 

or mutant strains on oyster larval survival 24 h after challenge with the bacterial 

pathogen Vibrio tubiashii RE22.  

P. gallaeciensis S4 strains 

Quantity of TDA 

produced at 24 h (µg/mL) 

Relative Percent Survival 

(%RPS)* 

Wild type 32.60+ 0.73 72+1 

tdaA
- 

NP 24+2 

tdaB
- 

NP 24+4 

tdbD
- 

NP 23+2 

clpX
-
 NP 35+3 

exoP
-
 30.70+ 2.61 50+8 

*Larval oysters were challenged using the protocol described above in the Methods 

and Materials. These experiments are representative of at least 3 independent 

replicates. 
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Discussion 

Probiotics  have been hypothesized to possess several modes of action, 

including colonization, biofilm formation, production of antibiotic molecules, 

immunostimulation of the host, and enhanced water quality (Verschuere, Rombaut et 

al. 2000, Vine, Leukes et al. 2006, Kesarcodi-Watson, Kaspar et al. 2008). In this 

study,  mutant strains of P. gallaeciensis S4 that were deficient in TDA production or 

biofilm formation were constructed and analyzed. After the confirmation of these 

either loss in TDA production or variations in biofilm formation these strains were 

tested for the ability to provide protection of C. virginica larvae when challenged with 

V. tubiashii. This study confirmed that antibiotic production and biofilm formation 

were found to be critical factors in probiotic protection of oyster larvae afforded by P. 

gallaeciensis S4.. 

Our research confirms the role of TDA in the probiotic activity for 

Phaeobacter sp. strain (S4).  Roseobacter isolates have been shown to produce 

tropodithetic acid (TDA), an antibiotic with potent effects against marine and human 

pathogens (Kintaka, Ono et al. 1984, Kawano, Nakagomi Kazuya. et al. 1998, Gram, 

Melchiorsen et al. 1999, Brinkhoff, Bach et al. 2004, Bruhn, Nielsen et al. 2005, Geng, 

Bruhn et al. 2008, Porsby, Nielsen et al. 2008). Liang (2003) originally isolated and 

described TDA from Roseobacter gallaeciensis. The structure of TDA was reported to 

be a tropolone fused to a four-membered ring incorporating a disulfide (Brinkhoff, 

Bach et al. 2004, Bruhn, Nielsen et al. 2005, Porsby, Webber et al. 2011, D'Alvise, 

Lillebo et al. 2012). TDA may convert to thiotropocin, another broad-spectrum 

antibiotic. The structure of thiotropocin is a tropolone attached to a five-membered 
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thiolactone ring (Kintaka, Ono et al. 1984, Cane, Wu et al. 1992, Bentley 2008). TDA 

and thiotropocin have been proposed as tautomers of each other (Bentley 2008, Greer, 

Aebisher et al. 2008, Porsby, Webber et al. 2011, Seyedsayamdost, Carr et al. 2011).  

In addition to producing TDA, Phaeobacter species are typically excellent biofilm 

formers, colonizing a variety of surfaces including microalgae and shells (Belas, 

Horikawa et al. 2009, Prado, Montes et al. 2009, D'Alvise, Melchiorsen et al. 2010).  

Biofilms can be formed from compact bacteria communities that adhere to surfaces.  

Bacterial biofilms are thought to be linked to chronic or persistent diseases found in 

both marine and human environments (Hancock, Dahl et al. 2010). In this study, 

mutation in the exoP gene was found to reduce biofilm formation by ~60%, but 

production of TDA was unaffected at (24 h). Loss of optimal biofilm production 

resulted in reduction of probiotic protection of larval oysters from V. tubiashii 

infections when tested in vivo.  These results demonstrate the requirement for biofilm 

formation to provide maximum probiotic effects. 

Pure TDA exhibited antibiotic effects toward V. tubiashii and V. anguillarum in vitro, 

suggesting that it plays a role in animal protection. To determine the role of TDA 

production and biofilm formation in the probiotic activity of S4, mutant strains (tdaA
-
, 

tdaB
-
, tdbD

-
, clpX, rpoE,

-
 and exoP

-
) were created and subjected to chemical analysis. 

Genes tdaA, tdaB, clpX and rpoE were previously found to be necessary for the 

biosynthesis of TDA in Silicibacter sp. TM104 (Geng, Bruhn et al. 2008, Karim, Zhao 

et al. 2013), so these were an initial focus for this study. These genes have roles in ring 

precursors, oxidation and expansion and regulatory mechanisms for synthesis of TDA. 
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Gene rpoE is an alternative sigma factor for RNA polymerase, it has a possible role in 

regulation of gene expression (Geng, Bruhn et al. 2008, Rattanama, Thompson et al. 

2012). This study confirmed that the genes tdaA, tdaB and tdbD
 
are necessary for 

TDA biosynthesis, but mutations in these genes resulted in strains that also displayed a 

70-80% reduction in biofilm formation. Thus, these mutations were not suitable for 

dissecting the independent contributions of biofilm capability and antibiotic 

production. However, mutation in clpX (an ATP-binding protein regulatory subunit) 

resulted in lost production of TDA but had no effect on biofilm formation. In vivo 

testing of this mutant also resulted in only partial protection of oyster larvae, further 

suggesting that TDA production plays a role in the probiotic activity of P. 

gallaeciensis S4. Treatment of oyster larvae with sub-MIC levels of TDA (3.25 µg/mL 

and 1.56 µg/mL) also provides partial protection following challenge with V. tubiashii 

(Karim, Zhao et al. 2013). It is possible that there are other contributing factors 

besides antibiotic production and biofilm formation leading to probiotic activity for P. 

gallaeciensis S4.   

TDA was present in all of the growth phases of S4 wild type, rpoE
-
 and exoP

-
. 

It appears that the TDA is produced in the highest concentration at 24 h in all strains, 

which was considered the late exponential phase. A decline in TDA concentration 

appears during the stationary phase, and this may correspond to degradation of the 

molecule, or a down regulation of the genes responsible for TDA biosynthesis. While 

mutations in tdaA, tdaB, tdbD, clpX, exoP
 
and rpoE all resulted in reduced protection 

of larval oysters when challenged with V. tubiashii, each still provided a higher 

relative percent survival than oysters treated with V. tubiashii only. It is possible that 
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these mutants may act by modulating the immune response of the larvae, or that other 

yet unidentified mechanisms of probiotic activity maybe also involved.  This study 

strongly supports that the production of TDA and the ability to form biofilms 

contribute to the probiotic effects of P. gallaeciensis S4 in oyster larviculture. 
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Abstract  

Probiotic agents are promising tools to reduce the risks of disease outbreaks in 

aquaculture facilities. However, there are currently no commercially available 

probiotics for shellfish aquaculture. The marine bacterium Bacillus pumilus RI0695 

was previously reported to provide significant protection of Eastern oyster, 

Crassostreae virginica, larvae when challenged with the shellfish pathogen Vibrio 

tubiashii. This investigation aimed to create a stable formulation of B. pumilus RI0695 

for delivery to larval tanks at shellfish hatcheries. Granulation is a proven and cost 

effective method of formulation. A granular probiotic formulation of B. pumilus 

RI0695 was created by extruding dried B. pumilus RI0695 cells through three particle 

size sieves (40s, 80s, and 325s) resulting in 420 µ, 177 µ and 43 µ granule sizes. The 

43 µ and 177 µ granular formulations stored at 27° C and sampled at 22 weeks and 29 

weeks reduced mortality in C. virginica larvae and seed when challenged with V. 

tubiashii.  This study suggests that the 43 µ and 177 µ granular formulations of B. 

pumilus RI0695 are good candidates for commercial use in shellfish hatcheries.  

 

 

Introduction  

The world’s aquaculture production is a multi-billion dollar industry. In 2010, 

the Fisheries and Aquaculture Organization (FAO) released an overview of major 

trends and issues which estimated aquaculture production to be worth 130.2 billion 

USD worldwide (FAO 2014). The United States is a significant contributor to both 

fresh and marine aquaculture sales by adding approximately one billion dollars to the 
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worldwide total (Elston, Hasegawa et al. 2008). Aquaculture sales in Rhode Island 

have dramatically increased from $83,518 in 1995 to $2.8 million in 2012. In 2012, 

nearly 4.3 million oysters were produced via aquaculture in Rhode Island (Beutel 

2013).  

Rigorous culture of bivalve shellfish on a production scale was developed in 

the 1970’s. Currently, hatcheries and nurseries in the United States produce large 

numbers of a variety of oysters, clams and scallops species (Elston 1998). However, 

hatchery operations are especially prone to bacterial diseases that rapidly kill larvae. 

Infectious diseases in the hatcheries have serious impacts on production, with 45.5% 

of losses in aquaculture being due to diseases (Elston 1998, FDA 2012). 

Vibriosis and Juvenile Oyster Disease (JOD) are two prevalent diseases 

observed in hatcheries and nurseries (respectively) culturing the Eastern oyster 

Crassostrea virginica in the Northeastern US.  Vibrio species are responsible for 

disease outbreaks in bivalve larviculture hatcheries. Vibriosis, or bacillary necrosis, 

in larvae yields massive mortality rates in contaminated hatcheries. Vibriosis in 

larvae is characterized by mantle and feeding disruption, loss of motility, and visceral 

damage, usually resulting in larval death within 24 hours (Porsby, Nielsen et al. 

2008). In 2006-2007, vibriosis outbreaks caused by Vibrio tubiashii spread through 

hatcheries and nurseries in North America causing a 59% decline in oyster larvae 

production (Elston, Hasegawa et al. 2008). Metalloprotease and hemolysin are two 

virulence factors associated with the pathogenicity of V. tubiashii (Hasegawa, Lind et 

al. 2008, Porsby, Nielsen et al. 2008).  

The bacterium Roseovarious crassostreae is the causative agent of Juvenile 
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Oyster Disease (JOD).  JOD is endemic to New York and the New England area 

(NOAA 2009, Romalde and Barja 2010).  JOD has been responsible for mortalities of 

over 90% in areas that have been infected with the disease. Indications of the disease 

are reduced growth of the oyster along with uneven shell growth. JOD follows a 

seasonal pattern, with most mortality occurring in middle to late summer, coinciding 

with warm water temperatures. The disease can be transmitted from oyster to oyster, 

but the toxins and virulence factors are still unknown for this invasive pathogen 

(NOAA 2009, Romalde and Barja 2010).  Although not reported to be problematic in 

oyster hatcheries, R. crassostreae is able to cause mortality of oyster larvae in 

experimental challenges (Gomez-Leon et al. 2008). 

The use of marine probiotics is being explored as a new disease management 

tools. Several in vivo studies have shown promise toward the development of probiotic 

agents in shellfish, particularly in crustaceans. Moriarty and others determined 

Bacillus sp. were active against V. harveyi in shrimp aquaculture (Moriarty 1998, 

Meunpol, Lopinyosiri et al. 2003, Vaseeharan and Ramasamy 2003, Gullian, 

Thompson et al. 2004). Alavandi et al. examined two candidate probiotics, 

Pseudomonas sp. PM11 and Vibrio fluvalis sp. PM 17, for their ability to cause 

immunostimulation in shrimp (Alavandi, Vijayan et al. 2004). Gibson et al. 

demonstrated that probiotic candidate Aeromonas media sp. 199 produced an 

inhibitory substance that contributed to the antagonistic effects in vitro as well in vivo 

(Gibson, Woodworth et al. 1998).  Bacillus spp. bacteria have shown promise as 

probiotic agents in crustacean, and mollusk aquaculture (Queiroz and Boyd 1998). 

Several species of Bacillus have also been used to increase the survival of crustaceans 
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(Queiroz and Boyd 1998, Rengpipat, Phianphak et al. 1998, Meunpol, Lopinyosiri et 

al. 2003, Vaseeharan and Ramasamy 2003, Cude, Mooney et al. 2012). When 

probiotic bacteria pre-mixed in algae feed was used to treat shrimp ponds in a high 

density, there were antagonistic properties exhibited against pathogenic Vibrio spp. in 

the gut of the crustaceans to improve host survival (Decamp, Moriarty et al. 2008). 

There are many probiotic bacteria that have been cited to be useful for the treatment of 

bacterial disease in aquaculture (Rengpipat 1998, Rengpipat, Phianphak et al. 1998, 

Gatesoupe 1999, Naik A.T.R. 1999, Riquelme, Jorquera et al. 2001, Meunpol, 

Lopinyosiri et al. 2003, Farzanfar 2006, Vine, Leukes et al. 2006, Ziaei-Nejad, Rezaei 

et al. 2006, Decamp, Moriarty et al. 2008, Romalde and Barja 2010). A study by 

Meunpol et al. suggested that  the probiotic Bacillus S11  was a contributing factor to 

the survival of black tiger shrimp (Penaeus monodon) against bacterial pathogen V. 

harveryi (Meunpol, Lopinyosiri et al. 2003).  One of Bacillus’ mechanism of action is 

the antagonistic effect of Bacillus against the pathogenic Vibrios sp. (Vaseeharan and 

Ramasamy 2003). A study by Rengpipat et al. examined the growth of P. monodon 

and its resistance to Vibrio when fed with Bacillus (BS11) (Rengpipat, Phianphak et 

al. 1998). Their results suggest that the growth and survival rates of P. monodon fed 

on the probiotic supplement were significantly higher than the controls (Rengpipat, 

Phianphak et al. 1998).   

Although there has been much promise in the study of potential probiotics in 

shellfish aquaculture, no commercial products are currently available for bivalve 

larviculture. This is despite the fact that probiotic agents have been created for other 

aquacultured species, including penaeids, catfish, water rotifers and tilapia (Hirata, 
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Murata et al. 1998, Queiroz and Boyd 1998, Murthy and TJ 1999, Irianto and Austin 

2002, Cutting 2011, Parthasarathy, Ramasubramanian et al. 2012). All of these 

commercial probiotics are gram-positive bacteria, such as Bacillus sp.  

Previous results by Karim et al. determined both Bacillus pumilus RI0695 and 

Phaeobacter gallaeciensis S4 exhibited antagonistic effects towards Vibrio tubiashii 

in vitro (Karim, Zhao et al. 2013). Additionally they were able to protect C. virginica 

larvae when challenged with V. tubiashii in vivo (Karim, Zhao et al. 2013). Karim et 

al. proposed the potential mechanisms of action for B. pumilus RI0695 and P. 

gallaeciensis S4 could include excretion of an antibiotic molecule, biofilm formation 

by the bacterium, immune modulation of the oyster larvae, and colonization of 

marine surfaces play a role in its probiotic activity (Karim, Zhao et al. 2013). B. 

pumilus RI0695 was previously found to produce the antibiotic amicoumacin (Socha 

2008). In this study, we explore creating a granular formulation of B. pumilus RI0695 

for delivery as a disease management tool in commercial shellfish larviculture 

facilities. Granular formulations were tested for the viability of the bacteria over time 

and at different storage temperatures, and were evaluated for their protection of 

oyster larvae against bacterial pathogens. 

Materials and methods 

Bacterial Cultivation 

B. pumilus RI0695 was isolated by the Rowley laboratory at URI (Socha 

2008). R. crassostreae Cv 919-312
T
 and

 
V. tubiashii RE22 were provided by Dr. 

Marta Gómez-Chiarri (University of Rhode Island), and Vibrio harveyi BB120 was 

provided by Dr. David Nelson (University of Rhode Island). All bacteria were 
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cultured in a seawater-based yeast extract-peptone culture medium (YP; 5 g/L of 

peptone, 1 g/L of yeast extract, and 30 g/L of Instant Ocean (Blacksburg, VA) in pure, 

reverse osmosis (RO) water) at 28 °C and shaking at 175 rpm. V. harveyi and R. 

crassostreae were used for in vitro antibiotic susceptibility testing, while V. tubiashii 

was used for larval oyster challenges. Bacterial stocks were stored at −80 °C in YP 

broth with 25% glycerol until use. 

Formulation of Bacterial Cells 

Four 1L cultures of RI0695 were incubated at 28 °C and shaking for 96 hours. 

The cells in the cultures were harvested by centrifugation at 18,600 x g for 10 min at 

20 °C. The supernatant was decanted, and the cell pellet was then resuspended in 150 

mL of sterile artificial seawater and re-pelleted. The resulting bacterial cell pellet was 

then either (1) dried to a ‘damp mass’ at 30 °C for 12 h in a convection oven with 

continuous airflow, or (2) dried at 22 °C for 48 h. The dried cell pellets were extruded 

through three different-sized USA standard sieve stainless steel screens (Cole Palmer, 

Illinois, USA): 40 mesh, 80 mesh, and 325 mesh. The 40 mesh, 80 mesh, and 325 

mesh screens yield average size particle sizes of 420 µ, 177 µ and 43 µ, respectively. 

Each formulated product was stored in glass vials at either room temperature 

(approximately 25 °C) or 4 °C. 

 

Colony-Forming Unit (CFU) Viability Assay 

The cell viability of all formulated probiotics was determined at 1, 2, 5, 8 and 

12 weeks after formulation. Formulated products were prepared at a 5 mg/mL 

concentration in sterile artificial seawater, allowed to dissolve standing for 10 min, 



 

 85 

 

and vortexed for 1 min. Dilutions of 1:10 and 1:100 of the stock (5 mg/mL) in sterile 

artificial seawater were prepared in triplicate. 10 µL of each dilution was spread onto 

YP agar plates in triplicate. The YP plates were incubated for 48 h at 27 °C and then 

colonies were counted.  Each assay was performed in duplicate. 

 

Antibiotic activity of the formulations against bacterial pathogens  

Bacteria from each formulation were cultivated on agar plates and assessed for 

their ability to inhibit the growth of R. crassostreae and V. harveyi BB120 (Karim, 

Zhao et al. 2013). Overnight cultures of either R. crassostreae or V. harveyi BB120 

were spread onto YP agar plates. Each of the formulated products (5 mg/mL in sterile 

artificial seawater) and an overnight culture of RI0695 (control) were pipetted (10 µL) 

in triplicate onto each YP plate. Each plate was incubated for two days at 27 °C and 

then assessed for zones of growth inhibition surrounding the colonies of RI0695. 

Assays were performed in triplicate. 

 

Characterization of cell morphology of granular products 

The cell morphology of the granular formulations (420 µ, 177 µ and 43 µ) was 

examined by phase contrast microscopy (Zeiss Axio Imager 2 microscope using 

phase-contrast optics, 100x magnification). Three aliquots of 10
4
 CFU/mL dilutions in 

sterile artificial seawater (28psu) were prepared for each formulation from their 

rehydrated 5 mg/mL stock solutions. A 48 h, 10 mL fresh culture of the probiotic 

candidate RI0695 bacteria was examined as the control.  
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Oyster challenge assays 

Oyster Larvae 

Eastern oyster (C. virginica) larvae (10 – 15 days old) were obtained from the 

Blount Shellfish Hatchery at Roger Williams University, Bristol, RI. The larvae were 

divided into six wells containing 5 mL of aerated filtered sterile seawater (FSSW, 28 

psu) and allowed to acclimate at room temperature (approx. 20 °C) for 24 hours before 

treatment. The larvae were fed commercial algal paste (Reed Mariculture Inc., San 

Jose, CA. USA) daily during the experiments. The water in each well was changed 

with FSSW every 48 hours.  

Probiotic treatments of oyster larvae and challenge experiments 

The ability of the RI06-95 formulations to protect larvae to challenge with the 

pathogen V. tubiashii was tested following established protocols (Karim et al. 2013). 

These experiments were run in triplicate.  Treatments (each performed in duplicate) 

included: no probiotic treatment and no challenge; no probiotic treatment and 

challenge; probiotic treatments (either the 43 µ or the 177 µ formulation) and no 

challenge; and each of the probiotic treatments and challenge.  Probiotics (fresh or 

formulations) were added to the larvae at a concentration of 10
4
 CFU/mL with the 

algal food and incubated at room temperature for 24 h. Larvae were then removed 

from each well and filtered through a nylon mesh (75 µ).  Larvae retained on the mesh 

were resuspended in 5 ml of FSSW, and placed back in the original wells.   Larvae 

were then challenged with V. tubiashii (10
5
 CFU/mL).  Larval survival was monitored 

at 24 h after challenge by staining with neutral red (200 µL). The relative percent 
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survival compared to the challenged control (no probiotic treatment) was calculated 

using the following formula: 

Relative Percent Survival = [1- (
%survival challenged control oysters

%survival challenged treatment oysters
)] x100 

Probiotic treatments of oyster juveniles and challenge experiments 

A total of 261 all ages Eastern oyster triploid juveniles (1.36+0.32 mm x1, 

32+0.40 mm) were obtained from Blount Shellfish Hatchery at Roger Williams 

University, Bristol, RI.. The oyster juveniles were divided into six 1 L containers 

containing 700 mL of FSSW as follows: one control (no probiotic, no challenge), one 

challenge control (no probiotic, challenged),  two containers treated with the 43 µ 

RI0695 granules  before challenge, and two containers treated with the 177 µ RI0695 

granules before challenge. Juvenile oysters were maintained in aerated FSSW at room 

temperature for 24 h prior to any treatment.  Oysters were fed commercial algal paste 

(Reed Mariculture) throughout the experiment and the water was exchanged changed 

with fresh FSSW every 48 h. Probiotics (10
4
 CFU/mL) were added to the larvae daily 

with food or 7 days.  On day 2 after the start of the treatment, oysters were challenged 

with V. tubiashii (10
5
 CFU/mL) after a water exchange. Juvenile oysters were assessed 

for viability using a dissecting microscope over the 9 d period.  Percent survival and 

relative percent survival relative to the non-treated challenge control was calculated as 

described above. These experiments were run in duplicate.  

Statistical analysis 

The challenge data set survival counts data was analyzed by one way 
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(ANOVA) followed by Tukey’s Test was used to determine significant level between 

groups. Data colleged as a percentage were arsine of the square root-transformed 

before analysis. Results were considered significant at the 95% level of confidence 

(p<0.05). Statistics were run using Sigmastat 3.1 software (Systat).The cell viability 

data granular size and biological replicates were analyzed by two way (ANOVA) 

followed by Tukey’s Test for each temperature and each time point. Cell viability data 

biological replicates were analyzed for both temperature conditions at each time point 

using a one-way analysis of variance (ANOVA ) followed by Dunn’s method. All 

statistical analysis were performed using Sigma stat 3.1 software (Systat). Differences 

were considered to be significant at values of P < 0.05.  

Results 

 

Effect of granulation on cell viability 

Liquid cultures of B. pumilus RI0695 cells were successfully formulated into 

granules. In a representative experiment, 1L of a 96 h culture of RI06-95 provided a 

total of 450.3 mg of 420 µ granules, 245.5 mg of 177 µ granules, and 155.1 mg of 43 

µ granules. 

The effect of the granulation processes on cell viability was assessed by 

measuring live cells both prior to and after formulation (Table 1). Prior to formulation, 

RI0695 cultures yielded at least 10
8
 CFU/mL. The cell viability of the formulated 

granules was assessed over 8 weeks using by measuring CFU per mg over time 

(Tables 1-3). In general, the granulation process consistently delivered products that 

contained between 5 x 10
5
 and 5 x 10

6 
CFU/mg, and the viability of the formulated 

products remained relatively stable over an 8 week period, regardless of storage 
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temperature (p>0.05).  Interestingly, granules stored at room temperature were 

significantly different. There were often demonstrated increases in CFU/mg over time, 

perhaps due to some humidity in the particles following the formulation step causing 

inaccurate weight of samples and inaccurate cell viability (Figures 1-6). 
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Figure 1.  Cell Viability vs. Time of 420 µ granules stored at 4 °C.  Each experiment was performed in triplicate.  
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Figure 2. Cell Viability vs. Time of 420 µ granules stored at room temperature (RT).  Each experiment was performed 

in triplicate.  
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Table 1. Cell viability of B. pumilus RI0695 in 420 µ granules (Log(CFU/mg)) over 8 weeks while stored at either room 

temperature (RT) or 4 °C.  

                

 

Time (Week) Exp. 1 (RT) Exp. 2 (RT) Exp. 3 (RT) Exp. 1 (4 °C) Exp. 2 (4 °C) 

1 5.93+ 0.05
 b
 5.85+0.03

 b
 6.00+ 0.02

 b
 6.34+0.05

 b
 5.86+0.05

 b
 

2 6.44+0.04
 a b

 6.44+ 0.35
 a b

 6.51+ 0.03
 a b

 5.92+0.35 5.48+0.35 

5 5.87+0.14
 b
 5.87+ 0.05

 b
 6.35+ 0.20

 b
 6.17+0.07

 b
 6.17+0.07

 b
 

8 6.35+ 0.34
 a b

 6.35+0.39
 a b

 6.47+ 0.12
 b
 5.87+0.05 5.76+0.05 

     

 
a
 1 way ANOVA analysis indicates bioreplicate experiments were significantly different. 

b
 2 way ANOVA analysis indicates that results with 420 µ granule formulation was significantly different from 

results with the other granule sizes. 
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Figure 3. Cell Viability vs. Time of 177 µ granules stored at 4 °C.  Each experiment was performed in triplicate.  
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Figure 4. Cell Viability vs. Time of 177 µ granules stored at RT.  Each experiment was performed in triplicate. 
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Table 2. Viability of B. pumilus RI0695 177 µ granules (Log(CFU/mg)) over 8 weeks while stored at RT and 4 °C  

 

 

Time (Week)  Exp. 1 (RT) Exp. 2 (RT) Exp. 3 (RT) Exp. 1 (4 °C) Exp. 2 (4 °C)  

1 5.78+ 0.09
 b
 5.78+ 0.07

 b
 5.78+ 0.05

 b
 5.87+ 0.17

 b
 5.80+0.17

 b
 

2 6.61 + 0.07
 a b

 6.61+ 0.90
 a b

 5.78+ 0.08
 a b

 5.75+0.11 5.83+0.11 

5 6.50+ 0.11
 b
 6.50+ 0.80

 b
 5.87+ 0.30

 b
 5.87+0.13 5.62+0.13 

8 5.37+ 0.1
 b

 2 5.37+ 0.17
 b
 6.47+ 0.16

 b
 5.76+0.13

 a b
 5.11+0.13

 a b
 

 

 
a
 1 way ANOVA analysis indicates bioreplicate experiment was significantly different. 

b
 2 way ANOVA analysis indicates that results with 177 µ granule formulation was significantly different from 

results with the other granule sizes. 
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Figure 5 Cell Viability vs. Time of 43 µ granules stored at 4 °C.  Each experiment was performed in triplicate.  
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Figure 6. Cell Viability vs. Time of 43 µ granules stored at RT.  Each experiment was performed in triplicate. 
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Table 3. Cell viability of B. pumilus RI0695 43 µ granules (Log(CFU/mg)) over 8 weeks while stored at RT 

and 4 °C 

 

Time (Week) Exp. 1 (RT) Exp. 2 (RT) Exp. 3 (RT) Exp. 1 (4 °C) Exp. 2 (4 °C) 

1 5.57+ 0.10 5.26+ 0.13 5.86+ 0.5 5.57+0.10 5.89+0.03 

2 6.64+ 0.10
 a b

 6.61+ 0.09
 a b

 5.78+ 0.07
 a b

 5.72+0.09
 b
 5.72+0.09

 b
 

5 5.48+ 0.23
 a b

 6.50+ 0.23
 a b

 5.41 + 0.30
 a b

 5.41+0.30
 a
 5.48+0.23

 a
 

8 5.62+ 0.28
 a b

 5.37+ 0.14
 a b

 6.31+ 0.16
 b a

 5.62+0.28
 a b

 5.65+0.19
 a b

 

 

a
 1 way ANOVA analysis indicates bioreplicate experiment was significantly different. 

b
 2 way ANOVA analysis indicates that results with 43 µ granule formulation was significantly different from 

results with the other granule sizes. 
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Effect of granulation on antimicrobial activity and cell morphology  

Since antibiotic production by B. pumilus RI0695 may be critical to the desired 

probiotic activity (Socha 2008), the colonies derived from the formulated products 

were tested for their ability to limit the growth of V. harveyi BB120. There were 

comparable zones of no growth surrounding all the B. pumilus colonies, demonstrating 

that the formulation process had no effect on antibiotic production during subsequent 

cultivations (Table 4).  

 

 

 

Table 4. Spot overlay in vitro assay of the all B. pumilus RI0695 particle sizes 

 
 

 

 

1000 µL of a 5 mg/mL solution of each granule size (420 µ, 177 µ and 43 µ) was inoculated in YP broth for  

48 h at 27 °C with shaking at 175 rpm. B. pumilus RI0695 from cryostocks served as the control.  

 

 

Effect of granulation on cell morphology 

The resuspended RI0695 formulations all retained the same morphology as the 

RI0695 grown from cryostock. Each of the resuspended granulated formulations 

exhibited individual small rods and spores that are consistent with the bacterium B. 

pumilus RI0695 (Figure 7).  

Granulation Zone of Inhibition 

 

420 µ 

 

7 mm 

 

177 µ 
8 mm 

 

43 µ 
8 mm 

 

Control  8 mm 



 

 100 

 

 

  

  
 

 

 

 

Figure 7. (a) Cell morphology of 420 µ granules resuspended in seawater to 

10
5
CFU/mL and examined at 100 x magnification (b) Cell morphology of 177 µ 

granules resuspended in seawater to 10
5 

CFU/mL and examined at 100 x 

magnification (c) Cell morphology of 43 µ formulation resuspended in seawater to 10
5 

CFU/mL and examined at 100 x magnification (d) Cell morphology of B. pumilus 

RI0695 (grown from cryostocks) 

 

Oyster larval challenges 

 

The granular formulations were next tested for probiotic activity using in vivo 

oyster larval and juvenile bacterial challenge assays. Two of the particle size 

formulations (177 µ and 43 µ) were chosen because the oyster larvae and seed in the 

hatcheries range from approximately 40-200 µ in size.  The smaller particles that are 

easily soluble in water were considered as better candidates for hatchery delivery since 

(a) (b) 

(c) 
(d) 
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they might not cause sinking of swimming larvae (Karen Tammi, Blount Shellfish 

hatchery, personal communication).   Each formulation was 29 weeks old at the time 

of the experiment.  Cell viabilities of the 177 µ and 43 µ formulations were found to 

be 5.31 + 4.93 log (CFU/mg) and 5.90 
 
+ 5.21 log (CFU/mg), respectively, and each 

was added to treated oysters at 10
4
 CFU/mL.  Neither of the formulations was found to 

be detrimental to oyster survival (Figure 8).  Survival of the oyster larvae after 24 h 

exposure to pathogen V. tubiashii RE22 was reduced to 25+5%. Oyster larvae 

pretreated with the 177 µ and 43 µ RI0695 formulations at 10
4
 CFU/mL and then 

exposed to V. tubiashii demonstrated greater survival rates than larvae exposed to 

pathogen alone. The level of protection was similar between formulations (Table 5). 

The formulations provided larval protection similar to what was previously seen with 

probiotic treatments of freshly cultured B. pumilus RI0695 (10
4
 CFU/mL) (Karim, 

Zhao et al. 2013). 



 

 

1
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Figure 8. Effect of preincubation of oyster larvae with RI0695 granules (177µ and 43µ) at 10
4
 CFU/mg on survival % (+SE) 

24 hours after challenge with V. tubiashii RE22. Representative of 3 experiments. 
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Table 5. Effect of pre-incubation with 177 µ and 43 µ RI0695 granules on survival (% 

survival) of oyster larvae and seed after challenge with bacterial pathogen Vibrio 

tubiashii RE22.  

 
RE22 only (10

5
 

CFU/mL) 

Pretreated with 

probiotic formulation 

(10
4 

CFU/mL) 

Control fresh 

Bacillus pumilus 

RI0695 (10
4 

CFU/mL) 

  43 µ  177 µ  

 

Oyster 

Larvae 

 

25+5 

 

84+3 

 

83+5 
NA 

    

Oyster Seed 53+13 86+14 100+0 85+8 

     

 

 

 

Oyster seed challenges 

 

The 177 µ and 43 µ formulations were next tested for protection of oyster seed against 

V. tubiashii infection. After 7 days, RI0695 granules were harmless to the seed with 

survival rates (SR) of 100+ 0% and 86+14%, respectively, for the 177 µ and 43 µ 

formulations (Figure 9 and table 5).  The protection provided by the 177 µ and 43 µ 

granules to both oyster larvae and seed was similar to that provided by freshly cultured 

B. pumilus RI0695.  



 

 

1
0

4
  

Figure 9. Effect of preincubation on oyster seed with freshly cultured B. pumilus (RIO695) and formulated granules (177µ and 

43µ) at 10
4
 CFU/mL.  Controls included seed oysters exposed to no additional bacteria (Control) and oysters exposed to only 

V. tubiashii (RE22). In the challenge experiments, the seed oysters were pretreated with the B. pumilus 24 hours prior to 

addition of the V. tubiashii RE22. Representative of 1 experiment. 
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Discussion 

 

 

Previous results by Karim and coworkers determined both Bacillus pumilus 

RI0695 and P. gallaeciensis S4 exhibited antagonistic effects towards V. tubiashii in 

vitro (Karim, Zhao et al. 2013). More importantly, they were able to protect C. 

virginica larvae when challenged with V. tubiashii in vivo (Karim 2013, Karim, Zhao 

et al. 2013). However, this study measured the probiotic effects of freshly cultured 

bacteria, an approach that is not feasible at commercial shellfish hatcheries. Granular 

formulation was chosen for this study because it is a cost effective process. One 

parameter we sought to measure was cell viability over time. A probiotic formulation 

might be stored at a hatchery for weeks or months before use, so a successful product 

must be stable. While the formulations generally appeared to be stable at both 

temperatures tested, measuring the cell viability of the granular formulations proved 

to be difficult. There was variability in cell viability in all of the granule sizes 

formulated based on the log(CFU/mg) data at each time point (1-8 weeks). A large 

variation in cell viability in the 420 µ granules may be caused by several reasons. 

First, the granules might not have fully redissolved into seawater, thus causing some 

heterogeneity in the samples used to determine viable cell counts. Second, the 420 µ 

granules appear to have had some increases in numbers of viable cells by the second 

week of storage at room temperature, suggesting that the particles may have absorbed 

water effecting the weight of the sample. This could cause variations in the cell 

viability counts. Third, the formulations were tested at different times of the year and 

thus may have been influenced by changes in humidity.  More humid storage 
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conditions could affect particle clumping and thus size and dissolution.  Our results 

suggest that storage of the granules could be at either 4 °C or RT (~25 °C) since the 

products were relatively stable at each temperature.  However, storage at 4 °C was 

less variable in cell viability because the relative humidity is more controlled, and 

therefore might be optimal for hatcheries that experience large ambient temperature 

fluctuations in the summer.   

Based on the cell viability studies of granules up to 8 weeks, the cell 

viabilities per milligram of granules are in a range sufficient to provide probiotic 

effects against V. tubiashii infection. A probiotic formulation should have shelf-life 

of at least 12 weeks, since the normal spawning season of wild oysters is June 

through August (UMCES 2014). The granular formulations satisfy this requirement 

since both the oyster seed and larval challenges were performed with formulations 

that were greater than 20 weeks old and yielded similar relative percent survival 

compared to the freshly cultured B. pumilus RI0695 control. Bacteria cultured from 

the granules retained both antibiotic activity and cell morphology identical to cell 

cultured from frozen stocks.  

Future studies should be directed at measuring the time it takes the dried 

granules to fully disintegrate. Knowing the conditions to get complete dissolution of 

the particles would enable more consistent cell viability counts for the formulations. 

Other potential probiotic formulations could be also explored, such as a lyophilized 

product or a liquid formulation for ease during scale up for commercial production. 

However, the granular formulations prepared here provided cell viabilities above 10
5
 

CFU/mg (log(CFU/mg) = 5.0), suggesting that sufficient bacteria remained viable for 
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use in treating aquaculture tanks.  For example, tanks that are 100 L would require 

least 10.0 g per treatment.  Future pilot studies in commercial hatcheries are now 

needed to test the suitability of these products for commercial use.  
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Abstract 

Probiotic agents have the potential to mitigate disease outbreaks in aquaculture 

facilities. However, there are currently no commercially available probiotics for 

shellfish larviculture. The marine bacterium Phaeobacter gallaeciensis S4 was 

previously reported to provide significant protection of Eastern oyster, Crassostreae 

virginica, larvae against the shellfish pathogen Vibrio tubiashii.  This investigation 

aimed to create a stable, lyophilized formulation of P. gallaeciensis S4 for potential 

delivery at shellfish hatcheries. Lyophilized formulations of P. gallaeciensis S4 were 

prepared at both log and stationary growth phases, and two cryoprotectants, sucrose 

and mannitol, were investigated. For each cyroprotectant, three weight by volume 

concentrations were tested: 20% (w/v), 30% (w/v) and 40 % (w/v).  The formulated 

bacteria were stored at various temperatures, including 4 °C, room temperature (RT), 

30 °C, and 30 °C with 75 % humidity.  The best results were achieved with the 30-M 

(30% mannitol) formulation stored at RT. This formulation provided cell viabilities of 

4.39+3.69 log(CFU/mg) after 1 week of storage, but lost an additional 30% of the 

viable cells over the following 1 week.  Since a goal of the study was to prepare a 

formulation that exceeded 10
5
 CFU/mg and remained relatively stable for at least 12 

weeks, none of the formulations were considered a success.  

 

Introduction 

To reduce the threat of disease, hatcheries employ various strategies to 

eliminate pathogens, including seawater filtration systems, ozonolysis and UV 

treatments of seawater, controlling salinity, selective breeding of the cultured species, 
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and electrolytic treatments of incoming seawater (Ruiz-Ponte, Samain et al. 1999, 

Jorquera, Valencia et al. 2002, Meunpol, Lopinyosiri et al. 2003, Park, Kim et al. 

2011).  Despite these approaches, infectious diseases continue to be problematic for 

shellfish hatcheries.  The use of probiotic bacteria is an attractive alternative to 

disease management in bivalve hatcheries, but no commercial probiotic products 

currently exist for this area of aquaculture.   

Probiotic bacteria are defined by the World Health Organization as live 

microorganisms that provide a beneficial effect to the host (FAO 2002). 

Investigations to identify potential probionts for bivalve aquaculture have shown 

promise. Ruiz-Point et al determined that Roseobacter strain BS 107 was able to 

improve the survival of Pecten maximus when challenged by Vibrio anguillarum 408 

(Ruiz-Ponte, Samain et al. 1999). Gibson et al. demonstrated that probiotic candidate 

Aeromonas media sp. 199 produced an inhibitory substance that contributed to the 

antagonistic effects in vitro as well in vivo towards V. tubiashii (Gibson, Woodworth 

et al. 1998). Riquelme et al. demonstrated Anthrobacter strain 77 exuded compounds 

that inhibited Vibrio esplendidus, Vibrio alginolyticus and Aeromonas hidrophyla. 

Riquelme additionally determined Anthrobacter strain 77, when ingested, was able to 

colonize the gut was not toxic to Chilean scallop larvae. (Riquelme, Jorquera et al. 

2001).  Vibrio strain OY15, a naturally-occurring bacterium present in the digestive 

glands of adult C. virginica, increased survival of oyster larvae when challenged with 

pathogen Vibrio sp. strain B 183 (Kapareiko, Lim et al. 2011). Karim et al. showed 

that P. gallaeciensis S4 and Bacillus pumilus RI0695 exhibited protective effects of 
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Crassostrea virginica larvae when challenged with V. tubiashii both in vitro and in 

vivo (Karim, Zhao et al. 2013). 

Delivery of freshly cultured bacteria is not a feasible approach for disease 

management at commercial shellfish hatcheries. Lyophilization as a means to create a 

stable formulation was chosen for this study because of previously demonstrated long 

shelf life of stored lyophilized microbes (Leslie, Israeli et al. 1995, Costa, Usall et al. 

2000, Miyamoto-Shinohara, Imaizumi et al. 2000, Hubálek 2003, Miyamoto-

Shinohara, Sukenobe et al. 2006, Savini, Cecchini et al. 2010). Miyamoto-Shinohara 

et al. observed that gram negative bacteria containing polar flagella had low to 

moderate (58.2+25.0 % to 10.7%) cell viability survival rate post lyophilization 

(Miyamoto-Shinohara, Sukenobe et al. 2008). Sucrose, mannitol and trehalose have 

been previously chosen when formulating gram negative bacteria for their 

extracellular cryoprotection (Leslie, Israeli et al. 1995, Costa, Usall et al. 2000, 

Miyamoto-Shinohara, Imaizumi et al. 2000, Hubálek 2003, Miyamoto-Shinohara, 

Sukenobe et al. 2006, Miyamoto-Shinohara, Sukenobe et al. 2008, Savini, Cecchini et 

al. 2010). Mannitol and sucrose were chosen for this study due to their ability to 

protect the cell membrane of Gram negative bacteria (Costa, Usall et al. 2000, 

Hubálek 2003, Savini, Cecchini et al. 2010).  

 An important next step in the development of probiotic bacteria for shellfish 

aquaculture is the creation of stable and safe formulations.  Freeze drying is a 

commonly used method in microbial culture storage (Leslie, Israeli et al. 1995, Costa, 

Usall et al. 2000, Miyamoto-Shinohara, Imaizumi et al. 2000, Hubálek 2003, 

Miyamoto-Shinohara, Sukenobe et al. 2006, Miyamoto-Shinohara, Sukenobe et al. 
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2008, Savini, Cecchini et al. 2010). In this study, we explored lyophilized 

preparations of P. gallaeciensis S4 for their cell viability over time and protection of 

oyster larvae against V. tubiashii infections. 

 

Methods and Materials 

Bacterial cultivation 

P. gallaeciensis S4, R. crassostreae Cv 919-312
T
   (Boettcher, Geaghan et al. 

2005) and V. tubiashii RE22 (Elston, Hasegawa et al. 2008) were provided by Dr. 

Marta Gómez-Chiarri (University of Rhode Island).  Vibrio harveyi BB120 was 

provided by Dr. David Nelson (University of Rhode Island). All bacteria were 

cultured in a seawater-based yeast extract-peptone culture medium (YP). YP media 

was prepared using 5 g/L of peptone, 1 g/L of yeast extract, and 30 g/L of Instant 

Ocean (Blacksburg, VA) in pure, reverse osmosis (RO) water.  For YP agar, 15 g of 

agar per L.  R. crassostreae were used for in vitro antibiotic susceptibility testing, 

while V. tubiashii was used for challenges. P. gallaeciensis  S4 was cultured at 28 °C 

and shaking at 175 rpm. Bacterial stocks were stored at −80 °C in YP broth with 25% 

glycerol until use. 

Formulation of Bacterial Cells 

Forty-eight 50 mL cultures of S4 were incubated at 28 °C for 48 hours. 

Bacteria growth was measured by measuring the absorbance (OD600). The cultures 

were formulated at two time points: (1) OD600= 0.5+0.1 or ~10
5
 CFU/mL, and (2) 

OD600=0.8 or ~10
8
 CFU/mL (personal communication with Dr. Wenjing Zhao).  Time 

point (1) was considered to be exponential growth phase and time point (2) was 
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considered to be stationary growth phase  (personal communication with Dr. Wenjing 

Zhao). The cells were harvested by centrifugation at 4,500 x g for 10 min at 20 °C.  

The cell pellet was then washed in 5 mL of sterile artificial seawater twice. The 

resulting bacterial cell pellet was re-suspended in 5 mL of artificial seawater and either 

(1) 20%, 30% or 40% (w/v) of mannitol (20-M, 30-M, 40-M) or (2) 20%, 30% or 40% 

(w/v) of sucrose (20-S, 30-S 40-S). Each formulation was given a designation: LGP 

denotes formulation during exponential growth phase while SGP designates a 

formulation from S4 in the stationary growth phase (e.g. 30-M SGP).  All 

formulations were thoroughly mixed, frozen at -80 °C overnight, and then lyophilized.  

A sterilized spatula was used to break up the lyophilized presscake into a free-flowing 

powder.  The formulated products were stored in plastic centrifuge tubes at either 

room temperature (RT) (approximately 22+3 °C), 4 °C for 5 weeks, 30 °C for 4 

weeks, or 30 °C with 75% relative humidity for 4 weeks. 

Colony-Forming Unit (CFU) Viability Assay 

The cell viability of probiotic formulations stored at RT and 4 °C was 

determined at 1, 2, and 5 weeks. Cell viability assay was performed at 2 and 4 weeks 

for formulations stored at 30 °C and 30 °C with 75% relative humidity. All 

formulations were reconstituted in 5 mL of sterile reversed osmosis water to a 

concentration of 200, 300 or 400 mg/mL of 20-M LGP, 30-M LGP and 40-M LGP. 

1:10 and 1:100 dilutions ranging from 10
2
-10

7
 CFU/mL were created from the 5 mL 

stock of formulations in YP broth in triplicate. 10 µL of each dilution was pipetted 

onto YP agar plates in triplicate. The YP plates were incubated for 48 h at 27 °C and 
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then colonies were counted. The assay for each formulation was performed in 

duplicate.  

Antibiotic activity of formulated P. gallaeciensis S4 against bacterial pathogens  

S4 from each formulation was tested for growth inhibitory activity against R. 

crassostreae (Karim, Zhao et al. 2013). An overnight culture of R. crassostreae was 

diluted to approximately 10
8
 CFU/mL in YP media. The diluted bacterium was 

swabbed onto an YP agar plates. Overnight culture of formulated products (10 µL of 5 

mL stock) in YP media and an overnight culture of P. gallaeciensis S4 from cryostock 

(control) were pipetted (10 µL) in triplicate on each YP plate. Each plate was 

incubated for 48 h at 28 °C. Zones of growth inhibition surrounding the colonies of S4 

were measured to the nearest mm. Assays were performed in triplicate.  

Characterization of cell morphology of lyophilized products 

 

The cell morphology of the 30-M LGP and 40-M LGP and stationary 

formulations were examined by phase contrast microscopy magnified at 100x (Zeiss 

Axio Imager 2 microscope). Three 10
2
 CFU/mL dilutions in YP media were prepared 

for each formulation from their rehydrated 5 mL stock solutions.  

Oysters challenge assays 

Oyster larvae 

10-day old oyster larvae (C. virginica) were obtained from Blount Shellfish 

Hatchery at Roger Williams University, Bristol, RI. The larvae were divided into six 

wells containing 5 mL of aerated sterile seawater (FSSW) and allowed to settle at 20 

°C for 24 h. The larvae were fed algal paste (Reed Mariculture Inc., San Jose, CA. 

USA daily. The water in each well was changed with FSSW every 48 h.  
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Probiotic treatments of Oyster Larvae 

The experiment consisted of six wells containing larvae with various 

treatments: a positive control group (no treatment), a negative control group treated 

with V. tubiashii, two 30-M LGP treatment groups and two 40-M LGP treatment 

groups. The positive control groups contained 147 + 40 larvae and were fed 

commercial algal paste (Reed Mariculture Inc., San Jose, CA. USA) daily only. The 

negative control group contained 95 + 52 larvae and were fed commercial feed and 

treated with V. tubiashii  (10
5
 CFU/mL) after 24 h. Two wells containing 79 + 20 

larvae were treated with 30-M LGP (10
4
 CFU/mL) and two wells containing 70+30 

larvae were treated with 40-M LGP (10
4
 CFU/mL). All treatments were performed in 

triplicate.  

Oyster Larvae Challenge 

After 24 h, one well treated with1 week old 30-M LGP and one well treated 

with the 1 week old 40-M LGP were washed and challenged with V. tubiashii (10
5
 

CFU/mL).  The negative control well was treated with V. tubiashii (10
5
 CFU/mL). 

After an additional 24 h, all wells were stained with neutral red (200 µL) and live 

larvae were counted. These experiments were run in triplicate. The relative percent 

survival was calculated using the following formula: 

Relative Percent Survival = [1-
% survival challenged control

%survival treatment
 ] x 100 

Statistical analysis 

 The challenge data were analyzed by one-way analysis of variance (ANOVA 
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). This data were analyzed using Sigma stat 3.1 software (Systat). Differences were 

considered to be significant at values of P < 0.05.  

Results 

 

Effect of cryoprotectant on lyophilization process 

 

 After the lyophilization process, all sucrose lyophilized formulations were a 

solid crystallized mass.  In contrast, all mannitol lyophilized products were 

homogenized into a loose-flowing powder. 

 

Effect of lyophilization on antimicrobial activity  

All of colonies arising from the S4 stationary growth phase (SGP) lyophilized 

powders and the 20-M LGP powder did not produce zones of growth inhibition 

against R. crassostreae. These colonies were white in appearance, which is different 

compared to the yellow color normally observed with S4 cultures from cryostock 

(Figure 3). The 30-M LGP and 40-M LGP formulations had comparable zones of no 

growth surrounding all the S4 colonies, similar to the area of no growth surrounding 

the freshly cultured S4 (Table 1). 
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Table 1. Antibiotic activity of formulated P. gallaeciensis S4 versus R. crassostreae.  

     

    

Lyophilization Clear Zone of inhibition 

20-M log phase 0 mm 

30-M log phase 8 mm 

40-M log phase 8 mm 

20-M stationary phase 0 mm 

30-M stationary phase 0 mm 

40-M stationary phase 0 mm 

Control (P. gallaeciensis S4) 10 mm 

 

10 µL of a 5 mL solution of all lyophilized mannitol (M) formulations was grown in YP broth for 48 h 

at 27 ° C shaking 175 rpm. Control was P. gallaeciensis S4 from cryopreserved stock. 10 µL of the 

resulting cultures were spotted onto plates inoculated with R. crassostreae and incubated at 27 ° C for 

24 hours. The diameters of zones of no growth surrounding S4 colonies were measured to the nearest 

mm. 

 

Impacts of lyophilization on P. gallaeciensis S4  

 

The cell viability of the 30-M LGP and 40-M LPG stored at RT and 4 °C was 

assessed over 5 weeks using by measuring CFU per mg over time. Unfortunately 

neither formulation produced any viable cells (Table 2 and Table 3). The effect of the 

lyophilization processes of formulated products retaining antimicrobial activity (30-M 

LGP and 40-M LPG) were assessed by measuring the cell viability prior to and after 

formulation. Storage of 30-M LGP and 40-M LGP at 30 °C, both with 75% relative 

humidity and without humidity, did not produce any viable cells at the first assessment 

of CFU/mg at 2 weeks. The cell viability of the 30-M LGP and 40-M LPG stored at 

RT and 4 °C had decreased 2 orders of magnitude post formulation. Additionally the 
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viability rapidly decreased over 2 weeks. By 5 weeks there were no viable cells when 

test formulations were assessed by measuring CFU per mg over time. (Table 2 and 

Table 3).  

 

Table 2. Cell viability of P. gallaeciensis S4 30-M log phase lyophilized formulation 

(CFU/mg) over 2 weeks while stored at RT and 4 °C 

Time Exp. 1, RT 

(CFU/mg) 

Exp. 2, RT Exp. 1, 4 °C Exp. 2, 4 °C 

1 4.39+3.69 4.22+3.37 3.51+2.31 3.43+2.37 

2 3.26+2.25 3.18+2.18 3.69+2.11 2.98+1.91 

5 0 0 0 0 

 

 

 

Table 3. Cell viability of P. gallaeciensis S4 40-M log phase lyophilized formulation 

(CFU/mg) over 2 weeks while stored at RT and 4 °C 

Time Exp. 1 RT Exp. 2 RT Exp. 1 4 °C Exp. 2 4 °C 

1 3.90+3.37 4.12+3.21 3.56+2.43 3.54+2.15 

2 3.82+2.97 4.18+3.70 2.72+1.97 3.44+1.87 

5 0 0 0 0 
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Impacts of lyophilization on cell morphology 

The 30-M and 40-M LPG, resuspended in 5 mL of DI water and diluted in YP 

media, appeared as small ovoid cells under phase contrast at 100x (Figure 1), while 

the 30-M and 40-M SPG had the formation of rosettes. Observed cell morphology 

from both the LPG and SPG formulations were consistent with P. gallaeciensis S4 

bacterium previously reported by Karim and coworkers (Karim, Zhao et al. 2013). 



 

 

1
2
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Figure 1.  (a) Cell morphology of 30-M SGP formulation using 100 x magnification; (b) Cell morphology of 40-M SGP 

formulation using 100 x magnification;  (c) Cell morphology of 30-M LGP formulation using 100 x magnification;  (d) Cell 

morphology of 40-M LGP formulation using 100 x magnification. 
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Oyster larvae challenges  

Cell viabilities of the 30-M LPG and 40-LPG were found to be 4.40 + 3.70 log 

(CFU/mg) and 4.11 
 
+ 3.20 log (CFU/mg), respectively, and each was added to treated 

oysters at 10
4
 CFU/mL.  Neither of the formulations were found to be detrimental to 

oyster survival (Figure 5).  Survival of the oyster larvae after 24 h exposure to 

pathogen V. tubiashii RE22 was reduced to 25+5%. Oyster larvae pretreated with the 

30-M LPG and 40-M LPG at 10
4
 CFU/mL and then exposed to V. tubiashii 

demonstrated the similar survival rates of 47+9% and 34+1%, respectively compared 

to oysters treated with V. tubiashii alone and to each other (Figure 2). Both 30-M LPG 

and 40-M LPG provided no protection of the oyster larvae. This was significantly 

different than what was previously seen with probiotic treatments of freshly cultured 

P. gallaeciensis S4 bacterium (10
4
 CFU/mL) (Karim, Zhao et al. 2013). 



 

 

 

1
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Figure 2. Protection effect of 30-M LGP and 40-LGP lyophilized formulation when challenged with V. tubiashii RE22  

 Oyster larvae was pretreated with rehydrated 30-M LGP and 40-M LGP diluted to 10
4
 CFU/mL 24 hours prior to being challenged with V. 

tubiashii RE22. Protection of oyster larvae was measured by percent survival  (+standard error).  Representative of 3 experiments. 
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Discussion 

 

Phaeobacter have previously shown promise as probiotic agents for 

aquaculture. Previous studies have reported several Roseobacter isolates that exhibit 

antagonistic effects against pathogenic Vibrio species that are problematic in cod and 

turbot larviculture(Brinkhoff, Bach et al. 2004, Bruhn, Nielsen et al. 2005, Porsby, 

Nielsen et al. 2008, Porsby, Webber et al. 2011, D'Alvise, Lillebo et al. 2012). 

Roseobacter isolates have been shown to produce tropodithetic acid, an antibiotic with 

potent effects against marine and human pathogens (Kintaka, Ono et al. 1984, 

Kawano, Nakagomi Kazuya. et al. 1998, Liang 2003, Porsby, Webber et al. 2011). 

Karim and co-workers demonstrated that pre-treatment with fresh culture of P. 

gallaeciensis S4 provided protection to oyster larvae when challenged with V. 

tubiashii RE22. 

A successful P. gallaeciensis S4 probiotic formulation for potential 

commercial hatchery use should have cell viability above that required for a probiotic 

effect. 10
4
 CFU/mL was previously determined to be effective using freshly cultured 

P. gallaeciensis S4 bacterium. Furthermore, the formulation should be stable for at 

least 12 weeks since this the normal spawning season of both wild and aquacultured 

oysters is June through August (UMCES 2014).  Also, the formulation should 

provide an antagonistic effect towards the pathogen V. tubiashii RE22 in vivo.  

Unfortunately formulating S4 bacterium through lyophilization has proven to 

be difficult. Lyophilized powders 30-M SGP and 40-M SGP had similar cell 

morphology to freshly cultured P. gallaeciensis S4 bacterium when examined under 

microscopy 100x. However, both formulations had lost antibiotic activity against R. 
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crassostreae in vitro.  While lyophilized powders 30-M LGP and 40-M LGP retained 

antibiotic activity against R. crassostreae in vitro, reduced protection was observed in 

the oyster larvae in the bacterial challenge with pathogen V. tubiashii RE22 (Karim, 

Zhao et al. 2013). Also, the cell viability of both formulations rapidly decreased (2 

weeks).  By the 5
th

 week, all formulations had no cell growth when tested. The cell 

viability may have been adversely impacted by the freezing method or due to short 

term exposure to the hyperosmotic environment created by the cryoprotectant.  

The lyophilization of P. gallaeciensis S4 with two different cryoprotectants, 

sucrose and mannitol, proved to be unsuccessful. It did not meet the criteria necessary 

for a commercially available probiotic product. (30-M and 40-M) were not of 

sufficient stability or viability (CFU >10
6
) for use as a commercial probiotic product.  

Log phase 30-M and 40-M formulations did not provide protection of C. virginica 

larvae when challenged with V. tubiashii.  Lyophilization of P. gallaeciensis S4 under 

these conditions are not suitable for  prevention of disease in oyster hatcheries.  It may 

be useful to examine if a cryoprotectant is necessary in creating a lyophilized P. 

gallaeciensis S4 formulation.   Slower freezing of the sample and less concentrated 

cryoprotectants might also be beneficial. Other types of formulations should be 

explored, such as liquid formulations using cells under starvation conditions.  
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