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ABSTRACT 

Polybrominated diphenyl ethers (PBDEs) are ‘emerged’ contaminants that were 

produced and used as flame-retardants in numerous consumer and industrial applications 

for decades until banned. They remain ubiquitously present in the environment today. 

Here, a unique set of >200 biotic samples from the Antarctic was analyzed for PBDEs, 

including phytoplankton, krill, fish and fur seal milk, spanning several sampling seasons 

over 14 years. PBDE-47 and -99 were the most dominant congeners determined in all 

samples, constituting >60% of total PBDEs. A temporal trend was observed for ∑7PBDE 

concentrations in fur seal milk, where concentrations significantly increased (R2 = 0.57, p 

< 0.05) over time (2000 to 2014). Results for krill and phytoplankton also suggested 

increasing PBDE concentrations over time. Trends of PBDEs in fur seal milk of 

individual seals sampled one or more years apart showed no clear temporal trends. 

Overall, there was no indication of PBDEs decreasing in Antarctic biota yet, while 

numerous studies have reported decreasing trends in the northern hemisphere. Similar 

PBDE concentrations in perinatal versus non-perinatal milk implied the importance of 

local PBDE sources for bioaccumulation. These results indicate the need for continued 

assessment of contaminant trends, such as PBDEs, and their replacements, in Antarctica.  

 



 

 
 

INTRODUCTION 

Antarctica is one of the most pristine places on the planet. However, even in this 

remote region, anthropogenic effects are measureable. Scientific exploration in 

Antarctica has occurred for decades and in the summer season, the continent hosts over 

100 active facilities operated by 30 different nations.1 While pollution in Antarctica has 

typically been orders of magnitude lower than concentrations reported elsewhere around 

the globe, organic contaminants, particularly (semi-) volatile ones, have reached the 

region via long range environmental transport by processes of global fractionation and 

cold condensation.2 Legacy contaminants such as polychlorinated biphenyls (PCBs)  and 

organochlorine pesticides (OCPs) have been reported along with more recent 

contaminants, such as polybrominated diphenyl ethers (PBDEs) and perfluoroalkyl 

substances (PFASs), in numerous environmental matrices from the region.3–9 Some of 

this contamination has also been found to originate from research stations themselves. 

10,11 

Polybrominated diphenyl ethers are ”emerged” contaminants that have been used as 

additive flame-retardants for decades in a wide range of consumer and industrial 

applications (e.g., upholstery, electronics) and easily leached from these manufactured 

goods into the environment, foodwebs and ultimately reaching humans12. PBDEs, like 

many legacy POPs (e.g. PCBs), are hydrophobic and lipophilic. The height of PBDE 

production was dominated by three different commercial mixtures (penta-, octa-, and 

deca-BDE). 13 In 2009, penta- and octa-PBDE mixtures were listed by the Stockholm 

Convention.13 However, production of the deca-BDE has persisted in many countries and 



 

 
 

a massive reserve of products that contain PBDEs exists around the globe, and will 

continue to leach them into the environment.5,14–16   

Several studies have reported PBDE concentrations starting to decrease over the last 

5-10 years. For example, time-trends of PBDEs in samples collected from Swedish 

mothers indicate a decreasing trend for most PBDEs, except for BDEs 153 and 209, from 

1996 - 2010. 17 PBDEs also decreased in Baltic herring over the last decade.18 Across the 

Great Lakes in North America, PBDEs in fish started to decline in 1999/2000.19 So far, 

no consistent set of Antarctic samples has been available to document time trends of 

PBDEs in Antarctic marine biota, although several previous studies have detected PBDEs 

in the Antarctic environment.3,4,9,10,20   

Kelly et al. (2008) presented evidence from a Canadian Arctic marine food web in 

which many PBDEs appeared to exhibit negligible biomagnification, with the exception 

of BDE-47, which did demonstrate food web biomagnification, albeit at a much lower 

level than PCBs 21.  Yet in the same study, PBDEs in macroalgae were excluded from the 

TMF calculation, as their concentrations exceeded those from other trophic levels by 5-

10 times.  

We obtained a unique set of biotic samples from West Antarctica (Figure 1), 

including phytoplankton, krill, fish and fur seal milk, spanning several years (2000-

2014). A previous paper reported generally declining trends of several, but not all PCBs 

and legacy OCPs in these fur seal milk samples; PBDE concentrations were not measured 

at the time 6. We used these samples to assess the presence and trophic transfer of PBDEs 

in the West Antarctic food web, and to identify the PBDE temporal trends in this region 

either from yearly averages, or in the case of repeatedly sampled fur seals, from 



 

 
 

individual trends over time. The foodweb structure was assessed using stable isotopes of 

carbon (δ13C) and nitrogen (δ15N).  

Specific goals in this research were to (i) determine which PBDEs are being detected 

in different Antarctic biota; (ii) establish temporal trends of common PBDE congeners 

over a time period where global regulations and restrictions on production had been 

implemented (i.e. 2000s); (iii) contrast trends of PBDEs in Antarctic fur seal milk to 

those from the Arctic; and (iv) assess the difference of milk sampled before and after fur 

seals begin foraging locally in waters off the Antarctic Peninsula. 

 

MATERIALS AND METHODS 

Sample Collection 

Milk samples were collected from Antarctic fur seals (Arctocephalus gazella) 

approximately 100 km off the Antarctic Peninsula at Cape Shirreff, Livingston Island 

(62°28’S, 60°46’W) over the austral summers of 2000/2001, 2001/2002, 2004/2005, 

2009/2010, 2010/2011, 2011/2012, 2012/2013 and 2013/2014 (Figure 1, Tables S1-S8).  

Most seals were multiparous females in their perinatal stage (i.e. the seals had all bred 

prior to the year of sample collection and milk was collected during the perinatal period, 

1-2 days postpartum, prior to initiation of offshore foraging trips), except for the 

2011/2012, 2012/2013 and 2013/2014 samples, which consisted of both perinatal and 

non-perinatal (i.e. after initiation of foraging cycles) milk samples (Tables S6-S8). Seals 

were assumed to have had at least one pup prior to the breeding season sampled as all 

seals were age 5 or older, with the majority being over the age of 7. Seal capture was 



 

 
 

performed following methods described in Polito and Goebel (2010) and as reported in 

Brault et al. (2013). 6,22  In brief, seals were captured with hoop nets, sedated with 5mg 

midazolam, and anesthetized with isoflurane. Milk was collected after an intramuscular 

injection of oxytocin (0.25 mL, 10 UI mL-1) in pre-cleaned vials and stored at -20°C until 

analysis. 6,22 Temperature loggers sampling every 10 min were kept with samples to 

confirm storage temperature.  

Phytoplankton samples were collected in a region of Antarctica that spans from 

the West Antarctic Peninsula to the Ross Sea (64.78°S, 64.07°W to 78.64°S, 164.3°W, 

Figure 1) over the austral summers of 2007/08, 2009/10, and 2010/11 using ring net tows 

(Table S9). Phytoplankton samples consisted largely of diatoms (Antarctic Peninsula) 

and Phaeocystis sp (Amundsen and Ross Seas).  Further specifics on sample collection 

can be referenced in Brault et al. 6,23  

All krill and fish samples were collected from within the Palmer Long Term 

Ecological Research (LTER) Grid Survey Region (approx. 66.99°S, 69.28°W to 61.94°S, 

73.78°W, Figure 1) via 700 µm ring net tows (taken at oblique angles, Table S10).  Krill 

samples consisted predominantly of Euphausia superba and were collected during the 

austral summers of 2007/2008 and 2010/2011 and split into 3 size classes (juveniles, 

adults (including mature females), and gravid females). Fish samples consisted of either 

silverfish (Pleuragramma antarcticum) or myctophids (Electrona antarctica) and were 

collected in the same manner as krill (Table S11). 

Sample extraction 



 

 
 

Fur seal milk extraction was conducted in two batches. The first batch (n=59), 

which consists of samples from the 5 austral summers spanning from 2000/2001 – 

2010/2011, was extracted at the Virginia Institute of Marine Science (VIMS) following 

previously established POP procedures as reported in Geisz et al. (2008).24  In short, fur 

seal milk was freeze-dried, homogenized, sub-sampled (1 g dry-weight), solvent 

extracted (65:35 DCM: Acetone), and analyzed for several POPs (e.g.  DDT, PCBs, and 

Chlordane) as well as lipid content.6 Sample extracts were shipped to the University of 

Rhode Island’s Graduate School of Oceanography (URI-GSO) for PBDE analysis.  

The second batch of fur seal milk samples (samples from 2011/2012, 2012/2013 

and 2013/2014, n= 71) was extracted at URI-GSO as detailed in the SI. Briefly, 2 mL of 

fur seal milk was spiked with PBDE surrogates, extracted three times with 20mL each of 

n-hexane/acetone (2:1), treated with concentrated sulfuric acid to denaturate lipids, and 

cleaned on SPE cartridges. Percent lipid was measured separately. 

Phytoplankton, fish, and krill samples were also extracted at VIMS.  Samples 

were manually homogenized with a Virtis “45” tissue homogenizer (Virtis Co. Inc.), 

freeze-dried at -80°C for approximately 72 hours, and solvent-extracted. Further details 

on sample preparation can be gathered from Brault.23 Following analysis at VIMS for 

several legacy POPs 6, phytoplankton, fish and krill sample extracts were shipped to URI-

GSO to be analyzed for PBDEs. 

PBDE Analysis 



 

 
 

All samples were analyzed for mono- through hepta-brominated congeners (BDE-

2, -8, -15, -30, -28, -49, -47, -100, -99, -154, -153, and -183) via gas chromatography 

(GC) tandem mass spectrometry (MS) on an Agilent 6890N GC coupled to a Waters® 

Quattro Micro MS/MS under electron ionization/MS/MS in multiple reaction monitoring 

mode (MRM) using a DB-5MS column (Agilent J&W GC Columns, 122-5532, length 

30m, ID 0.250 mm, film 0.25µm) and splitless injection (for more details, see SI). 

Analysis of BDE-209 was conducted separately and procedures are detailed in the SI.  

Sample extracts were spiked with 10µL of a 5ng/µL 13C12 -labeled PBDE 

surrogate (13C12 BDEs – 28, 47, 99, 153 and 183, Cambridge Isotope Laboratories) for a 

total concentration of 50 ng, and 5.0 µL of a 5.0 ng/µL injection standard (p-terphenyl-

d14, AccuStandard) for a total concentration of 25 ng. To the samples originally extracted 

at VIMS, the surrogate was added post-extraction. These samples were corrected for the 

average recoveries of previously analyzed POPs (e.g. DDT, PCBs, and chlordane), which 

were 79 ± 3.7 % for phytoplankton, 69 ± 1.8% for krill, and 78 ± 1.8% for fur seal milk.  

The second batch of fur seal milk samples (2011/2012, 2012/2013 and 2013/2014) were 

spiked prior to extraction at URI-GSO directly with 20µL of a 2.0ng/µL PBDE surrogate 

standard in nonane. Results presented below are only for compounds that were detected > 

30% of the time.   

Quality Control 

Laboratory blanks of a hydro-matrix material were initially extracted alongside 

real samples and any blanks included in the vial files for shipment from VIMS to URI-

GSO were analyzed for PBDEs. All samples were blank corrected; main detected 



 

 
 

congeners were BDE-47 and -99 with concentrations averaging 0.18 ± 0.20 ng (standard 

deviation) and 0.18 ± 0.23 ng, respectively (SI Table S12). For BDE 209, amounts in 

blanks were similar to fur seal milk results, so results are not reported here.  

At URI-GSO, laboratory blanks, matrix spikes (n=8), blank spikes (n=4) and 

duplicates of fur seal milk (n=10) were included. Limit of detection (LOD) was 

calculated as the average detected blank concentrations + 3 times the standard deviation 

(Table S13). For congeners that were not detected, the noise was used to derive LODs 

(Table S14); LODs ranged from 0.011 ng/g lipid (BDE-2, 15) to 0.16 ng/g lipid (BDE-

99). Recoveries of the surrogate standards ranged from 83 +2.4 % (BDE-183) to 94 +3.1 

% (BDE-47). Recoveries of the congeners in the matrix and blank spikes generally 

ranged from 92 % (BDE-2) to 102 % (BDE47) as shown in Table S15. Relative percent 

difference for the duplicates ranged from 6.2 % (BDE-100) to 21 % (BDE-2).  

δ13C and δ15N Analysis 

δ13C and δ15N stable isotopes for the majority of samples were determined via an 

elemental analyzer-isotope ratio mass spectrometer (EA-IRMS) at VIMS as described 

elsewhere (Figure S1).6 Some plankton samples were analyzed at the University of 

California, Santa Cruz (UCSC) on a Carlo Erba EA 1108 elemental analyzer coupled to a 

Finnegan Delta-Plus isotope ratio mass spectrometer (EA-IRMS).  Average values were -

29± 0.40‰ for δ13C and 1.6 ± 0.50‰ for δ15N. 

Statistical Analysis 



 

 
 

Data were tested for normality using the Shapiro-Wilks test in RStudio, IBM 

SPSS Statistics 22 and SigmaPlot 12 software packages.  Concentrations were natural log 

transformed to make data have a normal or near-normal distribution.  Linear regressions 

were performed for each congener with >30% detection against fur seal age, breeding 

season, δ13C, and δ15N.  Any difference between PBDE concentrations in perinatal and 

non-perinatal milk was tested using a student’s two-sample t-test assuming unequal 

variances.  A student’s t-test was used to compare between detected PBDE 

concentrations in the krill samples of 2007 and 2011. Similarly, the One-Way repeated 

ANOVA test was used to compare between detected PBDE concentrations in: (i) the 

different krill samples (juveniles, adults and gravis), (ii) phytoplankton samples collected 

in 2007 through 2011, and (iii) between the calculated trophic levels for the different seal 

samples collected in 2000, 2001, 2004, 209 and 2010.  

 

RESULTS AND DISCUSSION  

PBDE-47 and -99 were the most dominant congeners determined in all samples, 

generally constituting >60% of total PBDEs. Phytoplankton samples displayed the 

highest overall concentrations, followed by fur seal milk, krill, and lastly fish, in which 

no PBDEs were detected (Table 1). The lower brominated congeners (BDE-2, -8, -15, 

and -30) and BDE 183 were not regularly detected until 2011/2012. These trends could - 

at least partially - be explained by the switch in extraction procedures between VIMS 

(2000/01 – 2010/2011) and URI-GSO. To ensure consistency across the various samples, 



 

 
 

we focus on the 7 most routinely detected congeners (BDE -28, -49, -47, -100, -99, -154, 

and -153), which were also summed (7BDEs). 

Fur Seal Milk 

Lipids in fur seal milk were high with an average value of 64 ± 9 % (standard 

deviation, sd; range 14-84%). PBDEs were detected in all fur seal milk samples (n=130; 

Tables S15-S22). The Σ7PBDEs in all fur seal milk samples ranged from 0.14 to 17 ng/g 

lipid with a mean ± sd of 2.1 ± 1.9 ng/g lipid (median of 1.7 ng/g lipid).  BDE-47 was the 

most dominant congener with a range of 0.14 to 12 ng/g lipid, and a mean of 1.3 ± 1.4 

ng/g lipid (median of 0.95 ng/g lipid). BDE-99 was the second most dominant congener, 

but showed less variability with a range from <LOD to 2.7 ng/g lipid, mean of 0.36 ± 

0.36 ng/g lipid (median of 0.27 ng/g lipid). Similar PBDE concentrations of around 1.5 - 

2.0 ng/g lipid (Table 1) have been reported for Antarctic Weddell seal blubber.25,26 For 

comparison, ringed seal blubber in the Canadian Arctic contained more elevated 

Σ15PBDEs at 11 to 14 ng/g lipid.27  

Stable isotope analysis was only available for fur seal milk collected during the 

first five austral summers (2000/2001 – 2010/2011, n=59). Both δ13C and δ15N 

demonstrated variability: δ13C ranged from -26 to -20‰ with a mean ± sd of -23 ± 1.4‰; 

δ15N ranged from 8.0 to 14‰, with a mean ± sd of 10 ± 1.2‰. 

Fur Seal Milk Trends 

 In fur seal milk, the dominant congeners, BDE-47 and -99 showed no significant 

correlations with age (p<0.05), similar to results for legacy POPs, implying that older 



 

 
 

animals did not display greater concentrations.6 No significant relationships were found 

between fur seal milk PBDE concentration and δ13C value from regression analysis. Few 

significant trends were observed between PBDE concentration and δ15N value; most 

notably in 2000/2001, BDE-47 and Σ7PBDEs versus δ15N both demonstrate significantly 

negative trends (i.e., decreasing concentration with increasing δ15N value or trophic 

level). We have no explanation for this trend but note that it disappears when looking at 

all fur seal milk results from 2000/2001-2010/2011 combined. 

∑7PBDE concentrations for the 2011/2012 breeding season were significantly 

greater than for the other breeding seasons, except for 2009/2010 and 2013/2014 (One-

way repeated ANOVA, p<0.001). Additionally, a temporal trend was observed for 

∑7PBDE concentrations (Figure 2), where concentrations significantly increased 

(R2=0.57, p=0.03) over time (from 2000 to 2014). We note that the (increasing) slope of 

PBDE concentrations over time was not significantly different when considering either 

all 8 sampling years, or just the first 5 years (those extracted at the VIMS). 

Fur Seal Milk Trends in the same individuals 

The previous discussion was based on average values from randomly sampled female fur 

seals over time. Milk samples from 18 of these individuals were collected twice with at 

least one year between sampling times. For 11 seals, only perinatal milk was obtained, 

for three seals only non-perinatal milk, and both perinatal and non-perinatal was collected 

from four individuals. Ratios for individual BDE congeners were calculated as the more 

recent concentration derived by the previous concentrations (Figure S3). No clear trends 

of changes in PBDE concentrations over time were discernible across all paired milk 



 

 
 

samples. These results contrast with time trends observed for PBDEs in the northern 

hemisphere. 

In the Great Lakes, PBDE concentrations in fish peaked mostly from 1999 to 

2000.19 Further away from source regions, PBDE concentrations in ringed seals in East 

Greenland started to decrease in the early 2000s27, a trend reported for most Arctic 

biota.28 PBDEs also decreased in Canadian seabirds with a significant and rapid decline 

after 2003.29 An analysis of PBDE mass flows in the US and Canada predicted penta and 

octa-BDEs stocks to peak in their use around 2004, while BDE 209 stock peaked in 2008. 

15 These diverging trends between the northern hemisphere and our results for the 

Western Antarctic suggest that transport of PBDEs to the remote Southern Hemisphere 

has been delayed by a decade or so relative to the Arctic region, which is closer to the 

primary source region (Figure 3). The vast majority of PBDEs were produced and used in 

the northern hemisphere 30; while there are certainly present in the southern hemisphere, 

it is unclear whether PBDEs in Antarctica are predominantly reflecting southern or 

northern hemisphere sources. 

Perinatal versus non-perinatal milk 

After breeding, female fur seals from Cape Shirreff spend up to 8 months away at one of 

three foraging grounds (off the Chilean coast, Patagonian shelf break or around South 

Georgia) during the austral winter. 31 Perinatal milk thus represents PBDEs accumulated 

during the winter migration. In contrast, non-perinatal milk reflects PBDEs accumulated 

while foraging offshore Cape Shirreff’s breeding beaches, and any mobilization of 

PBDEs from lipid reserves. Across all fur seal milk samples, there were few significant 



 

 
 

differences in PBDE concentrations between perinatal and non-perinatal milk. The 

exception was for the 2012/2013 sampling period, in which mean ± sd concentrations of 

BDE-49 (0.33 ± 0.34 ng/g lipid) and BDE-99 (0.28 ± 0.19 ng/g lipid) in non-perinatal 

milk were significantly higher than perinatal milk (0.19 ± 0.15 and 0.15± 0.10 ng/g lipid 

respectively; Mann-Whitney Rank Sum Test-p <0.05). This is consistent with 

expectations based on the maternal body burden of lipid-bound pollutants being passed 

onto the pup during lactation, particularly in the case of the first pup.32  

The previous discussion was based on average values from randomly milked fur 

seals both perinatally and non-perinatally.  Again, milk from several fur seals was 

sampled twice during the same season (n=10: 9 from 2011/2012, 1 from 2012/2013). We 

thus compared PBDE concentrations in perinatal and non-perinatal milk collected from 

the same individuals, typically 6 weeks apart. There was no significant difference in 

individual PBDE congener concentrations between perinatal and non-perinatal milk 

(Figure 4). On average, fur seals accumulated similar BDE concentrations during their 

winter migration and feeding away from Cape Shirreff as they did while foraging 

offshore Cape Shirreff’s breeding beaches. This implies that within their breeding area 

and foraging region PBDEs are present in similar concentrations, and/or the importance 

of mobilizing PBDEs from their lipid reserves while at Cape Shirreff. 

The average values mask a wide range of individual changes in PBDE 

concentrations (note large standard deviations in Figure 4). For two fur seals, PBDEs 

decreased about two-fold over the course of their foraging trips around Cape Shirreff, 

while it increased for two other seals about two-fold over this period. Median ratios of 



 

 
 

non-perinatal divided by perinatal milk were greatest for BDE-183 and BDE-99 implying 

preferential accumulation of these congeners off Cape Shirreff, and/or their less efficient 

biodilution within that time period. Overall, though profiles of PBDEs in perinatal and 

non-perinatal milk were very similar (Figure 4), suggesting similar uptake/metabolism of 

these chemicals in fur seals. 

In summary, there is a wide range of trends of BDE concentrations in individual fur 

seal milk sampled approximately nine weeks apart. Contrary to expectations, there was 

no significant trends of decreasing concentrations once fur seals started feeding off Cape 

Shirreff (Figure 4). This might indicate that fur seals – in some years - forage locally 

prior to coming ashore to give birth. 

Phytoplankton 

Lipid values in phytoplankton were very low ranging from 0.1% to 6.7%; only 

samples with lipid values >0.5% are presented here to avoid biasing PBDE 

concentrations high.   

Phytoplankton Σ7PBDEs ranged from 3.8 to 320 ng/g lipid with a mean ± SD of 

53 ± 76 ng/g lipid (median of 26 ng/g lipid, Table S23). BDE-47 and -99 were the two 

most prevalent congeners (Figure 5), with detection 97% and 91% of the time, 

respectively. Previously reported PBDE concentrations in plankton in 2005 were two to 

three times lower (Table 1).5 Macroalgae in the Canadian Arctic similarly contained 

Σ15PBDEs at 320 ng/g lipid.11  



 

 
 

Stable isotope analysis of δ15N on phytoplankton samples resulted in a wide range 

of values from -1.1 to 6.1‰. We note that although the dominant composition of the 

plankton samples were identified as phytoplankton (i.e. diatoms or Phaeocystis sp.), 

samples may had some microzooplankton present despite efforts to remove any non-

phytoplankton species. The δ13C values of phytoplankton also had a large range, 

spanning from -33 to -19‰, with a mean of -29‰ ± 0.61 (median of -31‰).  

Phytoplankton Trends 

 Few significant correlations were detected between PBDE phytoplankton 

concentrations and δ15N values except for the 2010/2011 season, where almost all 

congeners detected showed a negative trend of decreasing concentration with increasing 

δ15N value. BDE-47, -100, -99, -154, -153, and Σ7PBDEs vs. δ15N all had significantly 

negative trends (p <0.05). 

Correlations of phytoplankton PBDE concentrations versus sampling time were 

only significant for the 2010/11 sampling season, in which all congeners with > 30% 

detection (BDE-28, -49, -47, -100, -99, -154, -153, Σ7PBDEs) have significantly negative 

trends; i.e., PBDE concentrations decreased towards the end of austral summer (p<0.05). 

The austral summer 2010/2011 sampling season, spanning the period from December to 

March, was longer than the 2007/2008 or 2009/2010 seasons. The temporal trend in the 

2010/2011 austral summer may reflect a spike in concentrations picked up from the 

snow/ice-melt early in the austral summer, with either a fading signal or dilution 

occurring as the season progressed. Legacy organic contaminants (e.g. PCBs, DDT, 

PAHs) have been detected in snow-packs and glacial ice from both Arctic and Antarctic 



 

 
 

environments and it has been proposed that in colder regions, where the timing of the 

melt may be more concentrated as compared to a temperate environment, there is a 

stronger pulse of organic contaminants released to the surrounding water column.33 

Chiuchiolo et al. (2004) detected various OCPs and BDEs (-47, -99, and -100) in 

phytoplankton and suggested that phytoplankton incorporated POPs from snow and ice 

melt. Furthermore, POPs may be removed from the water column via sedimentation and 

organic carbon particle export which occurs in a relatively short time following 

phytoplankton blooms in this region (i.e. December and January). 5  Additionally, Geisz 

et al. (2008) present further evidence of glacial meltwater acting as a source of, at least, 

∑DDT to the Antarctic marine food web.24  

 There was a significant difference (p<0.05, one-tailed two-sample t-test assuming 

unequal variances) between diatoms and Phaeocystis for BDE-28, -47, -100, -153, and 

Σ7PBDEs, with Phaeocystis sp. having greater mean concentrations than diatoms.  

Similarly, the mean PBDE concentrations in phytoplankton (δ15N values < 2‰) were 

greater than the mean of phytoplankton with possibly greater microzooplankton 

contamination (δ15N values > 2‰), for BDE-153 (p = 0.036) and with lower significance 

for Σ7PBDEs (p = 0.059).  

Krill 

Average lipid % in krill ranged from 14 to 33%, much greater than for 

phytoplankton. PBDEs were detected in all krill samples, with lower concentrations and 

less variation in contaminant concentrations than was observed with phytoplankton. The 

average Σ7PBDEs ranged from 0.14 to 3.5 ng/g lipid with a mean ± sd of 0.61 ± 0.57 



 

 
 

ng/g lipid (median of 0.49 ng/g lipid). BDE-47 was the dominant congener present in all 

size classes of krill, averaging around 70% of the total composition (SI Table S24), 

followed by BDE-28 and -99, respectively. For Σ7PBDEs, juvenile krill (n=9) had the 

highest concentrations among Euphausia superba age classes with a mean of 0.65 ± 0.27 

ng/g lipid, followed by adult krill (n=18) with a mean of 0. 51 ± 0.78 ng/g lipid, and 

gravid krill (n=7) with a mean of 0.35 ± 0.19 ng/g lipid (Figure S2). The two 

Thysanoessa sp. krill samples displayed fairly high concentrations at Σ7PBDEs of 1.2 and 

0.66 ng/g lipid. Previously reported PBDE concentrations in krill in 2005 were at least 10 

times greater than what we measured, possibly indicating contamination (Table 1).5 

Stable isotope analysis was performed on a subset of each size class of krill, with 

the exception of Thysanoessa sp. The δ15N values (mean ± sd) were similar among the 

different size classes: 4.0 ± 0.58 ‰ for juvenile krill, 4.2 ± 0.19 ‰ for adult krill, and 4.1 

± 0.43 ‰ for gravid krill. There was slightly more variability for δ13C values among the 

krill age classes; δ13C values (mean ± sd) were: -24 ± 1.41 ‰, -25 ± 0.47 ‰, and -23 ± 

0.68 ‰ for juvenile, adult, and gravid krill, respectively. 

Trends of Krill 

 No significant relationships were found between krill concentration and δ13C or 

δ15N value. No significant differences (p<0.05) were found between krill concentration 

means from the two sampling years of 2007/2008 and 2010/2011 (Figure 5). When 

comparing different size classes of krill (i.e. juveniles vs. adults, adults vs. gravid, gravid 

vs. Thysanoessa sp.), BDE-47 and Σ7PBDEs were both found to be significantly higher in 

juveniles than adults (p<0.05).  



 

 
 

Fish 

Lipid values in fish ranged from 22 – 52%. PBDEs were not detected in any of 

the five fish samples. Low masses of BDE-47 and -99 (0.1 to 0.2 ng/sample) were 

initially determined, however, after blank corrections, all PBDEs in fish samples were < 

LOD (Table 1). Previous studies have detected PBDEs in Antarctic fish samples, though 

they have generally been able to extract larger amounts of tissue. 3,4,9,10,34,35 

<sup>3,4,9,10,34,35</sup><sup>3,4,9,10,34,35</sup>The total ranges of δ15N and δ13C 

values for fish samples were 9.2 to 11‰ and -24 to -21‰, correspondingly. For the 

myctophid fish species, the mean ± sd of δ15N values was 9.5 ± 0.42 ‰ and  -24 ± 0.24 

‰ for δ13C. In comparison the mean ± sd of Antarctic silverfish δ15N and δ13C values 

were both higher (11 ± 0.63 ‰ and -21 ± 1.1 ‰, respectively) than those of the 

myctophid fish species.  

 

Implications 

Biota from other parts of the world, primarily regions closer to industrialized 

areas, have started to see a reduction in PBDE concentrations as a reflection of their 

phase-out. 17,18,27,29 Time-trends of PBDEs in Antarctic biota strongly demonstrate that a 

decrease of PBDE concentrations in Antarctic biota over the last decade has not (yet) 

occurred. These surprising results indicate the need for further research to see if and 

when PBDE concentrations in the Antarctic will start declining as reported in the Arctic. 

Similarly, the phase-out of PBDEs has led to various novel flame retardants being 



 

 
 

detected in the environment. 36,37 As of yet, it is unclear whether these new flame 

retardants have been transported to Antarctica and have been accumulating in Antarctic 

biota. This will be an important research area in the near future. 

Comparing trends of PBDEs in milk from randomly selected fur seals over 

several years were by and large similar to trends of the same fur seals milked years apart. 

Results show that there are large variations in PBDE trends in individuals over time, 

highlighting the need for large sample sets to determine representative trends. A better 

understanding of time-trends in individual seals is warranted, but would require a 

concerted effort to re-sample the same individuals over several years, ideally collecting 

both perinatal and non-perinatal milk. 

The high concentrations of PBDEs in phytoplankton compared to the upper 

trophic level Antarctic fur seal were unexpected, but not unprecedented, and illustrate the 

complexity of the Antarctic food web, and sampling under challenging circumstances 

(Table S25). For the phytoplankton sample collections on board ship, we cannot rule out 

the possibility of contamination by PBDEs during sampling.38,39 Trends of PBDEs in 

biota are further complicated by the presence of point sources, such as snow and ice melt, 

which can release pollutant pulses in the austral summer. Lastly, the differences in 

geographic sampling of biota (which were logistically constrained) and the migratory 

nature and diverse diet of Antarctic fur seals further add complexity to understanding 

PBDE trends in biota. Monitoring emerging pollutants in remote regions such as 

Antarctica, can highlight important global trends of contaminants of concern and further 



 

 
 

our understanding of long-range transport and global response times to pollutant 

dynamics. 

Supporting Information 

Additional details related to sample IDs, chemical analysis, and concentrations of PBDEs 

are available. This material is available free of charge via the Internet at 

http://pubs.acs.org.  
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Figures and Tables 

 

Table 1 – Comparison of average PBDE concentrations in Antarctic biota (ng/g 

lipid) ± 1 standard deviation from this and previous studies. 

 ΣPBDEsk BDE-28 BDE-47 BDE-99 BDE-100 

Plankton a   23 ± 3.5 22 ± 3.4  4.5 ± 0.7  

Phytoplanktonb 53 ± 76  1.9 ± 2.7  20 ± 27  19 ± 32 4.8 ± 8.1  

Juvenile Krill a   570 ± 210 620 ± 250 130 ± 51 

Juvenile Krillb 0.65 ± 0.27 0.07 ± 0.11 0.49 ± 0.20 0.05 ± 0.05 0.04 

Adult Krill a   2.0 ± 0.5 2.5 ± 0.6  0.5 ± 0.1 

Adult Krillb 0.51 ± 0.78 0.04 ± 0.05  0.28 ± 0.23  0.13 ± 0.43  0.01 
Gravid Krillb 0.35 ± 0.19  0.06 ± 0.05  0.18 ± 0.12  0.04 ± 0.06  0.02 

"Krill" c 5.6 ± 1.1     
“Krill” f 0.095 0.001 0.011 0.009 0.002 
“Krill” g 0.027     

Adult krill d 0.94 0.03 0.17 0.2 0.05 
Rockcod muscle c 5.8 ± 2.3     

Rockcod musclee 7.5     

Antarctic Silverfishb < LOD  < 1.5 < 1.5  

myctophidb < LOD  < 0.20 < 0.20  

Weddell seal h 2.0 < LOD < LOD 2.0 < LOD 
Weddell seal i 1.5 < LOD 1.5 < LOD < LOD 

Fur Seal Milkb 2.3 ± 1.9 0.07 ± 0.09 1.3 ± 1.4 0.36 ± 0.36 0.14 ± 0.15 

a Chiuchiolo et al. (2004) 
5

, 64.7°S, 64.0°W 
b  This Study, 7 BDEs, Ross Sea to Antarctic Peninsula; results were averaged over all sampling 

seasons  

c Corsolini et al. (2006)
4

, Ross Sea, approx. 74°04'S, 179°06'E 
d Bengtson Nash et al. (2008)40, arithmetic means, ~.63-69°S,30-80°E. 
e Cincinelli et al. (2016)9 , assuming 1% lipid content 
f Galban-Malagon et al. (2018)41, mean values; around the Antarctic Peninsula  
g Corsolini et al. (2017) 42, mean values, Ross Sea, based on 3.6% lipid content 
h Cipro et al. (2012)25, Weddell seal blubber from King George Island (62°050S, 58°230W) 
i Trumble et al (2012)26, adult Weddell seal blubber near McMurdo Station, Antarctica (77° 55′S, 

166° 39′E). 
k Note that the number of BDE congeners included in the ΣPBDEs varies between studies. 



 

 
 

 

 

 

 

Figure 1 – Map of sampling locations.  

Black squares denote the boundaries of the LTER grid. Created with ArcGIS Explorer. 



 

 
 

 

 

 

Figure 2: a. Average Sum of PBDEs per breeding season for the 8 non-consecutive 

austral summers sampled.  Bars represent standard deviation. The first five austral 

summers (2000/2001 – 2010/2011) have had a recovery correction of 77.86% applied.  

b. Average percent composition of PBDEs in Fur Seal Milk from 2000/2001 – 

2013/2014. 

 



 

 
 

 

Figure 3: PBDE trends in Arctic fur seals (red dotted line), reported BDE 

concentrations in Arctic ringed seals (orange dashed line, both left axis) and ratios 

of BDE concentrations in fur seal milk sampled twice over several years (blue solid 

line). 

 



 

 
 

 

 

Figure 4: Comparison of BDE concentrations in perinatal and non-perinatal milk 

sampled from fur seals sampled twice during the same season (n=10).  

Error bars represent 1 standard deviation. 

 



 

 
 

 

(a) 

 (b) 

 

Figure 5: Average ΣPBDEs (ng/g lipid) in (a) phytoplankton and (b) krill per 

sampling season.  Note the uneven interval between years. 
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