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ABSTRACT

At high wind speeds the drag coefficient, characterizing the momentum trans-

fer at the ocean surface, is known to be lower than extrapolation of the exist-

ing bulk parameterizations, which were derived at low to medium wind speeds.

We hypothesize that sea spray may be responsible for the reduction of the drag,

and investigate its effect through direct numerical simulations (DNS). The Lattice

Boltzmann method (LBM) is coupled to a Lagrangian particle tracking approach

to model numerically the dispersion of sea spray droplets in air turbulence near

the air-sea interface during hurricanes and other strong wind events. Our results

suggest that the turbulent vortices present near the boundary are damped and/or

broken down by the passage of the particles, and that the turbulent Reynolds stress

and the production of the turbulent kinetic energy are decreased by the particles.

Our results generally agree with previous studies on the turbulence modulation

by particles. The streamwise component of the velocity fluctuations is increased,

while the spanwise and wall-normal components are decreased compared to the

clean channel case. The Reynolds force and the viscous force are reduced and

are replaced by the particle feedback force in the force balance. These findings

suggest that the sea spray may play an important role in modifying the near sur-

face turbulence during high wind speed events. Our results show that the mean

streamwise velocity of the carrier phase is slightly reduced in the logarithmic layer

when particles are added to the flow, contrary to the findings in previous studies.

Therefore, the particle effect on the drag coefficient remains unclear.
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CHAPTER 1

Introduction

In coupled atmosphere-ocean numerical models predicting tropical cyclones

(hurricanes), the implementation of accurate boundary conditions at the air-sea

interface is critical. The momentum transfer, as well as the heat and moisture

fluxes are however difficult to determine in extreme weather conditions, because

very few in-situ data exist to corroborate the results of the current numerical sim-

ulations. The neutral drag coefficient, which characterizes the momentum transfer

between the ocean and the atmosphere, is commonly defined as:

CD =

(
uτ
U10

)2

,

where uτ is the friction velocity and is related to the wind stress τW , τW = ρfu
2
τ ,

ρf is air density, and U10 is the neutral wind velocity measured at the 10m ref-

erence height and corrected for stability (Foreman and Emeis, 2010; Andreas et

al. 2012). Emanuel (1995) theoretically derived a condition in which hurricane

intensity would be sustained: the ratio of enthalpy (heat) to momentum surface

exchange coefficients CK/CD should be between 1.2 and 1.5. This means that

occurrence of intense storms is constrained by how much heat and momentum are

exchanged between the ocean and the atmosphere during these events. In partic-

ular, this would imply a much lower drag coefficient than the extrapolation of the

existing bulk parameterizations, which have been derived based on observations

at low-to-moderate wind speeds and are currently used in models. After a series

of in-situ observations, Powell et al. (2003) suggested that the drag coefficient

is indeed lower than the existing parameterizations at high wind speeds. Since

then several hypotheses have been proposed to explain why the drag coefficient is

reduced at high winds.
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Foreman and Emeis (2010) analyzed carefully the expression of the neutral

drag coefficient and developed a new parameterization for CD, valid for different

wind regimes. At low wind speeds, they observed a nonlinear dependency of the

friction velocity uτ on the 10m-height wind speed U10. For moderate-to-high wind

speeds, they introduced a simpler linear relation:

uτ = CmU10 + b,

where Cm is a modified drag coefficient, and b is a constant with the dimension of a

speed. The authors found a good agreement with the existing data from different

campaigns. Andreas et al. (2012) pursued the efforts of Foreman and Emeis,

and investigated further the relation between the friction velocity and the 10m-

height wind speed by extrapolating their reasoning to hurricane-strength winds.

They explained the drag reduction observed in those conditions by considering the

wind-wave coupling phenomenon and processing a large amount of data.

Several studies focused on the impact of sea spray on the air-sea exchange

coefficients at high wind speeds. Makin (2005) took into account the presence of sea

spray during storms to derive a new resistance law (i.e. the expression of the drag

coefficient). He did not consider the thermodynamical or the mechanical effect,

but instead followed the idea of Barenblatt et al., (2005) about the stratification

of the marine boundary layer and the balance of the turbulent kinetic energy. His

work was focused on the regime of limiting saturation where the sea-spray droplets

dispersed in the air form a dense suspension layer, thus modifying the roughness

length and the drag coefficient.

Some studies considered the thermodynamical effect of sea spray on the bound-

ary layer stratification. Andreas and Emanuel (2001) suggested that sea spray

droplets could have a cooling effect by giving up sensible heat while being sus-

pended in the air, therefore affecting the intensity of tropical storms. The strat-
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ification of the marine boundary layer was then altered due to the presence of

seawater droplets right at the sea surface. More recent works by Kudryavstev et

al. (2006, 2011) explored the idea of a thermal impact of the sea spray on the

wind turbulence. In the same manner as Andreas et al., the authors suggested

that the drag coefficient reduction could be explained through the suppression of

the turbulent mixing due to the buoyancy force applied by the spray droplets in the

turbulent kinetic energy balance equation. They considered both bubble-formed

and spume droplets, the latter being produced from the tearing of breaking wave

crests at high wind speeds, and concluded that for spume droplets ejected at the

breaking wave height, there could be a major impact on the drag. They param-

eterized the thermal effect using the Monin-Obukhov similarity theory for stably

stratified boundary layers, and noted that their results were in good agreement

with Powell’s observation regarding the evolution of the drag coefficient for strong

wind events.

In a similar fashion, Bao et al. (2011) used the Monin-Obukhov framework

to investigate the dynamics in the marine boundary layer. The authors described

how sea spray droplets exchange sensible heat with the atmosphere and enhance

buoyancy at the sea surface. They also explored the mechanical effects of sea

spray, and showed that the mechanical impact counterbalances the thermal effect

by reducing the friction velocity, and stabilizing the marine boundary layer. They

explained how the presence of sea spray intensifies the storms by decreasing the

drag through numerical simulations.

Most recently, Richter and Sullivan (2013) performed a series of direct

numerical simulations to highlight the role of sea spray in the momentum transfer

between the atmosphere and the ocean. The sea spray droplets were modeled as

heavy inertial particles, suspended in a turbulent airflow. They used a common
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approach from CFD (Computational Fluid Dynamics) and Engineering, the

Eulerian-Lagrangian approach, where the droplets were represented by solid

pointwise particles whose individual trajectory was tracked over time in a

Lagrangian way. At the same time, the fluid governing equations (the traditional

Navier-Stokes equations plus a feedback term from the sea spray) were solved

in an Eulerian framework. They discussed the fact that for typical diameters

of sea spray droplets (typically from 10m to 1mm), the mechanical effect would

dominate over the thermal effect. By studying the momentum budget, Richter and

Sullivan introduced a ”spray” stress, which compensates the decrease in Reynolds

stress by providing a feedback effect to the turbulence. They explained that the

drag coefficient based on the total stress remains almost unchanged in the pres-

ence of sea spray, while the drag coefficient based on the turbulent stress is reduced.

Within the framework of this project, we follow the approach of Richter and

Sullivan (2013). Our work focuses on the impact of an idealized sea spray on the

atmospheric turbulence in the marine boundary layer, using the Lattice Boltzmann

Method (LBM) to determine what effects sea spray droplets have on the evolution

of the drag coefficient in high wind conditions. We model this problem by simu-

lating a turbulent channel flow where particles are introduced in place of the sea

spray droplets to reproduce their effects on the flow.

The approach taken here represents an example of turbulent particle-laden

flows, which constitute an entire branch of CFD. More specifically, turbulence

modulation by particles (droplets, bubbles or solid particles) forms the main

interest of this branch. The study of particle-laden turbulent flows has been

ongoing for the last twenty-five years. However, because the full resolution of such

flows is computationally very demanding, a hybrid approach has been commonly
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adopted by many scientists, where the particles are described in a Lagrangian way

while the fluid is solved in an Eulerian framework. This is called the Lagrangian

point-particle approach (Balachandar and Eaton, 2010), and it enables to track

the particle positions by solving the equations of motion in the Lagrangian

framework, providing that the particles are small compared to the characteristic

length scale of the turbulence. In addition, the mass, the momentum and the

energy of the dispersed phase are also being solved for the particles in the

Lagrangian framework. In a similar fashion as Richter and Sullivan (2013), the

particle-tracking method is retained in our study to simulate sea spray droplets

without fully solving the flow around each individual droplet, hence saving great

amount of computational effort and time.

The behaviour of dispersed multiphase flows can be classified according to

the interactions between the carrier phase and the dispersed phase. Elghobashi

(Elghobashi, 1994) proposed a regime map based on the interactions between the

fluid phase and the dispersed phase. The original map, drawn for homogeneous

turbulence by Elghobashi is presented here.

The figure 1 illustrates the different interactions that can be observed in such

flows in terms of the two parameters, volume fraction of particles Φp, and the par-

ticle response time τp normalized by the turbulence time scale τe or τK . Here, τK

is the Kolmogorov time scale, given by
√

(ν/ε), where ν is the kinematic viscosity

of the fluid and ε is the dissipation rate of the turbulent kinetic energy. When

Φp is below 10−6, the flow affects the particle trajectories but the dispersed phase

has a negligible effect on the turbulence: the interaction between the two phases

is called one-way coupling (i.e. from fluid to particles). For intermediate concen-

trations ranging from 10−6 to 10−3, the momentum transfer from the particles to
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Figure 1: Original regime map existing between the carrier phase and the dispersed
phase (Elghobashi, 1994)

the turbulence is large enough to alter the turbulence structure (Elghobashi, 1994)

and the interaction is described as two-way coupling i.e. (from fluid to particles,

and from particles to fluid). In the case of dense suspensions, when Φp is above

10−3, interactions between particles become possible, such as collisions, and the

interaction is called four-way coupling (i.e. between carrier fluid and particles, and

among particles).

On one hand, one-way and two-way coupled systems have been extensively

investigated, both numerically and experimentally (Balachandar and Eaton,

2010). On the other hand, the four-way coupling implies that the dynamics of

droplets should be taken into account, such as breaking up or coalescence, and
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represents a computational challenge. Hence, few studies have been devoted

to this topic. Although this approach would be more realistic in the sea spray

problem, it also requires a much more complex numerical treatment. We therefore

concentrate our efforts on modeling the two-way coupling between sea spray

droplets and the air flow, assuming the latter can be represented as pointwise

particles dispersed in a turbulent bounded flow. Hence, the interactions among

particles are neglected in this study.

This dissertation is structured as follows: the introduction of the governing

equations for the dispersed phase and the fluid, as well as the main assumptions on

which our model is based, will be the focus of chapter 2. The Eulerian-Lagrangian

method and the Lattice Boltzmann method will be described in chapter 3, and the

results of our several DNS runs will be presented in chapter 4. We will conclude

with discussions of the main results and the general conclusions of our study.
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CHAPTER 2

Mathematical Description

In this study the impact of sea spray on the air turbulence in high wind

conditions is investigated. A series of DNS is performed to model the interactions

between the seawater droplets and the turbulent airflow at the base of the marine

boundary layer. The problem is schematized in a rather simple manner: the strong

winds associated with tropical cyclones are represented by a turbulent shear flow

over a flat surface, with a fluid of same density and viscosity as air. The sea spray

droplets are modeled as small solid particles, which are dispersed in the flow, and

can exchange momentum (but not heat) with the surrounding air. In this chapter,

the governing equations for our simplified problem will be presented, along with

the main assumptions defining our study framework.

2.1 Dispersed phase

Originally developed by Basset (1888), the solution for a sphere moving in

a viscous fluid has been revisited numerous times since then, and improved by

several authors who explored increasingly complex situations. Maxey and Riley

(1982) suggested an equation of motion for a small sphere in a non-uniform flow.

This equation is at the base of the Lagrangian approach to deal with particles

dispersed in a turbulent flow, and is given here in its original form:

mp
dvj
dt

= (mp −m′f )gj +m′f
Duj
Dt

− 1

2
m′f

d

dt

(
vj(t)− uj[xp(t), t]−

1

40
d2p∇2uj

)
− 3πdpµ

(
vj(t)− uj[xp(t), t]−

3

2
d2p∇2uj

)
− 3

2
πd2pµ

∫ t

0

dτ

(
d/dτ

(
vj(τ)− uj[xp(τ), τ ]− 1

24
d2p∇2uj

)
√
πν(t− τ)

)
.
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The indice j=1,2,3 corresponds to the three coordinate directions x1, x2, and

x3, the mass of the sphere is defined by mp, and m′f is the mass of fluid displaced

by the sphere. The gravitational acceleration is represented by gj. Instead of the

fluid velocity, uj represents the undisturbed flow field in this equation and vj is the

particle instantaneous velocity, the material derivative d/dt actually following the

object along its trajectory. By contrast, the derivative D/Dt corresponds to the

material derivative following a fluid element (Maxey and Riley,1982), (Michaeledes,

2006). The acceleration of the sphere is given by the sum of the following forces:

• the gravity net effect,

• the fluid acceleration×m′f ,

• the added mass,

• the Stokes drag,

• and the Basset history force.

The Faxen terms (i.e. ∝ d2p∇2uj) are also included in the equation to take into ac-

count the curvature of the velocity profile around the rigid sphere. More recently,

Ferrante and Elghobashi (2003) presented an up-dated version of the particle equa-

tion, adapted to the problem of multiphase turbulent flows where a large number

of small spheres are suspended in a fluid. The equation they present can be applied

to each particle to determine their respective acceleration:

mp
dvj
dt

= (mp −mf )gj +mf
Duj
Dt

+
1

2
mf

(
Duj
Dt
− dvj

dt

)
+ 3πdpµ

(
uj − vj

)

+
3

2
πd2pµ

∫ t

0

dτ
d/dτ

(
uj − vj

)
√
πν(t− τ)

+
1

8
(πρfd

2
p)CLLjW

2.
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The first five terms on the right-hand side of the equation are easily identified

as the forces presented in the original equation of Maxey and Riley. However the

authors neglected the Faxen correction terms and introduced here the Saffman’s

lift force, which is due to the shear existing in the flow. The lift coefficient is

defined as CL, Lj is the direction cosine, and W is the magnitude of the relative

velocity for a single particle.

2.1.1 Forces description

Gravity is generally the dominant force in presence, together with the Stokes

drag. While the gravitational effects are not always considered in a large num-

ber of numerical studies, it has been observed that when taken into account in

the equation of motion, the gravity would induce an anisotropy in the momentum

transfer between the particles and the turbulence (Ferrante and Elghobashi, 2003),

in the direction of the gravity vector ~g. On the other hand, the gravity tends to

reduce lateral dispersion in multiphase flows (Sirignano, 2010) through a mecha-

nism where the particles trajectories would not follow the eddies but cross them

along their path (Crowe, 2006), (Ferrante and Elghobashi, 2003). Gravity also

accentuates the preferential accumulation process regarding the dispersed phase

being found mainly in the regions of low vorticity (Wang and Maxey, 1993), when

compared to the case where its effect is neglected in the equation of motion.

Regarding the fluid acceleration, this term contains the fluid stresses from both

the pressure and the viscosity of the fluid (Maxey and Riley, 1982). It can be

understood as a net force applied to the sphere by the fluid surrounding it.

The added mass force, also called ”virtual-mass” force, is due to the acceleration

of the fluid surrounding a small sphere immersed in a non-uniform turbulent flow.

The volume of fluid being accelerated due to the sphere’s motion is then equal

to half the volume of the sphere, hence the term 1/2m′f in front of the relative

10



acceleration. It should be noted that the expression of the added mass force given

here has been simplified by assuming that the particle Reyolds number is very

small. When the local Reynolds number is finite, the original form of the added

mass becomes:

−1

2
m′f

(
dvj(t)

dt
− Duj[xp(t), t]

D

)
,

where the difference between the material derivatives is considered in the compu-

tation of the force.

The Stokes drag, fourth term found on the right-hand side of the motion equation,

is the most important force in absence of gravity. It always acts in the direction of

the flow (longitudinal force), and is proportional to the relative velocity between

the sphere (or more generally the dispersed particles) and the carrier fluid. Its

expression can be derived from the traditional drag force applied on a sphere:

FD =
1

2
CDAρf (uj − vj) | uj − vj |,

where CD is the drag coefficient, and uj is now the instantaneous fluid velocity at

the particle location xp. For very small particle Reynolds number, the Stokes drag

law can be applied and the expression of the drag coefficient becomes:

CD =
24

Rep

and

Rep =
uj − vjdp

ν
.

For a sphere, the cross section A reads:

A =
πd2p
8
,

leading to the drag force exerted in the xj direction by the sphere or the individual

particles on the fluid:

FD = −3πdpνρf (vj − uj),
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at their respective position xpj. This hydrodynamic force holds usually the main

part of the interaction occuring in the two-way coupling between the particles and

the turbulent flow.

The last term of the force balance, the Basset history corresponds to the diffusion

of the vorticity around the moving sphere (in the case described by Maxey and

Riley, 1982), which decays at a rate proportional to t−1/2 (Michaeledes, 2006).

Another interpretation would be that this term acts as a correction to take into

account the transient character of the velocity field, in the case of creeping flows.

It translates as an additional resistance to the flow, though its effects decrease for

either heavy and/or large particles (i.e. large Stokes number) (Crowe, 2006).

The Saffman effect can be explained as the force applied to a small sphere by

the surrounding fluid due to the gradient of the streamwise fluid velocity in the

wall-normal direction (shear flow). The lift force is generally small compared to the

other terms and can be neglected in most cases. More specifically, it is much weaker

than the conventional drag force acting in the streamwise direction of the flow.

Nevertheless, in the specific case of turbulent channel flows where the turbulence

is bounded by parallel planes, the Saffman lift force has been shown to impact

the deposition rate of the particles near the walls. In their paper, Marchioli and

Soldati (2002) observed that the particle deposition at the walls is enhanced when

the particles move faster than the fluid, and reduced when they are slower than

the carrier fluid. Moreover, the lift’s effects are weaker when the particle inertia is

important (i.e. large and/or dense particles), and remain confined to the viscous

sublayer of the flow. In the case where the lift force is omitted to model the

dispersed phase equations, the particle fluxes towards the wall have been seen to

decrease slightly (Marchioli and Soldati, 2002), without modifying qualitatively

the results obtained. It should be noted that the treatment of the Saffman’s
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effect in a turbulent channel flow is not straight-forward, and requires particular

attention when dealing with the particle-wall interactions, especially at higher

particle Reynolds numbers.

2.1.2 Assumptions

In regards to the work of Maxey and Riley (1982), we define the characteristic

length scales, respectively for the undisturbed flow and for the small sphere as

L and dp (the diameter of the sphere). The corresponding characteristic velocity

scales are U for the flow, and W for the relative velocity between the sphere and

the fluid around it. We make three major assumptions regarding their equation of

motion:

• the moving sphere should be very small compared to the length scale of the

flow: dp/L� 1 (pointwise approach),

• the local (particle) Reynolds number should be very low: dpW/ν � 1,

• and the velocity gradients of the mean flow should be small as well:

(d2p/ν)(U/L)� 1 (shear Reynolds number condition).

In our study however, where droplets of seawater are suspended in the air, supple-

mental hypotheses can be made to simplify the equation of motion for the dispersed

phase further. More specifically, the following assumptions are made:

• the particles are rigid, i.e. no deformation is allowed, and the shape and

dimensions of the droplets remain constant,

• the particles are spherical, i.e. for simplicity, no shape effects are considered,

• the particles are heavy, i.e. the density ratio between the water ”particles”

and the air is large (ρp/ρf = 1000).
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In the framework of DNS of turbulence, the shortest length scale of the flow is

usually the Kolmogorow length scale ηK . The original constraint on the size of

the particles becomes then dp/ηK � 1, and the condition of low particle Reynolds

number, redefined as Rep = dp | uj − vj | /ν, still holds so that the Stokes law

applies.

2.1.3 Scaling

In most practical cases, not all the forces described in the previous section need

to be accounted for to determine the particle velocity and to track the position

of the particles in the fluid through a time integration of the velocity field. In

fact, by applying a brief scaling argument in combination with the assumptions

presented before, it is possible to neglect most of the forces in the motion equation

and obtain a condensed form of the particle equation. When compared to the

Stokes drag, the order of magnitude of the fluid acceleration isO[(d2pU/νL)(U/W )].

According to the third assumption suggested by Maxey and Riley (1982), (d2pU/νL)

is small. In our case, the two velocities U and W are at most of the same order

of magnitude, so that their ratio tends to 1. Therefore, the fluid acceleration is

always negligible. The Basset history term, when compared to the Stokes drag, is

of order O(d2pU/(νL))1/2, while the added mass term compared to the drag force

leads to terms of order O(d2pU/(νL)). Again looking at the third assumption, we

can conclude that the Stokes drag dominates both the added mass force and the

Basset history in the motion equation. The lift force when scaled by the drag force

is of order of the particle Reynolds number, which we assumed to be small: we can

thus ignore the lift effects on the particles in the present study. The Faxen terms,

appearing in the equation of Maxey and Riley (1982), are second-order terms and

can be neglected safely under the assumption that the particles are much smaller

than the characteristic flow length scale.
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Michaeledes (2006) presents another way to scale the history term and the added

mass relative to the drag by expressing the particle equation in a dimensionless

form. There, the velocities are scaled by the characteristic velocity of the flow and

the time scale for the sphere τp, introduced in the next section. The author shows

that in that case, the Basset history scales as (ρf/ρp)
1/2, while the added mass

scales as ρf/ρp. By noting that the particles are much heavier than the fluid they

are suspended in, these two forces can again be safely neglected in front of the

Stokes drag in our context.

2.1.4 Reduced equation

Following the scale analysis, we consider only the drag contribution in the

force balance, and we ignore the contribution of the fluid acceleration, the virtual-

mass, the Basset history, and the Saffman lift effects respectively, as well as the

Faxen terms. The simplified version of the particle equation of motion can then

be applied to our case:

mp
dvj
dt

= (mp −mf )gj − 3πdpµ(vj − uj).

In the absence of gravity, the drag balances exactly the particle acceleration, and

we can write:

mp
dvj
dt

= −3πdpµ(vj − uj)⇐⇒ mp
dvj
dt

= Fpj, (1)

with mp being the product of the particle density and the volume of one spherical

particle, mp = ρpπd
3
p/6. We note Fpj as the force acting on the particle p in the xj

direction and by the fluid. The particle equation of motion can then be expressed

again, this time by including a specific time scale, named particle response time

τp:

dvj
dt

=
Fpj
mp

⇐⇒ dvj
dt

=
(uj − vj)

τp
, with τp =

ρp d
2
p

18ρfν
. (2)
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The particle response time is a crucial characteristic time scale of multiphase flows

which represents physically the time necessary for the dispersed phase to respond to

the fluctuations of the flow velocity. The larger τp is, the more inertia the particles

will display. At the limit where τp is very large, the inertia of the particles is so

large that the particles behave like ballistic projectiles, while when τp is close to

zero, the particles act as passive tracers in the flow, because they are able to follow

the fluid freely everywhere in the domain. Furthermore, this time scale is crucial

to determine the behaviour of the dispersed phase, when comparing τp to a typical

time scale of the turbulent flow.

2.2 Carrier phase

Our current model to describe the fluid governing equations is based on the

work of Ferrante and Elghobashi (2003), which dealt with the physical mechanisms

of two-way coupling in particle-laden isotropic turbulence. In a particle-laden

incompressible flow, the Navier-Stokes equations can be applied for the fluid phase:

ρf

[
∂uj
∂t

+
∂(ujuk)

xk

]
= − ∂p

∂xj
+ µ

∂2uj
∂xk∂xk

− ρfgj − Fj, (3)

along with the continuity equation:

∂uj
∂xj

= 0, (4)

where uj are the fluid velocity components, and ∂p/∂xj is the pressure gradient.

The density of the fluid is denoted ρf , and µ is the dynamic viscosity of the fluid.

The two-way coupling between the phases is related to the term −Fj, which is the

net force exerted in the xj direction by M particles (that exist in a unit volume of

the fluid), and is computed from

Fj =
M∑
p=1

Fpj, (5)
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Fpj being the steady-state drag force described in the previous section for a single

particle.
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CHAPTER 3

Numerical Methods

In this chapter, we will present in detail the methods used to simulate the in-

teractions between small inertial particles (standing for the sea spray droplets) and

the turbulence of a channel flow. Our framework lies on an Eulerian-Lagrangian

approach, where the fluid’s motion is solved in the Eulerian frame through the

Lattice Boltzmann Method (LBM) while the dispersed phase motion equations

introduced in the previous chapter is solved in a Lagrangian way via a concise

numerical scheme. This scheme is then implemented together with the core of the

LB code, in order to solve simultaneously the particle equations and the Navier-

Stokes equations at each time step of the DNS runs. In addition to the description

of the numerical approach, the geometry of the problem as well as the important

non-dimensional parameters of our study will also be discussed here.

3.1 Lagrangian method

As explained in the previous chapter the particle equation, or motion equation,

relates the particle instantaneous acceleration to the sum of the forces applied on

the same particle. Through scaling arguments we have shown that in absence of

gravity, only the drag force is important to compute the particle velocity. The

equation can be solved at each time step, and integrated in time to obtain the

particle position xp(t):

dxpj
dt

= vj. (6)

To determine the particle velocity, however, the knowledge of the fluid velocity at

the particle position uj[xpj(t), t] is essential. The fluid velocities are computed via

the LBM in the Eulerian framework, and are only known at the grid nodes of our

computational domain. Therefore, to derive the values of the fluid velocity field
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at each particle position, an interpolation of the velocity field at each time step

is required to retrieve the drag force (i.e. the coupling term between the carrier

fluid and the dispersed phase Fj), and track its evolution over time.

Over the course of this project, we have tried several interpolation schemes

with various degrees of accuracy to calculate the fluid velocity field at the particle

position. We have finally chosen the method proposed by Lekien and Marsden

(2005), which uses a tricubic interpolation in three dimensions. This local inter-

polation method is based on the determination of a 64x64 matrix that relates the

derivatives at the corners of an element to the coefficients of the tricubic inter-

polant for this element, and presents two main advantages: on one hand it uses

only the neighborhing points of the element instead of the whole dataset to de-

termine the fluid velocity; on the other hand, a unique set of coefficients for the

velocity interpolation is determined once and stored for further usage, which saves

both time and computational ressources. We will briefly explain their method, but

more details are described in the original paper.

For simplicity, we use the same notation as the original paper of Lekien and

Marsden (2005). Let us consider a small cubic element as part of the computational

mesh. The figure 2 illustrates the element considered in this approach, from the

original paper. In our case, we take a cubic element of width equal to one grid

node to avoid unnecessary complications. The fluid velocities, as well as their first

derivatives in space, their second order mixed derivatives and their third order

mixed derivative are computed at each corner of the element, such that we have a

set of eight values, computed at the eight points denoted pi, i = 1, 8; and f being

the velocity function here, i.e. uj(x, y, z, t):{
f,

∂f

∂x
,
∂f

∂y
,
∂f

∂z
,
∂2f

∂x∂y
,
∂2f

∂x∂z
,
∂2f

∂y∂z
,

∂3f

∂x∂y∂z

}
.
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The function f can be expressed as a polynomial of the form:

f(x, y, z) =
3∑

i,j,k=0

aijkx
iyjzk.

For the sake of computation, the 64 coefficients aijk of f can be expressed under

the vectorial form through the transformation:

α1+i+4j+16k = aijk for all i, j, k ε{0, 1, 2, 3}.

The concept here is such that p1 corresponds to the origin of the cube (0,0,0), and

the coordinates of the points p2, and p8 are respectively (1,0,0) and (1,1,1).

Figure 2: Schema of an element for interpolation in three dimensions (Lekien and
Marsden, 2005)

By computing f and its derivatives at the eight points{
(0, 0, 0), (1, 0, 0), ..., (1, 1, 1)

}
, we thus obtain a vector containing 64 vari-

ables, which we will call bi. Then, using the expression of f introduced above,

it is possible to relate the vector bi to the vector αi through a system of linear

equations, such as:

B~α = ~b⇐⇒ ~α = B−1~b.
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Here, B−1 is the 64x64 matrix mentioned above, which was preliminary de-

termined, and implemented in the GPU code to interpolate the fluid velocity

field within the computational domain. The main advantage to use this method

lies on the fact that the determination of the polynomial coefficients happens

once, and does not need to be actualized at each time step. To our knowledge,

this method has not been used before for similar particle-laden turbulent flows

problems. Most previous studies using more traditional numerical methods, such

as the pseudo-spectral method to solve the carrier phase equations (Soldati et

al., 2002-2012), (Richter and Sullivan, 2013), have relied on a classic 6th order

Lagrangian polynomial interpolation scheme to derive the fluid velocities at the

particle positions.

Once the fluid velocities are known, the drag force can be easily deduced from

the expression developed in the previous chapter:

Fpj = −3πdpνρf [vj − uj(xpj)]. (7)

This force is computed for each particle suspended in the fluid, and is up-dated at

each time step with the fluctuacting velocities. We recall that it corresponds to the

interaction term, or feedback from the dispersed phase to the carrier phase, and

that it is the key to the two-way coupling approach we chose where the phases are

expected to exchange momentum with each other. The equation 2 can be written

again, bearing in mind that it corresponds to an application of Newton’s second

law:

m~a =
∑

~F ⇐⇒ ~a =
~F

m
,

with aj = dvj/dt and the right-hand side term being equal to [uj(xpj) − vj]/τp.
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The particle instantaneous acceleration can therefore be known readily:

aj(t) =
[uj(xpj, t)− vj(t)]

τp
. (8)

From this, the particle velocity can be computed at the next time step through a

first-order Euler-forward scheme:

vt+1
j = vtj + atj ∆t. (9)

The up-dated particle position is obtained via a time integration taking into ac-

count both the velocity and the acceleration of each particle:

xt+1
pj = xtpj + vtj ∆t+

1

2
atj ∆t2. (10)

It should be noted that the time steps used in the LBM are very small, which

allowed us to compute both the particle velocity and the particle acceleration

with reasonable accuracy. The last step of the particle-tracking scheme consists in

smoothing the drag force in the domain, so that the fluid governing equations (14)

can be solved at the next time step while taking into account the feedback contri-

bution from the particles. For stability reasons, the drag needs to be extrapolated

after being computed in a pointwise manner at the particle positions. Over the

course of this study, we tried several extrapolation methods: we first used weights

proportional to the distance of a particle to its eight neighboring grid nodes, then

looked at a radial smoothing scheme for the feedback force over a distance propor-

tional to the magnitude of the force. However we chose to use a simpler trilinear

extrapolation, with constant weights equal to 1/8. This basic scheme was preferred

to the more elaborate ones due to the large number of inertial particles dispersed

in the flow: it allowed us to save computational time by imposing constant weights

instead of deriving their values for each particle, at each time step. This spatial

redistribution of the force prevents peak values of the drag from occurring across

the computational domain.
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To summarize, we distinguish five stages in the Lagrangian tracking method:

• the interpolation of the fluid velocities,

• the computation of the drag force,

• the determination of the particle velocities,

• the time integration to obtain the particle positions,

• the extrapolation of the drag.

These steps are implemented in an autonomous code to simulate the advection of

the particles suspended in the turbulent flow, and are repeated at each time step.

This code communicates to the other parts of the GPU code by using the fluid

velocities as an input and giving the smoothed drag over the domain as an output

to be applied in the governing equations solved by the Lattice Boltzmann method

(LBM).

3.2 Lattice Boltzmann Method

The Lattice Boltzmann method takes its roots in the kinetic theory of gases,

and has evolved from the Lattice Gas Automata models developed in the 1980s to

become an enticing alternative to traditional numerical methods to solve various

flows and engineering problems. In this section, we will describe briefly in what

consists the LBM. More details can be found in the reference book by Succi (2001)

on the background of the Lattice Boltzmann equation, and its applications in

computational fluid dynamics.

According to Succi (2001), we can define the kinetic theory as ”the branch of

statistical physics dealing with the dynamics of non-equilibrium processes and their

relaxation to thermodynamic equilibrium”. At the microscopic level, let us first
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imagine an ensemble of fictitious fluid particles. These particles can be considered

as pointwise, and respect the principle of continuum: they contain a large number

of molecules, but are still small compared to the macroscopic scale, such that the

fluid in its globality can be seen as a continuum medium. We introduce now the

distribution function f(x, p, t) as the probability of finding a molecule around the

position x at a time t with the momemtum p. Boltzmann (1872) developed an

equation to describe the evolution of this distribution function, which is known

now as the Boltzmann equation (BE):

∂f

∂t
+
p

m
· ∇f + F · ∂f

∂p
= Ω, (11)

where Ω represents the collision operator, F represents the sum of the external

forces applied to the particles, and m is the mass of the fluid particles. The left-

hand side of the equation corresponds to the advection of the function f , and is

also called the streaming part of the BE.

The earlier numerical models solving the dynamics of these particles were

the Lattice Gas Automata, where time, space and the particle velocities were all

discrete. The fictitious fluid particles were found on the nodes of the lattice and

at each time step, they could either move to the nearest node in the direction of

their velocity, or collide with the neighboring particle, since two particles could

not occupy the same node at the same time. Hence, the two parts of the BE

correspond to the two possible configurations for the fluid particles (propagation

and collision), as shown in the figure 3.

In the original LGA models, the distribution function was defined as a boolean

variable. However, in the Lattice Boltzmann method the distribution function is

actually the average of this boolean variable. Furthermore, to reduce computa-

tional costs, particles are only allowed to move along certain directions and with

given speeds, so that the set of discrete particle velocities becomes finite. The
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common BE (in absence of external forces this time) can then be expressed as:

∂fi
∂t

+ ei · ∇fi = Ωi, (12)

with i = 0, 1, ...Q, Q being the number of directions for the particle velocities, ei the

particle velocity and Ωi still the collision operator. A finite difference discretization

in time and space leads to the Lattice BE:

fi(t+ ∆t, x+ ei∆t)− fi(t, x) = Ωi, (13)

with ∆t being the time step. This equation applies under the condition that

the particle speed of propagation is set to c = ∆x/∆t = 1, with ∆x being the

grid spacing of the lattice (Janssen, 2010). To determine exactly which set of

particle velocities are being used in our model, we refer to the classic convention

used in the Lattice Boltzmann community where models are named according to

their dimension and the number of discrete velocities involved. For instance, a

vastly used model is the D2Q9 model, as a two-dimensional LB model with a

set of nine discrete velocities. In our case, since our problem is 3D, we use the

D3Q19 model where the total number of particle velocities allowed in the velocity

space are 19. The figure 4 illustrates the repartition of the velocities in space

for the D2Q9 and the D3Q19 models. One of the remarkable feature of the LBE

Figure 3: Schema of the propagation and the collision steps (Janssen, 2010)
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is that the incompressible Navier-Stokes equations can be recovered through the

Chapman-Enskog expansion (1916-1917). Indeed, by expanding the distribution

function fi, it can be demonstrated that the microscopic LBE converges towards

the macroscopic Navier-Stokes equations, such as:

[
∂uj
∂t

+
∂(ujuk)

xk

]
= −1

ρ

∂p

∂xj
+ ν

∂2uj
∂xk∂xk

+O(∆t2) +O(Kn2) +O(Ma2), (14)

and

∂uj
∂xj

= 0 +O(∆t2) +O(Ma2), (15)

where Ma is the Mach number (discussed in the next section) and Kn corresponds

to the Knudsen number, defined as the ratio between the molecular mean free path

and the shortest length scale of the flow (Succi, 2001).

Figure 4: Schema of the D2Q9 and D3Q19 (Janssen, 2010)
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For simplicity the external forces (gravity and particle feedback) have been

omitted in this version of the Navier-Stokes equations. It should be noted that in

contrary to traditional pseudo-spectral methods, the pressure is solved via an equa-

tion of state, rather than through the computational-demanding Poisson equation.

Macroscopic variables, such as the fluid density and the momentum can be also

retrieved from their microscopic counterparts as follows:

ρ =
∑

fi, and ρu =
∑

fiei.

The conservation of mass and momentum in the computational domain can be

translated as the following conditions:∑
Ωi = 0, and

∑
Ωiei = 0 respectively.

The collision operator contains information about the interactions between fluid

particles. In particular in the BE, it focuses on the localized binary collisions

occurring between particles by assuming that the fluid is dilute enough to avoid

more complex interactions: only short-range binary collisions are considered in

this framework. In the LBM, there are several possible expressions for the collision

operator Ω, and the choice of one formulation over another depends usually on the

problem considered. Without going into further details, we will just specify that

we use a multi-relaxation time (MRT) model to represent the collision operator in

our problem. It is known to have a better stability and to provide more accurate

boundary conditions than the standard BGK (for Bhatnagar, Gross and Krook)

model by involving higher moments of the distribution function in the expression

of Ωi.

3.3 Geometry

Within the framework of our study, the choice of the flow configuration was

made so that we would be able to compare our results against several published
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studies. A 3D Poiseuille turbulent flow, bounded by two flat planes, was simulated

with and without small particles, to observe the interactions between the dispersed

phase and the fluid. For simplicity, the channel planes are smooth and no-slip

boundary conditions are imposed at each plane. In the LBM, no-slip boundary

conditions are implemented under the form of a ”bounce-back” scheme: the fluid

particles bounce off the wall after reaching the boundary, in the same direction that

they came from (Janssen, 2010), and while conserving their mass and momentum

exactly. More specifically in our simulations, a second-order bounce-back scheme

with a higher accuracy in space was used for the carrier phase: by placing the

channel planes half-way between two lattice nodes, the last row of nodes in the

vertical direction taken into account for our computations were at a distance d =

0.5∆z, and a row of ”ghost nodes” located beyond the walls was then considered

(Janssen, 2010). The flow is periodic in the homogeneous directions, i.e. in the

streamwise and the spanwise directions of the flow. Regarding the inertial solid

particles, periodic boundary conditions were also implemented: once a particle

leaves the domain in one of the horizontal directions, it is reinjected on the other

side of the domain, with the same velocity.

The flow is driven by a mean pressure gradient in the streamwise -x direction,

which is implemented as a body force in the LBM code. The figure below schema-

tizes the geometry of our problem. The dimensions of the planes were chosen so

that the flow can be considered homogeneous in the streamwise and the spanwise

directions (Bespalko, 2011). The main constraint in the choice of the domain size

lies in the fact that the largest structures of the turbulence should be contained

within its whole geometry. Previous published results by Kim et al. (1987) showed

that a size of the computational domain of 8δ x 4δ x 2δ was sufficiently large to

ensure that the two-point correlations for the velocity and the pressure fluctua-

28



tions decay to zero. They also showed that grid spacing should be smaller than

δ/90 to accurately resolve the viscous sublayer. Then, the optimal dimensions of

the numerical domain would be 720 x 360 x 180. It should be noted that this

configuration requires at least two GPGPUs to ensure enough memory is available

to save all the data (i.e. the fluid and particle velocities, as well as the particle

parameters).

Figure 5: Simulation domain (Bespalko, 2011)

As of now, the computational domain limited to 260x260x180 nodes, in the

streamwise, spanwise and wall-normal directions, respectively. Therefore, our re-

sults may be slightly affected by the fact that the largest turbulent eddies are not

well resolved.

3.4 Dimensionless numbers

In this section, we will introduce the parameters that determine the framework

of our simulations. These non-dimensional numbers are important to make sure

that our simulations correspond to some real-life cases by matching their values

respectively between the physical space and the computational domain. Besides

the Mach number which is intrinsic to the Lattice Boltzmann method, there are

four main parameters to consider when dealing with particle-laden turbulent flows.
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A fifth one can be counted in as well if the gravitational force is taken into consid-

ereation in the problem.

Mach Number The LBM is by definition a compressible numerical method,

and requires to specify the Mach number Ma. The Mach number is defined as the

ratio of the characteristic velocity scale of the flow to the speed of sound cs. In our

case, this velocity scale is the mean velocity at the centerline of the channel U0:

Ma =
U0

cs
.

As our simulations are solving the incompressible Navier-Stokes equations for

the flow, the Mach number should ideally be very small. Nonetheless, stability

may becomes an issue in the computation when we reach this limit as the Mach

number is proportional to the time resolution. Consequently, we chose a Mach

number Ma = 0.2, which is close to the maximum allowable value to ensure that

the flow is incompressible and stable.

By applying the Buckingham Π theorem to particle-laden flows (Bosse et

al., 2006), we come up with four dimensionless numbers, namely the Reynolds

number which characterizes the turbulence of the flow, the Stokes number, which

relates the time scales of the flow and of the dispersed phase, the volume fraction

corresponding to the amount of particles present in the flow, and finally the

density ratio between the carrier fluid and the particles. If the gravity is also

taken into account, then an additional parameter has to be considered: the ratio

of the Stokes settling velocity over the Kolmogorov velocity scale.

Reynolds Number The relevant Reynolds number in the case of turbulent

channel flows is called adequately friction Reynolds number, as it is related to
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the friction velocity. It is defined as:

Reτ =
uτδ

ν
,

with uτ the friction velocity, the mid-channel height δ, and the fluid kinematic

viscosity ν. It determines the nature of the turbulent flow under study, and its

value in the physical domain should match the one in the LB simulation. Though

a few studies have shown that turbulence could be observed for Reynolds numbers

as low as 160, the value of 180 is commonly accepted as the numerical threshold

in DNS studies to produce turbulence. Based on Bespalko’s work and the KMM

reference article, we chose Reτ = 180, as it is close to the lowest possible Reynolds

number for which the turbulence can be observed, and limits the computational

cost of our simulations.

Stokes Number To relate the interactions between the turbulence structures

and the dispersed phase, the Stokes number is defined as the ratio of the particle

response time to the characteristic time scale of the flow. There are several Stokes

number that can be found in the current literature on particle-laden flows. They

usually differ in the time scale of the flow chosen, in particular for DNS on wall-

bounded turbulence. Indeed, the Kolmogorov time scale τK (=
√
ν/ε) and the

viscous time scale τv (defined as ν/uτ
2) can be used to define two different Stokes

numbers:

StK =
τp
τK

St+ =
τp
τv

=
τpu

2
τ

ν
,

where τp = ρpdp
2/(ρf18ν) characterizes the inertia of the particles: the larger

τp, the more inertia the particles possess. In the limiting case where τp is very

small, the particles act like passive tracers and follow the fluid motions instantly.

The widespread use of StK in CFD and engineering studies lies mainly in the

fact that it can be used for both isotropic and wall-bounded flows equally, making
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it a more ”universal” parameter. Over the last 30 years, its introduction and

utilization have been justified to characterize the type of interactions between

the particles and the flow structures in a satisfying way. However some recent

studies question its adequacy for channel flows: it is known that the dissipation

rate is not constant over the wall-normal direction. In fact, ε is larger close to

the walls (more dissipation) which implies a smaller Kolmogorov time scale -for a

constant fluid viscosity- than at mid-channel height. Because it is hard to quantify

accurately the variation of the dissipation rate along the channel height, most

studies choose to use the time scale determined at the mid-channel and assume that

it remains unchanged. On the other hand, the viscous time scale does not present

this problem: the friction velocity is calculated from the wall stress and the fluid

density, so that the viscous time scale does not depend on the height. It is therefore

more appropriate to compare the particle response time to the viscous time scale

instead of the Kolmogorov time scale in the case of wall-bounded turbulent flows.

For instance, Zaho (2013) and Richter and Sullivan (2013) have used St+ in their

recent publications.

Volume fraction The volume fraction, denoted φv, allows to determine how

much of the dispersed phase is present in the flow. It is the ratio of the volume

occupied by the particles to the total volume (fluid+particles):

φv =
Nπdp

3/6

Vf +Nπdp
3/6

.

Alternatively, the mass fraction can be used as well to specify the global concen-

tration of particles in the flow. In a similar way as the volume fraction, it then

corresponds to the ratio of the mass of all the particles dispersed to the total mass

of the system:

φm =
mp

mtot

=
ρp(Nπdp

3/6)(
ρfVf + ρp(Nπdp

3/6)
) .
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Since the focus of our work is the possible interactions occuring between the air

turbulence and the sea spray droplets at the ocean surface, our interest is confined

to the two-way coupling regime where the carrier phase (air) and the dispersed

phase (spray) can exchange momentum with each other (Elghobashi, 1994). This

implies that the range of concentrations we will investigate is 10−6 for the lower

bound (below this value, the suspension is too diluted to allow any effect of the

droplets on the turbulence) and 10−3 for the upper bound (above this value, the

suspension is too concentrated, and the droplets start to interact with each other:

coalescence, breaking up...).

Density ratio As its name indicates, the density ratio is expressed as the ratio

of the density of the dispersed phase over the density of the carrier phase:

D =
ρp
ρf
.

When considering the forces that the carrier fluid apply to the dispersed phase,

the density ratio distinguishes between the forces that can be neglected, and the

ones that are relevant to the problem (Maxey and Riley, 1982). For instance the

particle inertia, characterized by the particle response time, becomes predominant

when D is very large. In our case, the density ratio is equal to 1000, which means

that the particles can be qualified as heavy. Consequently, the Stokes drag is much

larger than the other forces like the added mass and the Basset history term. D

will remain unchanged throughout our study, unless specified.

33



CHAPTER 4

Results

The impact of the sea spray droplets on the near surface turbulence is

investigated through a series of DNS. The droplets are represented by small

solid inertial particles, dispersed in the carrier fluid, and several aspects of the

turbulence modulation by the particles are studied in this chapter.

The LBM described in the previous chapter is used to solve the fluid govern-

ing equations via a numerical code provided by the research team of the Technical

University of Braunschweig, Germany. In particular, Sonia Uphoff and Christian

Janssen, who have been working on turbulence and fluid dynamics modeling re-

spectively, were of great help in developing the GPGPU code. We would also like

to acknowledge the contribution of Amir Banari, from the department of Ocean

Engineering, in validating the initial codes and improving the numerical routines

during this project. Initially, our goal was to retrieve the results of the KMM

reference article (1987) regarding the main turbulence statistics, and to validate

our turbulence implementation in the absence of particles. In their paper, the

authors presented several characteristics of turbulent channel flows, such as the

mean velocity, the two-point correlations, the flatness, and the skewness among

others. In the following sections, we show that despite a smaller computational

domain, our results are in good agreement in the case where there is no particle

in the turbulent flow (unladen regime). We also present the main results when

particles are introduced in the channel flow, after first introducing the simulation

parameters.
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4.1 Simulation parameters

The definition of the simulation parameters is thoroughly discussed in the

PhD thesis of Bespalko (2011). Here, we present the complete set of parameters

necessary to perform our DNS runs.

In contrast with free shear turbulence, wall-bounded turbulence exhibits two

main regions: a region close to the wall where viscous effects are important, and

another region further away where the turbulent stresses dominate the viscous

stresses. The two regions are called the viscous wall region and the outer layer

respectively (Pope, 2000). The important notion to retain is that the turbulence

is governed by different scales depending on the regions one is interested in. For

instance in the viscous layer, the key parameters are the kinematic viscosity of the

fluid ν, the density of the fluid ρf (or conversely the dynamic viscosity of the fluid µ

which depends on both the density and the kinematic viscosity), and the wall shear

stress τw. From these three quantities, it is possible to derive characteristic length,

time and velocity scales, as well as a non-dimensional number characterizing the

turbulence state at the wall (i.e. the friction Reynolds number from the previous

chapter). The velocity scale was briefly introduced before: it is the friction velocity,

here formally experessed as:

uτ =
√
τw/ρf .

The viscous time scale was also presented when dealing with the viscous Stokes

number, and is defined as τv = ν/u2τ . Lastly the viscous length scale is:

δv = ν/uτ .

According to KMM (1987), one of the requirements of a turbulence DNS is that

the grid resolution should be fine enough to resolve the smallest length scales of

the turbulence, and in particular it should be of the order of the Kolmogorov

scale ηK . The Kolmogorov length scale is estimated to be equal to about 2 wall
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units, when normalized by the viscous length scale δv: η
+
K = ηK/δv ≈ 2. (Here,

the superscript + denotes a quantity normalized by the viscous layer scale.) In

channel flows, the grid resolution should be at least equal to the normalized

Kolmogorov length scale in the vertical (wall normal) direction. We therefore

impose the normalized grid resolution to be ∆z+ = η+K = 2 in our configuration.

The grid resolution in the other directions need not be as small as the Kolmogorov

length scale. However, the LBM is normally designed so that the lattice where

the time, space and velocities are discretized is uniform in all directions. This

means that the lattice is cubic, with ∆x+ = ∆y+ = ∆z+. As a result, the flow is

over resolved in the horizontal directions, while being appropriately resolved in

the wall-normal direction.

In the Lattice Boltzmann Method the length, time, and mass scales are

defined differently from the ones in the physical space. Here, the symbols L, T

and M will be used to characterize the dimensions of length, time and mass

respectively in the lattice system. In particular, the grid spacing is set 1 in the

lattice length scale. Hence, the viscous length scale in the lattice unit system is

equal to 0.5L.

To determine the value of the friction velocity in the lattice space, it is neces-

sary to keep in mind that the LBM is a compressible numerical method on which

we imposed a given value for the Mach number so that the problem we are inter-

ested in remains in the incompressible regime. In the previous chapter, we set up

the Mach number to be Ma = 0.2. By definition, the speed of sound in the D3Q19

model is given as (Bespalko, 2011; Janssen, 2010):

cs =

√
1

3
≈ 0.577L.T−1, and Ma =

U0

cs
,
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which leads to a centerline mean velocity U0 ≈ 0.115L.T−1. According to the

friction law, derived by Bespalko (2011):

U+
0 =

1

κ
ln(Reτ ) + A.

The von Kármán constant κ, and A are respectively equal to 0.4 and 5.5. In the

expression above, the mean velocity at the centerline of the channel has been

normalized by the friction velocity uτ , and Reτ is the friction Reynolds number

defined in previous sections. With all the parameters known, the value of the fric-

tion velocity can be deduced from the friction law: uτ ≈ 6.25x10−3L.T−1. Going

back to the expression of the viscous length scale as a function of the kinematic

viscosity and the friction velocity, the fluid viscosity is then: ν ≈ 3.12x10−3L2.T−1.

Once the friction velocity is known, the wall shear stress can be calculated

from the expression given earlier in this chapter:

uτ =
√
τw/ρf ⇐⇒ τw = ρfu

2
τ ≈ 3.9x10−5M.L−1.T−2.

The determination of the wall shear stress is necessary to compute the mean pres-

sure gradient required to sustain the turbulent Poiseuille flow along the streamwise

direction. In the configuration of channel flows, the mean pressure gradient should

be exactly balanced by the sum of the stresses, at every point of the computational

domain. In particular, at the wall where the Reynolds stresses are zero, the only

component of the stress is the wall shear stress, and we can thus write:

τw = −δ
(
∂〈p〉
∂x

)
=⇒

(
∂〈p〉
∂x

)
≈ −4.34x10−7M.L−2.T−2.

Here, the value of the mid-channel height in the lattice space is obtained from the

definition of the friction Reynolds number:

Reτ =
uτδ

ν
=

δ

δv
= 180⇐⇒ δ = Reτδv = 90L.
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As specified by Bespalko (2011), the pressure gradient is implemented in the LB

code as a body force (−∂p/∂x = ρ~g), instead of a true pressure gradient to avoid

dealing with mean pressure gradients in the flow.

To summarize, the main parameters for the DNS of turbulence without any

particles are the following:

• the viscous length scale δv = 0.5L,

• the friction velocity uτ = 6.25x10−3L.T−1,

• the kinematic viscosity ν = 3.12x10−3L2.T−1,

• the friction Reynolds number Reτ = 180.

In the following section, we will present the results for the clean channel case,

compared to the benchmark published by KMM in 1987. The main statistics will

be shown here, as well as the results for different domain sizes.

4.2 Turbulent Poiseuille flow: Validation
4.2.1 Two-point correlations

In order to model the interactions between small particles and turbulence,

we need to ensure first that the implementation of turbulence is correct before

introducing particles in the flow. Our original intent was thus to reproduce the

results published by the reference article of KMM (1987) on turbulence statistics

in a fully developed channel flow at low Reynolds number. In their paper, the

authors observed that a computational domain of dimensions 8δx4δx2δ was

sufficiently large to ensure that the largest structures of the turbulence were

contained within the whole geometry by examining the two-point correlations for

the velocity and the pressure fluctuations. The two-point correlations constitute a

simple way to obtain information on the spatial structure of a random field (Pope,
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2000). Kim et al. (1987) showed that the correlations were indeed decaying to

zero for large separations, supporting their choice of the domain size.

Regarding the LB configuration where the grid has to be isotropic, this would

imply that the optimal dimensions for the numerical domain would be 720x360x180

nodes, in the streamwise, spanwise and in the wall-normal directions, respectively.

However, it should be noted that this configuration would require at least three

GPGPUs to ensure that enough memory is available to save all the data (i.e. the

fluid and particle velocities, as well as the particle parameters) for each run. In

this project, we were able to use only one GPU to run our DNS, which limited

drastically our computational resources. We maintained the constraint on the grid

resolution in the wall-normal direction, so that our results could be compared to the

study of KMM. However, our domain was cut shorter in the x- and -y directions:

the geometry used in our work was 260x260x180 nodes instead of 720x360x180

nodes. Knowing that the channel we considered for this study was smaller than

the optimal size prescribed by KMM, we computed the two-point correlations for

the velocity fluctuations to observe the discrepancies due to the smaller geometry.

The general expression to compute the two-point correlation is given by Pope

(2000):

Rij(~r, ~x, t) = 〈ui(~x, t) uj(~x+ ~r, t)〉,

where ~r is the separation between the points, and ~x is the position vector. It is

common to view turbulent flows as a superimposition of a mean flow and some

fluctuations over time and space. The Reynolds decomposition allows one to dis-

tinguish between the mean and the fluctuating components of the flow variables,

such as the velocity and the pressure. We can then write:

ui = 〈ui〉+ u′i and p = 〈p〉+ p′.
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The brackets designate an ensemble average, performed as follows:

〈ui〉(z) =
1

nt

∑
t

1

nx ·ny

∑
x,y

ui(x, y, z, t),

where the sum of the velocities is calculated over time and across the horizontal

plane at the height z of the computational domain. nt is the number of snapshots

considered for the time average, while nx and ny correspond to the number of grid

points in the x- and y- directions respectively. The fluctuating part, denoted with

a prime, can be deduced after computing the average in a straight-forward manner:

ui − 〈ui〉 = u′i.

The figure 6 shows the two-point correlations for the fluctuating velocities at differ-

ent heights in the channel. Each time, Rij was normalized by the average velocity

at those respective heights. Our results can be compared with the results in the

reference paper, shown in figure 7.

Since our domain is only 36% of the optimal length in the streamwise

direction, a comparison would be relevant only up to around x/δ ≈ 1.4 in the

reference paper. Even with the largest separation in our computational domain,

the correlations have not reached zero yet. Nevertheless, the overall pattern is

quite similar between the two results. Our Ruu is slightly higher than the original

results at both channel heights. But, our Rvv and Rww show good agreement with

the reference results: Rvv reaches zero near the wall, and is slightly negative near

the channel center, while Rww is positive near the wall and negative but reaching

towards zero at the mid-channel height. Despite our computational limitations

with a smaller domain on a single GPU, it appears that the two-point correlations

agree reasonably well with the results of KMM’s paper, up to the point of the

largest separation δx in our problem. Therefore, our results are expected to

converge towards the benchmark study with a larger computational domain.
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Figure 6: Two-point correlations for streamwise (left) and spanwise (right) sepa-
rations, near the wall and at the mid-channel height. Solid line: Ruu, dash line:
Rvv, dot line: Rww
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Figure 7: Two-point correlations for streamwise and spanwise separations, near
the wall (top) and at the mid-channel height (bottom) (KMM, 1987)
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4.2.2 Mean velocity and Reynolds stresses

In order to investigate the convergence towards the results published in the

reference paper, we ran two DNS cases, with varying gridsizes. In case A, the

domain size corresponded to the one used in this whole project (which is about

the largest size reachable on one GPU alone with particles), namely 260x260x180

nodes, while the channel was larger in case B, with dimensions of 350x300x180

nodes (which is about the largest size reachable on one GPU alone without parti-

cles). The figure 8 shows the mean streamwise velocity, as well as the normalized

Reynolds stresses, defined as 〈u′iu′j〉/u2τ (Pope, 2000) for the cases A, B, and KMM.
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Figure 8: Fundamental statistics in Poiseuille flow for case A, B and with KMM.
Solid line: case A, thick dash line: case B, squares: KMM (Courtesy of A. Banari)
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The mean streamwise velocity, normalized by the friction velocity is plotted in

a semi-logarithmic scale as a function of the distance to the wall, which has been

normalized with the viscous length scale. The thin dash lines correspond to the

viscous law 〈u〉+ = z+, and the Nikuradze log law (Pan and Banerjee, 1996) 〈u〉+ =

2.5 lnz++5.5 respectively. We observe a very good agreement between the reference

paper and our results for the streamwise mean velocity. Concerning the stresses,

the largest discrepancies are seen for the streamwise terms. As expected, the results

in the wall-normal direction are the closest to the KMM’s results among the three

directions since we respected the resolution constraint in the wall-normal direction.

Generally, the larger domain results show a better agreement to the benchmark

study than the smaller domain results, which corroborates the assumption that our

simulations would converge towards the published results of KMM with a larger

domain size.

4.2.3 Higher-order statistics

In addition to the mean streamwise velocity and the Reynolds stresses, we

have examined the higher-order moments of the velocity fluctuations: the skewness

(third order) and the flatness -also called kurtosis (fourth order). The figure 9

illustrates the skewness and the flatness plotted along the channel height. The

expressions for both moments are given here:

Si =
〈u′3i 〉
〈u′2i 〉3/2

and Fi =
〈u′4i 〉
〈u′2i 〉2

.

Again, our results are in good agreement with the benchmark results of KMM (not

shown here).
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Figure 9: Skewness and flatness factors for the velocity fluctuations in global coor-
dinates. Solid line: streamwise, dash line: spanwise, dot line: wall-normal direction

From the two-point correlations to the fourth order moment, our results are

in good agreement with the reference paper by Kim et al. (1987), even though our

computational domain is a truncated version of the optimal channel described in

KMM. This also suggests that the LBM can reproduce accurately DNS of turbulent

Poiseuille flow, provided that the grid resolution and the gridsize requirements are

met. Since the grid is by default isotropic in LBM, the flow is over resolved in the

wall parallel directions, which indicates that the LBM is not the most numerically

economical method to solve turbulent wall-bounded flows. Nevertheless, in regards

to turbulent particle-laden flows, the efficiency of the LBM can be appreciated

in terms of computational time and memory required to deal with such flows.

The particle equation of motion is solved simultaneously with the LBM at every

time step, and the small particles are tracked in their trajectory over time, while

exchanges of momentum are allowed between the dispersed phase and the carrier

fluid. In the next section, the low-order statistics of turbulence will be presented

in the case where particles are introduced in the channel flow. Additional results

will also be discussed regarding the modulation of turbulence by inertial particles.
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4.3 Turbulent particle-laden flows

We recall that there are four non-dimensional numbers that govern the dy-

namics of turbulent particle-laden flows: the friction Reynolds number, the Stokes

number, the volume/mass fraction and the density ratio. In this study, we kept the

Reynolds number and the density ratio constant, and varied the concentration and

the size of the particles (i.e. their Stokes number). Table 1 indicates the different

cases we ran.

Case Np φm St+ dp(µm) d+p
Clean channel 0 - - - -
I 6× 105 0.25 10 26 0.104
II 4.6× 104 0.10 30 45 0.18
III 1.2× 105 0.25 30 45 0.18
IV 2.3× 105 0.5 30 45 0.18
V 2.3× 104 0.25 90 78 0.312
VI 985 0.25 720 220 0.88
VII 1,980 0.5 720 220 0.88

Table 1: Particle properties for the seven different runs. The particle diameter d+p
has been normalized with the viscous length scale

DNS runs Case Color, symbol

baseline Clean channel black solid line

effects of concentration
II blue dot line
III blue solid line
IV blue dash line

effects of size
I blue dot line

III blue solid line
V blue dash line

effects of large particles
VI red solid line
VII red dash line

Table 2: DNS runs legend
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The main numerical results of this study will be presented in the following

sections of this chapter, with the following convention: most figures will be plotted

as series of curves, obtained first by varying the mass fraction (at constant Stokes

number), and then by varying the Stokes number (keeping the mass fraction con-

stant). The legends, which will be consistent for the whole chapter are described

in table 2.

4.3.1 Mean velocity and r.m.s.

The effects of the particles on the turbulence can be readily observed on the

mean streamwise velocity of the carrier fluid, shown in figure 10 on a semi-log scale

and in figure 11 on a linear scale across the whole channel height. In presence of

particles, the mean fluid velocity decreases in the log-law region and near the center

of the channel relatively to the clean channel case.
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Figure 10: Mean streamwise velocity (log scale), normalized by the friction velocity.
Left: increasing mass fraction - black line: clean channel, blue dot line: case II,
blue solid line: case III, blue dash line: case IV; right: increasing Stokes number -
black line: clean channel, blue dot line: case I, blue solid line: case III, blue dash
line: case V, red line: case VI
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More specifically, the velocity profiles are all found below the baseline from

z+ ≈ 50 (i.e. right beyond the viscous wall region) to the center of the channel,

while they remain very close to the clean channel curve near the wall. In the case

where the mass fraction increases from 0.1 to 0.25 and then to 0.5 (left panels), a

consistent decrease of the velocity can be noted: the largest difference occurs for

the case IV. The right panels indicate that the discrepancy with the baseline (clean

channel) is the largest for the case I (the smallest particles) and is reduced for the

larger particles. The impact nearly disappears in case VI (St+ = 720, φm = 0.25).

This suggests that the smaller particles (over the particle size range investigated)

are more effective in modifying the mean profile provided the mass fraction is kept

constant. Among all the cases, the case IV (St+ = 30, φm = 0.5) shows the most

impact on 〈u〉.
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Figure 11: Mean streamwise velocity (linear scale), normalized by the friction
velocity. Left: increasing mass fraction - black line: clean channel, blue dot line:
case II, blue solid line: case III, blue dash line: case IV; right: increasing Stokes
number - black line: clean channel, blue dot line: case I, blue solid line: case III,
blue dash line: case V, red line: case VI
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Along with the mean streamwise velocity, the root-mean-square of the velocity

fluctuations are part of the primary statistics of turbulence where the effects of

particles can be easily noticed. In general, the presence of particles increases the

streamwise turbulence intensities, while reducing the spanwise and the wall-normal

components of the r.m.s. For increasing particle concentration, the streamwise

r.m.s is larger relative to the baseline of the clean channel. The increase is not

monotonic. however, and happens mainly outside the viscous sublayer, after the

maximum of the r.m.s. has been reached (around z/δ ≈ −0.9). The spanwise

and wall-normal r.m.s. drop noticeably across the channel height compared to the

baseline, and the maximum of each curve is displaced further away from the wall.

The disparity with the clean channel becomes more pronounced when a larger

number of particles is dispersed in the flow.

Regarding the cases I, III, V and VI where the Stokes number is progres-

sively increased from 10 to 720, the streamwise velocity fluctuations are higher

than for the clean channel, though the difference is negligible for the case VI.

The enhancement of the streamwise fluctuations is particularly evident for the

cases III and V. Dampening of the r.m.s in the y- and z- directions can be

seen in all cases. Moreover, the case I with the smallest particles displays an

interesting behavior: the curves for vrms and wrms start at the wall between the

cases III and V, but end up crossing the curves after the viscous wall region.

Overall, we may conclude that there is a global effect of φm and of St+ on the

lower-order statistics of turbulence, though the underlying mechanisms of turbu-

lence modulation may be different whether St+ or φm are changed in the DNS runs.

According to Zaho et al. (2013), it is thought that the inertia of the particles

play an important role in modifying the low-order moments of turbulence, at any
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Figure 12: Root-mean-square velocity fluctuations. Top: streamwise, middle:
spanwise, bottom: wall-normal. Left: increasing mass fraction - black line: clean
channel, blue dot line: case II, blue solid line: case III, blue dash line: case IV;
right: increasing Stokes number - black line: clean channel, blue dot line: case I,
blue solid line: case III, blue dash line: case V, red line: case VI
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concentration. The attenuation of the wall-normal fluctuations, combined with

the enhancement of the streamwise turbulence intensities has a profound impact

on many aspects of the channel flow.

4.3.2 Force balance

It is important to make sure that the two-way coupling is correctly imple-

mented: the feedback force, which is included in the Navier-Stokes equations from

the previous chapters, exchanges momentum between the fluid phase and the dis-

persed phase. We verify here that the conservation of momentum is satisfied, and

focus on the particles’ role in the global force balance. The figure 13 shows the

repartition of the various forces in presence in the channel flow as a function of the

normalized distance from the wall. In the case of the clean channel, the force bal-

ance consists of the viscous force and the Reynolds force compensating the mean

pressure gradient exactly:

Fvisc + FR =
∂〈p〉
∂x

, with Fvisc =
∂

∂z

(
µ
∂〈u〉
∂z

)
and FR = − ∂

∂z

(
ρf〈u′w′〉

)
. (16)

Note that while many studies examine the stress balance and compute the viscous

and Reynolds stresses in turbulent Poiseuille DNS, examining the force balance

is more relevant in the case where particles are dispersed in the computational

domain. We emphasize that both formulations are equivalent, and we can relate

the forces described in the equation above to the viscous stress and the Reynolds

stress as:

τvisc = µ
∂〈u〉
∂z

and τR = −ρf〈u′w′〉.

In the case of particle-laden flows, the force balance becomes:

Fvisc + FR + Fpart =
∂〈p〉
∂x

, with Fpart = 〈Fx〉. (17)

The results of the force balance are shown in figure 13. Note that the legend

in this figure differs from the previous plots: the solid lines in all cases correspond
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to the viscous force -regardless of the color, the dash lines represent the Reynolds

force, and the dotted lines show the particle terms, taken in the streamwise

direction. The red starred line is the sum of all forces in presence, and the black

thin horizontal line found at -4.34x10−7M.L−2.T−2 is the mean pressure gradient.

The first plot corresponds to the clean channel case, where we can see that

the sum of the forces exactly compensates the mean pressure gradient applied to

the flow, proving that there was no sink or source of momentum in the channel

flow. The second plot illustrates the evolution of the repartition of the forces

among the viscous force, the Reynolds force and the particle feedback force for the

cases II-blue, III-green and IV-red (increasing concentration), while the third plot

shows a similar family of curves, for the cases I-blue, III-green, V-red (increasing

Stokes number). The last plot on the lower right corner shows the averaged force

components, for the case with the largest concentration of particles (case IV).

As expected for the clean channel case, the absolute value of the viscous force

is maximal in the viscous layer (Pope, 2000), and reaches zero beyond the buffer

layer (z+ ≈ 30). The Reynolds force has an opposite sign to the viscous force, and

compensates it exactly by reaching the value of the mean pressure gradient at the

point where the viscous effects vanish. The effect of the increasing mass fraction on

the force balance can be seen in the second figure in the upper right corner: inside

the viscous sublayer the magnitude of both the viscous force and the Reynolds

force diminishes progressively, while the particle force 〈Fx〉 increases at the same

time for larger φm. A small discrepancy between the sum of the forces and the

mean pressure gradient is observed near the wall, which is due to the treatment

of the no-slip boundary conditions in the LBM. Besides this numerical artifact,

however, it is clear that the force balance is still satisfied in presence of particles.
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On one hand, it should be noted that the Reynolds force decreases faster than the

viscous force near the wall for increasing mass fraction. On the other hand, the

maxima locations for the particle force for cases II, III and IV are found closer to

the wall than the maxima of both Fvisc and FR, which indicates that the particles

impact the turbulence mainly close to the wall, rather than in a homogeneous

fashion over the whole domain. While its magnitude can reach up to five times

the value of the mean pressure gradient, it remains very localized in the domain.
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Figure 13: Force balance: in clean channel (upper left); varying mass fraction
(upper right: case II-blue, III-green, IV-red); varying Stokes number (lower left:
case I-blue, III-green, V-red); and averaged particle force components (lower right,
case IV). Solid line: 〈Fx〉, dash line: 〈Fy〉, dash-dotted line: 〈Fz〉
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Outside the viscous sublayer the particle force is small but remains finite, and

reduces the Reynolds force accordingly. The results with different particle sizes

(Stokes number) is shown in the third panel. Again, the magnitude of the forces

are smaller than for the clean channel case. However, the evolution of the forces

is not monotonic: the curves for the case I are found between cases III and V

(Reynolds force) and case V (viscous force). The smaller impact is seen for the

case VI (not plotted here), which is expected since the less amount of particles is

released in the channel flow.

From the figure 13, we may conclude that regardless of their size or concen-

tration, small inertial particles allowed to interact directly with the carrier fluid

impact the distribution of the forces by dampening the Reynolds force (across the

channel) and the viscous force (within the viscous wall region).

Lastly, the fourth figure on the lower right corner illustrates the averaged

particle force across the channel for Case IV. As expected, 〈Fy〉 is always zero. It

is interesting that the mean particle force in the wall normal direction 〈Fz〉 is not

zero near the wall, although its magnitude is much smaller than that of 〈Fx〉.

4.3.3 Production and dissipation: the TKE budget

Zaho et al. (2013) investigated the effects of the particles on the turbulent

kinetic energy (TKE) budget, focusing on the energy transfer between the fluid

and the solid phases, and on the dissipation in the wall turbulence. To take into

account the particles into the TKE budget, we derive the TKE equation from the

Navier-Stokes equations (eq.14) presented in the previous chapter. The TKE is

defined as k = 1/2〈u′iu′i〉, and the expression of the conservation of the turbulent

kinetic energy is given here:
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Dk

Dt
= − 1

ρf

∂〈u′ip〉
∂xi

− ∂〈ku′i〉
∂xi

+ ν
∂2k

∂xj∂xj

− 〈u′iu′j〉
∂〈ui〉
∂xj

− ν
∂〈u′iu′j〉
∂xj∂xj

+ 〈u′if ′i〉.

Although the notation might differ from the expression given by Pope (2000), we

can distinguish seven terms in the balance of TKE, namely:

• the material derivative of the TKE,

• the pressure transport,

• the turbulent transport,

• the viscous diffusion,

• the production,

• the dissipation rate, and

• the particle production.

In the case of a statistically steady channel flow, the TKE is conserved and the

material derivative of k, which corresponds to the sum of the local rate of change

and the advection of k by the mean flow, is equal to zero. Since the gravity has been

neglected in this problem, the buoyancy does not intervene in the TKE balance.

Here, we are interested in the change in the repartition of the production terms and

the dissipation rate. We will note the TKE production P , the particle production

Pp and the dissipation rate ε. In wall-bounded turbulent flow, the production term

P can be reduced to:

P = 〈u′w′〉∂〈u〉
∂z

.

The figure 14 shows the mean shear production and the particle production

terms, as well as the dissipation rate, for the cases I to VI, with the clean channel
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results as baseline. The left-hand side of the figure represents the cases II, III

and IV. We can observe here a reduction of the production and the presence of

a non-zero term Pp due to the feedback of the particles. The magnitude of the

dissipation rate also decreases with increasing mass fraction. The top and bottom

panels show that the particle production is small compared to the TKE production,

and negative across the channel height for the cases III and IV. The fact that Pp

becomes negligible in the case II is due to the very low concentration of particles

dispersed in the flow.

The right-hand side panel shows that the particles of various diameters impact

in a more complex manner the production and the dissipation of TKE, although

both the production and the dissipation are reduced by the particles. The impact

is significantly reduced for the case VI (St+ = 720, φm = 0.25) since the number

of particles becomes very small.

In the last figure, in the bottom right corner, the particle production changes

sign: it starts negative for the cases I and III, then is positive across the channel

in the case V, and finally is almost equal to zero for case VI where very few

particles were dispersed in the flow (like in case II).

In summary, the introduction of small particles in the channel flow modifies

the TKE budget across the wall-normal direction, though not in a monotonic and

consistent way. The mechanisms influencing the production and the dissipation of

turbulent kinetic energy will be discussed further in the next chapter.
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Figure 14: Production and dissipation terms as a function of the channel height
expressed in global coordinates. Top: P , middle: ε, bottom: Pp. Left: increasing
mass fraction - black line: clean channel, blue dot line: case II, blue solid line: case
III, blue dash line: case IV; right: increasing Stokes number - black line: clean
channel, blue dot line: case I, blue solid line: case III, blue dash line: case V, red
line: case VI
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4.3.4 Turbulence coherent structures

It is commonly accepted in the wall turbulence research community that

turbulence is organized into structures over several length and time scales (Eaton,

1994). According to Adrian (2007), wall turbulence is characterized by the

presence of packets of hairpin vortices and their associated quasi-streamwise

vortices (QSV) near the wall. The term coherent highlights the fact that these

structures possess a ”long temporal persistence” in the flow, and their existence

has been extensively studied both experimentally and numerically. In particular,

a mechanism to generate QSV in a turbulent channel flow has been suggested by

Zhou et al. (1999). In their paper, the authors argue that the turbulent boundary

layer contains a large number of hairpin vortices, aligned in the streamwise

direction as coherent packets. Though they first studied the evolution of a single

ideal symmetric hairpin, they went on to investigate asymmetric hairpins, and

concluded that the QSV generated from asymmetric structures occurred most

often singly and rarely as counter-rotating pairs of equal strength. Zhou et al.

added that it was more likely to observe the asymmetric vortices generation

process in natural turbulent boundary layers observed experimentally. On the

other hand, Jeong et al. (1997) investigated the role of the coherent structures

near the wall in a turbulent channel flow, and presented a model of overlapping

and alternating-sign QSV as the dominant near-wall structure.

Figure 15: Schema of an array of QSV, side view (Jeong et al., 1997)
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The figure 15 illustrates schematically the disposition of the QSV at the wall.

Again, the convention used for the coordinates is such that the y-direction cor-

responds to the wall-normal direction here, in a similar fashion as KMM (1987).

The figure 16 represents instantaneous snapshots of the streamwise velocity from

a side view (x-z), as well as the field of the second component (in our y direction)

of the vorticity (taken at the same time).

Streamwise fluctuations xz

x

z

 

 

50 100 150 200 250

50

100

150

0

0.02

0.04

0.06

0.08

0.1

0.12
Streamwise fluctuations xz

x

z

 

 

50 100 150 200 250

50

100

150

0

0.02

0.04

0.06

0.08

0.1

0.12

Vorticity xz

x

z

 

 

50 100 150 200 250

50

100

150

−6
−4
−2
0
2
4
6

x 10−3 Vorticity xz

x

z

 

 

50 100 150 200 250

50

100

150

−6
−4
−2
0
2
4
6

x 10−3

Figure 16: Instantaneous snapshots. Up: streamwise velocity for the clean channel
(left) l and the case IV (right); bottom: vorticity (y direction) for the clean channel
(left) and the case IV (right)

The left-hand side corresponds to the case without any particles, while the

right-hand side shows u and ωy for the case IV, representative of the several

particle-laden turbulent flows. In our study, the vorticity was computed via a
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least-square numerical scheme, from the general expression of the vorticity:

ωi = εijk
∂uk
∂xj

, with εijk being the alternating tensor.

In particular for channel turbulence where the flow is strongly anisotropic, the

vorticity component of interest is:

ωy =
∂u

∂z
− ∂w

∂x
.

The numerical expression then becomes:

ωy =
1

10∆x
(2wi+2,j,k + wi+1,j,k − wi−1,j,k − 2wi−2,j,k)

− 1

10∆z
(2ui,j+2,k + ui,j+1,k − ui,j−1,k − 2ui,j−2,k),

computed at a given time, once the statistically steady state has been reached.

It is clear that these snapshots capture the dominant turbulence structure

occurring in our computational domain. In particular, the pattern of vorticity

seen in the lower left corner of figure 16 matches the locations of slower streamwise

velocity in the upper left corner plot. Comparing this observation to the schema

of Jeong et al. (1997), we can suggest that the structures of positive and negative

vorticity ωy correspond indeed to QSV, or more generally to turbulence coherent

structures. In the upper left corner plot, the enforced no-slip boundary condition

results in a thin blue layer at each wall where the streamwise velocity u ≈ 0.

Conversely, the velocity is maximal near the center of the channel.

The upper right plot exhibits the striking absence of structures at the walls, as

well as a reduction of the velocity at the centerline of the channel. The vorticity

ωy is also significantly receded, except a few traces of negative vorticity at the

walls. It is evident that the major effect of small inertial particles is to dampen

the turbulence coherent structures near the boundaries of the channel.
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Figure 17: Instantaneous snapshots of streamwise velocity fluctuations for the
clean channel (left) l and the case IV (right) along horizontal planes; up: at the
wall; bottom: at the channel center

The pattern of the stream wise velocity and QSV is further investigated in

figure 17. The plot in the upper left corner represents the streamwise velocity

observed from a top view (x-y) at a height close to the bottom wall of the channel.

The lower left plot is also the streamwise velocity but taken at the mid-height

of the channel. The scale of velocity (from 0.1 to 0.12) takes into account the

fact that the velocity at the center of the channel has a large mean and a smaller

fluctuation. The right-hand side of the figure 17 corresponds to the case IV. From
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the upper row of images, we can see that the structure of the turbulence at the

wall has been modified drastically, as suggested by the figure 16. The vortices

present for the clean channel had weakened under the action of the particles, with

less low-speed regions.

The lower row of instantaneous snapshots indicates that the effect of the

particles on the turbulence structure is less obvious, other than the fact that the

mean velocity is slightly reduced.

4.3.5 Summary

First, we have validated the implementation of the turbulent GPGPU code

to simulate turbulent boundary layer flow without particles against the reference

paper of Kim et al. (1987). We have concluded that despite a smaller computa-

tional domain, our results are converging towards the benchmark of KMM, and

show a good agreement regarding the statistics of the turbulence (two-point corre-

lations, mean velocity, normalized Reynold stresses, skewness and flatness). Next,

we have explored the impacts of the introduction of small inertial particles in a

turbulent channel flow. Once the particles are dispersed in the flow, we have per-

formed several DNS runs by varying the concentration and the size of the particles

(i.e. the mass fraction: φm, and the viscous Stokes number St+). The global

effect of the particles is to reduce the mean streamwise velocity compared to the

clean channel. Regarding the root-mean-square fluctuations, particles tend to ac-

centuate the streamwise turbulent intensities, while dampening the spanwise and

the wall-normal velocity fluctuations. The momentum conservation and the force

balance have been investigated as well. In the clean channel case, the Reynolds

and the viscous forces compensate each other exactly, so that their sum equals the

mean pressure gradient applied to sustain the Poiseuille flow. For the cases I to

VI, the particle feedback appears in the force balance, and a new force distribution
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takes place: both the Reynolds force and the viscous force are much lower than in

the clean channel, while the particle force increases progressively for larger mass

fractions and decreases for larger Stokes number (since a lower number of particles

is required to reach the given mass fraction of 0.25 for cases V and VI) . Beyond

the momentum conservation, the turbulent kinetic energy (TKE) budget has been

investigated, and the mean-shear production, the dissipation rate and the particle

production have been evaluated. The particle production is usually small relative

to the production term, and can change sign depending on the particle size (cases I

and III: Pp < 0, case V: Pp > 0, case VI: Pp ≈ 0). Both P and ε are found smaller

than the baseline in all six cases plotted, implying that the general effect of particles

on turbulence is to reduce the production and attenuate the dissipation. Finally,

we have investigated the interactions between the turbulence coherent structures

and the dispersed phase. From the various snapshots of instantaneous velocity and

vorticity, we may argue that the coherent structures (quasi-streamwise vortices and

sweeps) are weakened near the channel walls in presence of particles.
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CHAPTER 5

Discussion

In this chapter, we first discuss our results in light of the current knowledge of

turbulent particle-laden flows, focusing on the coherent structures and the quad-

rant analysis of the turbulence Reynolds shear stress. Next, we interpret the results

within the context of Oceanography and discuss the role of sea spray in modifying

the momentum exchange between the atmosphere and the ocean.

5.1 Coherent structures-particles interactions

In previous studies of particle-laden flows one notable finding has been a

strongly heterogeneous spatial distribution of the particles. This phenomenon

has been reported both in numerical studies and laboratory experiments, to

various degrees. This behavior does not seem to depend on the coupling regime

considered: the tendency of particles to segregate and accumulate near the wall

remains consistent whether the particle-laden flow is in the one-way, two-way or

four-way coupling regime.

In order to discuss this phenomenon in more detail, let us first introduce the

quadrant analysis of the Reynolds shear stress. The quadrant analysis divides the

Reynolds shear stress −ρf〈u′w′〉 into four classes of events according to the signs

of u′ and w′ (e.g., Willmarth and Lu (1972) and Wallace et al. (1972)):

• the first quadrant, with u′ > 0 and w′ > 0,

• the second quadrant, with u′ < 0 and w′ > 0,

• the third quadrant, with u′ < 0 and w′ < 0, and
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• the fourth quadrant, with u′ > 0 and w′ < 0.

It is common to denote the various quadrants events by Q1, Q2, Q3 and Q4 re-

spectively. In particular, Q1 events are outward motions of high-speed fluid, Q2

events are called ejections, and represent ejections of low-speed fluid away from

the wall, Q3 events are inward motions of low-speed fluid, while the last quadrant

part (Q4) contains inrushes of high-speed fluid, also named sweeps (KMM, 1987).

The QSV described by Jeong et al. (1997) and Zhou et al. (1999) are ejection

events belonging to the second quadrant, with negative streamwise velocity and

positive vertical velocity. It is largely accepted by the wall-turbulence community

that these quasi-streamwise vortices are supposedly responsible for the existence

of low-speed streaks close to the walls.

Marchioli and Soldati (2002) investigated the mechanisms of particle transfer

and segregation in a turbulent boundary layer through DNS experiments. They

defined turbophoresis as the phenomenon of particle migration toward the wall.

The authors suggested that both sweeps and ejections (Q4 and Q2 events) were

efficient transfer mechanisms for the dispersed phase, and proposed a scenario to

explain the particle transfer in the channel flow. The figure 18 is from their original

paper and illustrates the action of the coherent structures on the small particles.

According to this study, particles are transferred by sweeps in the wall region,

where they preferentially accumulate in the low-speed streaks environments,

whereas ejections transfer particles from the wall to the outer flow. Particles

tend to accumulate in the viscous sublayer since the sweeps dominate ejections.

Adrian (2007) detailed the organization of coherent structures in wall turbulence,

in the absence of inertial particles. He explained how the low-speed regions

observed near the wall were associated with QSV lifting fluid upwards away

from the wall. Besides the study of Marchioli and Soldati (2002), there have
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Figure 18: Schema of particle transfer, From Soldati and Marchioli (2009)

been numerous papers studying the coupling between small particles and wall

turbulence structures. Nowadays, it is commonly accepted that inertial particles

are mainly found in low speed, low vorticity and high strain rate regions, near the

channel walls, and that the QSV tend to transfer the particles from the wall to

the outer flow (Li et al., 2012).

Another aspect of the turbulence modulation is related to the inertia that the

particles display. Since particles have a finite inertia (or a finite particle response

time τp and Stokes number St), they do not exactly follow the turbulent eddies. As

a result, they tend to break the eddies and reduce the spatial scale of the coherent

structures in the channel - sometimes to the point of eliminating, as observed in

figure 16. In complement to the instantaneous plot of the vorticity ωy, we have
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computed the probability of the four quadrant events for the clean channel and a

representative particle-laden flow, at two different heights and have plotted it in

figure 19 (see Li et al., 2012). Not surprisingly, the probability of ejections and

sweeps at the wall in the clean channel are the largest, confirming that they are

indeed the dominant coherent events at the boundary. At the mid-height of the

channel, the distribution of the various Q events becomes more uniform, though

there are more Q4 events than the other three types of quadrant events.
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Figure 19: Probability of the four quadrant events for the clean channel (black)
and the case IV (red). Left: near the wall, right: at the channel center

Once particles are added to the flow, we observe a shift towards less ejections

and more frequent sweeps near the wall. At the center, the distribution of the

different events is not very different from that of the clean channel. At both

heights however, the probability of finding ejections is reduced in presence of

particles, which further confirms what we have noted regarding the snapshots of

figure 16.

Another important particle effect appears in the reduction of the production

term P in the TKE budget. Recall that P is proportional to the product of the

Reynolds shear stress and the mean shear. KMM (1987) described the second- and
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fourth quadrant events as contributing to positive mean-shear production in the

budget of TKE. By breaking down the vortical structures, the particles reduce ef-

fectively the Reynolds stress (as seen in figure 13). This then leads to the reduction

of P . The decrease of the wall-normal component of the r.m.s. of the velocity for

all cases (to various degrees) is also consistent with the reduced turbulent stress.

5.2 Sea-spray problem

In this study the sea spray droplets present at the sea surface were represented

by small solid and inertial particles dispersed in a turbulent Poiseuille flow. Within

the framework of this project, we were interested in the effects of the size and

concentration on the flow. The figure 20 summarizes the several DNS runs we

performed, in comparison to the studies of Richter and Sullivan (2013) and Zaho

et al. (2013). On the parameter space St+−φ, the cases I to VII have been plotted

as small red crosses, while the data points from Zaho et al. (2013) are represented

by small blue circles and Richter and Sullivan (2013) by small blue squares. Our

strategy was to cover parts of the two-way coupling region by varying progressively

φ (cases II, III and IV), and then increasing St+ (cases I, III, V, VI). The case

VII was performed to observe the possible impact of very large particles at high

concentration. However, the most of the results concerning the cases VII were not

shown here, since they were not significantly different from the results of case VI.

In their latest paper, Richter and Sullivan (2013) mentioned that the Kol-

mogorov length scale ηK (defined in chapter 2) was of the order of 1mm in the

case of real sea surface during high wind events. It is mostly accepted in the

Oceanography community that sea spray is a polydispersed system composed of

droplets of various sizes. The size spectrum ranges from tens of microns for the

smallest droplets to a few millimeters for the largest spume droplets (Veron, 2012).

Accordingly, the range of Kolmogorov-based Stokes number values goes from 0.2
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Figure 20: DNS runs - Map of flow regimes

to 220. In order to establish the St+ − φ diagram for realistic sea-spray problem,

we need to know the equivalent Stokes number based on the viscous scale and the

concentration of sea spray present at the sea surface.

The determination of the concentration of sea spray has been proven to be

challenging: in-situ measurements are scarce, and laboratory experiments are con-

strained by the size of waves (up to a few meters for the waves generating the

droplets). It is likely that the actual sea spray concentration varies over a large

range depending on wind speed and sea states. We have therefore focused on the

concentration range of the two-way coupling in this study.

We retrieved the Kolmogorov Stokes number for all seven particle-laden cases

in our numerical studies and plotted its values in the figure 21. As discussed pre-

viously, StK varies across the channel height due to the variation of the dissipation

rate ε from the wall to the center of the channel where it becomes very small (see

figure 14). The Stokes number StK varies from around 220 for cases VI and VII
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Figure 21: Kolmogorov-based Stokes number StK along the normalized wall-
normal direction for cases I (dotted line), III (solid blue line), V (dashed line)
and VII (solid red line)

at the wall, down to 1 for the first case (St+ = 10, φm = 0.25) at the center of

the channel. This illustrates that a reasonable range of sea spray droplet sizes has

been investigated in this project.

While the original sea spray problem was greatly idealized, some conclusions

can be drawn from the DNS experiments. The main role of inertial particles is

to significantly modify the turbulence structure near the wall. Specifically, par-

ticles tend to accumulate near the wall and break down the turbulent coherent

structures present in the turbulent boundary layer, via the cross-trajectory effect.

Consequently, the Reynolds stress and the mean-shear production of turbulence

are reduced, and the spanwise and the wall-normal turbulence intensities are also

reduced. The streamwise root-mean-square fluctuations are enhanced, however,

due to the presence of particles, which agrees with results found in other studies

(Eaton et al., 1994).

The impact of the particles on the mean velocity profile is less clear. While
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the turbulence structure is significantly modified near the wall, the mean velocity

profile is hardly affected near the wall. Although the mean velocity in the middle

of the channel is consistently reduced in our numerical experiments, the impact is

quite small. Furthermore, Zaho et al. (2013) report an opposite effect (increase of

the mean velocity) in their numerical simulations. Clearly, further detailed studies

are needed to investigate the effect of particles on the mean velocity profile.
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CHAPTER 6

Conclusions

The aim of this project has been to investigate the impact of sea spray droplets

on the air turbulence right above the sea surface and the air-sea momentum

transfer at strong winds. As a first step to study this complex problem, we have

investigated a turbulent particle-laden flow, with the strong winds playing the role

of the carrier fluid (gas phase), and the small sea spray droplets being represented

by pointwise inertial and solid particles of the same density (dispersed phase).

By adopting the Eulerian-Lagrangian approach to model the coupling between

the fluid phase and the particles, we have saved considerable computational time

and resources and have simulated a turbulent Poiseuille flow where particles are

dispersed and allowed to exchange momentum with the carrier phase.

The mathematical framework of our project consists of the particle equation of

motion and the Navier-Stokes equations, plus a feedback term to take into account

the effects of the particles on the fluid (Elghobashi, 2003). The equation of motion

is applied here under its most reduced form, after considering the magnitude of the

various forces present in the complete equation (Maxey and Riley, 1982), discussed

in chapter 2. The fluid governing equations are solved through the innovative

Lattice Boltzmann method, in complement to the particle equation.

Despite being limited in our computational capacity with only one GPGPU

available, we may reproduce the turbulent Poiseuille flow that is in a good

agreement with the benchmark study of Kim et al. (1987). The mean velocity,

the Reynolds stresses, as well as the two-point correlations, the skewness and

the flatness of the velocity fluctuations are all close to the original results. After
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validating the implementation of the turbulent flow simulation, the particles

have been introduced to the channel flow. Using the results we have evaluated

the effect of particles on various quantities, such as the Reynolds and viscous

forces, the production or the dissipation rate for the turbulent kinetic energy. The

computational limitations we faced during this project can be dealt with by using

a multi-GPUs approach, or even a non-uniform grid with a finer resolution at the

walls and a coarser resolution at the center of the channel. Indeed, the DNS of a

turbulent channel flow using two GPUs shows that the statistics of the non-laden

case converge better to the results obtained by KMM, since the computational

domain becomes larger (Banari, personal communication, 2013). On the other

hand, using a single GPU with a non-uniform grid prevents from overresolving

the flow in the horizontal directions while getting a higher resolution at the wall,

hence saving computational memory.

Our numerical results are mostly in good agreement with the findings of the

previous studies on the turbulent particle-laden flows. The streamwise fluctuations

(r.m.s.) are increased, whereas the spanwise and the wall-normal turbulence

intensities are damped by the action of the particles. As a result, the Reynolds

force and the viscous force are reduced in the force balance. The mean-shear

production and the dissipation are found smaller than in the case of the clean

wall turbulence. The break down of the vortical structures at the boundary by

the particles is a likely reason why the Reynolds stress and the shear production

of the turbulent kinetic energy are diminished.

In summary, our study suggests that the sea spray droplets suspended in an

airflow just above the air-sea interface can significantly modify the near surface
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turbulence characteristics. However, the effect of the sprays on the drag coefficient

(air-sea momentum flux) remains unclear. Our results show slight decrease of

mean streamwise velocities at the channel center due to the particles, in contrast

with the results of Zaho et al. (2013), which showed slight increase of the mean

velocities.
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