Identifying the Relationship Between Benzene Exposure and the Development of Acute Myeloid Leukemia

Jacqueline Tally1 SN Marcella Remer Thompson1,2 PhD, MS, CSP, RN, COHN-S, FAAOHN
1College of Nursing, University of Rhode Island, Kingston, RI, USA
2Superfund Research Program, Brown University, Providence, RI, USA

AIM and OBJECTIVES
To examine the mechanistic relationship between benzene exposure and acute myeloid leukemia (AML).
• To describe the normal metabolic pathways and cellular proliferation in hematopoietic stem cells (HSC).
• To outline the abnormal cellular processes that occur in AML.
• To describe the biomechanic pathways by which benzene exposure leads to AML, including oxidative stress and the dose response relationship.
• To identify areas of needed research.

METHODOLOGY
• Conducted a systematic search of the scientific literature written in English and published in the past five years (2006-2012) using online databases and professional websites.
• Reviewed select articles and summarized findings.
• Created a poster.
• Outlined an article for submission to a peer-review journal.

BACKGROUND
• AML is a rare and highly malignant cancer.
• It is estimated 13,780 new cases of AML will be identified in the United States this year with a 74% mortality rate.
• AML develops from alterations in the survival and proliferation of HSCs in the bone marrow microenvironment.
• If AML is not diagnosed early and aggressively treated, bone marrow failure and death occur.
• Less than 10% of AML cases are caused by genetic factors, and up to 70% are of unknown origin.
• Twenty percent of AML cases have known environmentally-related etiologies.
• Environmental risk factors include cigarette smoke, radiation exposure, and exposure to chemicals such as benzene.
• Benzene is one of the most commonly used chemicals in the U.S.
• Exposure to environmental benzene, even at levels lower than the Occupational Safety and Health Administration’s limit of 1 ppm, has been associated with AML.

FINDINGS
• Benzene and/or its metabolites induce AML via oxidative stress, aryl hydrocarbon receptor (AhR) dysregulation and reduced immunosurveillance.
• These processes lead to the generation of leukemic stem cells (LSC) and subsequent evolution to leukemia by:
 • Targeting critical genes and pathways through the induction of genetic, chromosomal or epigenetic abnormalities, and creating genomic instability in HSCs.
 • Creating stem cell niche and stromal cell dysregulation.
 • Inducing apoptosis of HSCs and stromal cells.
 • Altering proliferation and differentiation of HSCs.

AREAS of NEEDED RESEARCH
• Determine the dose response relationship of benzene on AML.
• Further examine the effects of benzene and its metabolites on HSCs, the stem cell niche, and stromal cells.
• Further identify the roles of multiple metabolites in benzene toxicity and the pathways that lead to their formation.
• Further assess health risks associated with benzene exposure, particularly at low levels.
• Identify additional causative factors associated with the development of AML.

NURSING IMPLICATIONS
• Environmental determinants of health and disease are widespread and vital to the assessment, diagnosis, intervention, planning, and evaluation in nursing practice.
• Nurses need to be aware of environmental factors that impact health and disease.
• Nurses need to identify environmental contaminants in order to eliminate and control health hazards.

Acknowledgments
Honors Opportunity Fund Grant, University of Rhode Island
Printing service provided by the RI-INBRE Centralized Research Core Facility
supported by Grant # P20RR16457-10 from NCRR, NIH.