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ABSTRACT

This dissertation uses the hierarchical q-state Potts model at the critical point

to develop a new random number generator test. We start with an exposition of

renormalization group approach by means of which one can numerically exactly

compute the free energy, speci�c heat and susceptibility of large, but �nite lattices.

We then show that generalization of these standard techniques allows one to also

compute probability distributions related to the energy and the order parameter.

The various computed quantities can be compared with Monte Carlo estimates

of the same quantities. We demonstrate that the structure of the hierarchical lat-

tices used allows one to perform the Monte Carlo calculations by direct sampling.

This avoids the usual critical slowing down that plagues Monte Carlo calculations

at the critical point.

As is well known, critical behavior is highly susceptible to perturbations. We

expect that �aws of the pseudo random number generator, such as correlations,

will cause statistically signi�cant discrepancies between the results of the simula-

tions and the numerically exactly computed results. Details of the computer code

generated for these tests are included.
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CHAPTER 1

Introduction

Monte Carlo (MC) methods rely on statistical numerical sampling to obtain

results for problems for which deterministic methods fail. Applications of Monte

Carlo algorithms include optimization, integration, and making draws from a prob-

ability distribution. Results obtained by Monte Carlo methods can be compared

with results obtained by numerically exactly calculating thermodynamic properties

of statistical mechanical model systems de�ned on hierarchical lattices. We use

this to design a new pseudo random number generator test. We shall henceforth

use the acronym RNG in which �pseudo� is implicitly assumed.

In a classical study [1] titled �Monte Carlo simulations: Hidden errors from

'good' random number generators,� Ferrenburg demonstrated that random num-

ber generators deemed reliable produced systematic errors in Monte Carlo calcu-

lations of physical quantities when the generators were used to drive the fast Wol�

spin-cluster-�ipping algorithm. That the results were biased was determined by

comparison with the exact solution to the two-dimensional Ising model by Lars

Onsager, which in later work by Ferdinand and Fisher [2] was applied to �nite

lattices. This dissertation proceeds in the same spirit, and adds some new features

to the use of exactly solvable, statistical mechanical models as testing grounds for

RNGs.

This dissertation has the following goals:

1. Application of a numerically exact method to a �nite hierarchical q-state

Potts diamond lattice to obtain thermodynamic properties such as speci�c

heat and susceptibility as well as various probability distributions;
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2. Design a direct sampling Monte Carlo method that produces statistical es-

timates of these quantities;

3. Combine the two approaches to verify the validity of calculated estimators of

expectation values and histograms of probability distributions by comparison

with dedecoration results. These comparisons are used to verify how well a

random number generator performs.

We expect that the sensitivity to correlations of critical systems makes the pro-

posed method a good tool for RNG testing and a useful addition to the standard

test suites that are used for this purpose [3], [4].

1.1 The Layout of the Dissertation

Chapter 2 reviews the application of dedecoration to two speci�c lattice types.

These two lattices are the linear periodic chain lattice and the hierarchical dia-

mond lattice. It is shown that thermodynamic quantities such as the free energy

are constructed as series expressions that can be obtained by means of recursion

in �nite lattices or approximated to a desired degree of accuracy in in�nite lat-

tices. In the thermodynamic limit, the process of dedecoration makes contact with

renomalization group theory. The critical exponents can in principle be obtained

by scale invariance used with the models discussed. This shows why various quan-

tities diverge in the thermodynamic limit, but for our tests only �nite quantities

computed for �nite lattices are used.

Chapter 3 discusses the Ising model as a linear chain lattice and as a hierar-

chical diamond lattice. Linear chains are used as warm-up exercises and to verify

segments of our proposed code but they are not of interest in the actual RNG

tests. We formulate the computational method of Chapter 2 using a transfer ma-

trix approach. The transfer matrix formulation is convenient and using it allows

2



us to construct the free energy and heat capacity recursively using dedecoration

in both presence and absence of a magnetic �eld. Finally, the probability distri-

butions of the energy and magnetization are obtained by Fourier transformation

of a system with complex interaction parameters. The recursive method solves

the problem of exponentially increasing time complexity of brute force summation

over the microscopic variables of the lattice.

Chapter 4 generalizes Ising, or two-state, hierarchical diamond lattices to q-

state hierarchical diamond Potts lattices. The techniques of Chapter 2 are applied

to hierarchical q-state diamond lattices once again using a transfer matrix formu-

lation. The method we use allows us to generalize the model to continuous q.

That this can be done is well known, but our approach di�ers from the standard

method; see Ref. [5] and references therein.

Chapter 5 discusses the design of an algorithm that uses Monte Carlo direct

sampling to simulate �nite hierarchical q-state Potts diamond lattices at the crit-

ical point. For thermodynamic quantities we use standard methods to establish

possible discrepancies between recursively computed quantities and the results

obtained by Monte Carlo. To determine if probability distributions agree with

theoretical predictions we collect the number of times a particular value of energy

or magnetization is realized in histogram bins. The observed frequencies and the

corresponding probabilities can be compared with theoretical prediction by means

of the χ2 statistic. For the latter to be applicable we have to take into account

that certain bins of the histograms will be sparsely populated. As a consequence,

their contents after a Monte Carlo run of a certain length will be not be even

approximately normally distributed. This problem can be solved by combining

bins into su�ciently large super-bins, i.e., by coarse-graining. We conclude by a

discussion of what remains to be done in subsequent research.
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CHAPTER 2

Review of Renormalization Group Theory

This dissertation restricts itself to two types of lattices; the linear chain lattice

and the hierarchical diamond lattice. Both will be speci�ed by notation Ll where

l = 1, 2, ... denotes the recursion level of lattice L. In the chain lattice con�guration

L1 denotes a system with two sites connected by two bonds. The lattices Ll+1 of

the chain are recursively constructed by placing a new site between existing sites;

see Figures 1, 2, 3. In the hierarchical lattice, L1 de�nes a system of two sites

connected by one bond. Hierarchical lattices Ll+1 are recursively constructed by

replacing this unit by a diamond, as illustrated Figures 4, 5, 6.

We de�ne nsl and nbl as the number of sites and bonds of lattice Ll. The

relationship of sites and bonds for both lattices based on level l are determined by

recursion relations. In the chain lattice,

nsl = nbl = 2l. (1)

Note, in the chain lattice, nsl = nbl , which corresponds to a chain with periodic

boundary conditions. In the hierarchical lattice,

nsl = (4l + 8)/6, (2)

nbl = 4l−1. (3)

The microscopic variables located on the sites of the lattice Ll are denoted in

general by con�gurations Sl = (s1, s2, . . . , snsl ). The site variables take on discrete

values called states: ±1 for the Ising model and 1, . . . , q for the q-state Potts

model. The process of adding a site between two existing ones is called decoration.
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The construction of the diamond lattice requires bond doubling combined with

decoration.

Figure 1. Chain
lattice L1

Figure 2. Chain
lattice L2

Figure 3. Chain
lattice L3

Figure 4.
Hierarchical
lattice L1

Figure 5.
Hierarchical
lattice L2

Figure 6.
Hierarchical
lattice L3

2.1 Recursion by Dedecoration

We associate with each pair of sites (si, sj) the energy ε(si, sj;K). K is the

set of all interaction parameters, which will be speci�ed in the following chapters.

We also adopt the convention that de�nes the zero of the energy and absorb the

Boltzmann factor, −1/kBT , into the energy. This reduced energy will simply be

called the energy. We introduce a transfer matrix corresponding to the fact that

we consider the energy of the system to be a sum of only single-site and nearest-

neighbor contributions:

T (si, sj;K) = exp[ε(si, sj, K)]. (4)

6



Dedecoration is the process of summing over all sites with two nearest neighbors in

lattice Ll. In the linear con�guration, since connectivity does not vary, this process

is nothing but summing over the microscopic variable at every other site in the

chain. Here, and in following chapters, we deal mostly with �nite systems; we will

only consider the thermodynamic limit for theoretical purposes when needed.

The �rst lattice we discuss is the linear chain. The process of dedecoration is

illustrated in Figure 7. In terms of matrix multiplication, dedecoration takes the

following form:

∑
s3

T (s1, s3;K)T (s3, s2;K) = gT (s1, s2;K ′). (5)

We see that dedecoration in this system reduces the lattice from three to two sites

and introduces a changed interaction parameter K → K ′(K) along with a shifted

term g = g(K) to reimpose the zero energy convention used. Note, the set of

parameters K must be su�ciently general enough to make sure that no new ones

are generated in the process of dedecoration. For the Ising chain, nearest neighbor

coupling satis�es this requirement both in the presence and absence of a magnetic

�eld. The case of the q-state Potts model is more complicated as we shall see in

Chapter 4.

Figure 7. Dedecoration for the linear chain.

The essential transformation required to generate the recursion relations of

the hierarchical lattice is illustrated in Figure 8. All that needs to be added,

7



compared to the case of the linear chain, is the bond doubling:(∑
s3

T (s1, s3;K)T (s3, s2;K)

)(∑
s4

T (s1, s4;K)T (s4, s2;K)

)
= g′T (s1, s2;K ′′).

(6)

Figure 8. The dedecoration and bond doubling for the hierarchical lattice.

In operations like Eq. (6) one can immediately see the relationship to single site

dedecoration, g′(K) = g(K)2 and K ′′(K) = 2K ′(K). The change in interactions is

visually shown in Figure 8 where summing over s3 and s4 reduces the hierarchical

L2 lattice to the hierarchical L1 lattice with two modi�ed parameters of interac-

tion K ′. For the rest of this chapter we consider hierarchical lattices only; the

modi�cations between the two lattices are straightforward and this will allow the

notation to remain simple.

The general Hamiltonian that describes all systems speci�ed by con�guration

Sl and the set of all interaction parameters, K, is written as H(Sl, K). We remind

the reader that −1/kBT has been absorbed into the energy. In terms of the transfer

matrix of Eq. (4), the Boltzmann weight of a con�guration of a lattice of level l is

given by ∏
〈i,j〉∈Ll

T (si, sj;K) = exp[Hl(Sl, K)], (7)

where 〈i, j〉 ∈ Ll denote all nearest neighbor pairs in Ll. We now de�ne the

8



partition function of lattice level l using Eq. (7),

Zl(K) =
∑
Sl

 ∏
〈i,j〉∈Ll

T (si, sj;K)

 =
∑
Sl

exp[Hl(Sl, K)]. (8)

Consider the hierarchical lattice L3 and apply dedecoration once. To accomplish

this transformation from L3 to L2 in Figures 5 and 6 we open up
∑

Sl
and act out

all sums on sites s5, s6, . . . , s12 with operations like Eq. (6). After dedecoration,

the remaining sums act on the lowered lattice of modi�ed interactions. Therefore,

dedecoration relates a starting partition function of level l to partition function of

level l − 1 with modi�ed interaction parameters,

Zl(K) = Gl−1(K)Zl−1(K ′). (9)

The factor Gl−1(K) is a by-product of normalizing the shift in energy that comes

from operations Eq. (6). Each bond after dedecoration contributes to the overall

shift in energy and so Gl−1(K) has a power of bond contributions of the dedeco-

rated lattice, Gl−1(K) = (g′(K))n
b
l−1 . Using dedecoration, we generate a recursive

method of evaluating the partition function. Note, dedecoration can be repeatedly

applied until our system reaches the point at which one chooses to calculate the

partition function by explicit summation.

2.1.1 The Free Energy and Renormalization

Taking the logarithm of the recursion relation for the partition function in

Eq. (9) gives a recursive relationship of the reduced free energy

Fl(K) = logZl(K) = logGl−1(K)+logZl−1(K ′) = nbl−1log g′(K)+Fl−1(K ′). (10)

Dividing Eq. (10) by the number of bonds, nbl , gives the recursion relationship of

the free energy per bond,

fl(K) =
nbl−1

nbl
log g′(K) +

nbl−1

nbl
fl−1(K ′), (11)

9



where fl(K) = Fl(K)/nbl , and fl−1(K ′) = Fl−1(K ′)/nbl−1. The recursive form of the

free energy can be used to compute numerically exact results for �nite lattices and

approximations correct to any desired accuracy for in�nite models; see Chapters

3, 4 for applications.

In the thermodynamic limit Eq. (11) shows that the hierarchical model is

self-similar if the �rst term on the right is interpreted as self-energy associated

with each site. We write f for the free energy per site in the thermodynamic

limit and de�ne g′′(K) = liml→∞
nbl−1

nbl
log g′(K). To make contact with the usual

scaling relation for the free energy [1] we have written liml→∞
nbl−1

nbl
= 4 = bd where

b = 2 is the rescaling length and d = 2 can be thought of as the dimensionality

of the system. The free energy per bond in the thermodynamic limit satis�es the

well-known scaling relation

f(K) = g(K) + b−df(K ′). (12)

In Eq. (12) all double primes have been dropped; we settle on a unique notation

of g,K ′ for the remainder of the chapter.

Renormalization group (RG) theory was developed to obtain critical point

exponents describing critical point singularities and explain the observed univer-

sality of critical behavior [2] of the free energy per bond f(K) from the regular

functions g(K) and K ′(K). In general there is no guarantee that g(K) and K ′(K)

are regular at the critical point. However, in the case of the hierarchical lattices we

consider, this property is rigorously satis�ed by the summation over sites with only

two nearest neighbors at every level of dedecoration; the dedecoration operation

is a modi�ed RG transformation. It is well-known that the scaling transformation

implies that the free energy has power-law singularities that are characterized by

critical exponents. We therefore continue to review the standard approach.

10



The renormalization group equations are

K ′ = K ′(K). (13)

Fixed points are points in parameter space that are invariant under the RG trans-

formation:

K ′(K∗) = K∗. (14)

There typically are several �xed points for any transformation, but some, such as

zero and in�nite temperature �xed points, are only indirectly relevant for critical

behavior. We are interested in non-trivial �xed points for our analysis. The

linearized form of the transformation of interaction to interaction K ′ = K ′(K) is

determined by the Jacobian matrix

∂K ′α
∂Kβ

= Tαβ. (15)

Here, α, β are matrix indexes of the Jacobian. The �xed point of the linearized

transformation is (
∂K ′α
∂Kβ

)
K∗

= T ∗αβ. (16)

With the Jacobian, the linearized transformation reads

K ′α −K∗α =
∑
β

T ∗αβ(Kβ −K∗β). (17)

To simplify the transformation in Eq. (17) one can introduce normal mode coor-

dinates. Consider T ∗αβ to have eigenvalues λi with left eigenvectors φiα such that

∑
α

φiαT
∗
αβ = λiφ

i
β. (18)

Thus, we obtain

ui =
∑
α

φiα(Kα −K∗α). (19)

11



In normal-mode coordinates the RG transformation takes the form

u′i =
∑
α

φiα(K ′α −K∗α) = λi
∑
β

φiβ(Kβ −K∗β) = λiui. (20)

The interaction parameters are expressed in terms of the scaling coordinates (or

scaling �elds) since the coordinates are functions of the interaction parameters,

λiui(K) = ui(K
′). Note that λ = 1 will change nothing; this value of λ is neither

a relevant or irrelevant change. λ = 1 is the marginal value and it sets the bounds

for the two cases λ > 1 (relevant) and λ < 1 (irrelevant). We write

λi = byi , (21)

and we shall treat b as a continuous variable. The justi�cation for this is that the

RG transformation can be iterated, but this approach obscures some subtleties

that are of no interest here. We refer to to the literature for details [2].

2.2 Scaling Theory

We next review the implications of the scaling equation for the free energy

f(u1, u2, ...) = g(u1, u2, ...) + b−df(by1u1, b
y2u2, ...). (22)

We restrict ourselves to the case of two scaling �elds, u1, a thermal �eld and u2 a

�eld coupling to the order parameter.

2.2.1 The Regular and Singular Free Energy

We consider two parts to the free energy: the regular part and the singular

part. To keep things simple we look at the case of a single, thermal scaling �eld,

only,

f(u) = freg + fsing. (23)

As discussed above g = g(u) is a regular function even at the critical point. If the

regular part of the free energy satis�es

f(u)reg = g(u) + b−df(u′)reg, (24)
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we �nd that the singular part satis�es the homogeneous equation

f(u)sing = b−df(u′)sing. (25)

For details, see the work of Niemeijer and van Leeuwen [2].

2.2.2 Widom Scaling

Eq. (23) was obtained for one scaling parameter, but its form generalizes for

multiple scaling parameters; see Section 2.2. The singular part that satis�es the

well-knownWidom homogeneity relation, implies scaling relations for critical expo-

nents that describe the divergences of various quantities of the system [1], [3]. We

brie�y review the main results here. The distance from the critical temperature,

Tc, can be de�ned as

τ =
T − Tc
Tc

. (26)

Near the critical temperature the singular behavior of the speci�c heat, sponta-

neous magnetization, magnetic susceptibility, and response to magnetic �eld at Tc

are given by the exponents α, β, γ and δ: C ' |τ |−α, m ' (−τβ), χ ' |τ |−γ, and

h = |m|δ. The homogeneous singular piece of the free energy for two scaling �elds,

u1 = uT , the thermal bonding scaling �eld, and u2 = uh as the external magnetic

scaling �eld gives for Eq. (25),

fsing(byTuT , b
yhuh) = bdfsing(uT , uh), (27)

where yT , yh are parameters that characterize the homogeneous function of degree

d. Kadano� [4] showed that d is the dimensionality of the lattice and in agreement

with analysis of the renormalization approach to our models as discussed above.

First we can obtain the critical exponent of the magnetization, β, by di�er-

entiating Eq. (27) with respect to uh,

byHm(byTuT , b
yhuh) = bdm(uT , uh). (28)
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Let b = (−uT )−1/yT and uh = 0 so

m(uT , 0) = (−uT )(d−yh)/yTm(−1, 0). (29)

The thermal scaling �eld uT is proportional to τ which yields

β =
d− yh
yT

. (30)

Next, the degree of the critical isotherm, δ, is obtained by di�erentiating Eq. (27)

with respect to uh and setting uT = 0 and b = u
1/yh
h ,

m(0, uh) = (uh)
(d−yh)/yhm(0, 1). (31)

Noting uh is proportional to the ordering �eld h, we �nd that

δ =
yh

d− yh
. (32)

Magnetic susceptibility is found through di�erentiation of Eq. (27) twice with

respect to uh,

b2yhχ(byTuT , b
yhuh) = bdχ(uT , uh). (33)

Setting uh = 0 and letting b = (uT )−1/yT = (τ)−1/yT ,

χ(τ, 0) = τ (d−2yh)/yTχ(1, 0). (34)

Hence, the critical exponent for susceptibility reads

γ =
2yh − d
yT

. (35)

Finally, the critical exponent of the speci�c heat at constant �eld is given by

di�erentiation of Eq. (27) twice with respect to uT ,

b2yTC(byTuT , b
yhuh) = bdC(uT , uh). (36)
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Again, setting uh = 0 and b = (uT )−1/yT = (τ)−1/yT gives

C(τ, 0) = τ (d−2yT )/yTC(1, 0), (37)

and, we conclude that

α = 2− d

yT
. (38)

The four critical exponents are obtained through the scaling parameters yT , yh.

Combining the expressions for the critical exponents yields relationships between

the four. Consider the combination of Eqs. (30), (32), and (35) which give

γ = β(δ − 1). (39)

From Eqs. (30), (32), and (38) we �nd

α + β(δ + 1) = 2. (40)

Hence, we obtain exact relationships for the critical exponents using scaling theory.

An identi�cation used in getting the critical exponents came from operations

like b = (uT )−1/yT = (τ)−1/yT (speci�c heat). This choice of b is related to the fact

that at critical points the correlation length of the system becomes in�nite; the

�uctuations in the system become correlated over all distances. In other words,

the correlation length is observed to go as (τ)−1/yT so we choose b on the order of

the same length as the correlation length. We can think of repeatedly applying

renormalization transformations to an in�nite system in the neighborhood of a

critical point until the correlation length is of order unity.

2.2.3 Finite-Size Scaling

We can also obtain �nite-size scaling relations [5]. We consider the inverse

system size itself as a scaling �eld. This analysis yields the speci�c heat and

susceptibility as a function of system size. Consider Eq. (27), but with a third
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scaling �eld, u3 = 1/a, with a as the total linear system size measured in lattice

units. If the system is scaled by b the inverse system size transforms as a−1 → ba−1,

fsing(byTuT , b
yhuh, b/a) = bdfsing(uT , uh, 1/a). (41)

Similar to the behavior of uT , uh at the critical point, the inverse system size also

tends to zero through dedecoration. Following the same procedure of obtaining

the speci�c heat and susceptibility previously will lead to results like Eqs. (33) and

(36) with the new scaling �eld present in the argument of the functions. Choosing

b = (1/a)−1 yields the following result for each,

χ(τ, 0, 1/a) = a2yh−dχ(ayT τ, 0, 1), (42)

C(τ, 0, 1/a) = a2yT−dC(ayT τ, 0, 1). (43)

The exponents on the right hand side of these equations can be positive or negative

corresponding to a divergence in the in�nite system limit or approach to a �nite

limit.

List of References

[1] K. Huang, Statistical Mehcanics, 2nd. edn. Hoboken, New Jersey, United
States of America: John Wiley and Sons, INC., 1987.

[2] T. Niemeijer and J. van Leeuwen, Phase transitions and critical phenomena,

Voulme 7, Chapter 7. Waltham, Massachusetts, United States of America:
Academic Press, 1972-2001.

[3] L. E. Reichl, A Modern Course in Statistical Physics. Austin, Texas, United
States of America: University of Texas Press, 1980.

[4] L. Kadano�, �Scaling laws for Ising models near critical temperature,� Physics,
vol. 2, 263, 1966.

[5] A. Ferdinand and M. Fisher, �Bounded and Inhomogenous Ising Models. I.
Speci�c-Heat Anomaly of a Finite Lattice,� Physical Review, vol. 185, 932,
1969.

16



CHAPTER 3

The Ising Model

The Ising model, named after Ernst Ising, is a nearest-neighbor spin-

dependent statistical mechanics model [1]. Although the model is simple, it is

believed to correctly describe the critical behavior of systems that have order pa-

rameters with the same symmetry properties. The linear chain exhibits some of

the characteristics of more sophisticated systems and is presented as a warm-up

exercise for constructing the RG equations. After that, we deal with the hierarchi-

cal diamond lattice for critical phenomena that is not present in the chain model.

The lattice types we use are de�ned in Chapter 2. In both types of lattices we

apply the techniques of dedecoration to obtain the desired statistical quantities

that serve to produce the theoretically computed quantities used in the RNG tests

we develop.

3.1 Classical Interpretation of the Ising Model

It is well-known that below the critical temperature microscopic spins can

align over macroscopic distances in some systems. This is known as long-range

order and in these systems it can produce macroscopic spontaneous magnetization.

Above the critical temperature the spins display only short-range order which

produces no net macroscopic arrangement. The Ising model can be used to help

describe this process seen in nature [2], [3], [4], [5]. The Ising model is a discrete

spin model; the site state variables can either be +1 or -1 representing spin up and

spin down. Here we are mainly interested in the sensitivity of the critical point

for small perturbations that might be introduced by correlations in RNGs used in

Monte Carlo simulations.

Recall that Hamiltonian of Ll is reduced to dimensionless form by absorbing
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β = −1/kBT in the coupling constants κ and h. The reduced energy of a spin

con�guration Sl is

Hl(Sl, κ, h) = κ
∑
〈ij〉∈Ll

sisj + h

nsl∑
i=1

si. (44)

In this sum 〈i, j〉 runs over all pairs of nearest-neighbors of the lattice Ll and

i runs over the sites. The coupling constant κ = −βε determines the nearest-

neighbor pair interaction coupling for nearest neighbors and h is the coupling with

the external magnetic �eld. The partition function is given by

Zl(κ, h) =
∑
Sl

eHl(Sl,κ,h), (45)

where each si in Sl assumes the values ±1. Dedecoration is conveniently described

in terms of the the transfer matrix, as de�ned in Chapter 2. For the Ising model

it takes the following explicit form

T =

[
eκ+h e−κ

e−κ eκ−h

]
. (46)

3.2 The Linear Ising Chain

In the linear Ising model the system is constructed as a periodic chain of

dipoles; see Figures 1, 2, 3. The energy for a con�guration Sl is

Hl(Sl, κ, h) = κ

nsl∑
i=1

sisi+1 + h
∑
i

si, (47)

with the periodic boundary condition snsl+1 = s1. The Hamiltonian in the absence

of a �eld simpli�es to pair-coupling energy only and the transfer matrix becomes

Th=0 =

[
eκ e−κ

e−κ eκ

]
. (48)

Squaring the transfer matrix corresponds to dedecoration, as discussed in the pre-

vious chapter; see section 2.1,

Th=0 · Th=0 =

[
e2κ + e−2κ 2

2 e2κ + e−2κ

]
= T ′h=0. (49)
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This matrix can be written as

T ′hl=0 = g(κ)

[
eκ
′(κ) e−κ

′(κ)

e−κ
′(κ) eκ

′(κ)

]
, (50)

with g and κ′ determined by

e2κ + e−2κ = g(κ)eκ
′(κ), (51)

2 = g(κ)e−κ
′(κ). (52)

Solving Eqs. (51) and (52) gives

g(κ) = 2
√

cosh 2κ, (53)

κ′(κ) =
1

2
log cosh 2κ. (54)

The factor g introduced in Eq. (50) follows from the zero of energy convention

implicit in the de�nition of the Hamiltonian.

If Ll starts with κ everywhere then one operation of dedecoration, in terms of

how coupling pair interactions change under subsequent steps of the dedecoration

transformation, can be de�ned as

κ1(κ) = κ′(κ). (55)

Repeated applications of dedecoration continue to apply the same type of inter-

action transformations. Successive transformations can be obtained by recursion,

κk(κ) = κ1[κk−1(κ)]. (56)

Here, k is a positive integer that denotes the number of times the interactions

transformed, i.e., a second dedecoration operation would give κ2 = κ1[κ1(κ)] =

κ1 ◦ κ1(κ). In the subscript notation applied to pair interactions it is understood

that κ0 = κ.
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One application of dedecoration performs a summation over half of the sites.

The g term to the power of remaining bonds of the dedecorated lattice gives the

overall energy shift, G, and the partition function according to Eqs. (53) and (54)

can be constructed as

Zl(κ) = Gl−1(κ)Zl−1(κ1) = g(κ)n
b
l−1Zl−1(κ1). (57)

To calculate the partition function by recursion from starting lattice Ll we re-

peatedly square the transfer matrix. Any �nite chain can be reduced by a �nite

number of dedecoration transformations to a system small enough to calculate the

partition function directly. If the chain was in�nitely sized, then the process de-

scribed in this section could be applied repeatedly until a quantity such as the free

energy per site has converged to a desired accuracy. A property of the zero-�eld

linear Ising chain is that

κk > κk+1. (58)

This property of the function κ′ shows that there is no phase transitions in the

linear system. The only �xed points in this system are the in�nite and zero tem-

perature limit.

3.2.1 Linear Ising Lattice Free Energy, Total Energy, and Heat Capac-

ity

As mentioned before, we use the term free energy as short for the reduced

free energy, i.e., the free energy multiplied by −1/kBT ; see Section 2.1.1. The

total energy and heat capacity that follow from our de�nition of the free energy

are therefore not given by their usual expressions and are also in reduced form.

Using the reduced forms of these quantities does not alter the results presented in

this dissertation other than by scaling in various powers of temperature, which is

of no signi�cance for our purpose.
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The �rst derivative of free energy in the linear chain con�guration for level l

with respect to κ and no external �eld gives the total energy U as

Ul(κ) = nbl−1

∂

∂κ
log g(κ) +

∂κ1

∂κ
Ul−1(κ1). (59)

We consider four systems, nbl = 4, 8, 16, and 32 bonds, representing L2, L3, L4,

and L5; the results of the energy are plotted in Figure 9. Another derivative

with respect to κ gives the heat capacity of the system, C, which in the reduced

quantities we use is nothing but the variance of the reduced energy, see Figure 10,

Figure 9. The coupling energy for the linear Ising system per bond. We have four
systems of varying size, nbl = 4 (blue), 8 (purple), 16 (orange), and 32 bonds (red).

Cl(κ) = nbl−1

∂2

∂κ2
log g(κ) +

∂2κ1

∂κ2
Ul−1(κ1) +

(
∂κ1

∂κ

)2

Cl−1(κ1). (60)

Notice, the energy and heat capacity are constructed as a series that can be

solved recursively. Dedecoration provides a method to compute numerical exact

values of desirable statistical quantities in the Ising chain in �nite models or until

a desired point of precision in in�nite models.
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Figure 10. The heat capacity per bond for the linear Ising system. We have four
systems of varying size, nbl = 4 (blue), 8 (purple), 16 (orange), and 32 bonds (red).

3.3 The Hierarchical Ising Diamond

Here we consider the hierarchical diamond lattices in Figures 4, 5, and 6. The

Hamiltonian with bond interaction κ and �eld interaction h is given in Section 3.1;

see Eq. (44). The transfer matrix method is applied as explained in Section 2.1,

Eq. (6).

3.3.1 The Hierarchal Ising Lattice Phase Transition

In the absence of an external �eld Eq. (44) reduces to

Hl(Sl, κ) = κ
∑
〈i,j〉∈Ll

sisj. (61)

Pair-site dedecoration for level l results in bond doubling in this case; see Figure 8.

The transfer matrix for the hierarchical Ising diamond lattice is still Eq. (48) and

factorizes to a form like Eq. (50). To account for bond-doubling both transfer ma-

trix results from the linear Ising lattice are squared in the analysis of dedecoration

applied to hierarchical lattices,

g′(κ) = g(κ)2 =
(

2
√

cosh 2κ
)2

, (62)
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κ′′(κ) = 2κ′(κ) = log[cosh 2κ]. (63)

Following Section 3.2 for how interactions change under subsequent steps of the

dedecoration transformation, we similarly write how interactions change in the

hierarchical diamond lattice as

κ1(κ) = κ′′(κ). (64)

The function κ′′ exhibits new properties that were not present in the linear

example. If κ1 = κ there is a critical �xed point and if at this critical point

the interactions repeatedly transform into the same interactions. The interaction

at the �xed point is denoted as the critical coupling pair interaction κc and its

numerical value is given as

κc = 0.609378. (65)

Starting dedecoration above or below the critical point will tend the interactions

towards the trivial �xed points at zero or in�nite temperature. The problem has

three �xed points in total now, two are trivial, and the third, κc, is the desired

�xed point associated with the phase transition.

3.3.2 Hierarchical Diamond Lattice Total Energy and Heat Capacity

The total energy and heat capacity of the hierarchical Ising diamond lattices

are constructed by means of two coupled recursion relations

Ul(κ) = nbl−1

∂

∂κ
log g′(κ) +

∂κ1

∂κ
Ul−1(κ1), (66)

Cl(κ) = nbl−1

∂2

∂κ2
log g′(κ) +

∂2κ1

∂κ2
Ul−1(κ1) +

(
∂κ1

∂κ

)2

Cl−1(κ1). (67)

In Figure 11 the energy and heat capacity per bond of the hierarchal Ising diamond

lattice for various system sizes are shown. Notice that the speci�c heat has a

rounded cusp at κc that becomes sharper as system size increases. The linear

23



chain which lacks a phase transition does not have this feature and is expected to

be less sensitive to �aws in the RNGs that we want to test by means of Monte

Carlo simulation. Compare with Figure 10. Of course, in the hierarchical lattice,

only the in�nite Ising system has a true cusp.

Figure 11. The energy (pair-coupling) and heat capacity graphs per bond for
hierarchal systems L2, L3, L4, L5, L7, and L9 with κc included. Notice as systems
increase in size divergent phenomena appears about the critical point.
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3.3.3 The Analysis of the Hierarchal Lattice System with Field

The previous sections excluded an external �eld in the system. When the in-

teraction K was just pair-coupling κ in the hierarchical models then dedecoration

of Ll to Ll−1 would produce bond-doubling between all neighbors. To correctly

account for bond-doubling in computing the partition function of the Ll−1 hierar-

chical model, the general expressions for the shift of energy, g, and renormalized

pair-coupling, κ′, both needed to be squared; see Section 3.3.1. Upon dedecora-

tion in systems with an external �eld, sites with a �eld will be summed over; these

�elds must be conserved and so they will be renormalized, split, and propagate to

neighboring sites. The remaining sites with their �elds will get contributions of

the propagated �elds depending on how many neighbors the remaining site origi-

nally had. This implies that if one starts with a system with uniform interactions

that a single recursion step will destroy this property; this is something that does

not happen in the absence of a magnetic �eld. Repeated recursion generates a

hierarchy of coupling constants, as will be shown in detail below.

We begin by de�ning the general results of dedecoration in the presence of

an external �eld; these results are the energy shift g(κ, h), the renormalized bond-

ing κ′(κ, h), and the renormalized �eld h′(κ, h). Until this point we have never

considered a site interaction term in K using dedecoration and have only dealt

with pair-coupling transformations and the shifts in energy that follow. There-

fore, we step back from hierarchical models and look at a variation of our linear

Ising chains. Consider an isolated three site system with bonding κ and a �eld h

only at s2; see Figure 12. The partition function of the three site system can be

written as

Z(κ, h, s1, s3) =
∑
s2

eκ(s1s2+s2s3)+hs2 . (68)

Applying dedecoration, summing over site s2, the �eld transforms, splits, and
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propagates to the remaining sites. The pair-coupling also transforms and the

energy shifts as well. The partition function after dedecoration is

Z(κ, h, s1, s3) = eχ+κ′(s1s3)+h′(s1+s3). (69)

Here, χ is related to g mentioned previously by χ = log g. Now, any arbitrary spin

function F can be expanded in terms of interactions between sites as

F =
∑
a

Kasa, (70)

where sa is the product of sites associated with interaction Ka. The sa for pair-

coupling is nearest neighbor sites and for the �eld it is single site interaction. The

spin products sa form a complete, orthogonal basis in the space of spin functions.

This property can be used to invert Eq. (70) to yield,

Figure 12. Three site system with bonding κ everywhere and �eld h only at site
s2

Ka = 2−n
∑
{s}

saF , (71)

where n stands for the number of lattice sites. Using Eq. (71) the renormalized
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interactions are

χ(κ, h) =
1

4

∑
s1

∑
s3

logZ, (72)

κ′(κ, h) =
1

4

∑
s1

∑
s3

s1s3logZ, (73)

h′(κ, h) =
1

4

∑
s1

∑
s3

s1logZ, (74)

with the explicit representation in relation with how we previously de�ned these

parameters given as

g(κ, h) = eχ(κ,h) =
√

2Coshh(2Cosh4κ+ 2Cosh2h)
1
4 , (75)

κ′(κ, h) = −log[(
√

2Coshh)(2Cosh4κ+ 2Cosh2h)−
1
4 ], (76)

h′(κ, h) =
1

4
log[(1 + e2h+4κ)(e2h + e4κ)−1]. (77)

The results in Eqs. (75), (76), and (77) are the dedecoration transformation results

of a linear Ising spin lattice with a �eld acting only on sites being dedecorated and

they will be used to resolve the hierarchical diamond system. Unlike linear Ising

chains, which have the same connectivity for all sites, the process of how �elds

split and propagate in the hierarchical model depend on the varying connectivity

of sites of lattice Ll. The problem of �eld splitting is fully de�ned in dedecorating

hierarchical Ising systems by considering an example of the L4 lattice dedecorated

to L3 and constructing a solution of the partition function of the system using

recursion.

Application of dedecoration to the most general system of the hierarchical

Ising model with an external �eld requires the notation hk for the �eld site inter-

action parameters. The subscript k denotes a �eld at a site with 2k connecting

neighbors; using this notation, starting lattice Ll will have l − 1 �elds. Consider

lattice L4 with nearest neighbor interaction κ everywhere and �elds h1, h2, and

h3; see Figure 13. The partition function for this system is Z4(κ, h1, h2, h3).
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Figure 13. Hierarchical lattice L4

One step of dedecoration requires a summation over all sites with two nearest

neighbors to obtain L3; see Figure 6. The sites with four neighbors become sites

with two neighbors and the sites with eight neighbors become sites with four

neighbors. One step of dedecoration to L3 produces the renormalized bonding

interaction κ′′(κ, h) = 2κ′(κ, h) everywhere and shift in the energy g′(κ, h) =

g2(κ, h) due to the doubling of bonds; see Section 3.3.1. The dedecoration also

produces two �elds in the system

h′1 = h2 + 4h′(κ, h1), (78)

h′2 = h3 + 8h′(κ, h1). (79)

The resulting renormalized �elds after dedecoration at the remaining sites are

given by h′k. The connecting piece in both Eqs. (78), (79) is h′(κ, h1) and it is the

linear dedecoration transformation of �eld parameter h; see Eq. (77). Note, the

two �elds h′1, h
′
2 are not equivalent; the renormalized �eld at any site depends on

both the connecting neighboring sites and the �eld that originally existed at the

site. With this notation for any starting lattice Ll with l − 1 �elds the following

renormalization �eld equation is

h′k = hk+1 + 2k+1h′(κ, h1). (80)
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One iteration applied to partition function Z4(κ, h1, h2, h3) gives

Z4(κ, h1, h2, h3) = G3(κ, h1)Z3(κ′′, h′1, h
′
2). (81)

Recall that G comes from a shift in energy upon dedecoration and this time it

is related to the new g(κ, h), i.e. Gl−1 = g′n
b
l−1 = g2nbl−1 . The general partition

function Zl with l − 1 �elds after one step of dedecoration is

Zl(κ, h1, h2, h3, ..., hl−1) = Gl−1(κ, h1)Zl−1(κ′′, h′1, h
′
2, h
′
3, ..., h

′
l−2). (82)

The result of Eq. (82) completes the general analysis of hierarchical models with

external �elds. In practice we start with uniform magnetic �eld, but this property

is not invariant under renormalization, which is rather unusual and more general

than the method described in previous chapters.

3.3.4 The Complex Constants and Probabilities of Energy and Mag-

netization

The probability of �nding the system in con�guration Sl is given by

Pl(Sl) =
eHl(Sl,κ,h)

Zl(κ, h)
. (83)

The probability of �nding the system in a state with magnetization M0 is

Pl(M0) =

∑
Sl
δM0,Me

Hl(Sl,κ,h)

Zl(κ, h)
. (84)

Where M =
∑

i si. The δ-function ensures that only those spin con�gurations

that match the desired magnetization, M0, survive the sum giving the desired

probability. The probability of �nding the system in a state with pair-coupling

energy I0 is

Pl(I0) =

∑
Sl
δI0,Ie

Hl(Sl,κ,h)

Zl(κ, h)
. (85)

Where I =
∑
〈i,j〉 sisj. In general Eqs. (84) and (85) are cumbersome to calculate

if the summations are carried out by brute force computation. Even in a computa-

tional routine brute force counting is numerically ine�cient since the calculations
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are usually repeated numerous times. A more e�cient approach is giving by a

complex transformation of the probability equations.

The Kronecker δ-function can be represented as a sum of exponentials. Con-

sider two variables x, y that assume all integer values 0, 1, 2, . . . , N for some max

value N ; these integers repeat in range n = N+1. For y �xed, the general complex

transformation of δx,y is then given as

δx,y =
1

n

n−1∑
k=0

e2πik x−y
n . (86)

If the variables δx,y = δ0,x−y do not initially assume values 0, 1, 2, . . . , N then

they can be shifted and scaled to do so. In the following applications of this

transformation all variables denoted with primes are variables that need to be

shifted and scaled to satisfy the requirement of being subsequent integers.

We can write

δM ′0,M ′ =
1

n

n−1∑
k=0

e2πik
M′0−M

′

n , (87)

with n = nsl + 1, and M ′
0,M

′ de�ned as M ′
0 =

M0+nsl
2

and M ′ =
∑
i si+n

s
l

2
which

accounts for the fact that the value of magnetization can be negative and that it

takes steps of two in Ising models. The pair-coupling energy, I0, can also assume

negative values like magnetization. However, in the pair-coupling energy transform

n = nbl + 1 and the energy takes steps of four, not two, so I′0, I
′ are instead de�ned

as I′0 =
I0+nbl

4
, I′ =

∑
〈i,j〉 sisi+1+nbl

4
.

Application of the magnetization and pair-coupling energy complex trans-

formations to Eqs. (84) and (85) allows manipulation of the sums to write the

numerators in the probability equations as partition functions with shifted inter-

action parameters. The probabilities for magnetization and pair-coupling energy
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are now expressed as

Pl(M0) =
1

nsl + 1

nsl∑
k=0

e
πik

M0
ns
l
+1
Zl(κ, h− πik

nsl+1
)

Zl(κ, h)
, (88)

Pl(I0) =
1

nbl + 1

nbl∑
k=0

e
πik

I0
2(nb

l
+1)

Zl(κ− πik
2(nbl+1)

, h)

Zl(κ, h)
. (89)

Numerically, Eqs. (88), (89) allow us to compute the full probability distributions

recursively. See Figure 14 for the result of such a calculation.
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Figure 14. The probability of magnetization and pair-coupling energy for a L4

hierarchical Ising lattice with 64 bonds and 44 sites; κ = 0.8, h = 0.01.

32



CHAPTER 4

The q-state Potts Model

The Potts model is a generalization of the Ising model described by Renfrey

Potts in his 1951 Ph.D. thesis [1]. Like the Ising model, the Potts model features

nearest-neighbor interactions. Unlike the Ising model, which could only have site

variables assume two discrete states, the Potts model allows si = 1, 2, ..., q dis-

crete states for con�guration Sl. The rest of this dissertation restricts itself almost

exclusively to hierarchical diamond lattices; see Figures 4, 5, 6. When the hier-

archical Potts diamond lattice with �eld is covered, a step back is made to linear

lattices to develop the renormalization group equations needed for the hierarchical

lattice analysis. With the goal in mind of constructing quantities suitable for both

numerically exact and Monte Carlo computation, we consider the heat capacity in

addition to the probability distributions of pair-coupling energy and the order-like

parameter of q-state Potts Hamiltonian used.

4.1 The Hierarchical q-state Potts Diamond

Generalizing the hierarchical Ising diamond equations for a q-state model al-

lows us to develop the renormalization group equations of the hierarchical Potts

diamond [2]. These equations for the q-state Potts system can be obtained by

constructing the transfer matrix with a Hamiltonian of the hierarchical Potts di-

amond that is invariant under the RG transformation. The following Potts bond

Hamiltonian for any lattice level l and variables si = 1, . . . , q ∈ Sl satis�es this
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requirement,

Hq
l (s1, s2, w, κ, λ, h) = w + κΘ(s1 6= s2)

+ λ[Θ(s1 = 1 & s2 > 1) + Θ(s2 = 1 & s1 > 1)]

+
1

2
h[Θ(s1 = 1) + Θ(s2 = 1)]. (90)

where Θ(p) = 1(0) if p is true(false). Here κ and h are the previous pair and

external �eld interactions and λ is a second pair interaction, which is generated

by the dedecoration operation as soon as the �eld h di�ers from zero and q > 2.

Finally, the parameter w re�ects the freedom in choice of the zero of energy. It

will be �xed by convention and will generate the self-energy term in the scaling

relation for the free energy. The q = 2 case can be related to the Ising model by

means of a simple transcription. The transfer matrix for integral q is constructed

as a q × q matrix that can be conveniently expressed in Boltzmann weight form

[3] as

T q(a, b, c, d) =



a b b b b ... b
b d c c c ... c
b c d c c ... c
b c c d c ... c
. . . . . . .
. . . . . . .
b c c c c c d


. (91)

Both Eqs. (90) and (91) have four parameters.

4.2 Potts Lattice Dedecoration in Zero Field

Dedecoration of the Potts diamond Hamiltonian in zero �eld reduces Eq. (90)

to only one coupling constant, κ. To obtain the conventional form of the Potts

model for Eq. (91) in the absence of a �eld we choose a = d = 1, and b = c =
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exp(κ):

T q(a) =



1 b b b b ... b
b 1 b b b ... b
b b 1 b b ... b
b b b 1 b ... b
. . . . . . .
. . . . . . .
b b b b b b 1


. (92)

Unity along the diagonal in Eq. (92) corresponds to the w = 0 convention for

Eq. (90). The dedecoration, or renormalization group, equations in the absence of

an external �eld are derived by taking the product of Eq. (92) with itself followed

by factorization of the resultant matrix back to standard form. As discussed

in Section 2.1, the RG transformation of the transfer matrix consists of matrix

squaring, i.e., dedecoration, squaring of the resulting matrix elements, i.e., bond

doubling, and imposing the zero of energy convention:

g′(b, q) = (1 + (q − 1)b2)2, (93)

b′′(b, q) =

(
b(2 + (q − 2)b)

1 + (q − 1)b2

)2

, (94)

where g′ comes from the pair-site dedecoration energy shift and b′′ is the renormal-

ized Boltzmann weighted pair-coupling parameter. Similar to the Ising analysis,

see Section 3.3.1, we can write b1(b, q) = b′′(b, q). The transformation has a �xed

point

b1(bc, q) = bc =

(
1 +

2(2
3
)
1
3 q

r(q)
+
r(q)

2
1
3 3

2
3

)−1

, (95)

with

r(q) = (9q2 +
√

3
√
−32q3 + 27q4)

1
3 . (96)

Note that we can generalize the model and consider q as a continuous variable.

We have not explored the simulation of lattices with continuous q and will refrain

from doing so. The method we use, and as explained in detail below, does not

lend itself for that purpose.
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4.2.1 Hierarchical Diamond Lattice Total Energy and Heat Capacity

The partition function, the energy, and the heat capacity of the hierarchical

q-state Potts model in zero �eld are conveniently expressed in Boltzmann weight

form. Let Zq
l (b) be the partition of the hierarchical lattice of level l, state q. The

partition function satis�es the following recursion relation

Zq
l (b) = Gq

l−1(b)Zq
l−1(b1) = g′ n

b
l−1(b, q)Zq

1(b1). (97)

The reduced free energy F q
l = logZq

l satis�es the scaling relation

F q
l (b) = Jql−1(b) + F q

l−1(b1), (98)

where

Jql−1(b) = nbl−1log g′(b, q). (99)

From the free energy the thermodynamic quantities of interest follow by taking

derivatives of F with respect to b,

F q
l

(1) = Jql−1
(1) + F q

l−1
(1)b1

(1), (100)

F q
l

(2) = Jql−1
(2) + F q

l−1
(2)(b1

(1))2 + F q
l−1

(2)b1
(2), (101)

where all superscripts in parentheses denote �rst and second derivatives with re-

spect to the arguments b and b1. With Eqs. (100) and (101), the total energy and

heat capacity of lattice l and state parameter q are

U q
l =

∂F q
l

∂logb
= bF q

l
(1), (102)

Cq
l =

∂2F q
l

∂(logb)2
= b(bF q

l
(2) + F q

l
(1)). (103)

To compare to Monte Carlo simulations in Chapter 5 we once again only use �nite

lattices. In calculations, the derivatives of the free energy can all be prede�ned

and calculated numerically; see Appendix A.
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The q-state Potts model has speci�c heat that diverges at the critical point

for q su�ciently large. We expect that this makes Monte Carlo computations for

large values of q more sensitive to correlations in the RNGs. Figures 15 and 16

shows results for both the total energy and heat capacity per bond with q = 400

for various large �nite systems. Figure 17 shows the q = 2 Ising results for the

heat capacity per bond for the same �nite systems for comparison.

Figure 15. The total energy per bond u = U
nbl
. This �gure uses q = 400 and range

the lattice level from l = 6 ,..., 12. The �xed value bc for this selection of q is
bc = 0.016615.

4.3 Hierarchical Potts Diamond Lattice in a Field

We now consider the RG transformation of the hierarchical Potts model in a

�eld. Using Eq. (90) and choosing w = 0, the following transfer matrix can be

seen to have a structure that is invariant under renormalization,

T q(a, b, c) =



a b b b b ... b
b 1 c c c ... c
b c 1 c c ... c
b c c 1 c ... c
. . . . . . .
. . . . . . .
b c c c c c 1


, (104)
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Figure 16. The heat capacity per bond c = C
nbl×103

. The additional 103 in the

denominator is purely for scaling. This �gures uses q = 400 and range the lattice
level from l = 6 ,..., 12. The �xed value bc for this selection of q is bc = 0.016615.

with

a = eh b = e
1
2
h+κ+λ

(105)

c = eκ d = 1

We again remind the reader that we choose d = 1 as a convention.

For the case of a non-zero external �eld �rst, we derive the renormalization

group equations for a linear chain; see Figures 1, 2, 3. Upon application of dedec-

oration, every other site gets summed over and the �eld of the summed sites

propagates to the remaining sites. Each remaining site always gets contributions

of the �eld from its two previous neighbors. Compared to the case of hierarchical

lattices, this simpli�es the renormalization group Eq. (80) in Section 3.3.3; here

we �nd

h′1 = h+ 2h′(κ, λ, h, q). (106)

Recall that h′1 denotes the renormalized �eld interaction at a remaining site after
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Figure 17. The heat capacity per bond, c = C
nbl
, for the q = 2 Potts model. In

this �gure we range the lattice level from l = 6 ,..., 12. The �xed value bc for this
selection of q is bc = 0.295686.

dedecoration with two neighbors. One application of dedecoration to transform Ll

to Ll−1 requires the product of Eq. (104) with itself and factorization to standard

form. This process yields the linear Potts chain lattice renormalization group

equations:

g(κ, λ, h, q) = 1 + (q − 2) e2κ + eh+2κ+2λ, (107)

κ′(κ, λ, h, q) = log

[
eκ (2 + (q − 3) eκ + eh+κ+2λ)

1 + (q − 2) e2κ + eh+2κ+2λ

]
, (108)

λ′(κ, λ, h, q) =
1

2
log

[
eh+2κ+2λ (1 + eh + (q − 2) eκ)2

1 + (q − 2) e2κ + eh+2κ+2λ

]
− log

[
eκ (2 + (q − 3) eκ + eh+κ+2λ)

1 + (q − 2) e2κ + eh+2κ+2λ

]
(109)

− 1

2
log

[
eh (eh + (q − 1) e2κ+2λ)

1 + (q − 2) e2κ + eh+2κ+2λ

]
,

h′1(κ, λ, h, q) = log

[
eh (eh + (q − 1) e2κ+2λ)

1 + (q − 2) e2κ + eh+2κ+2λ

]
. (110)
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Combining Eqs. (106) and (110) gives the basic single site renormalization group

equation of how sites transform in both the linear and hierarchical Potts lattices,

h′(κ, λ, h, q) =
1

2
log

[
eh + (q − 1) e2κ+2λ

1 + (q − 2) e2κ + eh+2κ+2λ

]
. (111)

We remind the reader that pair-site dedecoration in hierarchical diamond

lattices require the energy shift to be squared, and the pair-coupling to be doubled;

this gives g′ = g2, κ′′ = 2κ′, and λ′′ = 2λ′. Additionally, we point out to the

reader that the connectivity of neighbors in the hierarchical Potts diamond lattice

is exactly the same as the hierarchical Ising diamond lattice. This implies that

the Chapter 3 renormalization group equation result Eq. (80) for external �elds

in the hierarchical Ising diamond is also the correct �eld renormalization group

equation in the hierarchical Potts diamond except the h′ in Eq. (80) is now given

by Eq. (111). The partition function for a q-state hierarchical Potts diamond

lattice of level l with initially uniform pair-coupling and single-site interactions

can now be calculated by starting the recursion with the following equation,

Zq
l (κ, λ, h) = Gq

l−1(κ, λ, h)Zq
l−1(κ′′, λ′′, h′1, h

′
2, h
′
3, ..., h

′
l−2), (112)

where Gq
l−1(κ, λ, h) = g′n

b
l (κ, λ, h, q).

4.4 Hierarchical q-state Potts Model Probability Distributions

Using the partition function Eq. (112), the probability distributions of the

hierarchical Potts diamond lattices can be constructed closely following the proce-

dure used for the Ising model. We restrict analysis to q ≥ 3 in what follows. The

pair-coupling energy, I, with zero-�eld, from the Hamiltonian of Eq. (90) is

I =
∑
〈i,j〉∈Ll

Θ(si 6= sj). (113)

The probability of �nding the system in a state with energy I0 is

Pql (I0) =

∑
Sl
δI0,Ie

Hql (Sl,κ)

Zq
l (κ)

. (114)
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For q ≥ 3 the energy distribution increases by steps of one. From Section 3.3.4 the

complex transformation of the Kronecker delta allows Eq. (114) to be written as

Pql (I0) =
1

nbl + 1

nbl∑
k=0

e
2πik

I0
nb
l
+1

Zq
l (κ− 2πik

nbl+1
)

Zq
l (κ)

, (115)

with the partition functions given by Eq. (112) for zero-�eld. The order-like pa-

rameter, M , from Hamiltonian Eq. (90) is

M =
ns∑
i=1

Θ(si = 1). (116)

The probability of �nding the system in a state with given value of M0 is

Pql (M0) =

∑
Sl
δM0,Me

Hql (Sl,κ,λ,h)

Zq
l (κ, λ, h)

. (117)

For q ≥ 3 this distribution also takes steps of one. By Section 3.3.4 the complex

transformation then gives

Pql (M0) =
1

nsl + 1

nsl∑
k=0

e
2πik

M0
ns
l
+1
Zq
l (κ, λ, h− 2πik

nsl+1
)

Zq
l (κ, λ, h)

, (118)

with the partition functions given by Eq. (112). Note, if the �eld is taken as zero

in Eq. (118), the shift acting on the �eld interaction term still remains. In Figure

18 we show probabilities for the L4 lattice with q = 3 evaluated at the critical

point using Eqs. (115) and (118). In practice, we apply recursion to the partition

functions until the L2 lattice. The L2 lattice is a su�cient stopping point because

it is the �rst lattice in the dedecoration process where all site parameters will be

equal to each other no matter what the starting conditions; brute force calculation

of the partition function is easily applicable at the L2 lattice. Note, computing the

corresponding partition function of the L2 lattice by brute force counting will still

take time proportional to q4. This becomes long for large q and can be avoided by

writing the partition function for the L2 lattice as a polynomial in q; see Appendix

B for how this is done for zero-�eld.
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Figure 18. The q = 3 probability distributions for a L4 hierarchical q-state Potts
diamond lattice at the critical point; κc = 1

2
log bc = −0.693147, λ = h = 0.
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CHAPTER 5

Monte Carlo Simulation of the Hierarchical q-state Potts Diamond
Lattice at the Critical Point

Random numbers are used in applications of Monte Carlo (MC). However, for

practical purposes we are limited to algorithms that can generate numbers that

only appear to be random; these algorithms are called Pseudo-Random Number

Generators (PRNGs). There are many di�erent types of these generators [1].

A PRNG after being appropriately seeded, recursively generates a sequence of

numbers that have the properties of random numbers. We shall not attempt to

provide a de�nitive de�nition of what a random number is; let us just say that

the sequence of numbers (r1, r2, ..., rn) should contain no information about rn+1

for �reasonable� choice of n. In pseudo-random number generators, rn+1 is always

determined by its predecessors and therefore cannot be a truly random number.

Although the numbers produced by PRNGs are �pseudo-random numbers� we will

simply refer to both the generator and output as �Random Number Generator�

(RNG) and �random numbers" instead. If these random numbers are su�ciently

correlated, the Monte Carlo will have systematic errors in addition to unavoidable

statistical ones.

The bias introduced by correlated random numbers is not a problem when

it is smaller than the statistical error of a particular computation. However, as

more compute cycles become available, these statistical errors decrease so that the

demands on the quality of the RNG increase. In practice, RNGs are subjected to

various test suites [2] that have been developed in the past. We are interested in

adding yet another random number generator test to the standard battery.

Thermal and magnetic quantities in the hierarchical q-state Potts diamond

lattice can be expressed as sums of correlation functions that diverge on approach
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of the critical point in an in�nite system. In the �nite system, which are the

only ones where Monte Carlo is applicable, these quantities have no divergences.

Nonetheless, because of the incipient divergences, �nite system near criticality are

highly sensitive to correlations introduced by a bad random number generator. It

is this property we intend to exploit.

In this chapter we discuss the details of a Monte Carlo algorithm with which

one can compute estimates of observables like the heat capacity. These estimates

are to be compared with the theoretical values computed by the methods discussed

in the previous chapters. The probability distributions discussed previously are

also estimated by constructing histograms.

5.1 Monte Carlo Simulation of The Hierarchical q-state Potts Diamond
Lattice by Direct Sampling

To sample the Boltzmann distribution one can use the Metropolis-Hastings

(MH) algorithm. However, there is an inherent problem in using such algorithms,

a problem that is shared by other more sophisticated algorithms that have been

designed with the problem of critical slowing down [3]. If any non-trivial Markov

process is used to sample the Boltzmann distribution, subsequent con�gurations

will be correlated. This typically reduces the e�ciency of a calculation, while

also, burn-in is required because an initial con�guration may be chosen with a

probability that does not correspond to equilibrium.

Hierarchical lattices have the unique feature that the con�gurations they sup-

port can be sampled directly by the decoration procedure that generates the lattice

geometry. At each step of decoration, at most, two frozen nearest neighbors de-

termine the probability of the state of the site added next. In this way one can

generate lattice con�gurations of arbitrary size.
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5.1.1 The Direct Sampling Algorithm for the Zero Field Hierarchical

q-State Potts Diamond lattice

The very �rst site of our lattice of Potts variables, s1, has no neighbors, so

that each state has equal probability

P(s1) =
1

q
. (119)

Once the �rst site is generated according to Eq. (119) the second site is generated

in the absence of a magnetic �eld with probability

P(s2|s1) =
bΘ(s1 6=s2)∑
s′2
bΘ(s1 6=s′2)

. (120)

Here, we remind the reader that b = eκ is the Boltzmann weight associated with

the pair-coupling; see Section 4.2. After this, all new sites decorate an already

existing bond in a state de�ned by s1 and s2; the new state of the decorating site

is s3, which is chosen with probability

P(s3|s1, s2) =
b(Θ(s1 6=s3)+Θ(s3 6=s2))∑
s′3
b(Θ(s1 6=s′3)+Θ(s′3 6=s2))

. (121)

Using these probabilities one can build any lattice one site at a time; see Figures

4, 5, and 6.

The Implementation of the Direct Sampling Algorithm

This subsection discusses how the sampling described in the previous section

is implemented in detail; the reader may skip to section 5.2 to continue with

the standard error analysis techniques we propose for the RNG test. Consider

readily available the sequence of random numbers (r1, r2, ..., rn) from the U(0,1)

distribution.

1. Use r1 to determine state of s1 with Eq. (119).

2. Use r2 against Eq. (120) to determine state of s2
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• If r2 > P(s2 = s1|s1) then state of s2 is same as s1.

• If r2 < P(s2 = s1|s1) use r3 to choose s2 from q − 1 possibilities.

3. Determine s3 with Eq. (121).

• If s1 = s2, P(s3 = s1|s1, s2) = P(s3 = s2|s1, s2).

� If r3 > P(s3 = s1|s1, s2) then state of s3 is same as s1,s2.

� If r3 < P(s3 = s1|s1, s2) use r4 to choose s3 from q− 1 possibilities.

• If s1 6= s2, P(s3 = s1|s1, s2) = P(s3 = s2|s1, s2).

� If r4 > P(s3 = s1|s1, s2) then state of s3 is same as s1 or s2.

� If r4 < P(s3 = s1|s1, s2) use r5 to choose s3 from q− 2 possibilities.

All newly included sites after s2 will always only have two nearest neighbors like

s3.

5.2 Standard Error Analysis

Using Monte Carlo we want to calculate the expectation value 〈Q〉 of some

observable Q. The statistical ensemble average of a system of all states allowed,

µ, de�nes 〈Q〉,

〈Q〉 =

∑
µQµe

Hµ∑
µ e
Hµ

. (122)

However, we assume that during a Monte Carlo run the system will not pass

through every possible state. With MC direct sampling we generate con�gurations

with a probability given by the Boltzmann distribution [4]. The ensemble average

of the expectation value can then be written as a time average. The unbiased

estimator, Q, of this expectation value, 〈Q〉, is

Q =
1

t

t∑
i=1

Qi. (123)
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Note, as t → ∞ we have the property that Q = 〈Q〉. From this average we

calculate the standard deviation, σ, of the observable,

σ =

√√√√ 1

t− 1

t∑
i=1

(Qi −Q)2. (124)

Direct sampling yields independent realizations of observable Q, and for large t,

Q is normally distributed around 〈Q〉 according to the central limit theorem. The

probability that Q exceeds deviation ∆ from 〈Q〉 is

P(|Q− 〈Q〉| > ∆) = 1− erf

(
∆√
2σ

)
. (125)

These standard techniques can be applied to any observable to determine whether

observed estimates deviate signi�cantly from their expected values.

5.3 The Probability Distributions and χ2

To estimate whether the estimates obtained for a whole probability distribu-

tion agree with what is theoretically expected, the usual χ2 statistic is an obvious

choice:

χ2 =
w∑
k=1

x2
k. (126)

If the xk are independent, standard normal stochastic variables, χ2 is distributed

according to the χ2 distribution of w degrees of freedom. Consider during an MC

run consisting of t observations we construct a histogram. The number of times

that an observable assumes the value associated with the kth bin of this histogram

is tk. The corresponding distribution is the binomial distribution with average pkt

and variance pkt(1 − pk). Here, pk is the probability of landing in bin k. The

chi-square statistic is then

χ2 =
w∑
k=1

(tk − pkt)2

pkt(1− pk)
. (127)

The problem in applying this statistic to the bins is that many correspond

to extremely improbable events. The condition of normality for applicability of
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the χ2-distribution is not satis�ed for such bins. To deal with this problem we

introduce super-bins formed by combining su�ciently many neighboring bins until

the combined bin count exceeds the expected RMS error by a sizable factor for

each bin. In practice, we use the following condition as it guarantees a normal

distribution of the bin counts. We de�ne N [µ, σ2] as the normal distribution with

average µ and variance σ2. Each term in Eq. (127) must then be distributed

like N [tpk, tpk(1 − pk)] for all k = 1, . . . , w. We treat this condition as being

satis�ed to a su�cient degree of accuracy when for all histogram bins we have:

tpk − 3
√
tpk(1− pk) > 0 and tpk + 3

√
tpk(1− pk) < t, i.e., if t > 9Max[(1 −

p)/p, p/(1− p)].

5.4 The Hierarchical q-state Potts Diamond Model Random Number

Generator Test: Subsequent Research

The actual development of the q-state hierarchical Potts diamond lattice RNG

test is the next step. A portable version of the test must be developed and only

require the input of a RNG to operate. This will allow easy testing of various

types of generators from basic linear congruential generators to generators that

are standard in language environments like FORTRAN 90. The test needs to be

used with simple well-known faulty RNGs as a check of consistency. Once that

has been accomplished, the test will need to be applied to generators that are still

used currently and regarded as "good" so that real conclusions can be drawn on

how successful the test works.
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APPENDIX A

: The Energy and Heat Capacity Chain Rule Method

Consider the free energy and �rst derivative of the recursive free energy of the

q-state Potts model with respect to internal argument b. We drop the superscript

dependence on q to simplify the notation,

Fl(b) = Jl(b) + Fl−1(b1), (A.1)

F
(1)
l (b) = J

(1)
l (b) + b1

(1)(b)F
(1)
l−1(b1). (A.2)

We write Eq. (A.2) in the following form,

F
(1)
l (b) =

∂

∂b
Jl(b) +

∂b1

∂b

∂

∂b1

Fl−1(b1). (A.3)

Recursively iterate Eq. (A.3) once to see the trend,

F
(1)
l (b) =

∂

∂b
Jl(b) +

∂b1

∂b

∂

∂b1

(
Jl−1(b1) + Fl−2(b2)

)
. (A.4)

Continue to reiterate Eq. (A.4) and focus on the coe�cients J . We then have

F
(1)
l (b) =

∂

∂b
Jl(b) +

∂b1

∂b

∂

∂b1

(
Jl−1(b1) +

(
Jl−2(b2) + ...

))
. (A.5)

Distribute the derivatives,

F
(1)
l (b) =

∂

∂b
Jl(b) +

∂b1

∂b

∂

∂b1

Jl−1(b1) +
∂b1

∂b

∂

∂b1

Jl−2(b2) + ... (A.6)

On the �nal term shown we use chain rule to rewrite the expression Eq. (A.6) as,

F
(1)
l (b) =

∂

∂b
Jl(b) +

∂b1

∂b

∂

∂b1

Jl−1(b1) +
∂b1

∂b

∂b2

∂b1

∂

∂b2

Jl−2(b2) + ... (A.7)

In an in�nite system the �nal term of the sum would be pushed in�nitely far away

and one could approximate the energy by including more J terms in the sum.
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However, in a �nite system the dedecoration and therefore the sum of terms must

end. The L1 two site lattice is the �nal stop point of �nite dedecoration. Recursion

with Eq. (A.7) in a �nite system gives

F
(1)
l (b) =

∂

∂b
Jl(b) +

∂b1

∂b

∂

∂b1

Jl−1(b1)+

∂b1

∂b

∂b2

∂b1

∂

∂b2

Jl−2(b2) + ...

...+
∂b1

∂b

∂b2

∂b1

∂b3

∂b2

× ...× F (1)
1 (bk). (A.8)

The �nal term is the brute force derivative of the free energy of the L1 system with

respect to bk which is the �nal dedecorated coupling parameter of the lattice,

F
(1)
1 (bk) =

∂

∂bk
log
[
Z1(bk)

]
. (A.9)

The total energy of the system is now written in terms of derivatives of quantities

that can be pre-de�ned. The partial derivatives, ∂b1/∂b, ∂b2/∂b1, etc, are all the

same derivative of b1 w.r.t. to b evaluated at a new Boltzmann pair-coupling point.

Recall, the renormalized expression for b1,

b1(b, q) =

(
b
(
2 + b(q − 2)

)
1 + b2(q − 1)

)2

. (A.10)

Taking the derivative of Eq. (A.10) w.r.t. b,

∂b1

∂b
= −

4b
(
b− 1

)(
2 + b(q − 2)

)(
1 + b(q − 1)

)
(

1 + b2(q − 1)
)2 , (A.11)

which is evaluated at b to obtain the numeric derivative value. All partial deriva-

tives of the new Boltzmann pair-coupling w.r.t. to the old Boltzmann pair-coupling

will be of the same form. Next, the partial derivatives of the coe�cients ∂J(b)/∂b,

∂J(b1)/∂b1, etc. Recall, the coe�cient form,

Jl(b) = nbl−1log g′(b, q). (A.12)
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Similar to the derivatives of b1, the partial derivatives of J at b, b1, b2, ... are all the

same derivative of log g evaluated at the respective point. Recall the dedecorated,

renormalized g′ as a function of b, q in the absence of an external �eld,

g′(b, q) =
(

1 + b2 + b2(q − 2)
)2

. (A.13)

Take the log, then di�erentiate w.r.t. to b,

∂
(

log g′(b, q)
)

∂b
=

4b(q − 1)

1 + b2(q − 1)
, (A.14)

and then evaluate at numeric point b. The quantity Eq. (A.14) will be the same

form for all levels of dedecoration. Finally, the brute force partition function of

the q-state Potts model at L1 and arbitrary renormalized dedecorated coupling is

Z1(bk) =
∑
s

bk
Θ(s1 6=s2), (A.15)

and can be resolved for bk, q as,

Z1(bk, q) = q2 + q(bk − 1). (A.16)

The derivative of the log of Eq. (A.16) for bk follows easily. All the results

Eqs. (A.11), (A.14), and (A.16) that make up Eq. (A.8) can be de�ned as subrou-

tines so no actual large symbolic derivatives need to be taken during recursion. As

long as correct book keeping of which nbl we are at in each level is maintained the

value for the total energy can be obtained very quickly by these numeric methods.

Now, consider ∂/∂b of Eq. (A.2) which will lead us to the expression for the

heat capacity of the q-state Potts model

∂

∂b

∂

∂b
Fl(b) =

∂

∂b

∂

∂b
Jl(b)+(

∂

∂b

∂

∂b
b1(b)

)
∂

∂b1

Fl−1(b1)+

∂

∂b
b1

(
∂

∂b

∂

∂b1

Fl−1(b1)

)
. (A.17)
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Using chain rule on the last term and the superscript notation for derivatives we

write Eq. (A.17) as

Fl
(2)(b) = Jl

(2)(b) + b1
(2)(b)Fl−1

(1)(b1) +
(
b1

(1)(b)
)2

Fl−1
(2)(b1). (A.18)

Reiterate, distribute, and group together the terms in Eq. (A.18) to get for a �nite

system in the form F (2) = F
(2)
I + F

(2)
II + F

(2)
III ,

Fl
(2)(b) =

[
Jl

(2)(b) +
(
b1

(1)(b)
)2

Jl−1
(2)(b1)

+
(
b1

(1)(b)
)2(

b2
(1)(b1)

)2

Jl−2
(2)(b2) + ...

]
I

+
[
b1

(2)(b)Fl−1
(1)(b1) +

(
b1

(1)(b)
)2

b2
(2)(b1)Fl−2

(1)(b1)

+
(
b1

(1)(b)
)2(

b2
(1)(b1)

)2

b3
(2)(b2)Fl−3

(1)(b3) + ...
]

II

+
[(
b1

(1)(b)
)2(

b2
(1)(b1)

)2(
b3

(1)(b2)
)2

... F1
(2)(bk)

]
III
. (A.19)

The square brackets with subscript I, II, and III denote the grouping of terms. In

the �rst group I,

F
(2)
I = Jl

(2)(b) +
(
b1

(1)(b)
)2

Jl−1
(2)(b1)

+
(
b1

(1)(b)
)2(

b2
(1)(b1)

)2

Jl−2
(2)(b2) + ... (A.20)

The �rst part of the heat capacity is a sum of the second derivative of the coef-

�cients J with associated squared partials ∂b1/∂b. The partials have been pre-

de�ned in the energy analysis of this appendix and to compute the second deriva-

tives of J at the respective Boltzmann point we require the second derivative of

Eq. (A.14),

∂2
(

log g′(b, q)
)

∂b2
= −

4
(
b2(q − 1)− 1

)(
q − 1

)
(

1 + b2(q − 1)
)2 . (A.21)

The second part, II, in Eq. (A.19) is a sum of the total energies at each level of
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dedecoration with associated �rst and second derivatives of b1(b, q) attached,

F
(2)
II = b1

(2)(b)Fl−1
(1)(b1) +

(
b1

(1)(b)
)2

b2
(2)(b1)Fl−2

(1)(b1)

+
(
b1

(1)(b)
)2(

b2
(1)(b1)

)2

b3
(2)(b2)Fl−3

(1)(b3) + ... (A.22)

The energy, F
(1)
l (b), is resolved by our earlier analysis at each level of dedecoration

and the squared partials of the form ∂b1/∂b is also obtained previously. The one,

new piece of Eq. (A.22) is the second derivative of b1(b, q) w.r.t. internal argument

b,

∂2b1

∂b2
=
−8
(
b− 1

)4(
2b− 1

)
+ 8bq

(
b− 1

)3(
5b− 3

)
(

1 + b2(q − 1)
)4

−
4b2q2

(
b− 1

)(
3 + b(8b− 13)

)
+ 4b4q3

(
2b− 3

)
(

1 + b2(q − 1)
)4 , (A.23)

These types of derivatives will be the same form for all ∂2b1/∂b
2, ∂2b2/∂b1

2, ... just

evaluated at the respective Boltzmann pair-coupling point of dedecoration. The

�nal piece is part III of Eq. (A.19),

F
(2)
III =

(
b1

(1)(b)
)2(

b2
(1)(b1)

)2(
b3

(1)(b2)
)2

... F1
(2)(bk). (A.24)

The only piece of Eq. (A.24) not covered previously is the �nal term, F1
(2)(bk).

This term is just the second symbolic derivative of the log of Eq. (A.16) w.r.t.

internal coupling parameter and evaluated numerically at bk which follows easily.
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APPENDIX B

: The L2 Partition Function Polynomial

As an example of how polynomial �tting can be used to compute the partition

function consider the L2 hierarchical lattice without an external �eld interaction

in Boltzmann weight form, b = eκ,

The partition function for this system is de�ned as

Zq
2(b) =

∑
s

b(Θ(s1 6=s3)+Θ(s3 6=s2)+Θ(s2 6=s4)+Θ(s4 6=s1)). (B.1)

We employ brute force counting for increasing q; for q = 2,

Zq=2
2 (b) = 2b4 + 12b2 + 2.

For q = 3, 4, 5, 10, 20,

Zq=3
2 (b) = 18b4 + 24b3 + 36b2 + 3

Zq=4
2 (b) = 84b4 + 96b3 + 72b2 + 4

Zq=5
2 (b) = 260b4 + 240b3 + 120b2 + 5

Zq=10
2 (b) = 6570b4 + 2880b3 + 540b2 + 10

Zq=20
2 (b) = 130340b4 + 27360b3 + 2280b2 + 20
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We see a trend on how the resultant partition function changes based on increasing

q. The sequence can be mapped to a polynomial that varies as a function of q,

Zq
2 ,poly(b, q) =

(
q − 1 + (q − 1)4

)
b4+(

4
(
q − 2

)(
q − 1 + (q − 1)2 + q

))
b3+(

6
(
q − 1 + (q − 1)2

)
+ q
)
b2 + q. (B.2)

Results, like Eq. (B.2), can used instead of a brute force calculation of the partition

function for a lattice like L2 at the start of this appendix.
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