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ABSTRACT 

The majority of floating AtoN maintained by the U.S. Coast Guard are affixed to 

the sea bed through use of a chain and a large concrete block also known as a sinker.  

As a buoy moves through a wave cycle, the buoy chain also moves.  This movement 

causes friction between the links known as interlink wear, but it also results in wear 

from the surrounding environment.  A mooring chain is characterized into three 

different sections, the riser, chafe and bottom.  The chafe section of chain is where 

most of the wear is found and more often than not, the reason a buoy must be serviced 

on a regular basis.  This thesis will focus on the interlink wear within the chafe section 

of the chain on a U.S. Coast Guard navigational buoy mooring.   

With the total motion of the chain, chain size and material type are known, 

tribology was used to determine the wear rate of the chain.  Since determining the 

wear rate analytically would be very difficult, empirical based testing was used.  An 

experiment using AISI 1022 hot rolled steel chain, a variable speed motor and various 

parts was constructed.  The device moved the chain in a set vertical direction along a 

slide resulting in a simulated regular wave motion.  Stops at different time intervals 

were made to measure chain weight and interlink wear.  This data was plotted and a 

curve constant, K, was determined as a function of time which would be used in the 

program.  The experimental results were compared to tabulated and analytical results 

to find that there was not much variation between each result.  Pi parameter 

regressions were used to help with scaling results to different materials and chain 

dimensions.   



 

 

A MATLAB based computer program was written to predict when a buoy 

mooring would require servicing through a chain wear algorithm which will optimize 

buoy mooring service intervals and reducing cost to maintain each aid.  The program 

was found to estimate chain wear within 2 percent of observed on in service buoys.
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CHAPTER 1 

 

INTRODUCTION 

1.1 General Overview 

Since 1716, the United States Coast Guard (prior to 1939 known as the U.S. 

Lighthouse Service) has been servicing Aids to Navigation (AtoN).  AtoN can be 

separated into two different forms, fixed and floating.  Fixed AtoN are considered to 

be lighthouses, day boards, ranges, and any other type of a fixed structure that can be 

used to assist the mariner in navigating a channel; this type of AtoN usually has a very 

specific location.  Floating AtoN are in the form of buoys.  These buoys come in all 

shapes, sizes and colors depending on the intent of their service as well as their 

geographic location.  These buoys are affixed to the ocean bottom through use of a 

chain and a large weight either in the form of concrete or pyramid shaped steel.  Since 

the sea is never perfectly calm, these buoys tend to move with six degrees of freedom 

similar to that of a ship.  This movement of the buoy will cause the mooring chain to 

move, this movement causes friction which results in wear.  Wear rates of buoy 

mooring chain vary with the chain and bottom type, corrosion, buoy dimensions and 

wave spectra induced on the buoy. 

The majority of chain wear occurs mostly in the middle section of the chain 

called the chafe (figure 1.1).   
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                                                                   Figure 1.1: Typical USCG Buoy Mooring 

 

More often than not, chain wear is the weak link that determines the buoy mooring’s 

holding power through the test of time, although one cannot discount the holding 

power of the sinker which can result in the buoy moving out of its specific geographic 

position, rendering the buoy either a hazard to navigation or causing false 

interpretation of where the channel is marked.  If one looks at the surrounding 

environment for chain wear, they will find that when chain is placed on a soft bottom 

such as mud, the wear occurring only happens between the links.  When the chain is 

sitting on bottoms of rock or coral, or on any material that has hardness greater than 

that of 1022 steel, there will be wear outside of the link.  With both interlink and 

bottom friction, wear rates can be quite high which results in frequent replacement of 

chain.   
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The U.S. Coast Guard often uses operational experience, rather than engineering 

design tools, to select moorings while having the ability to verify the mooring 

selection with the USCG Aids to Navigation (AtoN) Technical Manual as well as the 

Mooring Selection computer program, MOORSEL (USCG, 2010).  The MOORSEL 

program provides recommendations as to how a mooring should be designed for a 

particular geographic area.  Although very useful, had some limitations especially with 

its use with modern computers since it was written in a code used about 20 years ago 

prior to the computer technology boom.  The purpose of selecting the correct mooring 

is to ensure the buoys remain ‘on-station’ (figure 1.2) and not become ‘off-station’ 

(figure 1.3). 

 

 

Figure 1.2: On-station. (Library.buffalo.edu) 
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Figure 2.3: Off-station.  (www.hamptonroads.com) 

 

Chain wear was simulated through use of a custom built variable speed chain 

oscillator that helped to provide accelerated interlink chain wear as well as taking into 

account corrosion effects on interlink wear.  This was completed through use of 

artificial sea salt as per ASTM D 1141-52 Formula a, Table 1, sec. 4 (i.e. 156 grams of 

sea salt to 1 gallon of distilled water).  The chain oscillation was completed at a set 

differential height and measurements were taken from a specific link within the chain.  

With this experiment, the non-dimensional wear coefficient was determined and 

implemented back into the Archard wear equation where it provides a simulated wear 
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rate of chain.  The equations of motion ultimately provide the total sliding distance 

due to wave motion over a specific time period which is input into the Archard 

equation that yields a wear amount.  

 

1.2 Purpose of the Study 

Buoy mooring selection has always been a challenge for those who maintain 

buoys since there are so many variables and options to successfully solve this 

problem.  There was approximately over 200 billion dollars’ worth of cargo imported 

and exported within U.S. waterways in 2013.  These waterways contain over 25,000 

aids marking them which are maintained by the U.S. Coast Guard; these aids are vital 

to commerce within the U.S. and must remain in their assigned position.  If a chain 

wears too much, the buoy will break loose upon a surge which exceeds the tensile 

strength of the steel, resulting in an unmarked or poorly marked channel.  Current 

mooring wear prediction is completed while servicing an aid and is mostly empirical; 

new aids placed in a new location do not have this data, therefore the service interval 

is unknown.  With a prediction tool, service intervals can be estimated and current 

service intervals can be lengthened, resulting in decreased costs and allocation of 

resources elsewhere.  The objective of this thesis is to complete a MATLAB based 

computer algorithm through a set of equations that can be used to provide a prediction 

of buoy mooring chain wear based on specific user inputs.  The equations of motion 

for a floating cylinder will be integrated with Hertzian theory within contact 

mechanics to provide a probabilistic estimate of interlink chain wear within a buoy 

mooring over a user determined length of time.  These equations would ideally be 
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implemented into a user friendly computer program that is compatible with the U.S. 

Coast Guard workstation.   

The data achieved from this study is of the upmost importance since chain 

wear is one of the major factors requiring moorings to be serviced, the other lesser 

factors being marine fouling and having the buoy out of position or ‘off station.’  One 

goal of this research is to conduct experimental testing to minimize assumptions to 

yielding more accurate predictions of wear.    
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CHAPTER 2 

 

REVIEW OF LITERATURE 

This chapter presents a review of literature describing previous studies 

performed and the fundamentals of fluid particle motion in waves.  It also describes its 

link to motion of a cylindrical floating body, the theory of contact mechanics and how 

it is applied to solve for interlink chain wear.   

2.1 Previous studies 

There have been previous studies to calculate chain wear within a buoy 

mooring; these studies often take into account many assumptions that can often yield a 

wear rate which may only apply to a narrow band of moorings.  For example, Fleet 

Limited Technology has created a Mooring Selection Guide (MSG) computer program 

at the request of the Canadian Coast Guard (CCG).  The information they provided 

describing the program shows that they did not take into account wave period and 

amplitude data for each specific location of the buoy nor did it compute probabilistic 

wave frequencies/heights using wave energy density information.  It did however give 

this information as it relates to water depth; unfortunately the period of a wave is not 

only dependent on water depth but how it was formed, i.e. wind waves have a short 

period whereas tidal waves have very long periods.  Although it did include an 

equation (equation 2.1) for computing chain wear by determining the diameter ratio, 

Dr, of the current diameter compared to the original diameter, D0.   This equation is 

based on several empirical models that were derived from experimental testing 

(Dinovitzer, Rene, Silberhorn, & Steele, 1996).  The MSG also assumes 
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characteristics about the soil that could yield an unconservative answer, i.e. mooring in 

a rocky or coral environment; this would greatly reduce the horizontal resisting force.    

 

                                (2.1) 

Where: C1, C2, C3, C4 and C5 are regression coefficients, t, D0 and Depth are the 

duraton of service (in months), new chain nominal diameter (in inches) and water 

depth (in meters), respectively.   

Another study conducted by C. A. Kohler looked into the different material 

types that made up the chain as an effort to try and determine the cause of buoy chain 

degradation and how to strengthen corrosion resistance.  This study analyzed different 

materials taking into account corrosive wear, interlink wear and barrel wear.  The 

interlink wear (between the links) and barrel wear (outside the links) were not 

analyzed in great deal through the study performed by Kohler, therefore the 

comparative results between the different materials used were achieved empirically.  It 

was found that 4340 steel had the best corrosive wear resistance, followed by 4140 

and 8740.  This was most likely due to an increase in alloy and Carbon content from 

1022 steel (Kohler, 1985).  Unfortunately, when applied to budgetary and 

manfacturing constraints, using any alloyed steel would not be economical, therefore 

the Coast Guard continues to use 1022 steel within its buoy moorings  (Danzik, 1986).    

 

2.2 Fluid, Motion and Waves 
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Any object that floats in a fluid may be subject to movement within the fluid 

due to wave action or pressure changes.  This concept can be related to Bernoulli’s 

principle as it states when the speed of an object in a fluid increases, the pressure 

decreases on the object; when the buoy is moving through the water at any rate, the 

pressure on the hull will vary causing it to react due to the change in force on the hull.  

In the dynamics of fluid motions, it can be anticipated that force mechanisms can be 

associated with fluid inertia and weight, viscous stresses and secondary effects such as 

surface tension.  Three primary mechanisms of significant importance are inertial, 

gravitation and viscous forces (Newman, 1977).     

To accurately predict the static and dynamic hydrodynamic loading and 

properties on an offshore floating structure, there are a few methods used such as 

Boundary Element Method (BEM), Finite Element Method (FEM) and analytical 

methods.  The analytical method for a simple floating cylinder is the most efficient 

and accurate method sufficient for describing buoy motions, but for more complex 

structures this would be very difficult to complete therefore yielding to BEM and/or 

FEM (Ghadimi, Bandari, & Rostami, 2012).  

The fluid motion equations used throughout this study assume that sea water is 

incompressible, inviscid (or ideal fluid) and the fluid motion is irrotational (vorticity 

vector is zero everywhere in the fluid).  These conditions satisfy the solution of the 

following Laplace equation (Faltinsen, 1990): 

 

                                                                             (2.2)                          
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Other assumptions one must consider for this problem are surface tension at air-water 

interface is negligible and water is at a constant density and temperature (Finnegan, 

Meere, & Goggins, 2011).  

One must also consider the kinematic boundary condition (the velocity of fluid 

on the boundary) assumption that there is no permeability normal to the body’s surface 

since the steel makeup of the buoy is an impermeable surface.  The kinematic 

boundary condition (equation 2.3) fluid flowing normal to the bodies velocity is equal 

to the body’s velocity, it is also assumed to be equal to the tangential flow of the 

velocity, if it exists (Faltinsen, 1990). 

The dynamic free-surface boundary condition (forces on the boundary) 

equation 2.3a, assumes that the water pressure is equal to a constant atmospheric 

pressure on the free surface (Newman, 1977).  Free surface conditions are often very 

complicated and difficult to model; for simplification and to allow for linear analysis, 

the free surface boundary condition may be linearized.  Since we are looking to 

develop a simple, quick tool for analysis of a simple system over long periods of time, 

the linearization assumption significantly simplifies the computation to significantly 

reduce computational time.  

In order to solve Laplaces’ equation, one must identify the physical boundary 

conditions such as the linearized free surface boundary conditions in the following 

equations (Ghadimi, Bandari, & Rostami, 2012): 

 

                                          

   at z = d (kinematic condition) 

                                                                                                       (2.3) 
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                           at z = d (dynamic condition)         (2.3a) 

 

                                                                    (2.4) 

 

These boundary conditions will be used as the basis for describing linear wave motion.  

Equation 2.2 describes the motion of the fluid being irrotational (velocity as a gradient 

of a scalar, Φ) as well as the fluid being incompressible (Newman, 1977).  Equation 

2.4 is developed by combining equations 2.3 and 2.3a.  The linearized movement of 

the particles on the free surface (or free surface boundary condition) can be described 

by using equation 2.4.  The linear free surface condition will depend on the presence 

of any current, in equations 2.3 and 2.3a we assume the current is zero as linear theory 

states the velocity potential is proportional to the wave amplitude (Faltinsen, 1990).   

 

 

Figure 2.1: Free body diagram of forces acting on a buoy that will be modeled. 
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An analytical way of describing how a floating object reacts when a regular 

wave is imposed on it would be to use the free surface boundary equation (2.4) in 

conjunction with the Laplace equation (2.2) and bottom boundary condition to develop 

the exciting forces (2.4c) imposed on the cylinder in heave through calculation of both 

interior and exterior solutions around the cylinder (Ghadimi, Bandari, & Rostami, 

2012).    

This study used more of an analytical method by first taking the sum of the 

external forces for a spring mass within the time domain as seen in equation 2.4a.  

                                     (2.4a) 

 

 

                         

                                           (2.4b) 

 

                               

                                                       (2.4c) 

 

Where: 

 FIj = Incident (Froude-Krylov) Forces 

 FDj = Diffraction forces 

 FRj = Radiation forces 

 

 

Equation 2.4a assumes that motions are linear and harmonic, neglecting quadratic 

terms and linearizing assuming only small amplitude motions (Bonfiglio, Brizzolara, 

& Chryssostomidis, 2012).  Without being immersed in a fluid, the structural equation 

for motion, 2.4a would apply.  The force equilibrium is shown in 2.4b and the 
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breakdown of the excitation forces (FEj) are shown in 2.4c. Since the buoy is 

surrounded by fluid this introduces added mass (FRj), damping and restoring forces 

which are provided by the fluid.  These forces alter the effective structural properties 

of the buoy yielding equation 2.4d.  

 

   (2.4d) 

 

 

 

For the purposes of this study, this equation is best utilized in the frequency domain 

vice the time domain since the wave spectra imposed onto these equations will be 

defined in the frequency domain, therefore the exciting force in heave in the frequency 

domain will be equation 2.5  (Bonfiglio, Brizzolara, & Chryssostomidis, 2012).   The 

transfer function (solved for Hj, amplitude of the response) used to generally describe 

the motion of a floating cylinder when set equation to the spring mass equation is the 

Fourier transform of equation 2.4d: 

 

                         j =1,3                (2.5) 

 

The entire left hand side of the equation as seen in equation 2.5 is known as the 

radiation force of the floating body (Lewis, 1989).  The right hand side of equation 2.5 

is not zero as it would be in a spring-mass damped system with no external forces, 

therefore the motion will not diminish over time.  These external forces also known as 

exciting forces are normally divided into two parts, the Froude-Krylov (or incident) 

and diffraction excitations.  If the wavelength of the incoming wave is long, then the 
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Froude-Krylov forces dominate whereas if the incoming wave wavelength is short, the 

diffraction force becomes significant (Lewis, 1989).  When describing the motion of a 

floating body, the excitation force appears to be the most varied and dependent on the 

geometry of the body that the force in placed upon.  To help determine this force on 

irregular shaped bodies, strip theory is often used; breaking down the geometry into 

thin strips describing one dimension of the body and integrating over another 

dimension therefore describing the geometry of the surface at which the forces are 

acting upon.   

Now that we have an idea of the general form of body motions, one needs to 

consider the six degrees of freedom motion; surge, sway, heave, roll, pitch and yaw.  

In this thesis, the surge and heave motions will only be analyzed (equations 2.3b and 

2.5) as they appear from visual inspection to be the two motions that have the greatest 

effect on chain wear within the mooring.  This assumption does not take into account 

the coupling with any other forces from the remaining four degrees of freedom which 

could yield an inaccurate heave or surge response.  Heave is about equal to the wave 

height for most buoys but often long slender bodies such as a spar buoy may not 

follow that rule in different wave heights, therefore we need to calculate excitation 

forces on the body (Paul, Irish, Gobat, & Grosenbaugh, 2007).  The excitation force 

equation varies based upon which motion direction is being described whereas the 

radiation portion of the equations maintains the same form.   

For the surge condition, this method was used since there was enough data to 

support use of the equations yielded.  By computing and combining both interior and 

exterior solutions as well as using equations 2.2 through 2.4 in the frequency domain, 
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equation 2.5a was determined as the excitation force for the surge motion of a 

cylindrical body floating in water. 

 

   (2.5a) 

 

Where:  

 is the wave number  

ρ is the density of water 

g is gravity 

A is amplitude of the wave 

a is radius of the cylinder 

b is draft of the cylinder 

 

The excitation force in surge will be placed equal to the spring mass equations as seen 

in linearized equation 2.5 to determine the motion of the buoy in the surge direction.  

The detailed equation(s) used to describe the excitation force in the heave direction 

used in this study is (Lewis, 1989):   

                                  (2.7) 

 

                                                                                          (2.8) 

 

Where: 

 is the sectional heave added mass 

 is the sectional heave damping 



 

16 

 

 is the sectional restoring force 

 is the incident wave amplitude 

 is the mean section draft 

ωe is the frequency of wave encounter 

 

 

The sectional heave added mass, , and sectional heave damping, , for this 

particular problem were first determined from experimental data from Vugts (1968) 

performed with rectangular cylinders  (Newman, Marine Hydrodynamics, 1977).   

 

 

Figure 2.1a: Added mass and damping coefficients (Newman, Marine Hydrodynamics, 1977). 

 

Although this does not exactly model the results of a cylindrical cylinder, it can be 

used to achieve a close approximation.  To get a better approximation of the excitation 
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force in the heave direction, the added mass and damping coefficients were used as 

seen in figure(s) 2.2 and 2.3 (Bonfiglio, Brizzolara, & Chryssostomidis, 2012).  

 

Figure 2.2:  Added mass coefficient for a circular section.  (Bonfiglio, Brizzolara, & Chryssostomidis, 2012) 

 

Figure 2.3: Damping coefficient for circular section.  (Bonfiglio, Brizzolara, & Chryssostomidis, 2012) 

 

Once the excitation forces are computed, they can be placed back into the 

general transfer function (equation 2.5) and where ‘H1,3’ will be solved.  When a 

regular wave (shape of a sine wave) of a specific amplitude and frequency is placed 

upon the structure, the transfer function will directly describe the motion of the body.  
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The excitation force is a function of wave amplitude and frequency while the transfer 

function is only a function of frequency.  The transfer function is made up of four 

different dynamic forces; the body-induced pressure force, the body-mass force, the 

hydrostatic force and the Froude-Krylov force (Newman, 1977).  Once the transfer 

function is known, the movement of a floating body can be determined when a regular 

wave is induced on it.    

Unfortunately, large bodies of water do not produce all of the same size waves 

with the same frequency from the same direction; therefore this wave action is often 

described through use of a probabilistic wave spectra developed through experiments. 

The spectra concept dates back to Sir Isaac Newton who discovered the spectrum of 

colors in sunlight; when describing waves, the spectra of various regular sine waves 

with different amplitudes and frequencies, also known as wavelets, are all added 

together to give a superposed wave, or the wave that is normally seen when in the 

actual environment.  The energy distribution of these wavelets is plotted against 

frequency to give a direction independent frequency spectrum; if direction dependent, 

then known as a directional wave spectrum (Goda, 2010).  A continuous spectrum of 

these wavelets is known as a frequency spectral density function or wave energy 

density spectrum with units of m
2
s.  The wave energy density spectrum (see figure 

2.4) is a probabilistic curve developed through many years of wave observations; there 

are a few different wave energy density spectrums developed for different bodies of 

water, i.e. Joint North Sea Wave Observation Project (JONSWAP) was developed 

using wave data from the North Sea.    
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                   Figure 2.4: P-M wave spectrum for different wind speeds (www.wikiwaves.org) 

Other wave energy density spectrums include the Pierson-Moskowitz data that was 

developed through empirical observations in the North Atlantic or the modified 

Bretschneider-Mitsuyasu spectrum that is used to describe a frequency spectrum of 

wind waves (Goda, 2010).  The sea spectrum that is highly desired (see figure 2.4) is 

the JONSWAP due to its wide acceptance as a frequency spectrum that covers most 

wave forms. 
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Figure 2.5: JONSWAP equations used (Goda, 2010)  

 

Where:         S(f) is the JONSWAP sea spectrum 

                    f = frequency of the wave 

                    fp = frequency at spectral peak 

        γ = peak enhancement factor                  

 

If required to produce a more accurate result for different geographic areas such as 

large bays or the Great Lakes, other sea spectra can be implemented with not much 

difficulty.  The purpose of the sea spectra is to provide a close probabilistic estimate 

given specific geographic wave characteristics, i.e. significant wave height and period, 

to shape the sea spectrum so that it best reflects what is seen at that specific location.  

The sea spectra will then be combined with the transfer function to output a total body 

motion in an irregular sea and therefore provide a much more accurate estimate on the 

motions of the floating body.       

 

2.3 Resultant Buoy Motion: Heave and Surge 

Once the motions required to solve the problem have been identified, analysis 

of how the floating object moves in those directions can occur; in this case heave and 
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surge have been identified as key forces in determining buoy chain wear.  Since the 

motion of a buoy within a regular wave set (transfer function) and the frequency 

spectrum of sea waves are known, both pieces need to be synergized to yield the total 

heave and surge motion of the buoy given a variation of wave frequencies.  The 

variance of the response over a range of frequencies can be determined using the 

following equation (Faltinsen, 1990): 

 

                                                                                (2.11) 

 

The variance equation can then be used to determine the response of the buoy in an 

irregular seaway, this is also known as the Response Amplitude Operator or RAO. 

 

With the RAO known, it is then used to determine the root mean squared response for 

a specific frequency at time ‘t’ and plotted as response versus time as seen in equation 

2.12.   

 

                                                    Figure 2.5a: Example of an RAO in heave. 
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                                                              (2.12) 

Where: φ is the random phase at which the response is calculated, separating it from 

the other responses.   

The response, RT, of the buoy motion in the heave direction correlates with 

changes in water depth seen by a buoy while the response in the surge direction 

correlates how the buoy moves in the horizontal direction due to the wave action.  In 

the horizontal or surge direction, since the buoy is not moving over the ground, the 

water passing by the buoy will be induced via current.  The current may be caused by 

wind, tidal or natural river forces; all of which will have the same effect on the buoy 

below the waterline.  The coefficient of drag on a cylinder is used to help determine 

the horizontal drag force on a buoy; this drag force varies as a function of Reynolds 

number as seen in figure 2.6.  Drag forces are merged with surged forces within the 

algorithm when determining total horizontal forces resulting from buoy motion.  

Therefore the Reynolds number (equation 2.13), a non-dimensional quantity used to 

determine certain flow characteristics of a fluid, must be determined, ‘U’ representing 

the fluid speed, ‘d’ the diameter of the cylinder and ‘v’ the kinematic viscosity.  

                                                                           (2.13) 
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Figure 2.6:  Cd vs. Re (Catalano, Wang, Iaccarino, & Moin, 2003) 

 

In conjunction with the current force, one can take the second derivative of the heave 

response to yield the buoy acceleration in the horizontal direction as a function of 

frequency.  Using Newton’s second law and multiplying the acceleration of the body 

in the horizontal direction by the mass the force in the x-direction due to irregular sea 

spectra can be determined.  The force due to sea spectra summed with the current 

force will give the total force in the surge direction seen by the buoy, assuming wind 

effects are negligible.     

 With the horizontal and vertical forces of the buoy, the vertical and horizontal 

components of chain tension where the buoy attaches to the chain can be calculated.  

Current has an effect on both the buoy as well as the tension on the chain.  In this 

study, the current is assumed to be a constant throughout the entire depth of the 

mooring but actual tests show the current varies non-linearly with depth.  The drag 
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coefficient of U.S. Coast Guard buoy chain what determined to be approximately 1.2 

for speeds less than 4 knots (Ross, 1974).  It was inconclusive from the data on how 

exactly the drag coefficient varied with Reynolds number; this will be used as a 

conservative value to calculate horizontal drag on the mooring.  It is hard to conclude 

how the  Sea tests have shown that alternating tension are proportional to chain mass 

and added mass at low sea states and at high sea states drag grows quadraticly with 

wave height; another significant source of chain tension (Paul, Irish, Gobat, & 

Grosenbaugh, 2007).  The horizontal and vertical components of tension are what will 

determine the size of anchor to keep the buoy in one specific geographic location.  

Many times in a catenary chain system, the submerged weight of the chain itself will 

hold the buoy in one location.  This is accomplished since the vertical tension in the 

chain is not large enough to support the full weight of the chain; therefore it rests on 

the bottom and provides resistance.  The equations used to describe this catenary 

shape are seen in equations 2.13a and 2.13b as well as figure 2.6a (Irvine, 1981). 

 

                                (2.13a) 

 

    (2.13b) 

  

Where:  H is horizontal tension  

  V is vertical tension 

  L0 is length along the chain 

  W is the weight of the chain per unit 
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  E is the elastic modulus of the material 

 

Figure 2.6a: Definition diagrams for a guy with appreciable sag (Irvine, 1981). 

 

Equations 2.13a and 2.13b were used by discretizing the chain into a specific number 

of parts and applying both equations to each part taking into account the change in 

weight of the chain.  These equations can be used in a quasi-static model to predict the 

dynamic motion of the catenary. 

 The determination of motion and forces within a mooring system is critical to 

discover how the chain will be moving along with the tension that will be experience 

within the chain assuming it is anchored sufficiently to the bottom of the sea bed.      
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2.4 Wear 

Just about every piece of mechanical equipment has some version of wear; this 

wear and the tolerances which it can operate in will determine how long of a service 

life it has.  Chain wear is a key failure mechanism when looking closely at catenary 

moorings used by the Coast Guard.  Chain catenary moorings are limited by depth 

depending on the chain and buoy size but can used in depths up to 900 meters (Paul, 

Irish, Gobat, & Grosenbaugh, 2007).  There have been many studies talking about 

wear of materials and motions of floating bodies, none that have yielded an analytical 

predication tool for mooring chain wear.  This study will look at the tribological 

attributes of interlink chain wear focusing in on three encompassing wear 

mechanisms: adhesive wear, abrasive wear and corrosive wear.  Adhesive wear is the 

state at which two materials have significant traction on one another that may cause a 

local molecular failure; this failure results in the separation of debris from both 

materials.  Abrasive wear will simulate the act of cutting, fatigue failure and material 

transfer due to the surrounding environmental conditions or the shape and hardness of 

the material that it is rubbing against.  Corrosive wear is the loss of material due to the 

chemical interactions occurring within the surrounding environment (Meng & 

Ludema, 1995). 
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                 Figure 2.6b: Crossed cylinders. (http://en.academic.ru/) 

 

In the case of two chain links contacting each other, it is assumed that this 

contact will be simulated as two cylinders orthogonal to each other as seen in figure 

2.6b.  Since the cylinders are orthogonal, according to Hertizian theory the point of 

contact can be simulated as two spheres contacting each other, i.e. a circular point 

contact.  A simplified set of Hertz elastic stress formulae used in determining stress 

components are shown in equations 2.14-2.20  (Johnson, 1985).   

 

                                                                                                                  (2.14) 

                          (2.15) 

                                                      

                        

                                                                                                                             (2.16)   

                                                                                                                              (2.17)     

 

                                                                                                                              (2.18)                                                        
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                                                                                                                                (2.19) 

                                                                                                                                 (2.20) 

 

Where:   v = Poisson’s Ratio  

   E = modulus of elasticity 

   R = radius of body 

   P = load 

                                  

Hertizian theory also makes a few other assumptions such as the material must be 

linearly elastic & isotropic (LEI solid) and the contact must be non-adhesive.   

 

                                       Figure 2.6c: Example of a linear-elastic solid. 

 

Using these assumptions greatly simplifies the contact problem but the uncertainty in 

the solution is also increased.  Johnson, Kendall, and Roberts also have known 

solutions for problems but it assumes the contact surface is adhesive; the solution for 
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this type of contact can be determined fairly simply through a further iteration of the 

problem. 

Before a wear computation can be made, one must consider whether or not 

wear is occurring on the surface that is being analyzed.  Von Mises yield criterion is 

made into what is called Von Mises stress (equation 2.21), a scalar value of stress that 

is computed from internal stresses in a material (Popov).    

 

      (2.21) 

 

If the Von Mises stress exceeds the yield stress, σy, for the material, deformations will 

occur in the material.  Figure 2.7 shows that assuming Hertizan conditions and circular 

contacts, there will be yielding when two chains are loaded even if only with five 

Newton’s of force.    
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Figure 2.7: Von Mises stress and Yield Modulus 

 

The stress components that make up the Von Mises stress in this case are known as 

internal stresses within a Hertzian contact, equations 2.22-2.27.  Each of these 

equations describes the influence of a single, vertical force acting at the origin (Popov, 

2010).  These equations are used to determine whether or not wear is going to occur at 

the surface by calculating the stress and shear.   
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                                        (2.22) 

                                   (2.23) 

                                                                                                    (2.24) 

                                                             (2.25) 

                                                                                                        (2.26) 

                                                                                                         (2.27) 

   

In contact mechanics, a common equation used to describe wear is through use 

of the Archard wear equation (equation 2.28).  This equation is often the simplest of 

most wear equations but it makes many assumptions to simplify its calculation.  Both 

materials must be considered as linear elastic, isotropic, and non-adhesive contact is 

assumed (Johnson, 1985).    

 

                                                                                                                             (2.28) 
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Where: 

K is the non-dimensional wear coefficient 

H is the material hardness measured in units of force per area 

s is the total sliding distance of the material 

F is the force normal to the wear 

 

The specific wear rate or dimensional wear coefficient, K/H, is usually quoted in units 

of mm
3
N

-1
m

-1
 and is an empirically derived value varied between two materials and 

their environment (Williams, 1999).  Normal force between the two materials is 

represented by ‘F’ and the total sliding distance is ‘s.’ Total material volume removed 

is represented by ‘w.’ The Archard wear equation is only a starting point, it assumes 

that particles are removed from the surface in a uniform manner and the surface 

maintains its same general shape, a phenomenon that proves this assumption void can 

be seen in figure 2.7a (Thompson & Thompson, 2006).  It is believed this chain wear 

can be predicted to a certain degree through analytical analysis validating results with 

empirical data recorded by buoy servicing units. 
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Figure 2.7a: Contact pressure at different times and different amount of wear  (Thompson & Thompson, 

2006) 

 

Since the chain starts out as a point (1-D) or circular (2-D) contact, the wear 

will most definitely occur even under the smallest load (figure 2.7), but as the contact 

point begins to wear, the surface area greatly increases distributing the load and 

helping to reduce the wear rate.  The change in surface volume for two cylinders 

orthogonally is assumed to be two spheres following Hertzian theory that two 

cylinders orthogonally form a point contact in this 1-D system (Johnson, 1985).  

Assuming both spheres are wearing at the same rate, this wear geometry can be 

modeled as a spherical cap.  An expression for ‘d’ the distance from the center of the 

chain to the edge of the removed spherical cap is shown in equation 2.29.  This 

expression is used to describe the diameter of the chain that has been worn down (see 



 

34 

 

figure 2.8); the volume in the expression is half of the total wear volume per contact as 

there are two spherical caps that are worn per connection (Spherical cap, 2011).   

    (2.29) 

 

Knowing the remaining diameter left on the chain will help in determining whether or 

not a chain will be suitable for withstanding extreme conditions and requires 

replacement.  The remaining area can be determined through use of geometry based 

equations. Looking at figure 2.8, the darker region on the bottom half of the sphere is 

what we are interested in knowing the cross-sectional area of; this is also shown in 

figure 2.9 by the area not shaded in.      

 

Figure 2.8:  Spherical Cap (Spherical cap, 2011) 

 

Since we know the worn depth d, where d=h, we can determine the radius of the cut 

off semicircle known as ‘a’ in figure 2.8 and ‘c/2’ in figure 2.9 (equation 2.30). 

 

                                                                                    (2.30) 
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Once ‘a’ or ‘c/2’ are known, ϴ can be solved for in equation 2.31 which will be used 

directly in equation 2.32 to determine an estimate of the cross sectional area remaining 

noted in the unshaded section of figure 2.9. 

                                                                                        (2.31) 

 

                                                                                        (2.32) 

 

 

 

                                          Figure 2.9:  Circle Segement (Segment of a Circle)  

 

The total area of steel remaining can then be multiplied by the ultimate and yield 

tensile strengths of the material to determine the load at which the link will yield and 

break, respectively.  Ultimate and yield tensile strengths for 1022 steel are 61,600 and 

34,100 psi, respectively. 

 

The hardness of geologic materials are measured on the Mohs relative hardness 

scale as seen in figure 2.10.  This scale is used in the form of a scratch test, if the 

material being scratched gets a mark on it, than it is softer than the material which is 
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doing the scratching.  Buoy chain steel (1022) has a Mohs relative hardness of about 

4-4.5. 

 

 

Figure 2.10:  Mohs Hardness Scale (Mohs Hardness Scale)  

   

This information is important as chain wear does not often only occur in the interlink 

region but also occurs on the outside of the chain as it moves across the bottom of the 

sea bed.  The amount of wear that occurs is much dependent on the geographic area 

that the mooring is placed.  This is cited to show this study is not a complete summary 

of chain wear occurring on a buoy mooring but just a piece of it.  In certain scenarios 

where interlink wear is predominately present, i.e. mud or silty seabed, this study may 

result in an accurate prediction of chain wear.   

2.5 Corrosion 

A few studies have been performed in the past that analyzed the use of 

alternate metals to help slow the effects of corrosive wear on buoy moorings due to 

abrasion and corrosion.  Introduction of high strength steel alloy as chain material can 
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help extend a mooring chain service life since the harder steel alloy decreases wear 

and abrasion in service (Paul, Irish, Gobat, & Grosenbaugh, 2007).  The results from 

the tests showed that 4340 steel would yield the best material for buoy chain; this test 

was confirmed by both laboratory and field experiments.   

An empirically based study was conducted in partnership between the U.S. 

Coast Guard and Canadian Coast Guard to explore the wear rates with these different 

chain materials.  Steel, when immersed in seawater, will experience corrosion through 

uniform attack, pitting and crevice corrosion.  Pitting corrosion was looked at as a 

major cause of mooring failure when the Canadian Coast Guard performed similar 

tests with other various alloys (Kohler, 1985).  The pitting corrosion appeared to occur 

on any chain that had less than 0.58 percent Nickel content in it (Danzik, 1986).  AISI 

4340 was determined to be the best corrosion resistant material. Although it is very 

corrosion resistant it is also very difficult to manufacture resulting in a high cost to 

produce.  It was determined from a cost-benefit analysis that the 1022 buoy chain the 

USCG currently uses is the best solution for a buoy chain mooring, although if 

possible and cost effective Copper-Nickel alloy would be optimal (Danzik, 1986).  

The present study mainly focuses on the interlink wear where the effects of the sea 

water corrosive environment are applied but only in the short term.  This may help 

with simulating an accelerated interlink wear but will most likely neglect any pitting 

corrosion that may occur.  Pitting corrosion in 1022 buoy chain was not very apparent 

in empirical studies, therefore it was concluded that this effect shall not be a main 

driver of any chain wear occurring while using this type of steel (Danzik, 1986). 
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CHAPTER 3 

 

METHODOLOGY 

 The movement of a floating body in a random seaway comes from both wave 

theory and empirical testing; more often than not the prediction is not an exact replica 

of what will occur in the real environment but a close prediction can be made.  

Regardless of how the floating body moves, if it is secured to the bottom through use 

of a catenary chain system, wear is going to occur which is a function of tension, 

sliding distance, material attributes and a wear constant.  The wear constant is what 

the experiments of this study will yield; this will be applied to the Archard formula to 

output total chain wear. 

Buoy motions were computed by inputting the equations and wave spectrum 

defined in section 2.3 into MATLAB.  Inputs for the current and wave data along with 

buoy geometry are defined to help vary the problem so that it may apply to most 

environments seen in the area of responsibility for the Coast Guard.  The buoy 

geometry is assumed to be a perfect cylinder, although most buoys do not have this 

shape it is a solid starting point since there have been many studies performed on 

floating cylinders in a seaway.   

 

3.1 Wear Experiments 

In order to determine the wear rate coefficient (K from equation 2.28) an 

experiment was conducted by cycling a chain in a vertical sinusoidal motion under its 

own weight and measuring chain wear over a period of time.  The controlled variables 
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for this experiment are noted in table 3.1.  Frequency has a maximum value of 2.5 Hz 

and height has a maximum value of approximately 7.25 inches due to equipment 

limitations.  The amplitude of chain motion for the first and second set of experiments 

was set at 6.5 inches and 7 inches, respectively.  This distance was determined by 

finding the maximum height at which the chain could rotate without lifting the sinker 

off the bottom of the tank.      

Symbol 
Parameter 
Description Units Type 

Fn Normal Force ML/T2 Variable 

S Sliding Distance L 
Controlled 
Variable 

Ff Frictional Force ML/T2 Variable 

f frequency of load 1/T 
Controlled 
Variable 

h 
amplitude of 
motion L 

Controlled 
Variable 

W Wear Volume W Variable 

‰ Salinity M/L3 
Controlled 
Variable 

                                            Table 3.1: Analytical and Experimental Parameters 

 

Experiments were completed with two different types of water, varying salinity 

(artificial seawater and distilled water) while varying the amount of time the chain 

cycled in each solution.  The artificial seawater is prepared in accordance with ASTM 

D 1141-52 Formula a, Table 1, section 4 (156 grams of salt compound per gallon of 

distilled water).   The time the experiment was run ultimately varied the sliding 

distance which yielded the wear volume.      
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Test  Water Type Cycle Time (hours) 

1 Distilled 1 

2 Distilled 2 (test 1 + 1 hour) 

3 Distilled 3 (test 2 + 1 hour) 

4 Distilled 4 (test 3 + 1 hour) 

5 Distilled 5 (test 4 + 1 hour) 

6 Artificial Seawater 1 

7 Artificial Seawater 2 (test 1 + 1 hour) 

8 Artificial Seawater 3 (test 2 + 1 hour) 

9 Artificial Seawater 4 (test 3 + 1 hour) 

10 Artificial Seawater 5 (test 4 + 1 hour) 
                             Table 3.2: First set of experiments varying solutions and cycle time 

 

Test  Water Type Cycle Time (hours) 

1 Artificial Seawater Approximately 6 hours 

2 Artificial Seawater Approximately 6 hours 

3 Artificial Seawater Approximately 6 hours 

4 Artificial Seawater Approximately 6 hours 
                                           Table 3.3: Second set of experiments varying cycle time 

The experiment was performed as follows: 

1. Chain used was ½ inch 1022 low carbon steel buoy chain available at the 

local Aids to Navigation Team in Bristol, Rhode Island.  This chain has 

welded links and is of the same scaling as the remainder of USCG buoy 

chain as per USCG Specification 121032 Rev H (appendix A.2). 

2. The simulated wave height was determined by adjusting arm length on 

electric motor.   

a. For the first set of experiments, the frequency of the motor was set 

at 150 RPM (2.5 Hz) but was slowed to about 138 RPM with use of 
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a variable autotransformer also known as a Variac (see figure 3.1).  

A rotational speed of 138 RPM was determined as it was the 

slowest the original motor could spin the chain without stalling.   

 

Figure 3.1: Variac used to slow speed of motor in the first experiment. 

 

b. The second set of experiments was completed with a slower motor 

and use of a motor drive; this helped get the rotational speed low 

enough (approximately 61 RPM) so the accelerations of the chain 

were small enough that it would stay in contact with all surfaces the 

entire time. 
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3. Chain was connected to motor via a system of aluminum plate connections 

and directed perfectly in the vertical direction via a stainless guide rod and 

slide (see figure 3.2).    

4.  

a. First set of experiments: the motor was run for specific intervals of 

one hour in both fresh (distilled) and salt water.   

b. Second set of experiments: the intervals were much longer 

(approximately 6 hours) and the chain was only oscillated in the 

artificial sea water.  Total cycle count was used when calculating 

total chain movement. 

5. Dry mass of entire chain length was measured after each time interval.  The 

wear diameter of a specific link was to be determined. 

6. In the first set of experiments only, another chain was cut to the exact same 

length as the experimental chain and used as the control chain to determine 

corrosion affects in still water.  This chain was placed in the specific fluid 

without any movement, after each experiment it was dried and weighed. 



 

43 

 

 

                          Figure 3.1a: Proposed experimental set up 

 

 

 
Figure 3.2: First experiment, chain attached to motor via slide apparatus.  
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Figure 3.3: Second experiment, new motor and slide apparatus.  

 

Three sets of pi groups were determined using variables from energy potential 

parameters.  These pi groups are show in tables 3.4 to 3.6.   

 

Symbol 
Parameter 
Description 

Units Type 

μ Potential ML2/AT2 Variable 

U Energy L2M/T2 Fixed 

P Pressure M/T2L Variable 

V Volume L3 Variable 

T Temperature t Variable 

S Entropy L2Mt/T Fixed 

Table 3.4: Variables for pi group I 

 

 

The variables for pi group 1 were based on the internal energy-pressure (equation 3.2) 

and the internal energy of an elastic solid.  Variables for force-modulus contact and 
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surface energy-diameter (pi groups II and III, respectively) were determined by using 

equation 3.1 and determine which physical characteristics of the system are known as 

well as which ones are to be determined.   

         (3.2) 

 

Where Q is heat transferred into the system, W is work done on the system.   

 

 

Symbol 
Parameter 
Description 

Units Type 

Fn Normal Force ML/T2 Variable 

E Modulus of Elasticity M/T2L Fixed 

a Radius of Contact L Variable 

d Diameter of Chain L Variable 
Table 3.5: Variables for pi group II 

 

 

Symbol 
Parameter 
Description 

Units Type 

R Roughness L Variable 

E Modulus of Elasticity M/T2L Fixed 

γ Surface Energy M/T2 Fixed 

Fn Normal Force ML/T2 Variable 

d Diameter of Chain L Variable 
Table 3.6: Variables for pi group III 

 

The following π groups were yielded from Buckingham Pi Analysis via tables 3.4 to 

3.6: 

                                                

                         (Internal Energy-Pressure Parameter)       (3.3) 

 

                    (Force-Modulus Contact Parameter)       (3.4) 
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                             (Surface Energy-Diameter Parameter)      (3.5) 

  

 The π groups (equations 3.3 to 3.5) were used to help plot the results of the 

experimental data.  Since this data is non-dimensionalized, best fit regressions can be 

determined from the results and with known variables from a scaled up system it can 

provide empirical outputs that will help determine characteristics about the wear 

throughout the chain.  These correlations are a critical part of this study since they will 

pinpoint the weakest links in the chain as well as what vehicle may be causing the link 

to wear excessively. These empirically derived results along with the on-site chain 

wear often recorded by AtoN units in the form of Annual Chain Wear (ACR) recorded 

in the USCG’s IATONIS program were used to help validate the program’s ability to 

predict chain wear as seen in appendix A.6. 

 

3.2 Wear Algorithm 

 To determine the wear within a chain, an algorithm was created as a step-by-

step guide mapping a course to determine the link with the most wear as well as the 

remaining chain strength.  This algorithm in its most basic form is shown in figure 3.4 

and is the building block for the MATLAB code that will be generated.  This 

MATLAB program will use the algorithm in figure 3.4, performing both frequency 

and time based calculations to determine the point at which most chain wear occurs 

through multiple iterations.     
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                                           Figure 3.4: Algorithm for determining chain wear. 

 

 

 

 

 

 

 

 

 



 

48 

 

CHAPTER 4 

 

RESULTS 

 

 This chapter presents and discusses all of the data collected during the 

laboratory testing.  Testing was performed using the equipment and methods specified 

in the previous chapter.   

 The oscillation testing performed yielded three measured characteristics; mass, 

roughness and link diameter.  Analyzing the data from all three indicated that they all 

reduced at some rate due to the wear caused by the motion of the chain.  The results 

were then plotted in the form of non-dimensional parameters to provide regressions 

that could be used to predict chain wear values in a full scale environment as well as 

implementation into the MATLAB based wear program. 

 

4.1 Experiment I 

 If chain wear was to be measured utilizing a real life experiment, the 

experiment would be required to run for extended periods of time; the purpose of these 

experiments was to speed up the cycling of the chain to help yield similar 

experimental results without having to wait as long.  In experiment I the chain was 

cycled at a rate of 138 revolutions per minute which was the slowest the motor could 

be turned with the load of the chain without stalling.  Although this may seem slow, it 

was very quick for the chain resulting in more than two cycles per second; the chain 

accelerated faster than the speed of gravity causing the contact points to separate 
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during the down stroke of the motor.  The results of the first experiment (experiment I) 

were implemented into each of the determined parameters from chapter 3 to help plot 

trends to validate data and use regressions for full scale implementation.  Looking 

more closely at the parameters, it is observed that the regression from Force-Modulus 

Contact (figure 4.2), a function of cycles, tension, diameter, contact radius and 

modulus of elasticity, can be solved for the contact radius if tension, chain diameter 

and number of cycles are known; each easily determined analytically.   

 

 

Figure 4.1: Internal Energy-Pressure vs. No. Cycles  
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Figure 4.2: Force-Modulus Contact vs. No. Cycles 

 

Once the contact radius is obtained, Internal Energy-Pressure (IE-P) can then be 

solved for wear volume.  IE-P is a function of wear volume, contact pressure, energy 

and cycles.  The energy value used for IE-P was the surface energy for iron oxide; this 

was used since the chain is always corroding, therefore there will be some level of iron 

oxide forming (however small it may be) on the surface of the chain between cycles.  

As noted in figure 4.1, the value of IE-P in experiment I for the chain immersed in 

distilled water was slightly higher than the chain immersed in artificial salt water.  The 

regression does not fit very well on the distilled chain IE-P date; more experimental 

testing would need to be completed to further validate these results. 

 For the Surface Energy-Diameter (SE-D) parameter used in experiment I, it is 

a function of diameter, surface energy, tension and cycles.  The diameter of the chain 

as it became worn was the variable in question as it is plotted across the number of 
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cycles the chain moved.  The wearing surfaces were measured by way of six inch 

calipers, Cen-Tech Model 92437, see figure 4.3.   

 

 

Figure 4.3: Measuring chain wearing surface with calipers 

 

With a regression formed from this parameter, the diameter of a chain can be 

determined over time if the material properties and tension in the chain are known.   



 

52 

 

 

Figure 4.4: Surface Energy vs. No. Cycles 

 

The SE-D parameter does not provide much information in experiment I since there 

would need to be much more experimental testing completed to allow for appreciable 

wear of the link diameter allowing for an accurate regression to be mapped.  Another 

option would be to measure surface roughness and implement into the SE-D 

parameter, a method that was employed for the second round of experiments.   

 Using the data collected, the wear coefficient was calculated using a different 

form of the Archard equation solving for K as seen in equation 4.1.  The ‘F’ term or 

tension was determined through analysis of the chain weight and acceleration.  Two 

values for the tension of the chain at the peak and trough were both determined and 

averaged together to get average tension through the links that were rotating. 

 

                                                                                                                      (4.1) 
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Where: 

W is the wear volume. 

H is the material hardness measured in units of force per area 

s is the total sliding distance of the material 

F is the force normal to the wear or tension 

 

 The sliding distance was assumed to be the arc length of 90 degrees for each 

link diameter.  Some link-to-link surfaces rotated 90 degrees; some did twice as both 

links rotated from the horizontal position to the vertical position.  With the sliding 

distance assumed, the total wear volume was calculated by taking the density of chain 

and multiplying it by the change in mass between experiments as seen in figure 4.5.  

The mass was measured using a Denver Instrument Company scale, Model XL-3K, 

serial 60994 and was calibrated by the Central Scale Company on August 3, 2013 

certified for approximately one year, see figure 4.6. 
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Figure 4.5: Mass of chain vs. cycles. 

 

 

 
Figure 4.6: Scale used to measure mass of chain. 
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Material hardness is assumed to be a constant, with all the parameters known, the wear 

coefficients for both the distilled and salt chains were determined as seen in figure 4.7.  

The peaks seen in figure 4.7 during the first 10,000 cycles were most likely a result of 

wear in of the chain as well as the sheading of iron oxide formation. 

 

Figure 4.7: Wear coefficient vs. Cycles 

  

The wear rate coefficient rapidly decreases and then the slope for both distilled and 

salt solution chains is approximately the same.  Due to the many assumptions and 

chain hoping, this data was not used and a second experiment was conducted as seen 

in table 4.1a.  The chain’s inertia would cause it to fly out of the water due to the high 

rate of speed at which would cause the chain contact not to be consistent.  Since the 

contact is not consistent, this will invalidate the sliding distance assumption made as 

well as further stretch the assumption of an average normal force between the chain 

links.  It will be shown later that these calculations of the wear constant K in the first 
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experiment are actually low resulting in a low prediction of wear occurring in the 

chain.    

 

Dimensionless Constant K

Time (hours) Cycled Distilled Cycled Salt

0 0 0 0

1 8280 0.012075083 0.007612729

2 16560 0.001862689 0.002413397

3 24840 0.001814097 0.001360573

4 33120 0.000502116 0.001263389

5 41400 0.000907049 0.000348242

6 49680 0 0

7 57960 0 0

8 66240 0 4.46286E-05

Average 0.003432207 0.002173826  

Table 4.1:   Wear constant K determination in both distilled and salt water. 

 

 Chain diameter was also measured during this experiment as seen in figure 4.8.  

The link diameter did not have any change with the control chain sitting in distilled 

water but the chain immersed in salt water did have an initial increase in link diameter 

that could be excess iron oxide formation.  The cycled chains did have some slight 

chain wear, which was to be expected.  Unfortunately, the chain was not cycled 

enough to get any appreciable chain wear that would yield a regression that could be 

applied to a full scale system.   
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Figure 4.8: Link diameter versus cycles, first experiment. 

 

4.2 Experiment II   

 After the first round of experiments, the machinery used was deemed to have 

excessive speed resulting in the chain accelerating faster that the acceleration of 

gravity due to the machine rotating at 138 revolutions per minute which caused the 

wearing surfaces to lift off and collide, possibly causing inaccurate data.  The speed at 

which that equipment moved was the slowest it could run before the motor stalled, 

therefore new equipment needed to be utilized. 

 A new motor and drive were procured allowing the motor to spin at rotations 

from 83 revolutions per minute all the way down to a stopping speed providing a large 

range of speed control for this experiment.  The purpose of these experiments was to 

still provide an accelerated chain wear simulation while also keeping the chain links 

touching at all times.  This is a key point since the wear rate is measured through a few 

parameters, one of them sliding distance, if the chain links are not in contact with one 

another the sliding distance calculation will be inaccurate.  The fastest speed at which 
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the motor was run without allowing the chain links to separate was 61 revolutions per 

minute, or approximately one hertz.   

 Another change that was made to the second round of experiments was the 

measurement of surface roughness within the interlink surface.  The surface roughness 

was determined using a Mahr, MarSurf XR 20 Perthometer. 

 

Figure 4.8a: Surface roughness measuring tool, Mahr MarSurf XR 20. 
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Figure 4.8b: Roughness measurement (Note: orientation of yellow and blue zip ties consistent through each 

experiment to ensure correct wear surface is measured) 

 

The roughness parameter would be used in the SE-D calculation and can empirically 

determine how surface roughness will change when the links slide against each other 

over a set amount of cycles (see figure 4.8d).  The empirically derived value of surface 

roughness can be used when analytically determining the change in energy potential in 

equation 3.1.   

  

Figure 4.8c: Wear Surfaces. (left) surface at end of second round, (right) surface at end of fourth round. 
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Figure 4.8d: Roughness versus Cycles for experiment two. 

 

 The F-MC calculation will be used again to empirically predict changes in the 

contact radius over cycles (figure 4.10) which will then be used to determine the 

contact pressure, the independent variable in IE-P.  When IE-P (figure 4.9) is known, 

the wear volume for the system will be determined.  Again, this is based on the 

constant for surface energy of iron oxide as the ‘U’ term. 
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Figure 4.9: Internal Energy-Pressure vs. No. Cycles 

 

 

 

Figure 4.10: Force-Modulus Contact vs No. Cycles 
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Figure 4.11: Surface Energy-Diameter vs. No. Cycles 

 

 A linear regression for the data in graphs of IE-P and F-MC was attempted, but 

the ‘R squared’ value or a regressions ability to plot over the majority of the data was 

low for both; extensive experimental testing would need to be completed to validate 

these results and assign regressions, if any.  The results for SE-D seem fairly accurate, 

yet again the linear regression did not yield an accurate depiction of the results; 

therefore an exponential equation was used as noted in figure 4.11. 

 During the first experiment as mentioned earlier, tension in the chain was 

determined by calculating the rate at which the chain oscillated then analytically 

determining the tension in the chain at the point of interest.  In the second experiment, 

a scale (Accu-Weigh by Yamato Model T-10) was used to measure the actual tension 

in the chain as seen in figure 4.12.  The tensions at the peak and trough points of the 

movement were statically measured and corrected by adding the weight of each link 

below the point of measurement to the contact of interest.  Both values were averaged 
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to yield an average value of 2.00 newtons of force (table 4.1).  This was significantly 

less than the first experiment, most likely due to conservative estimates and analysis of 

the fourth link tractions whereas the second experiment analyzed the fifth link 

tractions.   If a more accurate measurement was desired, a load cell would need to be 

placed within the chain and attached to a computer so that the tension could be 

recorded throughout the cycle taking into account the effects of added mass and 

interlink friction during dynamic motion.       

 

 

Figure 4.12: Determining tension within chain.  Right: up stroke, Left: down stroke. 

 

 With the tension in the chain determined, it was necessary to determine the 

sliding distance.  As mentioned in seciton 4.1, the first experiment assumed that the 

links with traction had full 90 degree rotation which resulted in higher sliding 

distances that may have contributed to possible innacurate wear coefficinets.  During 

the second experiment, the chain was moved through its cycle and an approximate 
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value of each chain rotation angle was determined by directly measuring the angle 

over which wear occured.   

 

  

Figure 4.12a:  Shapes of the experimental chain at the top and bottom of each cycle. 

 

Location 
Fn up 
(N) 

Fn dn 
(N) 

Avg Fn 
(N) 

SD/cycle 
(m) 

Rot. @ wear sfc 
(deg) 

Wear link  5.93 2.00 3.97 0.0199 90 

1 link below WL 4.31 0.00 2.15 0.0133 60 

2 links below 
WL 2.69 0.00 1.34 0.0100 45 

3 links below 
WL 1.06 0 0.53 0.0066 30 

Total     2.00 0.0499   
Table 4.2: Tension and sliding distance 

 

The total sliding distance was approximately 0.05 meters per cycle of the chain.  Wear 

mass change (figure 4.13) was determined the same as it was in the first experiment 

and the material hardness value also remained the same.  With these values, the wear 

coefficient, K in figure 4.14 was determined.  The wear coefficient appeared to fit very 

well to an exponential regression with a high R-squared value as per figure 4.14.  For 
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the MATLAB program, the K coefficient used was the average of the K values, 

resulting in a value of 5.2 x 10
-3

 as seen in table 4.2a.   

 

Experiment Time (minutes) Cycles (total) Dimensionless Constant K

0 0 0.0001 0

1 364 22204 0.00438476

2 420 47824 0.005380977

3 360 69784 0.00719997

4 395 93879 0.003846689

Average 0.005203099  

Table 4.2a: Average value of the dimensionless wear constant, K. 

 

Comparing the average value to those of Archard, the results were considerably close 

to the K coefficient for mild steel on mild steel of 7 x 10
-3

 (Gutierrez-Miravete).   This 

curve has a much better fit than any curve that could be fit to the wear coefficient 

results in the first experiment.     

 

 

Figure 4.13: Average mass loss in chain versus cycles. 
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Figure 4.14: Wear coefficient versus cycles. 

 

  

The diameter of the chain at the point of interest (fifth link from the bottom), 

was also analyzed to determine if there was any appreciable wear between the links 

during this short test.  From the results, it appears the link diameter did not change 

much as seen in figure 4.8.  It would be difficult to map out the wear as a function of 

chain link diameter size with such a short test.  Since steel in general is a fairly good 

wearing surface, the tests would have to be run for an extended period of time in a 

controlled environment to yield significant results.   
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Figure 4.15: Link diameter versus cycles. 

4.3 MATLAB Results 

Using the MATLAB program to predict chain wear was somewhat successful.  

The program, when implemented using data from appendix A.6 provided by USCGC 

FRANK DREW yielded results that were close to the Annual Chain Wear (ACW) 

measurements.  The data used for the wave spectra was from Wave Information 

Systems (WIS) station 63197.  Value for average wave height was averaged over a 20 

year period from 1980 to 1999.  This data was then converted into significant wave 

height by multiplying by a factor of 1.6 for a Rayleigh Distribution  (Goda, 2010).  

The significant wave height placed into MATLAB for this information was 1.42 

meters.  Significant wave period was used by implementing the significant wave 

height into the correction formula provided by Goda as seen in equation 4.5 (Goda, 

2010).  

 

                                                                              (4.5) 
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 The buoys listed in appendix A.6 are 8x26 LR buoys that are approximately 8 

feet in diameter and displaced approximately 12,000 pounds (noted in appendix A.5).  

ACW measurements from A.6 were subtracted from the original chain diameter of 1.5 

inches to get the ‘1 year Actual Chain Diameter’ in inches and compared to the output 

from MATLAB in table 4.3.  It can be noted that the MATLAB calculations are within 

3 percent of the actual chain wear.  These results were compared with those of 

equation 2.1 and found to be much more accurate (table 4.3).  Since these chains are 

all worn about the same as seen in table 4.3, the maximum yield and tensile forces the 

chain would be capable of withstanding when worn would be approximately 48,500 

and 87,600 pounds, respectively.  This calculation assumes a yield and tensile strength 

of 1022 steel of 34,100 and 61,600 pounds, respectively.      

 

Buoy Bottom Type 1 year Actual Chain Dia (in) 1 year MATLAB Chain Dia (in) Percent Error (%) 1 year MSG Chain Dia(in) Percent Error (%)

Chesapeake Bay LB 12 Sand 1.28125 1.3169 2.78 0.1379 89.24

Chesapeake Ch LB 4 Mud 1.34375 1.3146 2.17 0.1379 89.74

Thimble Shoal Ch LBB 1TS Mud 1.35625 1.3163 2.95 0.1379 89.83  

Table 4.3: Results of running MATLAB program for a one year simulation. 

   

 

 Figure 4.16: Final wear volume over length of chain after running simulation. 
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The MATLAB algorithm goes through the flow chart as shown in figure 3.4 

and is split up into three different sub programs, the RAO for the buoy as a function of 

frequency, the motion of the buoy as a function of time and the wear calculation.  

Each of these sub programs utilize equations called out in chapter 2 as well as 

geometries specified in the appendices.  Sample outputs are shown in figures 4.17 

through figures 4.25.  The RAO calculations are for the 8x26 LR buoy (Chesapeake 

Bay LB 12 from A.6) in the JONSWAP sea spectrum specified by a significant wave 

height of 1.42 meters and period of 4.11 seconds.   

 

                      Figure 4.17: Frequency vs. Sea Spectrum. 
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                    Figure 4.18: Frequency vs. Heave Transfer Function. 

 

                     Figure 4.19: Frequency vs. Surge Transfer Function. 
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                       Figure 4.20: Frequency vs. RAO Heave. 

 

                     Figure 4.21: Frequency vs. RAO Surge. 
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                     Figure 4.22: Time vs. Heave Motion. 

 

                     Figure 4.23: Time vs. Buoy Surge Distance. 
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                     Figure 4.24:  Time vs. Buoy Heave Acceleration. 

 

                       Figure 4.25: Time vs. Buoy Surge Acceleration. 
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                    Figure 4.26: Buoy modeled in MATLAB program. 

 

It would be recommended to use this tool when placing a buoy using a chain 

mooring in a new location.  This tool has shown that it is capable of predicting chain 

wear in a mooring, but it does not take into account some various environmental 

factors and makes many assumptions.  First, this program assumes the geometry is a 

floating cylinder; actual geometry would need to be implemented into the program to 

yield more accurate results.  The program does not take into account different bottom 

types; therefore if the buoy is placed on coral or rock, the chain wear calculation will 

not be conservative.  One last thing this program does not take into account is the 

coupling effect of all six degrees of freedom on the buoy and how it will affect the 

motion of the chain.   
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The time duration at which the testing was limited is due to the equipment 

shortcomings.  Materials provided for this experiment were found among scrap piles 

within the URI Laboratory, with exception to the motor and controller used for the 

second test.  Many of the moving parts had bearing surfaces that created much friction 

and often caused the grease to liquefy; the vertical slide used a guide with plastic ball 

bearings that were not exactly designed for the well over 200,000 cycles performed 

during this experiment, but worked without failure to provide satisfactory results when 

used.  Each experiment was monitored during its entirety. 
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CHAPTER 5 

 

CONCLUSIONS 

 

 This study provides a solid foundation for a program that will determine the 

chain wear of a buoy affixed to the seabed through use of a catenary system.  It does 

give a general idea of what type of interlink wear rates to expect.   

 

5.1 Contributions of Study   

As a result of this study, just about any buoy with a chain mooring can be 

modeled and interlink wear can be determined given localized wave data long with 

characteristics of the buoy mooring system.  The Coast Guard can use this model to 

optimize each buoy mooring by not only cutting out the excess chain but also run the 

model with different materials to see the affect it will have on chain wear.  

MOORSEL currently only provides mooring designs without testing the design for 

chain wear rate; it works well but the source code needs to be updated to operate 

within modern computer operating systems.  This model can be implemented into 

MOORSEL’s source code to yield chain wear results for each buoy, further optimizing 

the buoy design output of MOORSEL.  The study can be used to predict chain wear in 

a catenary system in just about any application such as ships at anchor or mooring of 

floating piers.   

 

5.1 Future Work 
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 Future work for this study would include the addition of different geometries 

that would represent actual buoy shapes.  With the formulas used, there would need to 

be experiments completed for each buoy geometry desired.  These experiments would 

consist of determining the added mass and damping coefficients for heave and surge 

as a function of frequency.  This task could be completed with advanced 

computational programs such as WAMIT.  Within this experiment, it would also be 

recommended that the drag coefficient for this geometry be computed as well how the 

drag force affects the vertical orientation of the buoy when the buoy tension is 

anchored at the bridal connection points.   One could also look into the sway degree of 

freedom or even all six degrees of freedom.  

 With the wear portion of the system, future work would include determining a 

wear solution using a non-Hertizan solution such as the Johnson-Kendall-Roberts 

(JKR) solution that assumes the contact is adhesive and validates the non-adhesive 

assumption made by Hertz.  Another point of future work is to take the crossing 

cylinder assumption and bend it into chain geometry; in this case the contact will only 

be a circular point contact when both pieces first make tractions upon each other.  The 

resultant will be wear shapes that may be non-circular in shape which may help yield 

more accurate wear measurements within the link of the chain.  A very important 

piece of catenary chain wear that was not looked at is the wear rate on different 

bottom types as the chain slides along the bottom of the sea bed.  With this research, 

one would need to place the problem into a three dimensional system and determine 

how the chain slides across the bottom if the buoy is oscillating or tidal and wind 

changes. 
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APPENDICES 

 

A.1 MATLAB Code 

 

clear all 

  
%function [w,Sw,Hw3,Hw1] = 

RAO_cylinder(rho_w,g,b,aw,D,d,Ab,Lw,Delta,U,C,low_wave_frequency,wave

_frequency_interval,high_wave_frequency); 

  
% Generate RAO for cylindrical buoy in irregular seas 
% Jon Benvenuto and Jason Dahl, 1/14/2014 

  
%************For editing purposes only 
rho_w = 1025; %Density of seawater, kg/m^3 
g = 9.81; %gravity constant, m/s^2 
b = 2.44; %buoy radius, m 
aw = 0.889; %wave amplitude, m ***took mean wave height from WIS 

information*** 
D = 18.9; %depth of water, m 
d = 2*b; %diameter of buoy, m 
Ab = pi*b.^2; %buoy cross sectional area, m^2 
Delta = 3856; %buoy displacement, kg 
C = 25.02; %chain weight, kg/m 
U = 0.01; %water current speed, m/s 
low_wave_frequency = 0.01; %1/s 
wave_frequency_interval = 0.01; %1/s 
high_wave_frequency = 3; %1/s 
t = 0:2:3600; %time, s  
L = 47.2; %length of chain, m 
di = 0.0381; %diameter of mooring chain, m 
rho_s = 7858;   % kg/m^3, density of steel  
E = 200*10^9;   % Pa, modulus of elasticity of steel 
mu = 0.29;       % Poisson's Ratio of steel 
sigma_y = 250*10^6; %Pa, yield stress of steel 
kv = 1.004*10^-6; %kinematic viscosity, m^2/s 
H13 = 1.42; %significant wave height 
%**********************For editing purposes only 

  

  
Disp = Delta+C*D; 
T = Disp/(rho_w*Ab); 
w = low_wave_frequency:wave_frequency_interval:high_wave_frequency; 
k = (w.^2)/g; 
we = w+w.^2*U/g; 
x33 = w.*(T/g).^(0.5); 
x = -b:0.01:b; 
f=w/(2*pi); 
gam = 3.3; 
T13 = 3.3*H13^0.63; %significant wave period (m) formula 3.6 Goda 
Tp = T13/(1-0.132*(gam+0.2)^-0.559); %peak period 
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fp = 1/Tp; %peak frequency 

  
for q = 1:length(w) 

     
    %Heave Motion 
%     a33(q) = (1.0084*x33(q).^4 - 5.6393*x33(q).^3 + 

11.451*x33(q).^2 - 9.716*x33(q) + 3.4925)*rho_w*Ab;  %Bonfiglio, 

Brizzolara, & Chryssostomidis 
%     b33(q) = (-0.4081*x33(q).^4 + 2.3098*x33(q).^3 - 

4.4517*x33(q).^2 + 2.9483*x33(q) - 0.003)*rho_w*Ab.*x33(q);  

%Bonfiglio, Brizzolara, & Chryssostomidis 
    if d/T <= 2 
        a33(q) = (0.8121.*x33(q).^4-

3.789.*x33(q).^3+6.4522.*x33(q).^2-

4.5569.*x33(q)+1.5133)*rho_w.*d.^2; 
        b33(q) = (-1.1617.*x33(q).^4 + 3.4001.*x33(q).^3 - 

2.5926.*x33(q).^2 - 0.5955.*x33(q) + 1.003).*rho_w.*d.^2.*w(q); 
    elseif 4 <= d/T > 2 
        a33(q) = (0.8968.*x33(q).^4 - 3.9503.*x33(q).^3 + 

6.2816.*x33(q).^2 - 4.0893.*x33(q) + 1.2739).*rho_w.*d.^2; 
        b33(q) = (0.7551.*x33(q).^2 - 1.7539.*x33(q) + 

1.023).*rho_w.*d.^2.*w(q); 
    elseif d/T > 4 
        a33(q) = (0.8496.*x33(q).^4 - 3.6679.*x33(q).^3 + 

5.6475.*x33(q).^2 - 3.5029.*x33(q) + 1.0653).*rho_w.*d.^2; 
        b33(q)= (-1.31898.*x33(q).^4 + 2.5068.*x33(q).^3 - 

0.3524.*x33(q).^2 - 1.8267.*x33(q) + 0.9999).*rho_w.*d.^2.*w(q); 
    end 
    c33(q) = rho_w*g*d; 

     
    for n = 1:length(x) 
        Gf33(n) = aw.*real(exp(1i.*k(q).*x(n))).*exp(-

k(q).*T).*(c33(q)-w(q).*(we(q).*a33(q)-1i.*b33(q))); %excitation 

force in heave, PNA, Vol III, P.44 
    end 
    Gf3(q) = trapz(x,Gf33); 
    B33(q) = trapz(x,b33(q)*ones(size(x))); %Heave Damping 
    A33(q) = trapz(x,a33(q)*ones(size(x))); %Heave Added Mass 
    C33(q) = trapz(x,c33(q)*ones(size(x))); %Heave Restoring Force 
    Hw3(q) = (Gf3(q)./(-

((Disp+A33(q)).*we(q).^2)+1i*we(q).*B33(q)+C33(q))); %Transfer 

function in heave, PNA Vol III, P.43, eqn 99 

     
    %Surge Motion 

    
    Di = ((D/2)*(1+(sinh(2.*k(q)*D)./(2.*k(q)*D)))); 
    di = (sinh(k(q)*D)/(k(q)*Di)); 
    Y = 

pi*(k(q)*di^2/(k(q)*b)^2)*((besselh(1,1,k(q)*b)/(besselh(0,1,k(q)*b)-

besselh(2,1,k(q)*b)))); % Rahman and Bhatta, 1993 
    A11(q) = -real(Y)*rho_w.*b.^3; 
    B11(q) = -imag(Y)*rho_w.*b.^3.*w(q); 
    Gf11 = -((2*pi*1i*rho_w*g*aw*b./k(q)).*(besselj(1,k(q)*b)-

(besselj(0,k(q)*b)-

besselj(2,k(q)*b))).*(besselh(1,1,k(q)*b)./(besselh(0,1,k(q)*b)-
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besselh(2,1,k(q)*b))).*(1-exp(-k(q)*T)));%excitation force in surge 

(Finnegan, Meere and Goggins) 
    Hw1 = real(Gf11./(-(Delta+A11).*w(q).^2)+1i.*w(q).*B11); 

%transfer function in surge 

    
    %Wave Motion 
    if f(q) > fp 
        sig = 0.09; 
    else 
        sig = 0.07; 
    end 

            
    Bj = (0.0624/(0.230+0.0336.*gam-0.185.*(1.9+gam)^-1))*(1.094-

0.01915*log(gam)); 
    Sw(q) = Bj.*H13.^2.*Tp.^-4.*f(q).^-5.*exp(-1.25.*(Tp.*f(q)).^-

4).*gam.^exp(-(Tp.*f(q)-1).^2/(2.*sig.^2)); 
end 
figure(1); 
plot(w, Sw); 

  
figure(2); 
plot(w,Hw3); 

  
figure(3); 
plot(w,Sw.*abs(Hw3).^2); 

  
figure(4); 
plot(w,Hw1); 

  
figure(5); 
plot(w,Sw.*abs(Hw1).^2); 

  
save('RAO_variables.mat','w','Sw','Hw3','Hw1'); 
%end 
 

 

% Calculate time history for buoy response and waves 
% Jon Benvenuto and Jason Dahl 1/14/2014 

  
%function [R3,W,R1,t,Buoy_accel1]=RAO_time(t); 
clear all; 

  
%************For editing purposes only 
rho_w = 1025; %Density of seawater, kg/m^3 
g = 9.81; %gravity constant, m/s^2 
b = 2.44; %buoy radius, m 
aw = 0.889; %wave amplitude, m ***took mean wave height from WIS 

information*** 
D = 18.9; %depth of water, m 
d = 2*b; %diameter of buoy, m 
Ab = pi*b.^2; %buoy cross sectional area, m^2 
Delta = 3856; %buoy displacement, kg 
C = 25.02; %chain weight, kg/m 
U = 0.01; %water current speed, m/s 
low_wave_frequency = 0.01; %1/s 
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wave_frequency_interval = 0.01; %1/s 
high_wave_frequency = 3; %1/s 
t = 0:2:3600; %time, s  
L = 47.2; %length of chain, m 
di = 0.0381; %diameter of mooring chain, m 
rho_s = 7858;   % kg/m^3, density of steel  
E = 200*10^9;   % Pa, modulus of elasticity of steel 
mu = 0.29;       % Poisson's Ratio of steel 
sigma_y = 250*10^6; %Pa, yield stress of steel 
kv = 1.004*10^-6; %kinematic viscosity, m^2/s 
H13 = 1.42; %significant wave height 
%**********************For editing purposes only 

  
load RAO_variables.mat 

  
RAO1 = Sw.*abs(Hw1).^2; 
RAO3 = Sw.*abs(Hw3).^2; 

  
R1 = zeros(size(t)); 
R3 = zeros(size(t)); 
W = zeros(size(t)); 

  
for n = 1:length(w)-1 
    wave_var(n) = trapz(w(n:n+1), Sw(n:n+1)); 
    RAO_var3(n) = trapz(w(n:n+1), RAO3(n:n+1)); 
    RAO_var1(n) = trapz(w(n:n+1), RAO1(n:n+1)); 
    w_avg(n) = (w(n)+w(n+1))/2; 
    phi = rand(1)*2*pi; 
    R1 = R1 + sqrt(2)*sqrt(RAO_var1(n))*cos(w_avg(n)*t + phi); 
    R3 = R3 + sqrt(2)*sqrt(RAO_var3(n))*cos(w_avg(n)*t + phi); 
    W = W + sqrt(2)*sqrt(wave_var(n))*cos(w_avg(n)*t + phi); 
end 

  
Buoy_vel1 = 1/(mean(diff(t)))*cdiff(R1); 
Buoy_accel1 = 1/(mean(diff(t)))*cdiff(Buoy_vel1); 
Buoy_vel3 = 1/(mean(diff(t)))*cdiff(R3); 
Buoy_accel3 = 1/(mean(diff(t)))*cdiff(Buoy_vel3); 

  
save('WearRateInputs.mat','R3','W','R1','t','Buoy_accel1'); 

  
figure(1) 
plot(t,R3); 

  
figure(2) 
plot(t,W); 

  
figure(3) 
plot(t,Buoy_vel3); 

  
figure(4) 
plot(t,Buoy_vel1); 

  
figure(5) 
plot(t,R1); 
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%end 

 
 

 

clear all; 
load WearRateInputs.mat 

  
%************For editing purposes only 
rho_w = 1025; %Density of seawater, kg/m^3 
g = 9.81; %gravity constant, m/s^2 
b = 2.44; %buoy radius, m 
aw = 0.889; %wave amplitude, m ***took mean wave height from WIS 

information*** 
D = 18.9; %depth of water, m 
d = 2*b; %diameter of buoy, m 
Ab = pi*b.^2; %buoy cross sectional area, m^2 
Delta = 3856; %buoy displacement, kg 
C = 25.02; %chain weight, kg/m 
U = 0.01; %water current speed, m/s 
low_wave_frequency = 0.01; %1/s 
wave_frequency_interval = 0.01; %1/s 
high_wave_frequency = 3; %1/s 
t = 0:2:3600; %time, s  
L = 47.2; %length of chain, m 
di = 0.0381; %diameter of mooring chain, m 
rho_s = 7858;   % kg/m^3, density of steel  
E = 200*10^9;   % Pa, modulus of elasticity of steel 
mu = 0.29;       % Poisson's Ratio of steel 
sigma_y = 250*10^6; %Pa, yield stress of steel 
kv = 1.004*10^-6; %kinematic viscosity, m^2/s 
H13 = 1.42; %significant wave height 
%**********************For editing purposes only 

  

  
awc = 3.02;  %kg/m, average weight of 0.5 inch chain  
phi_last = 0; 
WearVol_total = 0; 

  
% Steady State Current Analysis 
T = Delta/(rho_w*Ab); 

  
Renyolds_num = U*2*b/kv; 
    %coefficient of drag of a cylinder, horizontal flow 
    if Renyolds_num < 200000  
        Cd = 0.0343*log(Renyolds_num)+0.6861; 
    elseif 500000 < Renyolds_num > 200000  
        Cd = -0.735*log(Renyolds_num)+9.936; 
    else 
        Cd = 0.1796*log(Renyolds_num)-2.1026; 
    end 
CurrentForce = Cd*0.5*rho_w*(U^2)*2*b*T; %N, force of the current 
L = 90; %length of chain, m   
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for n=1:length(t); 

   
s = 0:L/10:L;       %m, distance along cable 
H_buoy(n) = CurrentForce+Buoy_accel1(n).*Delta; % N, Max horizontal 

force on bouy from ocean currents 
De(n) = D+R3(n);         % m, depth of water w/wave 

  
A = awc/rho_s;     % m^2, average cross-sectional area of chain 
a = pi*(di/2).^2;   % area of one side of chain link 

  
% I also assume that the cable is not extremely taut and therefore 

its extension 
% can be ignored. 

  
w0 = awc*g;       % N/m, effective weight per unit length before 

stretching 

  
V_buoy(n) = 

real(w0.*L/2+(w0.*De(n)/2).*(1+(4*H_buoy(n).^2)./(w0.^2.*(L^2-

De(n).^2))).^0.5); % N, vertical force at buoy 

  
Te = (H_buoy(n).^2+(V_buoy(n)-w0.*(L-s)).^2).^0.5;  % N, Effective 

tension in line 
for y = 1:length(s) 
    z(y) = ((H_buoy(n)./w0).*(sqrt(1+((V_buoy(n)-w0.*(L-

s(y)))./H_buoy(n)).^2)-sqrt(1+((V_buoy(n)-w0*L)./H_buoy(n)).^2))); % 

m, depth as a function of s 
    x(y) = (H_buoy(n)./w0).*(asinh((V_buoy(n)-w0.*(L-

s(y)))./H_buoy(n))-asinh((V_buoy(n)-w0*L)./H_buoy(n)));   % m, 

horizontal distance as function of s 

  
    if z(y) < 0 
        L = L - 0.5; 
    elseif L < D 
        L = D; 
    end 

  
end 

     
phi = atan((V_buoy(n)./H_buoy(n)-(w0./H_buoy(n)).*(L-s))); %(Jensen 

2010, p. 56) rad, angle of midline of cable 
phi_diff = abs(phi-phi_last); 
sd = phi_diff*di/2; %Sliding Distance (m) = radius of chain 

link*change in phi 
H = Te.*cos(phi);                               % N, horizontal force 
V = Te.*sin(phi); 
K = 0.00520; %Dimensionless Wear Rate (from experiemtns) 
H = 183*10^6; %Material Hardness (1022 steel) 

  
WearVol = (K.*Te.*sd)./H; 
WearVol_total = WearVol+WearVol_total; 
phi_last = phi; 
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 figure(1) 
 plot(x,z,'k',x(end),z(end),'rs','MarkerSize',20) 
 axis([0 D*1.5 -20 L]) 

  

  

    
end 

  
%commands to write a video of plot 
% writerObj = VideoWriter('sample.avi'); % Name 
% writerObj.FrameRate = 60; % How many frames per second. 
% open(writerObj); 
%insert 'for loop' with plot 
%close(writerObj); 

  
figure(2) 
plot(s,phi); 

  
figure(3) 
plot(s,WearVol_total); 

  
%Longitivity Calculation 

  
Vol = max(WearVol_total)/2; 
r = di/2; 
dd = di-real(((sqrt(3).*sqrt(3.*Vol.^2-4*pi.*r.^3.*Vol)+2*pi.*r.^3-

3*Vol).^(1/3))./((2*pi).^(1/3))+((r.^2).*(2*pi).^(1/3))./((sqrt(3).*s

qrt(3.*Vol.^2-4*pi.*r.^3.*Vol)+2*pi.*r.^3-3.*Vol).^(1/3))); %Volume 

of spherical cap, Wikipedia 
WearDia = (di-dd)/2+r; 
WearDiain = WearDia*39.37; % inches, final worn diameter of chain 
a = sqrt(-dd*(dd-2*r)); 
thetap = acos(1-(2*a^2/r^2)); 
Aremaining_sqin = (r^2/2)*(thetap-sin(thetap))*1550; 
TSY = 34100; %psi, tensile strength yeild 
TSU = 61600; %psi, tensile strength ultimate 
Yeild = Aremaining_sqin*TSY; %Yeild Force, pounds 
Break = Aremaining_sqin*TSU; %Break Force, pounds 

  
%end 
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Appendix A.2: U.S. Coast Guard Specification 121032 Rev H 
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Appendix A.3: U.S. Coast Guard Chain Dimensions  (USCG, 2010) 
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Appendix A.4: U.S. Coast Guard Chain Minimum Wear Chart  (USCG, 2010) 
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Appendix A.5: U.S. Coast Guard Characteristics of Buoys  (USCG, 2010) 

 

 



 

89 

 

Appendix A.5: U.S. Coast Guard Characteristics of Buoys  (USCG, 2010) 

 



 

90 

 

Appendix A.5: U.S. Coast Guard Characteristics of Buoys  (USCG, 2010) 
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Appendix A.6: U.S. Coast Guard Buoy Data from USCGC FRANK DREW off the 

coast of Virginia Beach, VA. 

 

Chesapeake Bay Southern Approach Lighted Buoy 12  
LLNR 470 
DEPTH 58 FT 

LENGTH: 135FT 

CHAIN SIZE: 1 ½” (48/32”) 

BOTTOM TYPE:  SAND 

ACW:  7/32" 

AP LATITUDE: 36-53-16.298N 

AP LONGITUDE: 075-53-07.343W 
 

 

 

Chesapeake Channel Lighted Buoy 4 
LLNR 7050 
DEPTH 77 FT 

LENGTH: 160FT 

CHAIN SIZE: 1 ½” (48/32”) 

BOTTOM TYPE:  MUD 

ACW:  5/32" 

AP LATITUDE: 36-57-48.911N 

AP LONGITUDE: 075-59-21.477W 

 
 

Thimble Shoal Channel Lighted Bell Buoy 1TS 
LLNR 9205 
DEPTH: 62 FT 

LENGTH: 155FT 

CHAIN SIZE: 1 ½” (48/32”) 

BOTTOM TYPE:  MUD 

ACW: 4.6/32" 

AP LATITUDE: 36-56-59.849N 

AP LONGITUDE: 076-01-25.049W 
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