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Abstract 

The physical properties of lipid bilayers, such as curvature and fluidity, can affect the 

interactions of polypeptides with membranes, influencing biological events. Additionally, given 

the growing interest in peptide-based therapeutics, understanding the influence of membrane 

properties on membrane associated peptides has potential utility. pH Low Insertion Peptides 

(pHLIPs) are a family of water soluble peptides that can insert across cell membranes in a pH-

dependent manner, enabling the use of pH to follow peptide-lipid interactions. Here we study 

pHLIP interactions with liposomes varying in size and composition, in order to determine the 

influence of several key membrane physical properties. We find that pHLIP binding to bilayer 

surfaces at neutral pH is governed by the ease of access to the membrane's hydrophobic core, 

which can be facilitated by membrane curvature, thickness and the cholesterol content of the 

membrane. Following surface binding, if the pH is lowered, the kinetics of pHLIP folding to 

form a helix and subsequent insertion across the membrane depends on the fluidity and energetic 

dynamics of the membrane. We showed that pHLIP is capable of forming a helix across lipid 

bilayers of different thickness at low pH. However, the kinetics of the slow phase of insertion 

corresponding to the translocation of C-terminal end of the peptide across lipid bilayer, vary ~ 2-

fold, and correlate with bilayer thickness and fluidity. While these influences are not large, local 

curvature variations in membranes of different fluidity could selectively influence surface 

binding in mixed cell populations.  
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Introduction 

Helical transmembrane proteins constitute ~ 30% of all proteins coded in the genome [1]. The 

study of polypeptide insertion into biological membranes can advance our understanding of 

membrane protein stability and folding, and also has potential practical applications. However, 

experimental studies have historically been challenging because peptides that are lipophilic 

enough to form transmembrane helices are typically insoluble in aqueous solution. Biological 

membranes are also diverse and complex, with anisotropic transmembrane compositions, making 

evaluation of interactions using model systems difficult [2]. Importantly, a bilayer's physical 

properties can significantly influence the form and function of membrane associated proteins [3, 

4]. As a consequence of these complications, the mechanistic and energetic properties of the 

interactions between transmembrane peptides and biological membranes are not well understood.  

Some of the variation in biological membrane phospholipids is in their acyl chain length and 

degree of saturation. Acyl chain length and saturation contribute to bilayer thickness and 

membrane fluidity [5]. Cholesterol is another significant component in eukaryotic plasma 

membranes that modulates lipid dynamics [6, 7]. The influence of lipid bilayer properties on the 

interactions of membrane peptides have only been thoroughly studied for a few cases. The most 

investigated transmembrane proteins are bacteriorhodopsin and OmpA [8]. Previous studies, 

largely using phosphatidyl choline (PC) with different hydrocarbon chains, have established that 

lipid properties can influence the kinetics of insertion and formation of secondary structures in 

these two proteins. For example, bacteriorhodopsin folding efficiency can be altered by changing 

the phospholipid head groups as well as by changing their acyl chain length [9, 10]. The folding 

was suppressed in diC14:0PC lipids compared to longer diC18:1PC and diC16:0PC lipids. In another 

study, the folding yield and rates of the membrane protein, diacylglycerol kinase, was reduced by 

shortening the acyl chain length of PC lipids [11]. Several studies on spontaneous folding of the 

β-barrel OmpA protein showed its dependence on the thickness of the membrane bilayer [12, 

13]. In particular, the kinetics of secondary structure formation of the protein, FomA, strongly 

depends on bilayer thickness and was slower in diC12PC compare to lipids with longer acyl 

chains [12].  

 

pH Low Insertion Peptides (pHLIPs) provide an opportunity to examine surface binding and pH-

triggered folding across membranes. pHLIPs enable the study of membrane influences on 
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peptide interactions by being stable as soluble monomers in water at neutral or basic pH while 

responding to low pH by inserting across membranes as a transmembrane -helix. pHLIPs exist 

in three major equilibrium states: (State I) soluble in water as a mostly unstructured monomer, 

(State II) bound to the surface of a lipid bilayer as a mostly unstructured monomer, and (State 

III) inserted across the bilayer as an α-helix [14]. The exact configuration of the peptide in each 

state depends on the pHLIP sequence. The greatest variability is observed for various pHLIP 

peptides adsorbed at the membrane bilayer in State II. The existence of these three distinct 

equilibrium states makes it possible to separate the process of the peptide’s attachment to a lipid 

bilayer from the process of the peptide’s insertion/folding.  

 

The transition from the membrane bound State II to the transmembrane State III is controlled by 

the protonation of carboxyl groups in a pHLIP's transmembrane domain and, transiently, in the 

membrane-inserting end of the peptide [15-17]. The negative charges on these acidic sidechains 

in neutral or basic environments prevent the stable presence of the transmembrane domain across 

the nonpolar membrane core. However, in acidic environments these sidechains are fully or 

partially protonated, promoting insertion and stabilization of the transmembrane helix [18]. Thus, 

the insertion/folding and exit/unfolding of the pHLIP peptides can be triggered by changing the 

pH, enabling kinetic studies. Insertion kinetics of wild-type (WT) pHLIP is well described by a 

four-state model, which assumes a sequential pathway for the processes of insertion that starts 

from State II and proceeds to final State III via two intermediates (Int1 and Int2) [17].  

Because pHLIPs sense acidity and tumors are acidic, applications are being pursued for tumor-

targeted therapies, diagnostics and research tools [19-23]. Understanding the influence of 

membrane properties on pHLIPs thus illuminates both basic principles of membrane biology and 

practical knowledge that may prove useful for the development of pHLIP-based technologies. 

 

Here we present a study of pHLIP interaction with bilayers composed of different 

monounsaturated PC lipids (diC14:1PC, diC16:1PC, diC18:1PC, diC20:1PC diC22:1PC), in the 

presence and absence of cholesterol, to explore the influences of lipid bilayer properties on 

pHLIP binding to membrane surfaces and transmembrane helix insertion. 

 

Materials and Methods 
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Synthesis of pHLIP peptides 

The pHLIP peptide (H2N‒GGEQNPIYWARYADWLFTTPLLLLDLALLVDADEGT‒COOH) 

was prepared by solid-phase peptide synthesis using Fmoc (9-fluorenylmethyloxycarbonyl) 

chemistry and purified by reverse phase chromatography at the W.M. Keck Foundation 

Biotechnology Resource Laboratory at Yale University. Lyophilized peptide was dissolved in a 

solution containing 3 M urea to denature any aggregates, then exchanged into 10 mM phosphate 

buffer, pH 8.0 using a G-10 size-exclusion fast spin column. The peptide concentration was 

determined by absorbance (ɛ280 = 13,940 M
-1

 cm
-1

). 

 

Liposome preparation 

Lipids were purchased from Avanti Polar Lipids (biological source/molecular names and 

catalogue numbers in parentheses): 14∶1-PC (1,2-dimyristoleoyl-sn-glycero-3-phosphocholine, 

850,346C), 16∶1-PC (1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine, 850,358C), 18∶1-PC (1,2-

dioleoyl-sn-glycero-3-phosphocholine, 850,375C), 20∶1-PC (1,2-dieicosenoyl-sn-glycero-3-

phosphocholine, 850,396C) and 22∶1-PC (1,2-dierucoyl-sn-glycero-3-phosphocho-line, 

850,398C). Small, large and giant unilamellar vesicles (SUVs, LUVs and GUVs) were prepared 

by extrusion. Lipids, with or without cholesterol, were dissolved in chloroform and desolvated 

on a rotary evaporator, and then dried under high vacuum for several hours. The phospholipid 

film was rehydrated in 10 mM phosphate buffer, pH 8.0, vortexed into suspension, and the 

suspension was repeatedly extruded using 50 nm, 100 nm, 200 nm or 1µm membrane pore filters 

(Avanti Polar Lipids).  

 

Steady-state fluorescence and circular dichroism measurements  

Fluorescence and circular dichroism (CD) measurements were employed to observe the 

partitioning of the peptide into a lipid bilayer and the formation of helical structure, respectively, 

according to previously established experimental protocols [14]. Tryptophan fluorescence and 

circular dichroism (CD) measurements were carried out on a PC1 photon counting 

spectrofluorimeter (ISS, Inc.) and a MOS-450 spectropolarimeter (Biologic, Inc.), respectively, 

under temperature control. All measurements were performed at 25
o
C. Peptide fluorescence 

spectra were recorded from 310 nm to 410 nm with the spectral widths of excitation and 

emission slits set at 4 nm and 2 nm, respectively, using a 295 nm excitation wavelength. The 
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polarizers in the excitation and emission paths were set at the “magic” angle (54.7° from the 

vertical orientation) and vertically (0°), respectively, to reduce Wood’s anomalies from the 

reflecting holographic grating. Peptide CD spectra were recorded from 190 nm to 270 nm with 1 

nm increments using a sample cuvette with an optical path length of 0.5 cm.  

 

A stock solution of pHLIP (typically 20 – 30 µM) in 10 mM pH 8.0 phosphate buffer was mixed 

with a stock solution of liposomes (typically 3 mM) in 10 mM pH 8.0 phosphate buffer to obtain 

a final solution with concentrations of the peptides and lipids of  2 µM and 0.4 mM, respectively. 

The peptide-lipid solution was equilibrated at 4C overnight before any measurements were 

made. For membrane curvature comparison measurements the concentration of peptides and 

lipids were 4 µM and 0.8 mM, respectively and the fluorescence excitation wavelength was set at 

280 nm to reduce amount of scattered signal. The selected peptide:lipid ratio of 1:200 ensures 

that most of the pHLIP peptides are adsorbed at the surface of lipid bilayers as was established in 

our previous studies [15]. 

Fluorescence anisotropy measurements 

LUVs were prepared from 14:1PC, 16:1PC, 18:1PC, 20:1PC, 22:1PC lipids, with or without 

cholesterol, according to the protocol described above. pHLIP (2 µM) was added to solutions to 

give a final pHLIP/lipid molar ratio of 1:200 and the mixture was left overnight to equilibrate. 

Tryptophan fluorescence polarization was measured on a PC1 photon counting 

spectrofluorimeter (ISS, Inc.) at 25°C. The widths of excitation and emission slits were 4 nm. 

Excitation and emission wavelengths were set to 280 nm and 350 nm, respectively. Fluorescence 

emission was recorded for 1 min and averaged 10 times. The vertically and horizontally 

polarized emission intensities were corrected for background scattering by subtraction of the 

corresponding polarized intensities of a blank containing a LUVs suspension without pHLIP. 

Steady-state fluorescence anisotropy was determined according to the following equation: 

 

𝑟 =
𝐼𝑉𝑉 − 𝐺𝐼𝑉𝐻

𝐼𝑉𝑉 + 2𝐺𝐼𝑉𝐻
 

 

where IVV and IVH are the emission intensities measured with the excitation polarizer set in the 

vertical direction and the emission polarizer oriented in the vertical or horizontal directions, 
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respectively. The instrumental factor G (G = IHV / IHH) was determined by measuring the 

emission intensities of a solution of the fluorescent probe with the excitation polarizer oriented in 

the horizontal direction. 

 

Oriented circular dichroism measurements 

Oriented circular dichroism was measured from supported bilayers deposited on quartz slides 

with a special polish for far-UV measurements and with 0.2 mm spacers on one side of each 

slide (Starna) as previously described [18]. Quartz slides were cleaned by i) sonication for 10 

min in diluted cuvette cleaner solution Contrad  (Decon Labs); ii) rinsing with deionized water 

(≥18.2 MΩ cm at 25 ˚C; Milli-Q Type 1 Ultrapure Water System, EMD Millipore); iii)  bath 

sonication for 10 min in 2-propanol; iv) rinsing with  deionized water; v) bath sonication for 10 

min in acetone; vi) followed by sonication for 10 min in 2-propanol; and vii) rinsing with 

deionized water; viii) finally, cleaned slides were immersed in Piranha solution (3:1 solution of 

sulfuric acid to hydrogen peroxide) for 5-10 min to completely remove any remaining organic 

material from the slides; and, finally,  ix) the slides were thoroughly rinsed with and stored in 

deionized water. A lipid monolayer was deposited on the quartz substrate by the Langmuir-

Blodgett (LB) method using a KSV Minithrough. For the LB deposition, a lipid solution in 

chloroform was spread on the subphase (Milli-Q purified water kept at 25 °C) and the solvent 

was allowed to evaporate for about 30 min, followed by monolayer compression to 32 mN/m. 

The first layer was then deposited by retrieving the slide from the subphase at a rate of 15 

mm/min. The second layer of the bilayer was created by fusion. For this step, the monolayer on 

the slide was incubated with a solution of lipid vesicles (50 nm in diameter obtained by 

extrusion) mixed with the peptide solution at the desired pH (0.5 mM PC and 10 μM peptide). 

The fusion was allowed to proceed for about 6 hours at 100% humidity. Then, excess vesicles 

were removed and the slides were stacked and filled with the peptide solution (5 μM) at the same 

pH as pH of the sample used for fusion. Then the bilayers with the peptide solution were allowed 

to equilibrate for about 6 hours. Measurements were taken at 3 stages: when the monolayers 

were incubated with excess liposomes, soon after the spaces between slides were filled with the 

peptide solution and again 6 hours after this second measurement. 12 slides (24 bilayers) were 

assembled and OCD spectra were recorded using a MOS-450 spectropolarimeter (BioLogic). 
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Measurements of control samples of lipid bilayers without peptide were used for background 

correction.  

 

Kinetics fluorescence measurements 

Kinetics fluorescence measurements were carried out on a SFM-300 mixing stopped-flow 

apparatus connected to a MOS-450 spectrometer (Biologic, Inc.) under temperature control as 

previously described [17, 18]. The FC-20 observation cuvette was used. All solutions were 

degassed several minutes under vacuum before loading into the syringes to minimize air bubbles. 

4 μM solution of pHLIP was pre-incubated with liposomes made from each of the chain length 

series of Phosphatidyl Cholines (14:1PC, 16:1PC, 18:1PC, 20:1PC, 22:1PC) (0.8 mM of lipids) 

and 18:1 PC with 20% of cholesterol at pH 8.0 to reach equilibrium in State II, and 

folding/insertion was induced by fast mixing (5 ms dead time) of equal volumes of the pHLIP-

liposome mixture at pH 8.0 and appropriately diluted HCl, to give a pH drop from pH 8.0 to pH 

3.6. The final peptide and lipid concentrations were 2 µM and 0.4 mM, respectively. Changes in 

tryptophan fluorescence were recorded through a 320 nm long-pass filter using an excitation 

wavelength of 295 nm. The fluorescence signal was corrected for photobleaching. Each kinetic 

curve was recorded several times and then averaged, excluding the first 2–3 shots. The signals 

were normalized to a starting point of 1 by using the baseline kinetics recorded at pH 8.0. In 

most cases these samples were then used for steady-state fluorescence measurements recorded on 

a PC1 photon counting spectrofluorimeter. 

In control experiments we found that liposome size (50 nm or 100 nm) does not detectably affect 

the state II to state III kinetics of peptide insertion into a membrane. Different peptide:lipid 

ratios, such as 1:200 and 1:350, were investigated and no difference in kinetics was observed. 

Different pH jumps from pH8 to pH3 or from pH8 to pH4 also do not affect kinetics runs.  

 

Data analysis 

All data were fit to the appropriate equations by nonlinear least squares curve fitting procedures 

employing the Levenberg Marquardt algorithm using Origin 8.5.  

 

 

Results 
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In order to explore lipid effects on the surface binding and transmembrane transition of a peptide 

as it enters a bilayer, we used pH-triggered insertion of a pHLIP peptide, observing the processes 

by optical spectroscopy. First, equilibrium studies on peptide-lipid systems were carried out. We 

varied lipid chain length, cholesterol content, and vesicle curvature using five different lipids 

diC14:1PC, diC16:1PC, diC18:1PC, diC20:1PC, and diC22:1PC (Supplementary Figure S1).  

Cholesterol content ranged from 0 to 30%, and liposome sizes ranged from 50 to 1000 nm in 

diameter. The binding of pHLIP to the lipid bilayer at the high pH (State II) was monitored by 

the shift of the pHLIP fluorescence spectra to shorter wavelengths, which reflects the transfer of 

tryptophan fluorophores from aqueous solution to a more hydrophobic membrane surface 

environment [24]. The emission maximum was 351-352 nm for pHLIP interacting with large 

liposomes (1000 nm in diameter) of different compositions, indicating  significant exposure of 

tryptophan residues to water (Figure 1a). On the other hand, a more blue shifted fluorescence 

was observed when pHLIP was bound to membranes of greater curvature (i.e. smaller diameter), 

and much less variability (less than 2 nm shift of the fluorescence maximum ) was seen for the 

interactions of pHLIP with vesicles of different sizes composed of short acyl chain diC14:1PC 

lipids. We also observed progressively larger blue shifts of pHLIP fluorescence in liposomes 

composed of diC18:1PC lipids containing increasing amounts of cholesterol (up to 30%) (Figure 

1b). Increasing cholesterol content decreases membrane fluidity, especially in the vicinity of 

membrane surface, and increases lipid bilayer thickness [7]. 

 

We have emphasized the study of pHLIP interactions with small liposomes (50 nm in diameter), 

since small vesicle diameter minimizes the contribution of the light scattering signal in kinetics 

experiments. In small vesicles, a blue shift of the position of the pHLIP fluorescence maximum 

at pH 8 correlates with a decrease of bilayer thickness (Supplementary Figure S2a and Figure 

2a). CD measurements show formation of peptide helical structure in the presence of liposomes 

composed of lipids of different acyl chain lengths at low pH (Supplementary Figure S2b).  The 

increase of helicity was monitored by the appearance of CD signal at 222 nm and presented as 

ratio of CD signal at 222 nm to 208 nm (Figure 2b) [25-27]. The increasing 222/208 nm CD ratio 

with increasing acyl chain length at pH 8 indicates the appearance of peptide helical content. The 

helicity of the state II peptide in thick bilayers approaches that of the inserted form in state III. At 

the same time, the fluorescence anisotropy varies just slightly, within a range from 0.06 to 0.07, 
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with a maximal value observed for diC18:1PC liposomes at pH 8 (Figure 2c).The values obtained 

for the fluorescence anisotropy (close to zero) reflect a rather high flexibility of tryptophan 

residues in State II. Despite the fact that fluorescence anisotropy measurements were carried out 

at long wavelength (350 nm), the absolute values obtained for the fluorescence anisotropy should 

be treated with caution, since polarized emission intensities were corrected for background 

scattering (see Methods).   

 

Several significant spectral changes are seen with a drop of pH from pH 8 to pH 4:  i) the 

fluorescence intensity increases, ii) a short-wavelength shift of the emission maximum, iii) an 

increase of fluorescence anisotropy, and iv) helicity increases (Supplementary Figure S2 and 

Figure 2). These signals are each consistent with the formation and partitioning of helical peptide 

structures into the lipid bilayer. pHLIP interacting with membranes comprised of long lipids, 

diC20:1PC and diC22:1PC, exhibited reduced quantum yields and the smallest fluorescence 

anisotropy values in State III compared to the liposomes of thinner bilayers. Quantum yield or 

fluorescence intensity correlates with the degree of tryptophan residue’s exposure to potential 

quenchers, such as polar and flexible water molecules, reflecting less exposure of pHLIP to 

aqueous solution in thicker bilayers. 

 

The formation of a helix in State III does not, by itself, establish that the helix has a 

transmembrane orientation. To determine the orientation of the pHLIP -helix with respect to 

the bilayer plane at low pH, we recorded oriented circular dichroism (OCD) spectra [28]. When 

pHLIP was incubated with supported bilayers made of diC14:1PC, diC18:1PC and diC22:1PC lipids 

at pH 3.6, a characteristic OCD spectrum corresponding to the transmembrane orientation was 

obtained for each lipid type with positive and negative bands around 197 nm and 222 nm, 

respectively, and the absence of a 208 nm band (Figure 3). Since pHLIP was in its helical 

configuration when interacting with a thick bilayer, especially diC22:1PC liposomes in state II (at 

pH 8), we performed comparative OCD measurements at high and low pHs (Supplementary 

Figure S3 ). In contrast to the transmembrane helical orientation that the peptide adopts at low 

pH, a surface helical orientation was observed at high pH in State II, since OCD spectrum 

recorded at high pH has both negative peaks, at 208 nm and 222 nm, corresponding to a 

membrane-surface helix [28]. To keep a focus on bilayer variables, we emphasize examination 
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of pHLIP insertion into membranes composed of diC14:1PC, diC16:1PC, and diC18:1PC lipids, 

which are associated with the coil to helix transition, and completed by the formation of stable 

transmembrane helix.  By having three comparable transitions we cover a range of bilayer 

properties that more closely resembles biological membranes. 

 

We found that pHLIP insertion kinetics is highly dependent upon membrane composition and 

membrane fluidity (Supplementary Figure S4 ). Stopped-flow kinetic studies were based on the 

following changes in the tryptophan fluorescence of pHLIPs interacting with liposomes of 

various lipid compositions and liposomes of diC18:1PC  lipids in the presence of 20% cholesterol. 

The excitation wavelength was set at 295 nm to minimize the contribution of tyrosine 

fluorescence and the possibility of tyrosine-tryptophan energy transfer. The liposome diameter 

was kept at 50 nm to minimize light scattering, and the insertion of pHLIPs into the liposomes 

was triggered by a pH drop from 8 to 3.6. The insertion occurred through three statistically 

identifiable steps (transitions), and the changes of fluorescence signals were fitted with a four-

state model, see details in [17], which assumes a sequential pathway for the processes of 

insertion that starts from State II and proceeds to final State III via two intermediates:  

 

State I  Int1  Int2  State III 

 

The characteristic rate constants that were obtained as the result of exponential fittings were 

related to the real rate constants reflecting three transitions from State I to Int1; Int1 to Int2, and 

Int2 to State III through a set of equations:  

 

𝑘1~𝑣1  𝑘2~
𝑣2

1.1
−

𝑣3

12.21
 , 𝑘3~0.991𝑣3 

 

where v1, v2, v3  are the characteristic rates of the transitions and k1, k2, k3 are the rate constants 

(Table 1).  The rates for pHLIP insertion to adopt State III decrease with increasing acyl chain 

length or the presence of 20% of cholesterol in the membrane.  

 

To obtain kinetics activation energies, we monitored changes in tryptophan fluorescence at 

different temperatures (7°C, 14°C, 18°C, and 25°C) (Figure 4a-c). As expected, increasing the 
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temperature speeds up the process of insertion for membrane systems of different thickness. To 

calculate activation energies associated with transitions from one state to another, Arrhenius 

plots were constructed for each membrane type (Supplementary Figure S5 ) by fitting of the 

data-points with the linear equation: 

 

ln 𝑘 = −
𝐸𝑎

𝑅𝑇
+ ln 𝐴 

 

where Ea is the activation energy and A is the frequency factor. The total activation energy 

barriers of pHLIP insertion into 50 nm liposomes composed of diC14:1PC, diC16:1PC, and 

diC18:1PC increased with bilayer thickness and were: 36.4 kcal/mol, 40.2 kcal/mol, and 46.8 

kcal/mol, respectively (Figure 4d and Table 2). Activation energies of the first step of pHLIP 

insertion (about 11 kcal/mol) do not depend on the lipid type. The first step is associated with the 

transition from coil to helical structure on the surface of the lipid bilayer, as was shown 

previously [17]. The second step is slightly influenced, with a varied activation energy from 13.0 

kcal/mol  to 12.7 kcal/mol to 14.1 kcal/mol. But, the strongest effects are seen in the final step of 

pHLIP insertion across the bilayer, which correlate with the lipid bilayer thickness. For 

diC14:1PC, diC16:1PC, and diC18:1PC the activation energy barriers are found to be 10.1 kcal/mol, 

16.6 kcal/mol, and 21.3 kcal/mol, respectively for the final insertion step across the hydrophobic 

core of the membrane. It is interesting to note that the frequency factors for the final transition 

from Int2  State III also increased with bilayer thickness (LnA  in Supplementary Figure S6). 

The activation barrier for thin bilayers is low, and the probability of the final transition is also 

low, whereas thicker lipids create a higher activation barrier that is accompanied by a higher rate 

of transition. These observations might be attributed to the different configurations of the peptide 

in the initial (adsorbed) State II and the final (inserted) State III in liposomes of different 

thicknesses. Molecular dynamics calculations might be helpful to reveal atomic positioning of 

peptides at various states in various lipid systems. 

 

Discussion 

As expected, interactions of a pHLIP with membranes at both high and low pH are perturbed by 

altering the thickness, curvature and flexibility of lipid bilayers, but now we can reach a greater 
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understanding of these effects. Deeper partitioning of the peptide is observed with thicker (less 

flexible/fluid) bilayers (diC20:1PC and diC22:1PC) as well as more curved bilayers (50 nm), which 

is accompanied by formation of helical structures parallel to the membrane surface. While the 

peptide adopts the transmembrane State III configuration in all bilayer types at low pH, in thick 

bilayers the lipids can be perturbed by the pHLIP helix caused by a possible “hydrophobic 

mismatch": a difference in the thickness of the bilayer core and the length of the peptide's 

transmembrane domain. Hypothetically, water molecules at the interface of a disturbed bilayer 

can more readily access the fluorophore's indole ring and quench its fluorescence.  The decrease 

of fluorescence anisotropy in thick bilayers could also be explained by enhanced flexibility of 

tryptophan residues due to this partial exposure to water molecules where there is a hydrophobic 

mismatch. 

 

Our previous thermodynamics and kinetics studies indicated that about 200 lipids are perturbed, 

when unstructured pHLIP occupies membrane surface at pH 8 in State II [15], and about 85% of 

interfacial helical structure is formed within first 0.1 sec after pH drop from 8 to 3.6 [18]. We 

assume that when a peptide forms a rigid helical structure and penetrates deeply into one 

monolayer of a lipid bilayer, it leads to the disruption of the ordered alignment of lipids, 

promoting instability and dynamic membrane tension, which presumably drives peptide 

insertion. The membrane tensions and instability are released when the peptide adopts a 

transmembrane orientation, when only 10-20 lipids are interacting with helix in State III at low 

pH [15]. Bilayer curvature and lipid composition would influence that tension, due to the 

differences in flexibility between thick vs. thin or highly curved vs. planar bilayers. The 

hydrophobic core of the bilayer represents a barrier for the insertion that requires energy to 

overcome.  

 

In the kinetics studies of pHLIP insertion into membranes composed of diC14:1PC, diC16:1PC and 

diC18:1PC lipids, increased lipid acyl chain length is predicted to increase the hydrophobic 

thickness of the bilayer from 20 Å to 28 Å [29] and decrease membrane fluidity [9] creating 

higher hydrophobic barrier. The increased content of cholesterol (20%) in liposomes comprised 

of diC18:1PC lipids also leads to the increase of bilayer thickness and decrease of membrane 

fluidity [7]. The rate of pHLIP insertion was correlated with the acyl chain length of the lipid 
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bilayer and the presence of cholesterol in diC18:1PC membranes, as the fastest insertion was 

observed into thinner bilayers (diPC14:1) and slowest insertion into thicker bilayers (diPC18:1) 

with 20% cholesterol. The process of pHLIP insertion from State II to State III follows a four-

state kinetic model with three transition steps. Step one (interfacial helix formation) do not 

depend much on the lipid acyl chain length. However, the final step of insertion (translocation of 

pHLIP’s C-terminus across the membrane) increases substantially in activation energy with 

increasing of lipid bilayer thickness and order. These results correlate with previous studies that 

showed State II helix formation is independent of the number of protonatable groups at the 

inserting end of pHLIP, while the time of transmembrane helix formation increases with 

increasing number of charged groups or presence of cargo in the inserting C-terminus [17]. Thus, 

the activation barrier for a polypeptide insertion into membrane is affected by i) thickness and 

fluidity of membrane bilayer and/or ii) by charges and polarity of cargo attached to the peptide 

inserting end.  

 

It is also important to note, that the process of peptide insertion starts from different pHLIP’s 

“initial configurations” (and potentially slightly different final inserted configurations) for 

different lipid bilayers. In State II, pHLIPs have more helical structure and deeper penetration 

into the outer monolayer of bilayers with longer acyl chains and with highly curved membranes 

[30]. We demonstrated that pHLIP is sensing hydrophobic exposure in the membrane lipids. The 

exposure results from a combination of two factors: high curvature of the bilayer (SUVs vs 

LUVs and vs GUVs) and long acyl chains of the lipids that compose this bilayer. Packing defects 

of the lipid headgroups located on the outer leaflets create the spaces for peptide enhanced 

binding to membrane.   

 

pHLIPs have been under development for clinical applications due to their tumor targeting 

activity in vivo [19-21, 31, 32]. Their specific accumulation in tumors is thought to primarily 

result from its differential interaction with membranes at basic vs. acidic pH. The observations 

we report here allow us to view additional factors that may influence pHLIP targeting in the 

body or translocation of cargo molecules across bilayers of various membranes within a cell, 

since peptide insertion could be promoted in membranes with lower thickness and higher fluidity 

or regions of high curvature. It has been shown that the membrane of human leukemia and 
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lymphoma cancer cells has increased fluidity, attributed to changes in their phospholipid and 

cholesterol content [33, 34]. With abnormally high rates of cell division, cancer cells often 

exhibit such changes in membrane composition as they must upregulate biosynthetic pathways to 

provide cell building blocks, such as membrane components, rather than relying on circulating 

supplies. Since biosynthesis-sourced membranes significantly differ from the membrane 

composition of healthy cells, cancer cells are likely to have an abnormal set of membrane 

physical properties. While the physical properties of biological membranes are a likely factor 

influencing the selective targeting of cancer cells by pHLIPs and other membrane-interactive 

molecules, we find the effects are not dramatically large in our model systems. Nevertheless, 

local fluidity enhances local curvature in membranes, locally exposing more hydrophobic area in 

a bilayer.  Surface binding of a peptide could be enhanced in tumor cells by such effects. 
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Tables 

Table 1. The rate constants (k, sec
-1

) characterizing transitions from State I to Int1; Int1 to Int2, 

and Int2 to State III  along pHLIP insertion pathway into the lipid bilayer of liposomes of various 

lipid compositions and cholesterol content. 

 
14:1 PC 16:1 PC 18:1 PC 

18:1 PC 

20% chol. 

k1 

k2 

k3 

57 

3.4 

0.14 

77 

3.1 

0.13 

103 

4.9 

0.06 

100 

1.9 

0.01 

 

 

Table 2. The values of the activation energies (Ea, kcal/mol) and St. Er. were calculated for the 

transitions from State I to Int1; Int1 to Int2, and Int2 to State III along pHLIP insertion pathway 

into the lipid bilayer of liposomes of various lipid compositions by fitting of rates 

(Supplementary Figures S5) with Arrhenius function. 

 

 

 

 

  

Transitions 14:1 PC 16:1 PC 18:1 PC 

 State II   Int1 

  Int1  Int2 

  Int2  State III 

11.4 ± 1.7 

13.0 ± 1.0 

10.1 ± 2.2 

10.9 ± 1.3 

12.7 ± 2.4 

16.6 ± 0.9 

11.4 ± 1.5 

14.1 ± 2.3 

21.3 ± 2.2 

Total: State II  State III 34.6 40.2 46.8 
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Figure Legends 

Figure 1. pHLP interaction with membranes of different curvature and cholesterol content 

at pH 8.  The position of maximum (Lmax) of fluorescence spectra of pHLIP measured at pH 

8.0 in the presence of liposomes of various lipid compositions, diC14:1PC, diC16:1PC, diC18:1PC, 

diC20:1PC diC22:1PC and various sizes from 50 to 1000 nm in diameter (a), and diC18:1 PC 

liposomes of 100 nm in diameter with varying amount of cholesterol (b). 

 

Figure 2. pHLIP interaction with membranes of different thickness at pH 8 and pH 4. (a) 

The relation between normalized area under the pHLIP fluorescence spectra and position of 

maxima of emission (Lmax) are shown. The fluorescence intensity was normalized for the 

intensity of 2 µM of pHLIP in solution without liposomes. Numbers next to the points denote the 

acyl chain length of the lipids. Fluorescence spectra of pHLIP in different states are shown in 

Supplementary Figure S2a. (b) Ratio of ellipticity at 222 nm and 208 nm of pHLIP measured in 

the presence of liposomes of various lipid compositions are presented. CD spectra of pHLIP in 

different states are shown in Supplementary Figure S2b. (c) Anisotropy of pHLIP tryptophan 

fluorescence measured at 350 nm in the presence of liposomes of various lipid compositions are 

shown, error bars, s.d. (n =  10 experiments). Peptide and lipid concentrations were 2 µM and 0.4 

mM consequently, and an average liposome diameter was 50 nm in all measurements. The data 

obtained at pH 8 and pH 4 are shown in blue and red, respectively.   

 

Figure 3. Oriented circular dichroism of pHLIP. OCD spectra of pHLIP interacting with   

diC14:1PC (a), diC18:1PC (b) and diC22:1PC (c) lipid membranes at pH 3.6 are shown. 

 

Figure 4.  Insertion kinetics of pHLIP across different bilayers at different temperatures 

and calculated activation energies. Kinetics of pHLIP insertion across the lipid bilayer of 50 

nm liposomes comprising of diC14:1PC (a), diC16:1PC (b), and diC18:1PC (c) lipids were 

monitored by changes of tryptophan fluorescence of pHLIP as a result of pH jump from 8.0 to 

3.6 at different temperatures. Activation energy, Ea, and St. Er. were calculated for the transitions 

between four states along pHLIP insertion pathway by fitting of rates (Supplementary Figures 

S5) with Arrhenius function (d). The activation energy values are given in Table 2. 
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Figure 4 
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Supplementary Information 

 

Bilayer thickness and curvature influence binding and insertion of pHLIP
®
 peptide 

 

 

 

 

Supplementary Figure S1. Chemical structures and melting temperatures of monounsaturated 

lipids used in the study. 
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Supplementary Figure S2. Tryptophan fluorescence (a) and circular dichroism (b) spectra of 

pHLIP measured in State I at pH 8.0 in absence of POPC liposomes (black lines), State II at pH 

8.0 in presence of POPC liposomes (blue lines) and State III at pH 3.6 in presence of POPC 

liposomes (red lines). 
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Supplementary Figure S3. Oriented circular dichroism of pHLIP in 22:1 PC membranes at 

different pHs. Left Y-axis shows values for pH 8.0 signal, right Y-axis shows values for pH 3.6 

signal.  

 

 

 

Supplementary Figure S4. Kinetics of pHLIP insertion across the lipid bilayer of 50 nm 

liposomes of various lipid compositions (a) and cholesterol content (b) were monitored by 

changes of tryptophan fluorescence of pHLIP as a result of pH jump from 8.0 to 3.6. The kinetic 

parameters are presented in Table 1. 
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Supplement Figure S5. The Arrhenius plots for pHLIP insertion across the diC14:1PC (a), 

diC16:1PC (b), and diC18:1PC (c) lipid bilayers are shown. Rates were obtained by fitting of the 

experimental kinetics data shown on Figure 4a-c employing four-state kinetic models, which 

assumes a sequential pathway for the processes of peptide insertion with 3 transitions State 

IInt1; Int1Int2 and Int2 State III described by 3 rates, ki (k1 is shown in red, k2 - in blue and 

k3 - in black). The Arrhenius plots were obtained by linear fitting and activation energy values 

were calculated (values are given in Table 2).  
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Supplement Figure S6. The changes of Arrhenius frequency factor, A, and St. Er. were 

calculated for the transitions between four states along pHLIP insertion pathway by fitting of 

rates (Supplementary Figures S5) with Arrhenius function. 
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