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The surface sensitivity available to photoelectron spectroscopies (PESs) makes them popular techniques for characterization of
chemical environments at shallower depths than other, more bulk-sensitive techniques and because they are generally thought to
be nondestructive. Variable energy, synchrotron radiation (SR), permits access to information not available to common lab-based
radiation sources, making high-energy PES studies extremely useful for understanding thin films and interfaces. High-SR photon
flux has been useful for developing models of soft X-ray-induced effects, but hard X-ray SR-induced effects are less well studied
and will be increasingly important as popularity and availability of SR for thin film analysis continues to grow. We report here on
observed modification of the solid electrolyte interphase of a lithium-ion battery electrode during prolonged exposure to 4 keV SR.
The effects can be summarized by desorption of oxygen-containing species from the sample surface and by reactions within the

film. Also presented is an estimate of the layer thickness’ time evolution during the prolonged SR exposure.

1. Introduction

Modifications of surfaces under spectroscopic investigations
had been of interest, albeit mostly for technical
manufacturing reasons [1], since before the observations of
Redhead [2] and of Menzel and Gomer [3, 4] in the 1960s.
These studies reported desorption of ions of oxygen, hy-
drogen, carbon monoxide, and barium from adsorbed layers
on metals under bombardment by low-energy electrons. The
Menzel-Gomer-Redhead (MGR) model that developed in
1964 describes the mechanism responsible for their obser-
vations as a direct valence excitation that produces disso-
ciation or desorption of the adsorbate, and the subsequent
success of the MGR model helped electron-stimulated de-
sorption (ESD) to become promising techniques for material
investigations of many systems.

In the late 1970s and early 1980s, the Knotek-Feibelman
(KF) model was developed to reinterpret ESD data that were

not entirely consistent with the predictions of the MGR
model [5-9]. The KF model identifies the primary process as
core-level excitation, followed by Auger decay(s). This model
is particularly suited to highly ionic systems and provides
a natural extension to higher energy excitation, as well as to
excitation by photons in photon-stimulated desorption
(PSD), X-ray PSD (XPSD), and X-ray-induced electron-
stimulated desorption (XESD) studies.

The MGR and KF models as well as subsequent re-
finements to the theoretical understanding, including co-
valent systems [10], neutral fragments [11], lithography [12],
defect-electron spreading [13], decomposition [14-17], and
others have helped to maintain ESD/PSD popularity and
utility for many years and have motivated the exploitation of
the phenomena for various purposes. Urisu and coworkers
demonstrated oxygen desorption from molybdenum oxide
via synchrotron radiation (SR) as a viable means of surface
cleaning [18], and a considerable focus on preferential
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photochemical reactions highlights the possibilities for de-
position and doping in materials engineering applications
[19-22].

Soft X-rays are common photon sources for these ex-
periments as much of the theoretical interest involves
excitation of core-levels with electron-binding energies in
the sub-keV range. Chou and Wen note, however, that
while many soft X-ray sources and their characteristic
photon flux densities are generally assumed to cause
negligible changes to the adsorbate in PSD studies, par-
ticular systems can exhibit variation in chemical-bonding
structure, especially when high-intensity SR is used [23].
When hard X-ray sources are used, in addition to the MGR
and KF model mechanisms, escaping photoelectrons
contribute to a high-energy secondary electron back-
ground. As the energy of the exciting photons increases, in
contrast to the KF model (where the energy of the gen-
erating Auger event is necessarily fixed) and the MGR
model (where the cross section for direct ionization of
valence electrons decreases), higher-energy electron-
stimulated effects will become more important. As
Rosenberg and coworkers pointed out, the availability of
high-energy SR motivates novel applications such as deep
X-ray lithography [24]. In that study, the authors dem-
onstrated etching and deposition by irradiating substrates
immersed in reactive solvents as well as fabrication of
nanocrystalline particles. Core-level excitations from high-
energy photons give enough energy to escaping photo-
electrons to break chemical bonds, and the ability of the
photons to modify the sample can scale with the energy.

Certainly, as the high energy and high flux of SR con-
tinue to find more applications in the fields of thin film
systems and materials science at large, changes induced by
the interaction of SR with the samples being studied will be
important to consider. The deeper penetration of high-
energy photons will make secondary, KF model-like, and
other processes more important. Flege et al. have shown that
X-ray standing waves (XSW) using electrons and fluores-
cence photons as secondary signals with XPSD (XSW-PSD)
is a viable tool to investigate desorption with the ability to
identify the underlying direct or indirect processes in a site-
specific manner for several systems (see [25] and references
therein) with photon energies in the HAXPES range. In the
present work, we report on observations of structural and
chemical changes to a complex passivation layer on a silicon
nanoparticle substrate using 4keV SR.

The solid electrolyte interphase (SEI) is a passivation
layer that grows on electrodes in lithium-ion batteries (LIBs)
during normal charge/discharge cycling. Development of
chemistries to promote a superior SEI is one part of the
ongoing effort to improve secondary battery performance
[26-28]. Many methods being employed to improve per-
formance may be better understood by hard X-ray photo-
electron spectroscopy (HAXPES) investigation or by the
more common, lower energy version of this technique, XPS,
which differs from HAXPES [29-33]. The SR-based
HAXPES technique is able to provide additional in-
formation due to the higher-energy photons available from
synchrotron sources [34-39]. Most lab-based XPS
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experiments provide photons with one or two distinct en-
ergies (1487 eV Al-Ka or 1254 eV Mg-Ka), whereas SR gives
access to photons with energy up to 10keV. The greater
energy given to escaping photoelectrons in HAXPES ex-
periments provides information from greater mean depth in
the SEI than what is obtained from XPS (roughly double, in
this investigation), and the tunability of SR enables char-
acterization of the SEI at multiple depths in HAXPES ex-
periments. Included in the supplemental information for
this report is a comparison of the mean free path for core
electrons in lab-based XPS instruments with HAXPES
experiments.

The HAXPES technique can be extremely useful to the
LIB effort, but care must be taken to understand the effects of
SR irradiation, especially as they concern modifications to
the SEL Edstrom et al. note that attention was paid to these
concerns by monitoring the C 1s and F 1s spectra during
data collection and decreasing the radiation intensity [35].
However, to our knowledge, neither the nature nor the
extents of the X-ray-induced changes we report here have
been systematically studied.

2. Materials and Methods

For the present study, we analyzed a binder-free silicon
nanoparticle electrode after 20 charge/discharge cycles in
a coin-cell Li-ion battery built with 1.2 M LiPFq electrolyte
salt in fluoroethylene carbonate (FEC) as solvent (half-cell).
Preparation, charge/discharge cycling, and disassembly of
the battery from which the sample analyzed in this study was
harvested has been previously published in our study re-
garding the formation of the SEI for this system [37]. The
harvested electrode was dried overnight in the vacuum
antechamber of the Ar-filled glovebox in which the battery
was disassembled, installed in a tightly sealed vessel under Ar
at atmospheric pressure, and transported to the X-24A
endstation of the NIST beamline at the National Synchro-
tron Light Source (NSLS-I), Brookhaven National Labora-
tory (Upton, NY), for analysis. At the beamline, the vessel
was opened in a glovebag attached to the fast-turnaround
load lock port of the endstation as a positive pressure of N,
was flown outward through the bag. We recorded spectra for
the C 1s, P 1s, Si 1s, and O 1s cores in that order and
spending equal time scanning each region, so one complete
collection period took 25 minutes. This time is roughly what
it takes to collect all cores for a given sample at a given
photon energy in one of our HAXPES studies. To elucidate
the changes SR induced, we repeated 25-minute collection
periods back to back for a total SR exposure of more than
three hours.

Estimates for the SEI layer’s relative thickness during SR
irradiation are performed using the Si Is core signal, similar
to our previous work [39], but since there is no unchanging
species that is localized to the substrate and obviously ap-
parent in this system, as the metal oxide signal was in that
study, we have reported thickness estimates relative to the
initial measurements of two peaks (Li,SiOy and Li,Si) in the
Si 1s spectrum representing the interface between the SEI
and the substrate silicon nanoparticles.
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FiGcure 1: Individual Is electron spectra for (CW from top left) C, P,

Si, and O for BF-Si nanoparticle electrode after 20 charge/discharge

cycles in FEC solvent, displayed in increments of 25 min. of exposure to 4 keV photon flux (~200J of energy). Noise in the P 1s spectrum is
due to the small concentration of phosphorus in the SEI and the desire to minimize data collection time.

The thickness approximation is described by the fol-
lowing equation:
Ci J;O e—(x//\ sin G)dx _am |
C; Jgoe—(xllsine)dXNE ’ ()
where the ratio of the concentration C; in a given sample to
the concentration C; in the fresh sample equates to an
exponential which is readily solved for d, the thickness of the
sample. The inelastic mean free path of polyethylene was
used for A [40]. The angle between the analyzer line of sight
and the surface normal to the sample defines 6, which was
fixed at 3°. Concentrations were calculated according to the
following equation:

_ AJ(T(KE),0 ()A(KE),)
"7 (3,4,/(T (KE) 0 () M(KE),))

(2)

where A corresponds to the spectrum area after Shirley
background subtraction and normalization to the

background level, T is the relative transmission function of
the X-24A analyzer [41], o is the Scofield photoionization
cross section [42], A is defined as above, and the summation
index j runs over all distinct elements analyzed. The Si 1s
concentration was separated for this analysis and restricted
to include only the areas of the Li,SiO, and Li,Si peak
contributions, as obtained through fits to the experimental
data using Voigt shapes.

3. Results and Discussion

While there were no observable changes to the spectra
between individual spot tests at different locations on the
sample and the first displayed period of data collection, we
observe changes to all collected spectra between the first and
second periods of data collection. Selected spectra are
presented in Figure 1 as plots of intensity versus electron-
binding energy in eV. The spectra are arrayed in four panes,
each representing one of the four cores, and each pane



displays the progression of the spectrum relative to the
time of beam exposure. Several traces are displayed for
time intervals between one and seven multiples of 25
minutes, representing the beginning of each four-core
period of data collection. We saw no obvious further
changes to the spectra for beam exposure times longer than
175 minutes.

The most striking features in Figure 1 are observed in
the C Is (upper left) and O 1s (lower left) spectra. In the
carbon spectrum, there is a very clear reduction in the
signals we have assigned to species with C-O (286.5¢eV),
CO; (289.7eV), and C-F (291eV) bonds. In the oxygen
spectra, the major feature is the reduced intensity of the
shoulder on the high-binding energy-side of the broad
peak. We assign this shoulder to the C-O bond (binding
energy 534.5eV), consistent with the concomitant change
in the carbon spectra. These changes can be explained by
desorption of oxygen-containing species from the surface
layer. That the Li,COj intensity is not obviously changed
in the carbon and oxygen spectra supports the suggestion
from our previous work that this species is more prevalent
deeper in the SEI [37] and/or is less sensitive to beam
exposure. The reduction of the C-F signal intensity at
291 eV is likely due to carbonization of sequestered FEC
(or its decomposition products [43]) similar to what has
been reported for observations on the polymer poly-
vinylidene fluoride, a very popular binder material for Li-ion
electrode fabrication [33, 36], upon exposure to soft X-rays
[15, 16]. In Figure 2, the integrated intensity of each spectrum
is plotted against exposure time, and the curves are nor-
malized to the initial observed intensity for each element. The
carbon and oxygen traces both decrease in a roughly linear,
nearly identical fashion in time consistent with photon-
stimulated desorption proportional to the energy delivered
to the sample by a photon beam of constant energy and nearly
constant flux.

We estimate the energy incident on the sample during
each 25-minute data collection period to be roughly 200 m]J
(at a flux of approximately 2.1 x 10'* photon s™*) as an upper
limit based on published photon flux ranges delivered to the
beamline from the storage ring, the beamline optics, as well
as the geometry of the sample and its orientation relative to
the photon beam [44-46].

By contrast, the phosphorus trace in Figure 2 indicates
very little change in total intensity versus time. The
phosphorus trend is less clear than the other three traces in
Figure 2 owing to the relatively lower signal/noise for P 1s
spectra of Figure 1. This is to be expected as less than 1% of
the total signal observed comes from phosphorus-
containing species, and the collection time was kept con-
stant across all four cores to minimize the collection period.
Inspecting the P 1s progression in the top right pane of
Figure 1, however, reveals the relatively constant total
(integrated) phosphorus signal is a result of intensity re-
distribution indicating recombination. The P 1s spectra,
show a clear reduction in intensity of the higher-binding
energy peak attributed to unmodified electrolyte salt LiPF
(2151.5eV) trapped in the SEI, and an increase in the
intensity of the broad peak at lower binding energy
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FiGuRre 2: Total signal intensity vs. beam exposure time for the 1s
electrons of Si, P, O, and C normalized to the initial intensity from
BF-Si nanoparticle battery electrode after 20 charge/discharge
cycles in FEC solvent. Uncertainty in these measurements, prop-
agated from the fit areas, is less than 10% for all measurements.
Energy incident on the sample from the 4keV photon beam is
estimated to be 1.5] after 3 hours.

assigned to fluorinated lithium phosphates. This result is
consistent with photon-stimulated decomposition of the
LiPF¢ salt, as phosphates are an expected product of its
decomposition [47].

The total intensity for silicon species in Figure 2 is
nonlinear in time, increasing dramatically for the first
few 25-minute measurement periods and less so for
further irradiation, and finally approaching an apparent
asymptote for exposure longer than about two hours,
which we estimate to be equivalent to 1] of absorbed
energy from the 4keV photon beam. This result is
mirrored in the Si 1s spectra displayed in Figure 1, where
all peaks appear to gain some intensity in time with
nothing obviously decreasing. Desorption from the SEI
indicated in the carbon and oxygen spectra may impact
the layer thickness to such an extent that more of the
substrate silicon is visible to the technique, which is
consistent with the apparent intensity increases of all
identified silicon-containing species. Estimation of the
relative thickness decrease of the SEI layer is reported in
Figure 3 as calculated from Voigt fits to the peaks in the
Si 1s spectra we have identified as Li,Si and Li,SiOy. The
measurements from the two peaks agree well within the
uncertainty of the measurements. We estimate that the
SEI thickness is decreased by about 1nm after three
hours of SR irradiation (~1.5]) but at that point the
thickness does not appear to be markedly changing. We
have recently estimated the SEI thickness developed on
different systems [39] and found the total SEI thickness
to be on the order of tens of nanometers.
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FiGure 3: Thickness estimates for the SEI calculated relative to the
initial measurement of the Si 1s core excited with 4 keV photons for
the peak we identified as Li,Si (open markers) and Li,SiOy (solid
markers). Uncertainty in these estimates, propagated from the fit
areas, is less than 10% for all measurements. Energy incident on the
sample from the 4 keV photon beam is estimated to be 1.5] after 3
hours.

4. Conclusions

We have analyzed the evolution of a complex, passivating
SEI layer grown on the BF-Si electrode of a LIB after 20
charge/discharge cycles to document the changes that are
observed due only to SR irradiation during ex situ
analysis. We have observed modification of the SEI
consistent with desorption of oxygen- and carbon-
containing species as well as conversion between
phosphorus-containing species. We are able to estimate
how much thickness of the layer is lost to desorption and
find it to be slightly more than 1 nm after more than three
hours of SR irradiation, which we estimate to be equiv-
alent to 1.5] of energy from the 4keV photon beam.
Relative to the estimated thickness of SEIs from similar
systems, this loss accounts for less than 5% of the total
layer thickness for exposure to SR well in excess of our
usual data collection time.

Data Availability

The raw HAXPES spectral data files used to support the
findings of this study are available from the corresponding
author upon request.
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