
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Physics Faculty Publications Physics 

2010 

pH-(low)-insertion-peptide (pHLIP) translocation of membrane pH-(low)-insertion-peptide (pHLIP) translocation of membrane 

impermeable phalloidin toxin inhibits cancer cell proliferation impermeable phalloidin toxin inhibits cancer cell proliferation 

Ming An 

Dayanjali Wijesinghe 
University of Rhode Island 

Oleg A. Andreev 
University of Rhode Island, andreev@uri.edu 

Yana K. Reshetnyak 
University of Rhode Island, reshetnyak@uri.edu 

Donald M. Engelman 

Follow this and additional works at: https://digitalcommons.uri.edu/phys_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
An, M., Wijesinghe, D., Andreev, O. A., Reshetnyak, Y. K., & Engelman, D. M. (2010). pH-(low)-insertion-
peptide (pHLIP) translocation of membrane impermeable phalloidin toxin inhibits cancer cell proliferation. 
Proc Natl Acad Sci USA, 107(47), 20246-20250. doi: 10.1073/pnas.1014403107 
Available at: http://dx.doi.org/10.1073/pnas.1014403107 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Physics 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/phys_facpubs
https://digitalcommons.uri.edu/phys
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1073/pnas.1014403107
mailto:digitalcommons-group@uri.edu


pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable pH-(low)-insertion-peptide (pHLIP) translocation of membrane impermeable 
phalloidin toxin inhibits cancer cell proliferation phalloidin toxin inhibits cancer cell proliferation 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/phys_facpubs/297 

https://digitalcommons.uri.edu/phys_facpubs/297


pH-(low)-insertion-peptide (pHLIP) translocation
of membrane impermeable phalloidin toxin
inhibits cancer cell proliferation
Ming Ana, Dayanjali Wijesingheb, Oleg A. Andreevb,1, Yana K. Reshetnyakb,1, and Donald M. Engelmana,1

aDepartment of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, New Haven, CT 06520; and bPhysics Department,
University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881

Contributed by Donald M. Engelman, September 27, 2010 (sent for review September 23, 2010)

We find that pH-(low)-insertion-peptide (pHLIP)-facilitated trans-
location of phalloidin, a cell-impermeable polar toxin, inhibits the
proliferation of cancer cells in a pH-dependent fashion. The mono-
meric pHLIP inserts its C terminus across a membrane under slightly
acidic conditions (pH 6–6.5), forming a transmembrane helix. The
delivery construct carries phalloidin linked to its inserting C termi-
nus via a disulfide bond that is cleaved inside cells, releasing the
toxin. To facilitate delivery of the polar agent, a lipophilic rhoda-
mine moiety is also attached to the inserting end of pHLIP. After
a 3 h incubation at pH 6.1–6.2 with 2–4 μM concentrations of
the construct, proliferation in cultures of HeLa, JC, and M4A4
cancer cells is severely disrupted (>90% inhibition of cell growth).
Treated cells also show signs of cytoskeletal immobilization and
multinucleation, consistentwith the expected binding of phalloidin
to F actin, stabilizing the filaments against depolymerization. The
antiproliferative effect was not observed without the hydrophobic
facilitator (rhodamine). The biologically active delivery construct
inserts into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid
bilayerswith an apparent pKa of ∼6.15, similar to that of the parent
pHLIP peptide. Sedimentation velocity experiments show that the
delivery construct is predominantly monomeric (>90%) in solution
under the conditions employed to treat cells (pH 6.2, 4 μM). These
results provide a lead for antitumor agents that would selectively
destroy cells in acidic tumors. Such a targeted approachmay reduce
both the doses needed for cancer chemotherapy and the side
effects in tissues with a normal pH.

drug delivery ∣ hydrophilic drugs ∣ cytoplasmic delivery ∣ targeting acidity ∣
targeted chemotherapy

Cancer chemotherapy is often limited by the toxic side effects
of antineoplastic agents. Targeted therapy, including targeted

drug delivery, can improve the therapeutic index by reducing side
effects in healthy tissues, while reducing the overall dose by
concentrating the drug in the targeted tissue. Some drug delivery
systems, such as liposomes and polymers, can passively target tu-
mors due to the enhanced permeation and retention (EPR) effect
(1–3). However, the EPR effect is small or nonexistent for certain
tumors (2, 4–6). Most molecular targeting strategies take aim at
specific cancer biomarker proteins such as overexpressed cell sur-
face receptors. Antibodies and other molecules (e.g., transferrin,
folate) have been used as targeting ligands to bind to these recep-
tors for the delivery of imaging or therapeutic agents to cancer
cells (7, 8). However, many cancer biomarker receptors (e.g.,
ERBB2) are not uniquely expressed in cancer cells but also in
certain healthy cells, leading to side effects in patients (9).
Further, therapy based on the targeting of specific binding sites
is hampered by the heterogeneity of tumors, especially the differ-
ences among cells within a tumor (10, 11). The lack of homoge-
neously expressed target biomarkers (among cancer cells) and the
ease with which clonal selection of cancer cells can circumvent a
single (or a few) targeted protein(s) could explain why molecular
targeting approaches have had limited success against solid
tumors (and are frequently associated with rapid development

of resistance) (9, 12). Therefore, it is important to ask whether
other, more general, features of cancer physiology might be
exploited for targeted therapy against solid tumors.

Acidosis is a property of tumor microenvironments that may
serve as a general biomarker (13–15) and we have developed an
approach to target cells in tissues with a low extracellular pH. Our
strategy is based on the action of the pH (low) insertion peptide
(pHLIP)—a water-soluble peptide derived from the transmem-
brane (TM) helix C of bacteriorhodopsin (16). At pH values
above seven, pHLIP in solution partitions to the surface of a lipid
bilayer without inserting, and at a slightly acidic pH it inserts with
a pKa of ∼6 in vitro to form a TM helix (16). At concentrations
below 7 μM, pHLIP molecules predominantly exist as monomers
in solution, and in the presence of lipid vesicles (lipid∶pHLIP
molar ratio > 250∶1), the monomeric state is maintained through-
out membrane association and insertion (17, 18). Unlike other
membrane active peptides (14), pHLIP does not cause membrane
leakage in any of the membrane associated states (17, 19). In
addition, pHLIP has shown no toxicity to cells (at concentrations
up to 10 μM at pH 6.5 for 1 h or 16 μM at pH 7.4 for 24 h) or
animals (4 mg∕kg in mice, followed for 2 mo) (20, 21). The inser-
tion process is unidirectional (C terminus in), rapid (<2 min in
lipid vesicles) and reversible (upon pH increase to>7) (17, 20, 22).
The transition between the surface bound state and the inserted
state is mediated by the protonation or deprotonation of Asp side
chains in the TM region (16, 21). These unique properties
prompted us to test both (D)- and (L)-pHLIP as tumor-imaging
vehicles in mice. When the noninserting N-terminal end of
pHLIP is conjugated to a near-IR fluorescent dye (e.g., Cy5.5,
AlexaFluor 750) or to the positron emission tomography probe
64Cu-1;4;7;10-tetra-aza-cylcododecane-N;N 0;N 00;N 000-tetra-acetic
acid, these pHLIP imaging constructs successfully targeted acidic
tissues in vivo, including tumors, kidneys, and sites of inflamma-
tion (21, 23). In mouse implant models, pHLIP-dye constructs
found tumors, defined their borders with a high degree of accuracy
(24), and accumulated in them, even when the tumor was very
small (i.e., visually undetectable, ≤1 mm) (21).

Given its properties, it may be possible to use pHLIP for
targeted intracellular delivery of therapeutic agents. Under acidic
conditions, the folding of pHLIP across a membrane (into a
TM helix) is exothermic (by ∼2 kcal∕mole) (18), and the inser-
tion can move C-terminal cargo molecules across a lipid bilayer
(20, 25). The cargo can be conjugated to the inserting C terminus
of pHLIP via an S–S disulfide bond that is cleaved inside cells,
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releasing cargo into the cytoplasm. Among cargos that have been
successfully delivered to the cytoplasm in this fashion are (i)
fluorescent dyes (e.g., dansyl), (ii) phalloidin-TRITC (1.3 kDa
with LogP ≈ −0.05, where P is the octanol-water partition coeffi-
cient), (iii) peptide nucleic acid (2.5 kDa), and (iv) cyclic peptides
(up to 850 Da with LogP ≈ −3) (20, 25). The pHLIP-mediated
intracellular delivery does not rely on receptor binding or endo-
cytosis (20), rather, the cargo molecule is directly delivered across
the lipid bilayer of the plasma membrane. Compared to receptor-
targeted delivery of chemotherapeutic agents, this approach has
three potential advantages: (i) it is not sensitive to the heteroge-
neous expression of receptors or antigens among cancer cells
within a tumor, for example, pHLIP-mediated delivery would de-
stroy active and quiescent malignant cells alike because they
share a common acidic microenvironment; (ii) direct cytoplasmic
delivery avoids endosomal trapping of drug payloads—a noted
problem that can plague drug carriers that rely on endocytosis
for cellular entry (26); and (iii) because this method is not limited
by the number of targeted receptors, more copies of therapeutic
agents may be delivered per cell than receptor-mediated ap-
proaches. Thus, we envision using pHLIP-mediated drug delivery
to preferentially destroy tumor cells while sparing normal tissue.
In this study, we quantitatively investigate the activity of phalloi-
din delivered into cancer cells, showing that pHLIP can deliver a
molecule in sufficient amounts for biological efficacy. Because
pHLIP is not toxic on its own, cargo delivery could also be applied
therapeutic purposes other than cell killing.

Results
Phalloidin, a cytotoxin isolated from the Death Cap mushroom
Amanita phalloides, binds tightly to actin filaments (Kd < 40 nM)
and stabilizes them against depolymerization (27–29). Phalloidin
is a polar, cell-impermeable, cyclic heptapeptide (Fig. 1). When a
sufficient amount of phalloidin is microinjected into a cytoplasm,
cell proliferation is inhibited (30). Previously, we found that
phalloidin-TRITC (attached to the C terminus of pHLIP) is
translocated across the plasma membrane of HeLa, JC (breast
adenocarcinoma), and TRAMP (prostate) cancer cells in a

pH-dependent manner, inducing stabilization of the actin cytos-
keleton and formation of multinucleated cells (20). However,
these qualitative results were obtained with a heterogeneous
construct in which pHLIP-Cys is photo-cross-linked to phalloi-
din-TRITC (a phalloidin-rhodamine conjugate) via a thiol-reac-
tive aryl azide linker (i.e., S-[2-(4-azidosalicyl-amido)ethylthiol]-
2-thiopyridine), and no study of dosing was done. Our earlier
synthetic approach was convenient for initial test experiments,
but it is unsuitable for further studies because it results in an un-
defined mixture of products, partly due to the photo-cross-linking
chemistry, and partly due to the fact that phalloidin-TRITC 4 is a
mixture of stereo- and regioisomers (see Fig. 1 for its structural
variations) (31). Here we present controlled studies using pure
constructs.

Design and Syntheses of Delivery Constructs pHLIP-C(aminophalloidin)
and pHLIP-K(rhodamine)-C(aminophalloidin). To evaluate the thera-
peutic potential of phalloidin as a pHLIP-delivered cytotoxin, we
need to use a chemically defined agent. Thus, we synthesized a
single isomer pHLIP-C(aph) 5 in which aminophalloidin (aph) is
directly attached to the C terminus Cys via a short disulfide linker
(Fig. 1). The synthesis of pHLIP-C(aph) 5 begins with the com-
mercially available single isomer aminophalloidin 2, which differs
from phalloidin 1 only in that the terminal δ-hydroxyl group of
side-chain 7 is replaced by an amino group (Fig. 1) (32). Treat-
ment of aminophalloidin 2 with the bifunctional linker N-succi-
nimidyl 3-(2-pyridyl-dithio)-propionate (SPDP) provides the
pyridyl-disulfide-derivatized aminophalloidin PDP intermediate
3 (Fig. 1), which is subsequently conjugated to pHLIP-Cys via dis-
ulfide exchange to give the final construct 5. This two-step pro-
cedure was carried out without purification of intermediate 3. To
avoid side reactions and to simplify purification, near quantitative
amounts of SPDP (1.2 eq) and pHLIP-Cys (1.21 eq) were added.
HPLC purification provided the final construct 5 in >90% purity
and ∼50% yield over two steps, and its identity was confirmed via
MALDI-TOFMS. Among all phalloidin side chains, the position-
7 Leu-ðOHÞ2 side chain is least important for binding to F actin
(31). Therefore, the short linker attaching aph to pHLIP-Cys in
construct 5 is expected to have only a minimal effect on F-actin
binding after release into the cytoplasm.

However, to our surprise, we could not find conditions under
which the pHLIP-C(aph) construct stopped or suppressed growth
in several cancer cell lines, including HeLa, JC, PC-3, and MCF-7
(see Fig. 2E for data with JC). Furthermore, pHLIP-C(aph) did
not induce the expected cytotoxic effects, such as multinucleation
or cytoskeleton rigidification, which were observed with the pre-
vious construct pHLIP-S-S-(phalloidin-TRITC) (20). Why does
pHLIP translocate phalloidin-TRITC into cells more effectively
than phalloidin alone? One possible explanation is that the
hydrophobic rhodamine dye (i.e., TRITC) renders phalloidin-
TRITC less polar than phalloidin, thus reducing the energetic
barrier for translocation. Indeed, n-octanol/water partition ex-
periments indicate that phalloidin-TRITC is extracted into the
n-octanol phase ∼40× more readily than phalloidin, with a LogP
value of −0.05 compared to −1.5 for phalloidin (Fig. 1). If we
consider the contribution of linker structures to cargo polarity,
the LogP difference between the two cargos could be even more
pronounced, because the aryl azide photo-cross-linker used in
pHLIP-S-S-(phalloidin-TRITC) is more hydrophobic than the
SPDP-derived linker in pHLIP-C(aph). In short, we hypothesized
that the hydrophobicity of the cargo correlates with the efficiency
of pHLIP-mediated translocation and, in turn, the ability to in-
duce biological effects in cells. To test this idea, we synthesized
the pHLIP-K(rho)C(aph) construct 6, in which a rhodamine
(rho) moiety [i.e., tetramethylrhodamine (TAMRA)] is placed
on a Lys residue inserted immediately preceding the Cys residue
carrying phalloidin (Fig. 1). We designed this construct so that
the combined hydrophobicity of phalloidin and TAMRA should

Fig. 1. Phalloidin and pHLIP constructs. Structures of phalloidin and its de-
rivatives are shown as 1–4. For phalloidin-TRITC 4, a star (*) denotes a carbon
center of mixed or unspecific stereochemistry. Structures of pHLIP delivery
constructs tested in this study are shown as 5 and 6.
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be similar to that of phalloidin-TRITC. The pHLIP-K-C(aph)
intermediate (without the rho moiety) is synthesized and purified
in the same fashion as described above for pHLIP-C(aph) 5. By
capping the amino terminus with an acetyl group (during the
solid-phase synthesis of the pHLIP-KC peptide), the rho moiety
is then selectively conjugated to the Lys side chain using the
succimidyl ester of 5-TAMRA. This sequence provides the final
construct pHLIP-K(rho)C(aph) 6 in ∼27% overall yield in
three steps.

Antiproliferative Effects of pHLIP-K(rhodamine)C(aminophalloidin).
When HeLa cells were treated with pHLIP-K(rho)C(aph) for
3 h at pH 6.2 (37 °C), cell proliferation was severely disrupted
(Fig. 2A). Treatments were carried out at delivery construct
concentrations ranging from 1 to 4 μM, in 96-well plates with
∼4;000 cells per well. After 4 d of subsequent growth at normal
pH, wells treated with 4 μM of pHLIP-K(rho)C(aph) contained
almost no viable cells. Up to 97% inhibition of cell growth was
achieved. Meanwhile, cells treated with only DMSO (0 μM col-
umn in Fig. 2A) had proliferated to ∼60;000 cells per well. The
antiproliferative effect is concentration dependent: When HeLa
cells were treated at 1 and 2 μM concentrations, 31% and 71%
inhibitions were observed, respectively. As expected, inhibition of
cell growth is pH dependent: Treatment with pHLIP-K(rho)C
(aph) at pH 7.4 under the same conditions had no effect on cell
proliferation (Fig. 2A). This lack of antiproliferative effects at pH
7.4 is consistent with the notion that delivery of phalloidin is
mediated by pH-dependent pHLIP insertion across the plasma
membrane, and does not involve endocytosis, which is expected
to occur readily at pH 7.4. The low pH treatment in itself did not
have any deleterious effect on the proliferation of HeLa cells, as
shown by control experiments without pHLIP-K(rho)C(aph)
[(Fig. 2A) compare the 0 μM, pH 6.2, black bar with the
0 μM, pH 7.4, gray bar, there is no significant difference].

To check for cell-specific effects, we tested pHLIP-K(rho)C
(aph) using JC (mouse mammary gland adenocarcinoma) and
M4A4 (human breast ductal carcinoma) cells (Fig. 2 B and C).
In order to inhibit JC cell growth, the pH of the incubation media
had to be further lowered to pH 6.1. The JC and M4A4 cells were
more sensitive to low pH than HeLa cells, evidenced by nonspe-
cific cell death at pH 6.1–6.2 that reduced the number of viable
cells by ∼40–50% (Fig. 2 B and C; 0 μM, black bar vs. gray bar).
Nonetheless, growth inhibition specific to the presence of pHLIP-
K(rho)C(aph) is evident: Treatment with 2 μM of pHLIP-K(rho)
C(aph) inhibited 78% of JC proliferation (Fig. 2B, pH 6.1 black
bars; 2 vs. 0 μM), whereas 92% inhibition of M4A4 proliferation
was observed at 4 μM (Fig. 2C, pH 6.2 black bars; 4 vs. 0 μM).
Compared to the 0 μM controls at pH 6.2, reductions in the
growth of JC and M4A4 cells are statistically highly significant
(p value < 0.001) even at 2 μM of delivery construct. Because
some of these cells are already compromised by acidity at pH
6.1–6.2, pHLIP-delivered phalloidin molecules may further tip
the balance toward cell death. In short, the antiproliferation
effects observed with HeLa cells are reproducible with JC and
M4A4 cells.

As expected, under equivalent conditions phalloidin (or ami-
nophalloidin) showed no inhibitory effect on M4A4/HeLa prolif-
eration (Fig. 2F, data for phalloidin with M4A4 cells shown),
consistent with the knowledge that phalloidin is a cell-imperme-
able toxin (30, 31). The rhodamine moiety on pHLIP-K(rho)C
(aph) is necessary for inhibition, because (i) under the same con-
ditions pHLIP-C(aph) 5 does not stop the growth of JC or HeLa
cells (Fig. 2E, data with JC cells shown); and (ii) no inhibitory
effect was observed when HeLa cells were treated with
pHLIP-K-C(aph)—a construct missing the rhodamine moiety
but otherwise identical to pHLIP-K(rho)C(aph) (Fig. 2D). How-
ever, in the case of pHLIP-K-C(aph), we cannot rule out the
possibility that the positively charged free Lys side chain in the
C terminus further burdens pHLIP insertion, blocking cargo
entry. Furthermore, when HeLa cells were treated with an unmo-
dified, “native” pHLIP peptide that does not contain Lys or
Cys in its C terminus (thus with no rhodamine or phalloidin cargo
attached), no inhibition of proliferation was observed (Fig. S1).
Hence, pHLIP insertion in itself does not hinder cell growth, con-
sistent with our previous observations that pHLIP is minimally
toxic (20, 21). In summary, these data support our hypothesis that
the combined hydrophobicity of the cargos, manifested as an

Fig. 2. Studies of growth inhibition by different phalloidin delivery
constructs. (A) Phalloidin delivery construct pHLIP-K(rho)C(aph) inhibits the
proliferation of HeLa cells in a pH-dependent fashion. HeLa cells in 96-well
plates (∼4;000 cells perwell) were incubated with 1, 2, or 4 μM of pHLIP-K
(rho)C(aph) for 3 h at pH 6.2 (black bars) or 7.4 (gray). After 4 d of growth,
the number of cells was estimated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt reagent
(with OD at 490 nm as readout). All OD at 490 nm readings are normalized to
the DMSO control (0 μM, pH 7.4) as 100%, which is ∼60;000 to 70,000 cells per
well. Errors of the mean were estimated at the 95% confidence level using
the two-tailed Student t distribution coefficient (n ¼ 12 except n ¼ 4 for 4 μM
at pH 7.4; see SI Text for more details). (B) Inhibition of proliferation of JC
cells by pHLIP-K(rho)-C(aph) at pH 6.1 (n ¼ 4 except n ¼ 8 for 0 μM data).
A two-tailed Student t test with unequal variance (heteroscedastic) was
carried out for the comparison of 0 and 2 μM pH 6.1 datasets (***
p value ¼ 0.00071). (C) Inhibition of proliferation of M4A4 cells by pHLIP-K
(rho)-C(aph) at pH 6.2 (n ¼ 4 except n ¼ 8 for 0 μM data). Two pairs of pH
6.2 datasets were compared: 0 vs. 2 μM (*** p value ¼ 0.00063) and 0 vs.
4 μM (*** p value ¼ 0.00015). (D) HeLa cells were treated with pHLIP-K-C
(aph) (n ¼ 4), and antiproliferative effect was not observed. (E) pHLIP-C
(aph) does not inhibit the proliferation of JC cells (n ¼ 4 except n ¼ 8 for
0 μM). (F) Phalloidin alone does not inhibit the proliferation of M4A4 cells
(n ¼ 4 except n ¼ 8 for 0 μM).
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overall property of the inserting C terminus of pHLIP with its
cargo, determines the efficiency of delivery into cells.

Morphological Changes of Cells Treated with pHLIP-K(rhodamine)C
(aminophalloidin). As observed previously [in cells incubated with
the heterogeneous pHLIP-S-S-(phalloidin-TRITC) construct],
HeLa cells treated with pHLIP-K(rho)C(aph) showed signs of
cytoskeletal immobilization. After incubation with 4 μM of
pHLIP-K(rho)C(aph) HeLa pH 6.1 for 3 h, HeLa (Fig. 3) or
M4A4 (Fig. S2) cells exhibited a reduced ability to contract
and “round up” when trypsinized, whereas cells treated at pH
7 detached and rounded as expected (Fig. 3). A subpopulation
of the cells treated at low pH also becamemultinucleated (Fig. 4).
Both observations are consistent with a view that pHLIP-K(rho)C
(aph) delivers the toxic cargo across the plasma membrane, and
that the released phalloidin binds to actin filaments to stabilize
them, interfering with the F-actin turnover required both for
cytokinesis and for cell contraction.

Discussion
We have studied the use of pHLIP to deliver otherwise cell-
impermeable agents across membranes, anticipating that success
might expand opportunities for the delivery of therapeutic mole-
cules to treat cancer. We find that pHLIP-mediated translocation
of phalloidin can inhibit the proliferation of cancer cells in a pH-
dependent fashion. A single 3 h treatment with 4 μM of delivery
construct pHLIP-K(rho)C(aph) at pH 6.1–6.2 led to more than
90% inhibition of HeLa and M4A4 cell growth, and the antipro-
liferative effect is absent at pH 7.4. Treated cells also showed
signs of cytoskeletal immobilization and multinucleation, consis-
tent with the expected binding of phalloidin to F actin, stabilizing
the filaments against depolymerization.

The level of inhibition of cell proliferation should be directly
correlated with the amount of phalloidin translocated by pHLIP
into cells. Actin is one of the most abundant proteins in eukar-
yotic cells, with a cytoplasmic concentration reaching 63 μM in
fission yeast (or ∼1.4 million monomers for a 92 μm3 cell, count-
ing both FandG actin) (33), and the local actin concentration can
be as high as 460 μM in the division site (i.e., the mature contrac-
tile ring of fission yeast undergoing cytokinesis) (33) and 650 μM
in lamellipodia of mouse melanoma cells (34). In this respect,

targeting actin sets a stringent test for the delivery potential of
pHLIP in general. How many copies of toxin can pHLIP deliver
per cell? What maximum intracellular toxin concentration can
pHLIP build up? And, more specifically, what critical intracellu-
lar concentration of phalloidin must have been delivered by
pHLIP-K(rho)C(aph) in order to disrupt cell proliferation?

Although we do not know the exact amount of phalloidin
delivered by our construct, it is possible to calibrate the levels
of cell growth inhibition obtained with pHLIP-K(rho)C(aph)
using the known antiproliferative effects of phalloidin. Weber
and coworkers showed that in order to delay or stop the prolif-
eration of PtK2 cells (rat kangaroo kidney epithelium), a micro-
injection of a phalloidin stock solution of 0.2 or 1 mM is required,
respectively, probably leading to 20–100 μM intracellular phalloi-
din concentration (approximately 1∶1 ratio to cytoplasmic actin)
(30). Thus, by analogy, treatments with pHLIP-K(rho)C(aph) at
2–4 μMalso seem able to build up cytoplasmic phalloidin concen-
tration in the 20–100 μM range. We estimate that this level of
toxin buildup requires pHLIP to deliver 21–106 million phalloi-
din molecules per cell, calculated for HeLa cells in suspension
with a 15-μm average diameter (1;767 μm3 volume) (Fig. 3),
which in turn, implies that pHLIP-K(rho)C(aph) occupies
roughly 1–7% of the plasma membrane area available for inser-
tion in the attached cell (taking a pHLIP cross-section area of
∼113 Å2 in the inserted state, and an available cell surface area
of 1;800 μm2, estimated from Fig. 3). Thus, perhaps a near-satur-
ating level of inserted pHLIP-K(rho)C(aph) is needed to build
up a 100 μM intracellular concentration of cargo, which likely re-
presents an upper limit of what is possible with pHLIP-mediated
delivery.

In addition, we studied the insertion behavior of pHLIP-K
(rho)C(aph) into liposomes (see SI Text for details). By following
changes in Trp fluorescence, we deduced that pHLIP-K(rho)C
(aph) inserts into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocho-
line (POPC) lipid bilayers with an apparent pKa of ∼6.16
(Fig. S3). This value is similar to that of the parent pHLIP peptide
(without any cargo) (16) and consistent with the level of acidity
required for antiproliferative effects in cell experiments (i.e., pH
6.1–6.2). Further, sedimentation velocity experiments showed
that pHLIP-K(rho)C(aph) is predominantly monomeric (>90%)
in solution under conditions employed to treat cells (i.e., pH 6.2,
4 μM, physiological ionic strength) (Fig. S4).

To facilitate phalloidin delivery, a lipophilic rhodamine moiety
is also attached to the inserting end of pHLIP-K(rho)C(aph). An
antiproliferative effect was not observed without the hydrophobic

Fig. 3. Trypsinization experiments. Following incubationwith pHLIP-K(rho)C
(aph) (4 μM, 3 h) at pH 7, HeLa cells rounded and dissociated quickly after
trypsinization: Compare phase contrast image C taken before trypsinization
with image D of the same view taken 5 min after addition of trypsin/EDTA. In
contrast, HeLa cells treated with pHLIP-K(rho)C(aph) at pH 6.1 (also 4 μM, 3 h)
could not easily contract—a sign of cytoskeleton rigidification, evident
from images taken before (A) and 5 min after (B) the addition of trypsin/
EDTA solution.

Fig. 4. Multinucleation in treated cells. HeLa and M4A4 cells were treated
with pHLIP-K(rho)C(aph) at 4 μM, pH 6.2 for 3 h. After 2–3 d of growth, a
subpopulation of the treated cells becamemultinucleated. (A) DAPI (4′,6-dia-
midino-2-phenylindole) fluorescence image (artificial blue color) of a M4A4
cell with four nuclei (DAPI binds strongly to dsDNA and selectively stains
the nucleus). (B) Phase contrast image of the same multinucleated M4A4 cell.
(C) Overlay of images A and B. (D) DAPI fluorescence image of a HeLa cell
with four nuclei. (E) Phase contrast image of the same HeLa cell, showing
an unusually large volume of cytoplasm. (F) Overlay of D and E. These images
were taken using an epifluorescence inverted microscope (Olympus IX71)
with a 100× objective lens.
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facilitator. Liposome studies showed that the failed construct
pHLIP-C(aph) also seems able to insert into POPC membranes
with a pKa of ∼6.14 (see SI text and Fig. S3) and it is also pre-
dominantly monomeric (>80%) at 4 μM concentration, pH 6.2
(Fig. S4). However, we cannot exclude the possibility that during
insertion pHLIP-C(aph) is trapped in a partially inserted inter-
mediate and no translocation of cargo occurs (see SI text for
further discussion). It is also possible that there is a property
(or a set of properties) that alters delivery efficiency in cells be-
tween these two constructs, but not in vesicles, resulting in an in-
sufficient amount of phalloidin delivered by pHLIP-C(aph).
Possible factors include kinetic differences in the association with
and/or insertion into the plasma membrane, influenced by para-
meters present only in the cells, such as the membrane potential,
cholesterol content, membrane protein content, surface glycosy-
lation, and other lipid compositional variables. Further work will
be needed to explore such factors.

In summary, we showed that pHLIP-K(rho)C(aph) can deliver
enough phalloidin molecules to kill cancer cells in vitro at pH 6.2
but has no effect on cells at neutral pH. This work opens unex-
plored avenues of investigation to evolve antitumor agents that
preferentially destroy cancer cells in acidic solid tumors, while
minimally affecting cells in normal tissues, and to use therapeutic
molecules that do not enter cells on their own.

Materials and Methods
A more detailed description of the antiproliferative assays, as well as experi-
mental procedures of the syntheses of pHLIP-C(aph) and pHLIP-K(rho)C(aph),
cell culture, cell morphology assays and microscopy, liposome preparation,

Trp fluorescence spectroscopy, analytical ultracentrifugation (sedimentation
velocity experiments), LogP measurements, and information about data ana-
lysis and the stability of delivery constructs are available online in the SI Text.

Stock solutions of pHLIP-C(aph) 5, pHLIP-K(rho)C(aph) 6, phalloidin 1,
pHLIP-K-C(aph) and pHLIP were prepared in DMSO at 200 μM concentration.
HeLa, JC, or M4A4 cells were seeded in 96-well plates (Costar) at a density of
∼1;000 cells perwell, and then grown for 2 d before treatment. DMSO stock
of pHLIP-K(rho)C(aph) (or a control agent) was diluted with pH-adjusted, ster-
ile Leibovitz’s L-15 Phenol Free Medium (L-15) to give treatment solutions in
the 0.25–4 μM range. Appropriate amounts of DMSO were added to ensure
that all treatment samples contain ∼2% by volume. After removal of cell
media, the L-15 treatment solution was added to each well (volume for HeLa
plate, 80 μL per well; JC andM4A4, 160 μL), and then the plate was incubated
at 37 °C for 3 h. To minimize week-to-week cell variability, treatments at pH
6.1–6.2 and 7.4 were carried out on the same 96-well plate and all negative
control data shown (in Fig. 2 D–F and Fig. S1) are from plates in which
positive results were also obtained. After treatment, 200 μL of normal media
was added to each well before returning the plate to the incubator. Cell
density of the “0 μM, pH 7.4” controls usually reached 40,000–80,000 cells
per well after 3–6 d of growth. The viable cell number was quantified using
the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-
nyl)-2H-tetrazolium inner salt reagent (Promega CellTiter 96 AQueous One
Solution Cell Proliferation Assay). OD at 490 nm values were obtained using
a plate reader (Spectramax M2 from Molecular Devices).
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