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What are the molecular events that occur when a peptide inserts
across a membrane or exits from it? Using the pH-triggered inser-
tion of the pH low insertion peptide to enable kinetic analysis, we
show that insertion occurs in several steps, with rapid (0.1 sec) in-
terfacial helix formation, followed by a much slower (100 sec)
insertion pathway to give a transmembrane helix. The reverse
process of unfolding and peptide exit from the bilayer core, which
can be induced by a rapid rise of the pH from acidic to basic,
proceeds approximately 400 times faster than folding/insertion
and through different intermediate states. In the exit pathway,
the helix-coil transition is initiated while the polypeptide is still
inside the membrane. The peptide starts to exit when about
30% of the helix is unfolded, and continues a rapid exit as it
unfolds inside the membrane. These insights may guide under-
standing of membrane protein folding/unfolding and the design
of medically useful peptides for imaging and drug delivery.

folding kinetics | helix formation | lipid-peptide interaction | membranes |
transmembrane helix

he stability and folding of membrane proteins are strongly

constrained by the formation of secondary structures in the
lipid bilayer environment, driven by the hydrophobic effect
and hydrogen bonding. Consideration of these factors has led
to versions of a thermodynamic framework model for the folding
and unfolding of helical membrane proteins (1-5). One concept
is that spontaneous insertion and folding includes the formation
of helical intermediates at the bilayer surface, followed by inser-
tion, and that unfolding includes the same steps, but in reverse
order. Because folding to form a helix is coupled to insertion,
a significant experimental challenge in testing the concepts is
to separate the process of peptide partitioning into a membrane
from the folding events leading to secondary structure.

The pHLIP (pH low insertion peptide) gives an opportunity to
observe membrane-associated transitions between surface coil
and transmembrane helix and vice versa. At neutral and high
pHs pHLIP is monomeric at concentrations <8 — 10 pM, and
equilibrates between unstructured forms in aqueous solution
(state I) and bound to the surface of a lipid bilayer if one is avail-
able (state II) (6, 7) (Fig. 14). In an acidic environment the equi-
librium is shifted toward a monomeric transmembrane helical
form (state III) (6, 7), and the process of insertion is accompanied
by an energy release of about 1.8 kcal/mol in addition to the bind-
ing energy (6-7 kcal/mol) locating the peptide at the surface (8).
The pKa of the transition from state II to state III is 6.0 (6, 8).
The insertion is driven by the protonation of two Asp residues in
the transmembrane region, leading to an increase of hydropho-
bicity that results in the folding of the peptide across a membrane
(9). Increasing the pH promotes the unfolding and exit of the
peptide from the core of the lipid bilayer. The insertion of pHLIP
across a membrane is unidirectional: The C-terminus goes inside
a cell or vesicle, and the N-terminus stays outside (7, 10). Neither
partitioning of an unstructured peptide onto the bilayer surface at
neutral pH, nor insertion as a transmembrane helix at low pH
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promotes membrane fusion nor leakage of vesicles, red blood
cells, or cancer cells (7, 9, 10).

Because pH changes can be accomplished by rapid mixing, it is
possible to study the kinetics of the insertion and exit processes,
and to examine the sequences of events that are involved. Here
we present the results of such a kinetic investigation of pHLIP
insertion/folding and exit/unfolding, which lead to new insights
on the pathways.

Results

Steady-state fluorescence and CD spectroscopy are useful ways
to monitor conformational and environmental changes as
pHLIP experiences transitions between its three principal states
(Fig. 1B and C). Spectroscopic signals in solution provide a good
assessment of the peptide helicity as a function of pH and in the
absence and presence of the lipid bilayer, but they do not allow
a distinction between membrane-surface and transmembrane
orientation of the helical form. We previously used FTIR to make
this distiction, and now add to that evidence using oriented cir-
cular dichroism (OCD) measurements. It has been predicted and
confirmed experimentally (11) that, for planar samples with the
incident light perpendicular to the planes of the bilayers,, a mem-
brane-surface orientation of the helix gives a CD signal similar
to the a-helical CD signal in solution (similar to the red line
in Fig. 1C). However, if the helix axis has a transmembrane
orientation, the incident light is parallel to the axis and several
transitions are degenerate giving a characteristic CD spectrum
with a positive amplitude around 200 nm and a shift of the
negative amplitude to longer wavelengths (225-230 nm) (Fig. 1D)
(for more information about OCD spectroscopy see (11) and
references therein). CD spectroscopy on oriented supported
bilayers has been successfully applied to distinguish membrane-
surface and transmembrane helix orientation (12). We obtained a
characteristic OCD spectrum for transmembrane helix orienta-
tion using direct insertion of pHLIP peptides into supported
bilayers at low pH (in contrast to earlier experiments, where
bilayers were assembled with membrane peptides). The results
are in excellent agreement with our previous FTIR data demon-
strating transmembrane helical orientation of the pHLIP at
low pH (6), and with a number of studies indicating that the
C-terminus of pHLIP inserts across the lipid bilayer (7, 10).
Transmembrane helix formation is accompanied by the appear-
ance of a characteristic helical CD signal, by a shift of the fluor-
escence spectrum maximum and by an increase of fluorescence
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Fig. 1. (A) A schematic representation of pHLIP in solution and interacting with a lipid bilayer at neutral and low pHs is shown. State | refers to the peptide in
solution at normal and basic pHs. Upon addition of vesicles at pH 8, the unstructured peptide is adsorbed on the membrane surface (State I1). A drop of pH leads
to the protonation of Asp residues, increasing peptide hydrophobicity, and resulting in the insertion and formation of a transmembrane a-helix (State I1). Lipids
interacting with the peptide directly are marked with blue head groups, lipids influenced by the interaction but not interacting with the peptide directly have
cyan head groups, and lipids that are not involved in the interaction with pHLIP have yellow head groups (8). Transitions between states can be monitored by
(B) changes of fluorescence and (C) circular dichroism (CD) spectral signals. The fluorescence and CD spectra of pHLIP at pH8 (Black Lines) indicate
an unstructured configuration with tryptophan residues fully exposed to solvent. Incubation of pHLIP with liposomes at pH8 (Blue Lines) induces the partial
burial of tryptophan residues inside the lipid bilayer without helix formation. Decreasing the pH to 4.0 by the addition of HCI (Red Lines) induces the insertion
of pHLIP and helix formation. (D) The transmembrane orientation of the helix has been confirmed by OCD (see text and ref. 11 for discussions of OCD

spectroscopy).

intensity (Fig. 1B and C). These signals are the basis of our kinetic
studies.

An advantage of our system is that the initial states in the pro-
cess of folding/entry or unfolding/exit are well defined. For the
folding/insertion study, the initial state is the peptide bound to
the surface of a membrane as an unstructured monomer; for
the unfolding/exit experiments the peptide starts as a trans-
membrane helix. The choice of experimental conditions (peptide:
POPC (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine) mo-
lar ratio at approximately 1:140) is based on the results of our
previous studies of peptide interaction with POPC vesicles at dif-
ferent temperatures (8), and is chosen to avoid crowding of the
peptide on the surface of vesicles (the “parking problem”). Given
the high pH surface binding energy of 6-7 kcal/mol observed for
temperatures in the range from 15 to 37 °C (8), the bound to free
ratio is approximately 10*~103, so the initial state in the insertion
experiments at all temperatures is predominantly an unstructured
surface bound state of the peptide. In the unfolding experiments,
the initial state, at low pH, is predominantly the transmembrane
helical configuration of the peptide (>95% state III).

Transitions between states can be induced by rapidly changing
pH using fast mixing of a aqueous solutions of pHLIP preincu-
bated with POPC at pH 8.0 or pH 4.0 with diluted solutions of
HCI or NaOH, respectively. Membrane-associated peptide fold-
ing/insertion and unfolding/exit were monitored by changes of
CD and fluorescence signals (Fig. 2). For fast fluorescence mea-
surements, a filter was used to capture the emission, but changes
of the entire fluorescence spectrum were also recorded in a global
mode with use of an emission monochromator (Fig. 2C and F).
The fluorescence spectra obtained in stopped-flow mode clearly
show that the increase of fluorescence is accompanied by a shift
of the maximum, which indicates peptide insertion into the hy-
drophobic core of the membrane.

We find that the process of helix formation, triggered by a pH
drop, occurs on the bilayer surface within 1 sec (about 90% of
total changes of CD signal), whereas insertion of the helix across
the membrane takes approximately an additional 100 sec

4082 | www.pnas.org/cgi/doi/10.1073/pnas.0914330107

(Fig. 24-C). Intriguing results were also obtained for the unfold-
ing/exit pathway, which proceeds much faster than folding/
insertion (Fig. 2D). Starting with the inserted helix, a rapid
increase of pH leads to a short delay (about 12 msec), followed
by a decrease of about 90% of the fluorescence signal (Fig. 2E)
and the helix—coil transition, all within the next 0.3 sec, followed
by the final equilibration of the peptide at the surface of the lipid
bilayer until the signal reaches a stable level (10-20 sec). To
estimate activation energy parameters for the process of peptide
insertion into the lipid bilayer, we recorded the kinetics curves at
five different temperatures (Fig. 34). Increasing the temperature
speeds up the process of insertion, presumably as a result of
increased thermal fluctuations. Steady-state fluorescence spec-
troscopy was used to measure the total changes of the fluores-
cence signal at various temperatures as a result of the tran-
sition from states II to III and vice versa. The total fluorescence
changes were relatively unchanged over a range from 11 to 37 °C,
allowing us to conclude that the process of peptide insertion is
completed to the same extent at all temperatures in our study.

Our experimental data clearly show differences between the
pHLIP folding and insertion and unfolding/exit pathways. To gain
further insights, we fit the data with a sequential kinetic model. In
general, parallel pathways may exist in heterogeneous systems,
where peptide isomers or oligomers may present, so we selected
initial experimental conditions where pHLIP is monomeric and
predominantly bound to the bilayer surface in an unstructured
configuration or inserted as a helix across the lipid bilayer
(7, 8). Another potential source of heterogeneity might be asso-
ciated with isomerization of the Pro located in the middle of the
transmembrane part of the peptide. To examine this possibility, a
pHLIP variant was synthesized with Pro replaced by Ala. Unfor-
tunately, the variant shows some helical structure in solution at
neutral pH (Fig. S1), and binding of the variant to a vesicle at high
pH further promotes the coil-helix transition. Because replace-
ment of Pro led to conformational changes of the peptide in
solution and in peptide-bilayer interactions, we asked whether
the presence of prolyl isomerase (cyclophilin A), which promotes

Andreev et al.
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Fig. 2. Membrane-associated pHLIP peptide folding and insertion across a POPC bilayer (A-C) and unfolding and exit (D-F) from the core of the bilayer were

monitored by stopped-flow CD and fluorescence. Polypeptide folding and unfolding were induced by the rapid mixing of pHLIP-POPC solutions with diluted
HCl or NaOH to give pH4 or pH8, respectively. The changes of intensity of CD (A, D) and fluorescence (B, E) were recorded at 225 nm (CD) and through a 320 nm
cutoff filter using an excitation wavelength of 280 nm (fluorescence) at 25 °C. The fluorescence signal recorded over 80 sec was corrected for photobleaching.
The CD and fluorescence data were fitted by kinetic models with one or three intermediate states by using Egs. S3 and 4 (the fitting curves are red). In the case
of the helix—coil transition (D) the experimental noise did not allow to reveal statistically significant differences between solutions with no (Blue Line) or a
single intermediate (Red Line), thus both fitting curves and calculated parameters are shown. The changes in the entire fluorescence spectrum during folding
(C) and unfolding (F) were recorded in a global mode with the emission monochromator at the excitation wavelength of 275 nm to minimize the contribution
of the scattered light component at short wavelengths (spectra were corrected for the instrument sensitivity). The details of the experimental protocol can be

found in S/ Text.

Pro isomerization (13), might affect the folding and insertion of
the nonmutated peptide. No differences were observed in mem-
brane-associated folding in the absence and presence of prolyl
isomerase at various temperatures. Thus, we conclude that the
proline is simply acting as a helix breaker in solution and on
the bilayer surface.

We found that the fluorescence changes over the entire process
of pH-triggered insertion from State II to State III (Figs. 2B
and 34) can be well described by a pseudo-first order kinetics
model with 4 consecutive steps involving State II (I;) , three
intermediates, and State III (5):

ky _ ky_ ks ky
Il—)12—>13—)14—)15.

All attempts to fit the fluorescence curves obtained at various
temperatures using <4 exponential functions led to significant
discrepancies between experimental and theoretical curves, espe-
cially within the first 2 sec. Our experimental data also imply a
fast component at the beginning of the process of insertion
(Fig. 34 Insert), which must be included in the fit. The mathema-
tical complexity of the fit increases dramatically with each addi-
tional step that is included in the model. To solve the systems of
differential equations and find analytical solutions, the simplified
approach of sequential reactions in one direction was implemen-
ted (SI Text). To establish the best fit of fluorescence and CD
curves, kinetic models with zero, one, two, or three intermediate
states were tested, and the models chosen were those giving
an adequate fit to the data using the minimum number of states.
Kinetic parameters obtained from the fitting of fluorescence

Andreev et al.

kinetic data recorded at various temperatures are presented
in Table S1. Kinetic measurements at various temperatures
allow thermodynamic activation parameters to be calculated
(Table S2), and their changes during the transition from one state
to another are presented in Fig. 3C. The coil-helix transition
(Fig. 14) was well fit by a model with a single intermediate
(2 component solution), including a fast component that was
established by recording initial and final signals without triggering
(see Methods for more details about the experimental set up of
CD stopped-flow measurements).

The CD and fluorescence decays reporting the helix-coil exit
pathway (Fig. 2D and E) were well described by a kinetic model
with two intermediates, where the first intermediate is formed
within the first 12 msec and the transition to it is not accompanied
by any significant change of fluorescence signal (delay of intensity
changes on Fig. 2F). The CD signal was noisy and could be fit
with models containing no intermediates (Fig. 2D, Blue Line)
or one intermediate (Fig. 2D, Red Line). The model with one in-
termediate gave a slightly better solution, and it was chosen be-
cause the rates are in very good agreement with rates obtained
from the fluorescence decay analysis.

Discussion

The pH-triggered bilayer insertion and exit of the pHLIP allow
kinetic studies of these processes to be performed. Further, the
folding from an unstructured state at the bilayer surface to the
transmembrane helical configuration allows secondary structure
formation to be followed. Fluorescence and CD spectroscopy
have proven useful for monitoring pHLIP folding/entry across

PNAS | March 2,2010 | vol. 107 | no.9 | 4083
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Fig. 3.

(A) The membrane-associated pHLIP insertion across the lipid bilayer of POPC vesicles was monitored by changes of the fluorescence signal through a

320 nm cutoff filter at an excitation wavelength of 280 nm and at various temperatures. The fitting curves obtained at various temperatures are color coded.
The data were fitted by the kinetic model with three intermediates by using function (Eq. S3). (B) The Arrhenius plot was constructed according to the Ar-
rhenius equation. (C) The changes of the activation energy, £2, enthalpy AH¥, entropy AS# and Gibbs free energy, AG¥ for each transition are plotted. The values

of the thermodynamic activation parameters are presented in Table S2.

and unfolding/exit from the bilayer, and we used them to follow
the pathways in real time.

Earlier pH-jump experiments monitored by changes of pHLIP
fluorescence were reported by Hunt et al. in 1997 (6), but these
did not include measures of secondary structure. More recently, a
fluorescence kinetic study was reported by Tang and Gai (14),
who followed peptide binding to the surface and insertion into
a bilayer. As in the Hunt study, the CD signal was not measured
and only the intensity of tryptophan fluorescence was recorded.
Moreover, the kinetic process was monitored for only the first
5 sec out of 100 sec, so >50% of the fluorescence signal changes
were missed. We have expanded on these earlier efforts using
stopped-flow measurements of both the fluorescence parameters
(intensity and wavelength position of maxima of spectra) and the
CD signal. The results clearly demonstrate differences in the pro-
cesses of (i) coil-helix transition and peptide insertion into mem-
brane, and (if) peptide folding/entry and unfolding/exit from the
membrane. Our main findings are that the entry pathway begins
with rapid helix formation, followed by slow transbilayer inser-
tion, and that the exit pathway is distinctly different.

In an attempt to gain more insights on the folding and unfold-
ing pathways we introduced a kinetic model to fit the experimen-
tal curves, resulting in the mechanistic model shown in Fig. 4.
Some features of the model are viewed with confidence whereas
others are much less certain, and we can only formulate educated
guesses as to the nature of several intermediate states. An impor-
tant caveat is that the model assumes single pathways of insertion
and exit. Starting with the surface bound peptide of State II, and
following the drop in pH, we see a rapid formation of helix, in two
steps (folding intermediates 1 and 2, forming at 8 msec and
112 msec), each producing about half of the total helix. The helix
might be a single straight helix, or it might consist of several short

4084 | www.pnas.org/cgi/doi/10.1073/pnas.0914330107

helices with breaks in between (these possibilities are experimen-
tally indistinguishable). This part of the interpretation is secure:
Regardless of the kinetic model, helix formation clearly is faster
than most of the fluorescence changes. It is possible that slight
sinking of a polypeptide during helix formation or helix rotation
at the interface account for the fast first (23%) fluorescence
change. Following the rapid helix formation, the rest of the inser-
tion process is reported by fluorescence, and is about 1,500 times
slower, describable as several kinetically distinct steps over
approximately the next 100 sec.

We cannot be certain of the exact nature of the kinetic inter-
mediates during insertion, but we suggest a few thoughts as work-
ing ideas. From the surface helix formation to the fully inserted
transmembrane helix, two intermediate states (FI; and FI,) fol-
lowed from our analysis, and are the rate limiting steps in the
insertion process. We assume that at least one of these intermedi-
ates is related to the translocation of the polar C-terminus of
pHLIP across the bilayer. It may be that the fourth intermediate
is a transbilayer inserted form with the C-terminus across the bi-
layer, or that the C-terminus crosses the bilayer during the last
transition. We have no direct evidence yet to choose one of these,
but we know that the C-terminus must cross the bilayer at some
point. Each step from the unfolded to the folded state is asso-
ciated with a decrease of entropy (decrease of disorder) that re-
flects the process of folding (ordering). It is possible that both the
peptide and the lipids undergo a disorder—order transition.

In contrast with previously proposed theoretical models sug-
gesting that entry and exit pathways mirror each other, our data
reveal that the unfolding and exit of the peptide in response to a
sudden pH increase occurs within 100 msec, orders of magnitude
faster than insertion. Assuming that the increase of pH leads to
the deprotonation of the Asp residues [perhaps involving proton

Andreev et al.
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sults in the rapid unfolding and exit of the peptide via a different pathway
with different intermediates (see discussion in the text).

transfer from Asp86 to Arg83, which is known to happen in
bacteriorhodopsin, from which the pHLIP is derived (15, 16)],
followed by the helix—coil transition and a rapid exit of the poly-
peptide from the bilayer interior. Surprisingly, about 30% of the
helix—coil transition is completed within approximately 12 msec,
while practically no change of the fluorescence signal is observed,
indicating that the polypeptide remains in the membrane interior
as an unfolding intermediate (UI). Thus, partial unfolding of the
TM helix, involving about 5-6 residues out of 20-22 residues,
might occur inside the membrane and the peptide subsequently
moves out of the bilayer interior. Another possibility is unfolding
of part of the helix, followed by immediate exit of the polypeptide
from the membrane, which leads to a thinning of the lipid bilayer
around the shortened helical part of the peptide. This suggestion
is based on recent findings that the lipid bilayer can accommodate
short helices with a minimal energetic cost (17, 18). Further pro-
pagation of the helix-coil transition is accompanied by a rapid exit
of part of the polypeptide within the next 5 msec (UI,). The
remaining 30% of the membrane-embedded helical structure
unfolds and exits within 65 msec (including the C-terminus),
and equilibrium is established between pHLIP in its unfolded

Andreev et al.

membrane-bound (U”) and soluble forms within the final
10-20 sec. Unfolding experiments carried out at 7 °C showed that
the peptide exit also occurs in two steps with characteristic times
of 17.6 and 152 msec. Because the C-terminus, which must cross
the bilayer, has several carboxyl groups, an interesting possibility
is that protonation and deprotonation steps might account for
steps in the entry and exit pathways.

Several authors have reported peptide coil-helix transitions
induced by binding to bilayers and the existence of interfacial
folded intermediates, mostly using fluorescence approaches
(19-24). Although interesting, the results of molecular dynamics
simulations of membrane-associated folding and insertion of var-
ious peptides are not definitive (25-28). The pHLIP presents a
case where the binding of the pHLIP to the membrane itself does
not promote folding, so a stable, unstructured state can be estab-
lished at a bilayer surface. The protonation of charged Asp resi-
dues, which leads to increased hydrophobicity of the peptide,
induces a coil-helix transition and peptide insertion. We show
that the formation of an interfacial helical intermediate is a step
in the pathway of pHLIP insertion into a membrane. Helix for-
mation reduces the free-energy penalty associated with the parti-
tion of the peptide backbone into the low dielectric environment
of the bilayer, despite the fact that the coil-helix transition is as-
sociated with a loss of entropy. Helix insertion, most probably, is
accompanied by a significant perturbation of lipids beyond that of
the surface bound state, although the lipid perturbation is re-
duced in the overall process. The insertion of pHLIP is slow, be-
cause the peptide is initially located on the outer leaflet of the
bilayer, and it takes time for the polar C-terminus to cross the
membrane and to reorganize lipids around the transmembrane
helix. In contrast to the insertion, unfolding and exit occur much
faster, perhaps because the peptide can be conceptualized as oc-
cupying a small channel across the lipid, so that the peptide can
quickly exit without the significant lipid reorganization needed
for the intermediate states of insertion. Such a channel would
close immediately after exit of the peptide.

We have demonstrated in vivo that pHLIP can target diseased
tissues with elevated levels of extracellular acidity, such as tumors
(9, 29, 30) and that the energy of the insertion events can be used
for the selective translocation of polar cell-impermeable cargo
molecules across the membranes of liposomes and cells (10,
30). Our kinetic data provide insights on the mechanisms of mem-
brane-associated polypeptide folding and unfolding, and may be
useful in improving the design of peptide based transmembrane
delivery agents.

Methods

pHLIP Peptide. The pHLIP sequences AEQNPIYWARYADWLFTTPLLLLDLALLV-
DADEGT and its Pro to Ala variant AEQNPIYWARYADWLFTTALLLLDLALLV-
DADEGT were prepared by solid-phase peptide synthesis using Fmoc (9-
fluorenylmethyloxycarbonyl) chemistry and purified by reverse phase chro-
matography at the W.M. Keck Foundation Biotechnology Resource Labora-
tory at Yale University. For use of the peptide, the lyophilized powder is
dissolved in a solution containing 3 M urea and transferred to 10 mM phos-
phate buffer, pH8.0 using a G-10 size-exclusion spin column. The concentra-
tion of the peptide was determined by absorbance (e;50 = 13,940 M~ cm™").

Vesicle Preparations. Large unilamellar vesicles were prepared by extrusion.
1 ml of 25 mg POPC (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine,
Avanti Polar Lipids, Inc.) in chloroform was desolvated on a rotary evaporator
and dried under vacuum for several hours. The phospholipid film was rehy-
drated in 10 mM phosphate buffer, pH 8.0, vortexed for 2 h, and repeatedly
extruded using a 50 nm membrane pore size.

Steady-State Measurements. Steady-state fluorescence measurements were
carried out on a PC1 spectrofluorometer (ISS, Inc.) under temperature con-
trol. Peptide fluorescence spectra were recorded from 310 nm to 400 nm with
the spectral widths of excitation and emission slits set at 2-4 nm and 2 nm,
respectively, using excitation wavelengths of 275, 280, and 295 nm. Changes
of the fluorescence signal in the process of transition from one state to
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another are independent of the excitation wavelength, indicating that the
spectral contribution of Tyr fluorescence is minimal. The polarizers in the
excitation and emission paths were set at the “magic” angle (54.7° from
the vertical orientation) and vertically (0°), respectively, to reduce Wood's
anomalies from the reflecting holographic grating. Steady-state CD and
OCD measurements were carried out on a MOS-450 spectrometer (BioLogic,
Inc.) under temperature control. All measurements were performed at 25 °C
unless otherwise indicated. The detailed description of the OCD measure-
ments including preparation of samples can be found in S/ Text.

Stopped-Flow Measurements. Stopped-flow fluorescence and CD measure-
ments were carried out on a SFM-300 mixing apparatus connected to a
MOS-450 spectrometer (BioLogic, Inc.) under temperature control. The FC-
20 and TS-100/15 observation cuvettes were used for the fluorescence and
CD measurements, respectively. All solutions were degassed several minutes
under vacuum before loading into the syringes to minimize air bubbles.
pHLIP (7 pM) was preincubated with POPC (1 mM) at pH8.0 to reach binding
equilibrium and folding/insertion was induced by fast mixing (5.7 ms dead
time) of equal volumes of pHLIP-POPC pH8 and appropriately diluted HCI,
to obtain a drop of pH from 8 to 4. In the unfolding experiments, pHLIP
was preincubated with POPC at pH8.0, then HCl was added to lower the
pH to 4.0, and time was allowed for equilibration (minutes). Unfolding
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was induced by mixing equal volumes of pHLIP-POPC pH4 and NaOH diluted
to increase the pH from 4 to 8. In majority of cases, samples were collected
after the shots and steady-state fluorescence were recorded on a PC1 spectro-
fluorometer. In the case of experiments in the presence of prolyl isomerase
(cyclophilin A), which catalyses the isomerization of Pro residues in peptides,
pHLIP was preincubated with the cyclophilin A (Sigma) at a ratio of 1:100
for 2 h before mixing with liposomes, followed by fluorescence (at various
temperatures) and CD kinetics measurements. Additional information on
the stopped-flow measurements can be found in S/ Text.

Data Analysis. The kinetic equations were solved by integration (Eq. S1) in
Mathematica 5 (Wolfram Research). Nonlinear least squares curve fitting pro-
cedures were carried out in Origin 7 and MatLab. The goodness-of-fit was
assessed by the adjusted R-square statistics (adjR?) and rms error according
to the standard formula. The details of the kinetic model used in the study
and description of the calculated thermodynamic activation parameters can
be found in S/ Text.
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