
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2014 

BLACK CARBON CONCENTRATIONS, SOURCES, AND FLUXES IN BLACK CARBON CONCENTRATIONS, SOURCES, AND FLUXES IN 

THE TROPICAL ATLANTIC OCEAN THE TROPICAL ATLANTIC OCEAN 

Kari Ann Pohl 
University of Rhode Island, kpohl@gso.uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Pohl, Kari Ann, "BLACK CARBON CONCENTRATIONS, SOURCES, AND FLUXES IN THE TROPICAL 
ATLANTIC OCEAN" (2014). Open Access Dissertations. Paper 278. 
https://digitalcommons.uri.edu/oa_diss/278 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/278?utm_source=digitalcommons.uri.edu%2Foa_diss%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


BLACK CARBON CONCENTRATIONS, SOURCES, 

AND FLUXES IN THE TROPICAL ATLANTIC OCEAN  

BY 

KARI ANN POHL 

 

 

 

 

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN 

OCEANOGRAPHY 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2014 



 

 

 

DOCTOR OF PHILOSOPHY DISSERTATION 

 

OF 

 

KARI ANN POHL 

 

 

 

 

 

 

 

 

 

 

 

APPROVED:  

 

Dissertation Committee: 

 

Major Professor Rainer Lohmann 

 

   S. Bradley Moran 

 

   Dawn Cardace 

 

   Nasser H. Zawia 

  DEAN OF THE GRADUATE SCHOOL 

 

 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2014



 

 

ABSTRACT 

Black carbon (BC) is the highly graphitized byproduct of incomplete 

combustion that could be a sink for fixed carbon. Little data is currently available for 

BC concentrations and fluxes to remote marine environments and there are often great 

discrepancies between model simulations and actual field measurements. This 

research analyzed BC concentrations in the mixed boundary layer, surface water, and 

deep pelagic sediments of the Tropical Atlantic Ocean in order to understand the fate 

and transport of BC to the marine environment. It also aimed to assess the importance 

of aeolian versus fluvial BC deposition. Black carbon concentrations were elevated in 

regions directly influenced by fluvial and atmospheric deposition in all environmental 

matrices compared to regions with minimal terrestrial inputs (such as the Sargasso 

Sea). Black carbon concentrations and fluxes to deep pelagic sediments were 

approximately 5 times greater in the Sierra Leone Rise (within an atmospheric 

emission plume) than the remote South Atlantic (minimal terrestrial inputs).  Elevated 

BC fluxes at the Sierra Leone Rise were most likely due to biomass burning from the 

African continent, as evidence by biomarkers, enriched stable carbon isotopes, and a 

modern radiocarbon age. Atmospheric deposition composed 4-28% of the soot-like 

BC and at least 43% of the total BC in the fluvial region of the Niger Delta, suggesting 

that atmospheric BC deposition to remote sediments can be significant in areas with 

elevated biomass burning. Atmospheric BC concentrations were also enhanced within 

the African biomass burning emission plume. Charcoal composed up to 66% of the 

BC, suggesting that measurements which only quantify soot-like BC forms may be 

underestimating this carbonaceous fraction. Additionally, surface mixed layer BC was 



 

 

found to compose an average of 17% of bulk total organic carbon. This implies that 

terrigenous organic carbon composes a larger fraction of the pelagic organic pool than 

previously estimated. Overall, BC was detected in all samples regardless of 

environmental matrix, demonstrating its stability and persistence in the marine 

environment. Fluvial deposition appeared to be the greatest transport mechanism of 

BC to the marine environment; however atmospheric transport is quantitatively 

important and should be included in mass balance estimates of both black carbon and 

terrigenous organic carbon, especially in areas with significant inputs of biomass 

burning. 
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PREFACE 

This dissertation is written and organized in the manuscript format as described by the 

URI Graduate school guidelines for dissertation preparation. The body of the text is 

divdided into four sections which correspond to the format of journal articles. The first 

manuscript (Chapter 2) will be submitted to Global Biogeochemical Cycles with 

authors K. Pohl, M. Cantwell, M. Zabel, and R. Lohmann. The second manuscript 

(Chapter 3) is under review in Geophysical Research Letters with the authors K. Pohl 

and R. Lohmann. The third manuscript (Chapter 4) has been accepted for publication 

in the journal Atmospheric Chemsitry and Physics with the authors K. Pohl, M. 

Cantwell, P. Herckes, and R. Lohmann. The fourth manuscript (Chapter 5) has been 

submitted to the journal Geochimica et Cosmochimica Acta with the authors K. Pohl, 

M. Cantwell, and R. Lohmann. 
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CHAPTER 1 

 

INTRODUCTION 

 

Black carbon (BC) is a ubiquitous byproduct of the incomplete combustion of fossil 

fuels and biomass burning, making it produced strictly in the terrestrial biosphere 

(Goldberg, 1985; Gustafsson et al.; 1997; Schmidt and Noack, 2000; Masiello, 2004). 

It is an environmentally stable structure composed of condensed sheets of polycyclic 

aromatic hydrocarbons (PAHs) and is depleted in nitrogen and oxygen relative to 

carbon (Elmquist et al., 2006; Keiluweit et al., 2010). Black carbon is presumed to 

have a low potential for degradation via microbial respiration; it is deemed at least 

semi-refractory carbon (Seiler and Crutzen, 1980).  It is difficult to assess BC 

concentrations in different environmental matrices since BC is operationally defined 

by quantification method and there is no standard measurement protocols to date.   

 

Black carbon is the broad term for a range of forms described by the BC combustion 

continuum (Masiello, 2004). These forms range from the solid residues produced by 

combustion called chars to the highly inert recondensed volatiles known as soot. 

Physical factors which determine the BC form generated depend largely on the 

formation temperature, concentration of oxygen, and density of organic matter during 

combustion (Elmquist et al., 2006; Keiluweit et al., 2010). The environmental stability 

and persistence of BC is largely dependent on its original formation process.  In 

general, there is a greater potential for soot generation (more stable) during high 
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temperature combustion with woody and dense fossil fuel materials since the lower 

oxygen to fuel ratio promotes inefficiencies in combustion (Schmidt and Noack, 

2000). Alternatively, grasses (C4 plants) are more likely to produce char-like materials 

(less stable) due to the greater oxygen transfer efficiency and lower (≤300°C) 

combustion temperature (Knicker, 2010). Char materials retain some of their original 

plant cellular material, including the macronutrient nitrogen, due to this lower 

formation temperature (Masiello, 2004; Knicker, 2010). The degree of BC 

graphitization will control its lability by determining the concentration of nutrients and 

plant remnants, in addition to its molecular stability.   

 

It is important to understand the fate and transport of BC to resolve better human 

health and climatic processes. Firstly, BC aerosols are correlated with high 

concentrations of PM2.5 and carcinogenic PAHs, making them a hazardous pollutant 

when inhaled (Miguel et al., 1998). Alternatively, in environmental matrices such as 

soil and sediment, BC acts as a sink for persistent organic pollutants including 

polycyclic aromatic hydrocarbons (Gustafsson et al., 1997). Secondly, atmospheric 

BC alters local and regional climates by both reducing and increasing the albedo and 

acting as cloud condensation nuclei to redistribute moisture and latent heat (Menon et 

al., 2002). Thirdly, BC represents a fraction of the carbon cycle that is largely under-

explored, especially in the marine environment. Black carbon deposited to the 

sediment has the potential to be a sink for fixed atmospheric carbon, effectively 

removing it from the active organic carbon pool for short to long geological timescales 

(Kuhlbusch and Crutzen, 1995; Lohmann et al., 2009).  
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Many previous investigations have made the assumption that BC will favor coastal 

deposition and long-range BC transport to a pelagic system will be negligible (Suman 

et al., 1997; Mitra et al., 2002; Elmquist et al., 2006). These previous works have used 

the generalization that at least 90% of BC input to the ocean will deposit on the 

continental shelf (Suman et al., 1997). However, BC fluxes to the margin sediments in 

the Gulf of Maine were comparable to the regional production of BC via combustion 

emissions suggesting that non-coastal sediments have the potential be large organic 

carbon sinks (Gustafsson et al., 1998). Similarly, fluvial inputs are predicted to be the 

most significant transport mechanism of BC to the marine system and often ignore the 

atmospheric BC inputs (Masiello and Druffel, 1998; Mitra et al., 2002).  However, 

atmospheric deposition could be important where fluvial inputs are minimal. The 

atmospheric residence time of BC averages between 5-7 days, but can be up to one 

month, allowing for long-range transport (Reddy and Boucher, 2007; Ramanathan and 

Carmichael, 2008). The long-range atmospheric transport of BC is clearly noticeable 

by the deposition of soot materials on Arctic ice. Ignoring this atmospheric fraction 

can grossly under-predict BC fluxes to the pelagic ocean. 

 

The presence of BC in both coastal and pelagic sediments is ubiquitous. Black carbon 

concentrations in urban-influenced sediments have ranged from <0.02% off the 

Washington, USA coast (Dickens et al., 2004) to >0.3% on the Swedish continental 

shelf (Sanchez-Garcia et al., 2012) up to 0.8% in the Mississippi River (Mitra et al., 

2002). Concentrations of BC detected in deep sediments (>1200 m) from the remote 
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Atlantic are approximately 0.1%, however only few investigations have been made 

(Middelburg et al., 1999; Lohmann et al., 2009). Measured BC fluxes to coastal 

sediments around the globe (26-354 mgBC cm
-2

 ka
-1

) compared to the pelagic Pacific 

Ocean (0.002-3.6 mgBC cm
-2

 ka
-1

) often differ by orders of magnitude (Suman et al., 

1997). However, a more recent study had measured pelagic BC fluxes nearly double 

this estimate at 7.8 mgBC cm
-2

 ka
-1

 (Lohmann et al., 2009). In order to resolve better 

the fate of BC, its deposition and mass in poorly studied regions needs to be further 

explored.  

 

The sources and inputs of BC to the marine environment are also poorly resolved. The 

assumption that fluvial inputs are significantly greater than aeolian deposition could 

under-estimate the export of terrestrial organic carbon to deep sediments. Previous 

work has measured fluvial total suspended solids to be up to 7.8 µgBC mgsediment
-1

 in 

the Mississippi and 1.6 µgBC mgsediment
-1

 in sediments within the Congo Delta (Mitra et 

al., 2002; Lohmann et al., 2009). However, aerosols in the marine boundary layer have 

detected high BC concentrations (compared to the convention of 40 ng m
-3

 for ‘clean 

air’) of 0.3 µg m
-3

 over the Indian Ocean to 0.6 µg m
-3

 over the Azores, suggesting 

that the atmospheric lifetime of BC allows for significant wind-driven transport to the 

remote ocean (Cavalli et al., 2004; Corrigan et al., 2008; Spracklen et al., 2008). Past 

investigations have estimated that as much as 40% of coastal sediments could be the 

result of atmospheric BC contributions and the positively buoyant fluvial plumes have 

the potential to horizontally transport particles hundreds of kilometers away from the 

river mouth (Masiello and Druffel, 1998; Geyer et al., 2004). Thus, an understanding 
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of the transport of BC beyond a coastal environment is necessary to understand the 

terrestrial-marine boundary in the cycling of organic matter. 

 

To understand fully that fate of BC in the marine environment, we must understand 

the presence of BC in all media. While BC concentrations in sediments and air have 

been investigated, very little work has been done to resolve the particulate surface 

water concentration.  Black carbon must be vertically transported through the marine 

surface mixed layer before it reaches the sediments. To date, only one other study has 

measured aqueous particulate BC concentrations; this study detected a wide range of 

concentrations in the Gulf of Maine from <0.1 up to 16 µg L
-1

 and determined that BC 

composed up to 20% of the total organic carbon, which significantly alters the lability 

potential of organic carbon in this system (Flores-Cervantes et al., 2009). The fate of 

BC in the surface water is heavily debated and two hypotheses have come forth: 1) 

this aqueous BC pool could be an aged and refractory carbon sink that ultimately 

becomes part of the DOC pool (Jaffe et al., 2013; Masiello and Louchouarn, 2013) or 

2) that aqueous BC is a source of terrestrial nutrients to an oligotrophic environment 

and will help stimulate minor productivity (Knicker, 2010).  

 

The dissolved phase of black carbon, operationally defined as the black carbon which 

passes through a 1 µm filter, could be an important mechanism for the mobilization of 

soil-bound black carbon to rivers and ultimately the marine environment (Dittmar, 

2008; Jaffe et al., 2013; Masiello and Louchouarn, 2013). Recent studies have 

estimated that approximately 10% of the fluvial dissolved organic carbon is composed 
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of combustion-derived materials (Jaffe et al., 2013; Masiello and Louchouarn, 2013). 

However, the pelagic dissolved organic carbon pool is composed of 0.9-2.6% 

dissolved black carbon (Dittmar, 2008). This mismatch implies that a loss of the 

dissolved black carbon must occur within rivers and at the fluvial-marine boundary.  

 

Microbial decomposition of a labile black carbon pool within soil occurs on centennial 

timescales, suggesting that the biodegradation of this labile black carbon pool could 

allow for the mobilization of black carbon into the aqueous environment (Jaffe et al., 

2013). Once in the marine environment, it is presently unclear if this dissolved black 

carbon pool undergoes further losses to bio- and photo-degradation or if it is adsorbed 

to particulate organic carbon (Masiello and Louchouarn, 2013; Coppola et al., 2014). 

Regardless, the estimated contribution of black carbon to the particulate organic 

carbon pool is presumably greater than that of the dissolved pool; additionally,  

previous studies have hypothesized that pelagic black carbon is recalcitrant since its 

labile fraction is degraded within soils and rivers (Mannino and Harvey, 2004; 

Masiello and Louchouarn, 2013). It is important to further evaluate the presence of 

particulate black carbon in pelagic surface water to better understand its mobility and 

recalcitrance in the marine system.  

 

The fate of terrestrial organic matter in the marine environment is a mystery since the 

inputs are much greater than what is actually detected in the sediments (Hedges et al., 

1997). This is a conundrum since terrestrial organic matter is considered to be more 

refractory than autochthonous marine production due to its high degree of aromaticity, 
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high C/N ratio, and depleted radiocarbon age (Hopkinson et al., 1998; Kaushal and 

Binford, 1999; Raymond and Bauer, 2001). Ultimately, BC is a form of terrestrial 

organic matter that is mostly stable in marine sediments, but is often quantified as part 

of the total organic carbon. Previous works have found that coastal sediments 

generally contain 10% BC compared to the total organic carbon and deep sediments 

off the SW Brazilian coast composed up to 34% (Gustafsson et al., 1997; Lohmann et 

al., 2009). Quantifying the BC as a separate organic carbon fraction can help resolve 

the complex fate of terrestrial organic matter in the ocean.  

 

The subtropical Atlantic Ocean is a dynamic study region since it contains many large 

fluvial systems, including the Amazon, Congo, Niger, and Paraná Rivers. 

Additionally, the African emission plume transports high concentrations of aerosol 

byproducts from grass and agricultural burnings, as well as fossil fuel combustion 

byproducts, across the equatorial Atlantic region (Ramanathan and Carmichael, 2008; 

Lohmann et al., 2009). Thus, the tropical Atlantic has the potential to be a “hotspot” 

for BC deposition. These atmospheric and fluvial BC inputs could make the tropical 

Atlantic comparable to a coastal system for terrestrial organic matter contributions. 

Ignoring the transport of BC in areas with emission plumes and major rivers systems 

could underestimate the mass balance of BC. 

 

Collectively, the purpose of this work was to quantify the concentrations, fluxes, and 

sources of BC in the marine boundary layer, surface mixed layer, and deep pelagic 
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sediments in the tropical Atlantic Ocean. The ultimate goal of this work is to better 

understand the fate and transport of BC to a remote marine environment. 
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Key Points 

 Black carbon fluxes to pelagic sediments where elevated in the equatorial 

Atlantic Ocean 

 Soot was the primary form of black carbon 

 Atmospheric deposition of black carbon  is significant in pelagic sediments 

 

Abstract 

Black carbon (BC) is the highly graphitized byproduct of incomplete combustion that 

could be a sink for fixed carbon. Little data are currently available for BC fluxes to 

remote marine sediment. Sediments from the Amazon, Niger, and Senegal Deltas, 

Sierra Leone Rise, and South Atlantic were analyzed for BC using two methods: a 

chemothermal oxidation (BCCTO) and  pyrene fluorescence loss (BCPFL). The ratio of 

BCCTO to sedimentary total organic carbon decreased from 55% at the Amazon Delta, 

30% at the Sierra Leone Rise to 15% in the South Atlantic. The ratio of BCPFL to the 

sedimentary organic carbon mostly agreed with the BCCTO fraction with the exception 

of the Niger Delta (19%) and the South Atlantic (67%). The BCCTO sediment flux was 

greatest in the Niger Delta at 23 mg cm
-2 

kyr
-1

, followed by the Sierra Leone Rise at an 

average of 6 mg cm
-2 

kyr
-1

. The Sierra Leone Rise had a BCCTO flux six times greater 

than the remote South Atlantic, which had a flux of 0.9 mg cm
-2 

kyr
-1

.  Elevated BC 

fluxes at the Sierra Leone Rise were most likely due to biomass burning from the 

African continent, as evidenced by organic biomarkers and stable carbon isotopes. 

Atmospheric deposition composed 4-28% of the BCCTO and at least 43% of the BCPFL 

in the fluvial Niger Delta region, suggesting that BC atmospheric deposition to remote 

sediments can be significant in areas with elevated biomass burning. 
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Keywords: black carbon, soot, sediments, carbon sinks, subtropical Atlantic, 

atmospheric deposition, biomass burning 

 

1.0. Introduction 

Black carbon (BC) is a ubiquitous and refractory portion of the total organic carbon 

(TOC) pool that is a byproduct of the incomplete combustion of fossil fuels and 

biomass burning (Seiler and Crutzen, 1980; Goldberg, 1985; Schmidt and Noack, 

2000). Atmospheric BC could be the second greatest contributor to global warming 

(Bond and Sun, 2005) and its deposition onto ice may be altering the global albedo 

and expediting glacial melting (Flanner et al., 2007). Black carbon has the potential to 

be a long term sink for fixed atmospheric carbon when deposited to marine sediments 

(Kuhlbusch, 1998) because it is removed from the active carbon pool by being mostly 

biologically inert (Seiler and Crutzen, 1980). Thus, in order to understand better the 

role BC plays in the carbon cycle, we must understand better its transport and fate in 

the marine environment. 

 

The stability of BC arises from its highly graphitized structure. The operational 

definition of BC varies by quantification method; it is hypothesized to be part of a 

continuum of incompletely combusted materials ranging from solid residues called 

chars to re-condensed volatiles termed soot (Schmidt and Noack, 2000; Masiello, 

2004). Fluvial and atmospheric deposition are the two primary modes of transport to 

the environment. Black carbon has a short atmospheric residence time ranging from 

hours to 30 days, averaging one week (Masiello and Druffel, 1998; Ramanathan and 
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Carmichael, 2008). Thus, atmospheric deposition is an important transport mechanism 

for BC, especially to remote regions with little potential for BC genesis, such as the 

ocean. Fluvial deposition is generally assumed to be quantitatively the most important 

source of BC to marine sediments (Suman et al., 1997; Kuhlbusch, 1998; Masiello and 

Druffel, 2001; Mitra et al., 2002; Elmquist et al., 2006). A previous study determined 

that atmospherically deposited BC composed ≤40% of the TOC in coastal sediments 

(Masiello and Druffel, 1998).  

 

The expense and difficulty of measuring BC in deep marine sediments has made 

knowledge of BC fluxes confined to few regions. Previous studies (Table 1) have 

focused primarily on BC fluxes in heavily urbanized areas and shallow sediments. In 

urban marine environments, TOC is expected to dilute the BC due to large algal 

biomass, usually making BC account for <10% of the TOC (Ribeiro et al., 2008; 

Flores-Cervantes et al., 2009; Gonzalez-Vila et al., 2009). The local burning activity 

and prevailing wind direction will heavily influence the BC depositional fluxes to 

nearby sediments. Masiello and Druffel (1998) found that BC accounted for 12-31% 

of the organic carbon from deep (>4000 m) marine sediments in the Pacific Abyssal 

plains, where little fluvial input is expected. Likewise, BC concentrations from the 

South American margin (depth 1228-4949 m) ranged between 8-34% of the 

sedimentary total organic carbon , indicating that BC in deep sediments could account 

for a higher percentage of the TOC than urban environments, possibly due to the 

remineralization of labile organic carbon species within the water column and 

sediments (Lohmann et al., 2009).  
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Black carbon fluxes to the marine environment depend largely on the magnitude of 

BC production and the distance from source regions (Suman et al., 1997). Coastal BC 

fluxes have been measured as high as 26-354 mg cm
-2

 kyr
-1

 and 86-1900 mg cm
-2

 kyr
-1

 

for the coastal Pacific and Gulf of Maine, USA (Suman et al., 1997; Gustafsson and 

Gschwend, 1998, Table 1) to as low as 1.2-3.1 mg cm
-2

 kyr
-1 

for the Washington 

Coast, USA (Dickens et al., 2004). Atlantic margin sediments, sediments >1000 m 

deep near a continental source, are mostly lower than coastal fluxes in both magnitude 

and range at 0.5-7.8 mg cm
-2

 kyr
-1

 (Lohmann et al., 2009). In the remote Pacific 

Ocean, presumably removed from fluvial and atmospheric influence, BC fluxes are as 

low as 0.002-3.6 mg cm
-2

 kyr
-1

 and contributed ~15% to the sedimentary TOC pool 

(Suman et al., 1997; Masiello and Druffel, 1998). These measurements suggest that 

fluvial BC deposition is a much greater transport mechanism of BC to marine 

sediments in comparison to the atmospheric transport. However, regions with elevated 

seasonal biomass burning and wind direction towards the ocean, such as the 

Subtropical Atlantic, could have enhanced BC fluxes.  

 

The Subtropical Atlantic has the potential to be a “hotspot” for atmospheric BC 

deposition. Intense Savanna grass burning events coupled with anthropogenic 

emissions give this region a high potential for BC emissions and transport off-shore 

(Cahoon et al., 1992; Andreae and Merlet, 2001). Savanna grass has aBC emission 

factor of 0.48 ± 0.18 g kg
-1

 dry matter, which suggests that up to 24 Tg yr
-1

 of BC 

could be generated by Savanna grass burning events annually (Hao et al., 1990; 
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Andreae and Merlet, 2001). Savanna grass burning could account for up to 60% of the 

global biomass burning. Global inventories of the BC formation predict that open 

biomass burning and fossil fuel combustion are roughly equivalent in magnitude (Hao 

et al., 1990; Andreae, 1991; Ramanathan and Carmichael, 2008). Thus, the pelagic 

Subtropical Atlantic could receive a significant input of BC, making the sediments a 

potential sink for fixed carbon.  

 

In this study, sediments from the remote Sierra Leone Rise and South Atlantic, a 

coastal sample at the Senegal Delta, and the Amazon and Niger Deltas (Fig. 1) were 

collected and analyzed with the goals of: 1) determining the BC fluxes to pelagic 

Equatorial Atlantic sediments, 2) measuring the fractions of the various forms of BC 

(i.e. soot vs. charcoal), and 3) assessing the importance of atmospheric versus fluvial 

BC deposition in this region.  

 

2. Materials and Methods 

2.1. Sediment sample collection 

Sediment samples were collected in the summer of 2010 aboard the R/V Endeavor 

during legs EN-480 and EN-481 (Fig. 1). Surface sediments and shallow cores (1-12 

cm) were recovered at eight sites using a multicorer and Van Veen grab sampler. 

Multicorer samples were sliced into 1 cm sections immediately after recovery. All 

sediments were stored in pre-combusted (450°C) amber glass jars in a -10°C chest 

freezer until analysis. Additional sediments from the Department of Geosciences at 

Bremen University (GeoB cores 1701, 2814, 4901, 4903, 4904, 4907, 4908, and 9501) 
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were also analyzed. These sediment samples had been taken by multicorer and box 

corer, sliced into 1-10cm sections, freeze-dried and ground with a mortar and pestle 

(Wagner et al., 2003; Zabel et al., 2003).  

 

Sediment cores were grouped into the following regions (with average water depth): 

Amazon Delta (3360 m), Niger Delta (2500 m), Senegal Delta (330 m), Sierra Leone 

Rise (3500 m), and South Atlantic (4950 m) (Fig. 1).  

 

2.2. Black carbon and total organic carbon analysis 

BC was chemically quantified using two separate, but complementary, techniques 

which measure overlapping portions of the proposed BC combustion continuum. The 

first method was a chemothermal oxidation at 375°C (BCCTO), which utilizes the 

thermal stability of refractory soot-like BC but will oxide charcoal-like carbonwith the 

organic carbon (Gustafsson et al., 1997; Elmquist et al., 2004). Sediments were 

decalcified using 10% hydrochloric acid, dried slowly at 35°C, and homogenized with 

a mortar and pestle. A portion of the decalcified sediment was reserved to measure the 

TOC. A thin layer of ~5 mg of sediment was combusted at 375°C with a steady stream 

of high purity compressed air for 24 hours to isolate the BCCTO. Sediment samples 

from the GeoB cores were quantified using an Elementar Vario MICRO cube 

elemental analyzer coupled to an Isoprime100 isotope ratio-mass spectrometer (IR-

MS); sediments collected on EN-480 and EN-481 were analyzed on a Carlo Erba 

elemental analyzer coupled to a GV Optima 588 system IR-MS. The detection limit of 

both instruments was 100 ng of carbon. 
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Sediments were also analyzed for BC using a pyrene fluorescence loss (BCPFL), a 

chemical technique which uses the adsorption of pyrene to BC (Accardi-Dey and 

Gschwend, 2002; Flores-Cervantes et al., 2009; Pohl et al., 2013). Approximately 20 

mg of each sample was added to a 50 mL amber vial with a 1 μg L
-1

 aqueous pyrene 

solution and 0.05 M sodium azide to prevent microbial growth. Prior to adding the 

sediment sample, a Shimadzu RF-1501 spectrophotofluorometer was used to obtain 

the initial fluorescence (excitation at 275 nm; emission spectra 250-450 nm). Samples 

were placed on a shaker table for 30 days to reach equilibrium before the final 

fluorescence was measured. BCPFL was calculated using equations (1)-(3).  

 

   
  

  
                           (1) 

 

The fraction of dissolved pyrene after equilibrium was achieved (fw) was determined 

by the ratio of the final pyrene concentration (Cf; μgpyrene L
-1

) by the initial pyrene 

concentration (Ci;  μgpyrene L
-1

). 

 

   
      

     
                    (2) 

 

The solid-water partitioning coefficient (Kd; L kgsample
-1

) was then determined by using 

Eq. 2 where rsw is the ratio of the sample mass (kg) added to the volume of water (L). 

Finally the fraction of BCPFL present (fbc) was determined by equation 3. 
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                (3) 

 

Here, fOC is the organic carbon fraction determined by IR-MS during the CTO-375 

methodology, KOC and KBC are predetermined distribution coefficients of 10
4.7

 (L 

kgOC
-1

) and 10
6.25 

([μgpyrene kgBC
-1
]/[μgpyrene L

-1
])  respectively, Cw is the initial truly 

dissolved concentration of pyrene (μgpyreneL
-1

), and n is the Freundlich constant of 0.62 

(Accardi-Dey and Gschwend, 2002). The initial pyrene concentration of 1 μgpyrene L
-1

 

was selected to make Cw approach 1, eliminating the uncertainty of the Freundlich 

exponent.  

 

In addition to the chemical approach to quantify sedimentary BC, a visual-based 

petrographic analysis was applied for comparison (BCpetro). Approximately 50 g of 

sediment from the Amazon Delta (sediment depths 0-6, 5.5-9, and 8.5-12 cm) and 

Sierra Leone Rise (0-4 and 4-8 cm) where analyzed with a quantitative microscope 

analysis by Dr. Bertrand Ligouis at the Laboratories for Applied Organic Petrology at 

the University of Tübingen, Germany. Briefly, polished sediments were observed 

under a Leitz DMRX-MPVSP microscope photometer using a total magnification up 

to 500X with reflected white light, uѵ fluorescence, plane-polarized light, and cross-

polarized light (Taylor et al., 1998; Crelling et al., 2006). Various anthropogenic and 

natural organic matter fragments were observed including char, soot, coal, plastic, 

pollen, and fungal spores (Supplementary Materials). 

 

2.3. Sedimentation Rates and BC Fluxes to sediments 
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Sedimentation rates were obtained using three approaches: published data from nearby 

sites or existing data bases, radiocarbon dating, and with an empirical relationship 

using depth as the independent variable as outlined by Middelburg et al. (1997). These 

sedimentation rates were applied to calculate the BCCTO, BCPFL, and BCpetro sediment 

fluxes. 

 

In the first approach, sedimentation rates for all regions were estimated using 

published data and through the global inventory www.pangaea.de. If there was no 

published data for a specific core, the averaged sedimentation rates of nearby sites 

were used as an approximation. 

 

In the second approach, sediments from the Amazon Delta and Sierra Leone Rise 

regions were analyzed for radiocarbon (Δ
14

C) using the reconnaissance method at the 

National Ocean Science-Accelerated Mass Spectrometry facility at Woods Hole 

Oceanographic Institute (Burke et al., 2010; Xu et al., 2007). Δ
14

C was determined in 

the top 6 cm as well as the bottom two (deepest) centimeters. The determined ages of 

the bottom sediment sections were applied to calculate the sedimentation rate and 

depositional flux of BCCTO, BCPFL, and BCpetro to these sediments.  

 

The third approach to determine sedimentation rate was calculated using a depth-based 

algorithm (Middelburg et al. 1997). The sediment accumulation rate (ω) and BC flux 

(Fb) was calculated using equations (4) and (5) with the sediment porosity (ø), the 

sediment dry bulk density (ρs), and the surface sediment concentration of BC (CBC) as 
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determined from the chemothermal oxidation, pyrene fluorescence loss, and 

petrographic analysis methods. The estimated ω was predicted using depth (Z) as the 

independent variable along with the linear regression parameters of a (-0.87478367) 

and b (-0.00043512), and a correction factor (CF; 3.3).   

 

                              (4) 

 

                             (5) 

    

For the BCpetro fluxes, soot values were converted from a volume concentration (cmBC
3
 

cmsediment
-3

) to mass concentration (mgBC gsediment
-1

) using an approximated soot density 

of 1 g cm
-3

, charcoal density range of 0.24 to 0.48 g cm
-3

, and an average sediment 

density of 1.7 g cm
-3

 (Tenzer and Gladkikh, 2014).  

 

2.4. Hydrocarbon Analysis and Source Determination 

Black carbon sources were estimated using δ
13

C, select polycyclic aromatic 

hydrocarbons (PAHs), and n-alkanes. δ
13

C values were determined with the 

chemothermal oxidation method on the IR-MS. For the PAH analysis, homogenized 

sediments were extracted with an accelerated solvent extractor (Dionex ASE 350) in 6 

cycles at 150°C using a 50/50 mix of hexane and acetone. Prior to extraction, d10-

acenapthene, d10-phenanthrene, d12-chrysene, and d12-perylene were added to each 

sample to assess recovery. Solvent extracts were evaporated to 1 mL using a rotary 

evaporator and purified through a column containing 2 mg of activated silica with 45 
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mL of a 30/70 solvent mixture of dichloromethane and hexane. Extracts were 

evaporated with N2 gas to 50 μL and an injection surrogate of p-terphenyl was added 

before analysis on an Agilent 6890 Series gas chromatograph coupled to a 5973 

Network Mass Selection Detector (GC-MS). All samples were quantified using 

ChemStation software. Source apportionment was assessed on all surface sediments 

using the ratio of indeno(1,2,3,c,d)pyrene (IP) and benzo(g,h,i)perylene (Bghi) versus 

fluoranthene (Fl) and pyrene (Py).  The same extract was also analyzed for the 

selected n-alkanes on all surface sediments (0-2 cm) using the GC-MS as outlined by 

Sachse et al. (2006). The n-alkanes not in the calibration curve were linearly 

extrapolated based on molecular weight. 

 

2.5. Quality Control and Quality Assurance 

The standard reference materials (SRM) 1941b (marine sediment), 1650 (diesel soot), 

1649a (urban dust), mollisol (chernozem), risotto char, and sand as a methodological 

blank were quantified alongside BC as recommended by the BC ring trials (Hammes 

et al., 2007). Previous works have suggested that the CTO-375 method could char 

environmental matrix samples, such as sediment, by artificially creating soot-like BC 

during the chemothermal oxidation treatment (Gustafsson et al., 2001; Elmquist et al., 

2004; Hammes et al., 2007; Flores-Cervantes et al., 2009). We used the inter-

laboratory investigation by Hammes et al. (2007) as a reference for these commonly 

applied SRMs. The investigation quantified the analytical average and range, 

respectively for theses SRMs using the CTO-375 method: 1941b (0.51%; 0.38-
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0.74%), 1649a (1.49%; 0.9-2.59%), mollisol (0.11%; 0-0.44%), risotto char (0.9%; 0-

2.1%), and 1650 (43.2%; 32.5-44.0%).  

 

The average BC concentration for 1941b was 0.7% for the chemothermal oxidation 

(±0.04) and pyrene fluorescence loss method (±0.2) methods. Mollisol was 0.1% also 

for both methods. BCPFL was greater for 1649a (5.8%) than the chemothermal 

oxidation (2.4%) method, which was expected according to Flores-Cervantes et al. 

(2009), suggesting a large fraction of charcoal. A greater BCCTO concentration was 

measured for 1650 (48.0%) than BCPFL (12.2%), which suggests that diesel particulate 

matter may contain a thermally stable form of carbon that was not detected using the 

pyrene fluorescence loss. No risotto char was recovered by BCCTO, as expected, 

suggesting that little charring of organic carbon was occurring; risotto char was not 

measured via pyrene fluorescence loss method since it altered the color of the aqueous 

solution, obscuring the results. No BC was detected on the sand by either method. 

 

3.0. Results and Discussion 

3.1. Black carbon concentrations 

BCCTO represents the most refractory and thermally stable forms of the BC 

combustion continuum (Masiello, 2004). Thus, BCCTO is optimized to quantify the 

soot-like fractions of BC and will oxidize charcoal. The pyrene fluorescence loss 

method is a chemical technique which does not have a thermal bias. It should be able 

to detect a broader range of BC forms (Flores-Cervantes et al., 2009). In this study, 

most sediments had a ratio of BCCTO to BCPFL (soot/soot+charcoal) ≥1, indicating that 
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soot dominated BC fraction in sediments (Table 2, Fig. 2, Fig. 3). BCCTO/BCPFL ratios 

were >1 in the Niger and Sierra Leone Rise, suggesting that a thermally refractory, 

carbonaceous material, such as pollen, could be present in these deep water systems 

(Gustafsson et al., 1997). However, petrographic analysis demonstrated that only trace 

amounts of pollen and plant spores were present, thus their interference should be 

minimal. The chemothermal oxidation has been shown to char sediments rich in 

phytoplankton exudates by giving BCCTO measurements up to 27% on BC-free, but 

OC-rich, sediments (Gustafsson et al., 2002; Masiello, 2004). However, SRM analysis 

suggests that charring was minimal. Diesel soot-like BC (SRM 1650) gave similar 

results with BCCTO/BCPFL being >1, so a similar material may have been present in the 

Niger Delta sediments. 

 

BCCTO and BCPFL sediment concentrations were most comparable in the Amazon 

Delta (Fig. 2). BCPFL concentrations averaged 0.3±0.2% and composed 52±30% of the 

TOC while the BCCTO was 0.4±0.2% and composed an average of 55±30% of the 

TOC (Table 2). The BCCTO/BCPFL ratio was 0.9, implying that the Amazon Delta was 

comprised mostly of refractory soot. This finding agrees with the petrographic 

analysis in which only soot particles derived from traffic combustion were observed. 

The BCPetro concentration for the surface Amazon Delta sediments (0-6 cm) was 0.8%. 

Total organic carbon, BCPFL, and BCCTO concentrations were lower than expected for 

this fluvial system (Table 1). This could be the result of the large distance from the 

source (200 km from river mouth) or due to enhanced remineralization of organic 

material in both the water column and sediments. The Amazon is known as the global 
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incinerator, and these sites could have undergone enhanced biological respiration 

during and after deposition (Aller and Blair, 2006).  

 

Both the Sierra Leone Rise and South Atlantic regions were expected to be dominated 

by atmospheric deposition and have minimal fluvial inputs. BCCTO concentrations 

were elevated in the Sierra Leone Rise compared to the South Atlantic. BCPFL and 

BCCTO in the Sierra Leone Rise composed an average of 28±20% and 30±10% of the 

TOC, respectively (Fig. 2). Soot dominated the BC in the sediment and TOC 

concentrations were 1.7±0.6%, which were among the highest in this study region. 

Both the BCPFL and BCCTO concentrations were 0.5% (±0.4 and 0.2%, respectively). 

Petrographic analysis observed both soot particles (0.8%) and charcoal particles (0.06 

to 0.11%) derived from coal combustion, resulting in a BCpetro concentration of 0.9%. 

In the remote South Atlantic, BCCTO concentrations were 0.1±0% and composed 

15±0% of the TOC. This agreed with the findings by Masiello and Druffel for Pacific 

pelagic sediments (1998). BCPFL concentrations were 0.5±0% in the South Atlantic 

(BCCTO/BCPFL of 0.2), suggesting an input of charcoal-like BC (Fig. 2, Fig. 3.). 

 

 BCCTO/BCPFL concentration ratio at the Niger Delta sites were > 1, suggesting that 

soot was dominant in this heavily urbanized fluvial system (Table 2, Fig. 2). The 

regional average BC concentration was 0.4±0.7% for BCPFL and 0.7±0.2% for BCCTO, 

which were among the highest in the Subtropical Atlantic region. In oxygenated 

sediments, up to 64% of the BC (both charcoal and soot) can be degraded (Middelburg 

et al., 1999; Burdige, 2007). This proposes that the more labile charcoal is either 
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respired in the water column and sediment and/or undergoes more oxidation in the 

sediments than soot. 

 

The petrographic analysis supported the trends derived via CTO-375 and PFL, 

however, petrographic results were elevated in comparison to these analytical methods 

(Supplementary Materials). Anthropogenic particles were detected in all sediments 

analyzed in the Amazon Delta and Sierra Leone Rise regardless of sediment depth. 

Soot derived from traffic combustion (size fraction 3-60 and 3-100 µm for the top 

sediment of the Amazon Delta and Sierra Leone Rise, respectively) was the dominant 

form of anthropogenic material, followed by plastic, and char from coal combustion 

(Sierra Leone Rise only). Anthropogenic-derived carbonaceous materials were 

elevated in the Sierra Leone Rise compared to the Amazon Delta, suggesting that 

atmospheric deposition and vertical surface water advection deposited greater amounts 

of terrigenous material than the Amazon River. In general, natural and anthropogenic 

particles were smaller in the Amazon Delta than the Sierra Leone Rise, suggesting 

greater fragmentation and sorting during transport. Previous work had hypothesized 

that fluvial-deposited BC particles would be more degraded than atmospheric-

deposited since they can age in soils before transport to the ocean (Jaffe et al., 2013; 

Masiello and Louchouarn, 2013). Alternatively, this could also suggest that the carbon 

remineralization is greater in the Amazon plume during deposition (Aller and Blair, 

2006).  
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The mass concentration of microscopic soot in the Amazon Delta decreased with 

sediment depth from 0.8% (0-4 cm) to 0.6% (5.5-9 cm) to 0.2% (8.5-12 cm) compared 

to BCCTO surface sediment (0-2 cm) concentration of 0.4% and deep sediment 

concentration (11-12 cm) of 0.1%. BCCTO and BCPFL also displayed the general trend 

of BC concentration decreasing with sediment depth; this trend was significant for the 

BCPFL (p-value = 0.04, R
2
=0.63), but not for the BCCTO (p-value = 0.06, R

2
=0.59). No 

char (natural or from coal combustion) was detected. This agreed with our quantitative 

analysis that soot was the dominant BC form in the Amazon sediments, as shown by 

the ratio of BCCTO/BCPFL ~1 (Table 2).  

 

Microscopic soot concentrations (0.8%) were also elevated above the BCCTO derived 

measurement (0.5%) in the Sierra Leone Rise surface sediments. All black carbon 

analysis (BCCTO, BCPFL, and BCpetro) displayed no trend with sediment depth. Char 

produced from coal combustion was detected at this site with a mass concentration of 

0.1%, also agreeing that soot was the primary from of BC, but that char-like material 

was present. The Sierra Leone Rise top sediments also had volume concentration 0.4% 

of fusinite, a rare char associated with wildfires, demonstrating that this region 

received fire-derived carbon inputs.  

 

3.2. Black carbon fluxes to deep marine sediments 

BCCTO fluxes from previously published sedimentation rates ranged from 0.9 mg cm
-2 

ky
-1

 in the pelagic South Atlantic site to a regional average of 23 mg cm
-2 

ky
-1

 in the 

Niger Delta (Table 3).  The South Atlantic was expected to have the lowest BCCTO 
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flux as there are no fluvial and little atmospheric soot inputs; this region was 

comparable to soot-like BC fluxes measured in open ocean and margin sediments 

(Table 1; Suman et al., 1997; Lohmann et al. 2009). Thus, the South Atlantic 

represents a background concentration of BCCTO fluxes to open ocean sediments. The 

Sierra Leone Rise region, which is also a pelagic site, had ~7X the flux of the South 

Atlantic site, 6.3 mg cm
-2 

ky
-1

, implying an enhanced input of soot-like BC, 

presumably by the intense African  biomass burning events that occur annually during 

the dry season (Cahoon et al., 1992). This is further supported by the more enriched 

BCCTO δ
13

C value of -24±3‰, suggesting large inputs of C4 plant material, and the 

model simulations of elevated black and elemental carbon in this region (Schmidt and 

Noack, 2000; Lohmann et al., 2009). If we assume that the Sierra Leone Rise and 

South Atlantic regions receive no fluvial BC inputs, then atmospheric BCCTO 

deposition could account for 4-28% of the BC fluxes in the Niger Delta. 

 

BCPFL fluxes were expected to quantify a broader portion of the BC combustion 

continuum (soot and charcoal). BCPFL fluxes were similar to the BCCTO fluxes in the 

Amazon Delta (2.8 mg cm
-2 

ky
-1

) and Sierra Leone Rise (6.1 mg cm
-2 

ky
-1

), and were 

greater than previously measured in pelagic Pacific sediments (Suman et al., 1997). 

The South Atlantic region was measured to have approximately 5X greater of a BCPFL 

flux than the BCCTO flux (5.9 mg cm
-2 

ky
-1

). The Niger Delta had a lower BCPFL flux 

of 14.3 mg cm
-2 

ky
-1

. This flux calculation estimates that the atmospheric contribution 

of BCPFL to the Niger Delta is at least 43%, which agrees with the estimates previously 

made by Masiello and Druffel (1998). 
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Radiocarbon was measured on sediments from the Amazon Delta and Sierra Leone 

Rise. The radiocarbon derived BCCTO fluxes agreed with the fluxes derived from 

previously published sedimentation rates, with the exception of the equatorial sample 

in the Sierra Leone Rise region (Table 3). This could be a result of the high 

concentrations of carbonates in this region, which could have caused a greater 

sedimentation rate due to the faster sinking rates of the denser calcified plankton 

(Boeckel et al., 2006). The BCPFL radiocarbon fluxes were the same between the 

Amazon Delta and Sierra Leone Rise at 6 mg cm
-2 

ky
-1

, which was lower than the 

Sierra Leone Rise and higher than the Amazon Delta compared to the BCCTO fluxes.  

 

The third flux determination used an empirical relationship between carbon burial rate 

and sedimentation rate, where the sedimentation rate was determined empirically 

using water depth as an independent variable (Middelburg et al., 1997). With the 

exception of the remote South Atlantic, empirically derived BCPFL and BCCTO fluxes 

were an order of magnitude greater than both the radiocarbon and sedimentation rate 

derived fluxes (Eq. 4-5). The algorithm used to calculate this flux is based on a global 

average of carbon burial and sedimentation rates including remote, marginal, and 

coastal data. We hypothesize that this approach is a regional estimation that may not 

accurately depict sites heavily influenced by fluvial and atmospheric carbon inputs, 

such as the Subtropical Atlantic. The South Atlantic was the only site with comparable 

fluxes. The BCCTO flux was 0.6 mg cm
-2 

ky
-1

 and the BCPFL flux was 3.6 mg cm
-2 

ky
-1

.  

This further supports that this relationship is optimized for sites that are primarily 
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removed from fluvial and intense atmospheric deposition of organic material, and 

serves as a regional approximation of BC burial. 

 

Soot fluxes derived from the petrographic analysis in the Amazon Delta and Sierra 

Leone Rise were elevated compared to the BCCTO and BCPFL quantification methods 

(Table 3). In the Amazon Delta, the BCpetro flux was approximate 2X greater for the 

published sedimentation rate approach (5.7 mg cm
-2 

ky
-1

), 4X greater than the 

radiocarbon approach (19.7 mg cm
-2 

ky
-1

), and 4X greater than the depth-derived 

approach (83.6 mg cm
-2 

ky
-1

). Flux values were closer to the BCCTO and BCPFL values 

in the Sierra Leone Rise sediments, but still elevated at ~2X greater for the published 

sedimentation rates (12.0 mg cm
-2 

ky
-1

), 1.5X greater for the radiocarbon analysis 

(15.4 mg cm
-2 

ky
-1

), and 3X greater for the Middelburg et al. (1999) approach (72 mg 

cm
-2 

ky
-1

). The elevated BCpetro fluxes could be due to uncertainties in the soot and 

sediment densities used to convert from %volume to %mass or, alternatively, could 

suggest that the petrographic analysis was able to visually detect forms of soot-like 

particles that the CTO-375 and PFL methods could not. 

 

3.3. Source apportionment of BC in the tropical Atlantic sediments 

All Amazonian sediment cores had a δ
13

C-BC signal indicative of C3 terrestrial 

biomass, averaging -28±4‰ for the surface sediments (Holtvoeth et al., 2003; 

Farquhar et al., 1989; Lohmann et al., 2009). The Niger Delta and Senegal Delta both 

had a more enriched δ
13

C-BC at -23‰ (±4 and 0‰, respectively). The Niger Delta 

surface sediments are most likely influenced by both grassland burning and fossil fuel 
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combustion byproducts since Africa consumes 477 Gg yr
-1

 of fossil and biofuels, with 

Nigeria (part of the Niger Delta’s watershed) being one of the highest areas of 

emission (Bond et al., 2004). This carbon emission is comparable to Europe.  

 

The Sierra Leone Rise region also had an enriched δ
13

C-BC signal, averaging -

24±3‰, likely resulting from a mix of C3 and C4 combusted biomass. Plants which 

use C4 carbon fixation comprises approximately 13% of the modern day plants and 

have a highly enriched signature between -10 to -14‰ in comparison to C3 carbon 

fixation (Cerling et al., 1993). C4 plants are most notably warm season grasses, such as 

the Savanna grassland biome in Central and Southern Africa; these enriched δ
13

C 

values heavily suggest significant BC inputs from grass combustion (Schwartz et al., 

1986).  The remote South Atlantic region had a δ
13

C-BC of -26±2‰ which we 

apportion as C3 biomass combustion.  

 

The δ
13

C-TOC for all sediments ranged narrowly between -17±1‰ in the Sierra Leone 

Rise to -23±1‰ in the South Atlantic which is indicative of marine phytoplankton. 

This agrees with previous δ
13

C-TOC measurements of -21.7‰ in the South Atlantic 

and -20.2 to -20.8‰ for the northwest Atlantic (Emerson and Hedges, 1988; Lohmann 

et al, 2009).  

 

Black carbon and PAHs are both combustion byproducts, and have been used to 

apportion combustion sources (Schmidt and Noack, 2000; Reddy et al., 2002). Select 

PAHs were quantified and used for source assessment as outline by Yunker et al. 



 

32 

 

(2002). The ratio of fluoranthene / (fluoranthene + pyrene) can indicate a raw 

petroleum source (< 0.4), petroleum combustion (0.4-0.5), or the combustion of grass, 

wood, and coal (>0.5).  The ratio of indeno(1,2,3,c,d)pyrene / (indeno(1,2,3,c,d)pyrene 

+ benzo(g,h,i)perylene) apportioned source of <0.2 is assigned as petroleum, 0.2-0.5 is 

mixed sources and >0.5 is combustion. Analysis of these two ratios estimated that the 

maximum petroleum combustion contribution is approximately 10% for all surface 

samples and 80% of the surface sediments are possibly derived from grass, wood, or 

coal combustion. The Niger Delta had up to 67% of its surface sediments being 

denoted as petroleum-derived, which is expected since the Niger Delta is a known 

petroleum reserve (Olajire et al., 2005). The ratio of 

anthracene/anthracene+phenanthene and fluoranthene / (fluoranthene + pyrene) 

implies that up to 100% of the PAHs from these regions are derived from the 

combustion of grass, wood or coal.  

 

Plant waxes, n-alkanes, are also useful biomarkers to assess organic carbon source. 

We calculated four commonly used indices to assess marine, terrestrial and oil sources 

(Table S3). A ratio of the low molecular weight (<20 carbons) to the high molecular 

weight (≥20 carbons) that is ≥1 is indicative of marine algae, plankton, and/or 

petroleum while a ratio <1 suggests higher order plants (Gearing et al., 1976). The 

Amazon Delta (0.7) and Sierra Leone Rise (0.4) appear to be dominated by terrestrial 

material while the others could be inputs of marine biomass or petroleum. The carbon 

preference index (CPI) utilizes the sum of C27 and C29, which are often associated with 

vascular terrestrial plants, by C26, C28, and C30 (Colombo et al., 1989; Commendatore 
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et al., 2000). A ratio ~1 is considered to be influenced by petroleum, microbes, or 

algae whereas a ratio near 3-6 is associated with vascular terrestrial plants. The 

Amazon and Niger Deltas were the only regions to have a CPI > 1 (2.3 and 2.4, 

respectively), suggesting an input of terrestrial organic matter. This is supported by the 

ratio of C27, a wax associated with woody plants, to C31, which is often associated with 

grasses (Cranwell, 1973; Maffei, 1996). This analysis suggests that woody material 

(C3) is more present than grass material (C4) in the Amazon and Niger Deltas, which is 

also observed in the δ13
C data. The last assessment determined the overall contribution 

of terrestrial vascular plants using C27, C29, and C31 (Colombo et al., 1989; Table S3). 

The Amazon and Niger Deltas contained the overall highest fractions of these waxes 

(27 and 30%), followed by the Sierra Leone Rise (10%). 

 

The petrographic analysis also supported that wildfire combustion was a likely a major 

source of charred particles to the Sierra Leone Rise region. In addition to the high 

concentration of fusinite, a natural wildfire char, above-trace concentrations of cutinite 

(leaf epidermis) and funginite (fungal remains including hyphae) were also observed.  

 

4.0. Conclusions 

Black carbon composed up to 96% of the total organic carbon, and had an overall 

average of 38±23% throughout the Equatorial Atlantic, suggesting that it is highly 

recalcitrant in pelagic marine sediments. Soot-like black carbon fluxes, as determined 

by the chemothermal oxidation method, were greatest in the Senegal and Niger Deltas 

at 38 and 23 mgC cm
-2 

ka
-1

, respectively. Soot-like black carbon fluxes in the remote 
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Sierra Leone Rise (6.3 mgC cm
-2 

ka
-1

) were approximately seven times greater than 

the remote South Atlantic (0.9 mgC cm
-2 

ka
-1

) suggesting that soot-like black carbon 

deposition is enhanced by the African aerosol and dust plume in the equatorial 

Atlantic. Black carbon fluxes, as determined by the pyrene fluorescence method, were 

similar to the soot-like black carbon fluxes. This proposes that soot-like carbon was 

the dominate form of black carbon in the deep sediments.  

 

Sediments at the Sierra Leone Rise presumably only received atmospherically 

deposited black carbon. Thus, remote regions can have high black carbon 

concentrations due to elevated atmospheric deposition. The South Atlantic was 

another region with little fluvial deposition. Soot-like black carbon displayed low 

concentrations (0.1%), reinforcing the importance of atmospheric deposition of black 

carbon in regions impacted by atmospheric emission plumes and seasonal burning 

events. Stable carbon ratios implied that the combustion of Savanna grasses from 

Southern Africa was an important source of the elevated black carbon concentrations 

and fluxes in the Sierra Leone Rise compared to the South Atlantic sites. This could 

imply that 4-43% of the black carbon in the Niger Delta fluvial sediments is from 

atmospheric deposition and that black carbon fluxes to remote marine sediments could 

be elevated compared to the global background in regions with intense biomass 

burning activities. 
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Tables 

 

Table 1. Global comparison of black carbon (BC) concentrations and fluxes to marine 

sediments from selected studies. 

 

 

 

 

 

 

 

 

 

 

 

Region %BC %BC/TOC 
BC flux 

 (mg cm-2 ka-1) 
Reference 

Washington Coast, USA .014-.065 1.01-5.6 1.5 - 3.1 Dickens et al. 2004 

Swedish continental shelf 0.10 - 0.34 2.3 - 6.6 n/a 
Sanchez-Garcia et al. 

2012 

South American Coast 0.04 - 0.10 8 - 34 0.6 - 2.6 Lohmann et al. 2009 

African Coast 0.08 - 0.11 3 - 12 0.5 - 7.8 Lohmann et al. 2009 

Iberian Margin (Atlantic) 0.047 - 0.16 16 - 29 n/a Middelburg et al. 1999 

North Sea 0.028 - 0.457 16 - 61 n/a Middelburg et al. 1999 

Gulf of Maine, USA 0.011 - 0.173 3.1 - 14.6 86 - 190 
Gustafsson and Gschwend 

1998 

Brazil (SE coast) 0.03 - 0.31 2.32 - 12.75 n/a Ribeiro et al. 2008 

Pacific Abyssal Plain n/a 15 ± 2 n/a Masiello and Druffel 1998 

Open Ocean Pacific n/a n/a 0.002 - 3.6 Suman et al. 1997 

Coastal n/a n/a 26 - 354 Suman et al. 1997 
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Table 2. Surface sediment concentrations of the total organic carbon (TOC) and black 

carbon (BC) as quantified using the chemothermal oxidation (CTO-375) and pyrene 

fluorescence loss (PFL) methods with the associated regional and sample replicate 

standard deviation. The black carbon concentration derived from the petrographic 

analysis was 0.8% for the Amazon Delta and 0.9% for the Sierra Leone Rise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CTO-375 
 

PFL 
  

Region %TOC %BC BC/TOC %BC BC/TOC BCCTO/BCPFL 

Amazon Delta 0.6 ± 0.2 0.4 ± 0.2 55 ± 30% 0.3 ± 0.2 52 ± 30% 0.9 ± 0.3 

Niger Delta 1.7 ± 0.9 0.7 ± 0.2 51 ± 30% 0.4 ± 0.7 19 ± 20% 3.1 ± 3.3 

Senegal Delta 3.2 ± 0.02 0.7 ± 0.01 23% 0.0 5% 1.0 

Sierra Leone Rise 1.7 ± 0.6 0.5 ± 0.2 30 ± 10% 0.5 ± 0.4 28 ± 20% 1.5 ± 1.3 

South Atlantic 0.8 ± 0.01 0.1 ± 0.01 15% 0.5 67% 0.2 
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Table 3. Regional average black carbon fluxes (mgBC cm
-2

 ka
-1

) to marine sediments 

determined using three approaches: published sedimentation rates from nearby cores, 

using a radiocarbon analysis to estimate sedimentation rate, and using an empirical 

approach developed by Middelburg et al. (1997). BCCTO used the chemothermal 

oxidation at 375°C, BCPFL used the pyrene fluorescence loss method, and BCpetro used 

the visual petrographic analysis method including soot and charcoal particles. 

 

 

 

 

 

 

 

 

 

 

 

 
Published Sed. Rates Radiocarbon Middelburg et al. 1997 

Region BCCTO BCPFL BCPetro BCCTO BCPFL BCPetro BCCTO BCPFL BCPetro 

Amazon  2.9 2.8 5.7 4.1 6.0 19.7 18.5 20.3 83.6 

Equator 2.9 0 n/a 0.6 0.0 n/a 16.8 17.5 n/a 

SLR 6.3 6.1 12.0 10.0 6.2 15.4 23.6 23.6 72.0 

Niger  22.5 14.3 n/a n/a n/a n/a 47.0 30.0 n/a 

Senegal 38 5.4 n/a n/a n/a n/a 870.4 124.3 n/a 

S-Atlantic 0.9 5.9 n/a n/a n/a n/a 0.6 3.6 n/a 
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Figures 

 

Figure 1. Locations of the sediment collected for this study; light gray dots are cores 

taken during EN-480 to EN-481 and dark gray dots are cores analyzed from the 

Bremen University, Germany. 
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Figure 2. The average surface sediment concentration of total organic carbon for each 

region divided into the organic carbon and soot-like black carbon fraction as defined 

by the chemothermal oxidation (CTO-375) and pyrene fluorescence loss (PFL) 

methods. 
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Figure 3. The black carbon concentration derived with the pyrene fluorescence loss 

(PFL) versus the chemothermal oxidation at 375°C (CTO-375) methods according to 

region. The dashed line represents a 1:1 line, where samples plotted below this line are 

dominated by soot-like black carbon. 
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Supporting Information 

An assessment of fluvial versus atmospheric fluxes of black carbon to subtropical 

Atlantic sediments 

 

Kari Pohl 

Mark Cantwell 

Matthias Zabel 

Rainer Lohmann 

 

Included in the supporting information are: 

Table S1. Dates, coordinates, and water depth of sediment sampling. 

Table S2. Surface sediment concentrations of black carbon (BC) as quantified 

using a chemothermal oxidation (CTO-375) and pyrene fluorescence loss (PFL) 

method. 

 

Table S3. Array of n-alkane indices to apportion the source of the sediment 

organic carbon. The following n-alkanes (Σn-alkanes) were quantified: decane, 

undecane , dodecane, tridecane, tetradecane, pentadecane,  hexadecane, 

heptadecane, octadecane, nonadecane, eicosane, heeicosane, decosane,  

tetracosane, pentacosane, hexacosane, heptacosane,  octacosane, nonacosane, 

triacosane, hentriacontane, triacontane, dotricosane, tetratricosane, 

hexatriacontane, and tetracosane 

 

Table S4. The regional average stable carbon fraction (δ
13

C) of the total organic 

carbon (TOC) and black carbon (BC), and carbonate concentration (CO3
2-

). 

 

Table S5. Summary chart of petrographic analysis for sediments from the (A) 

Amazon Delta and (B) Sierra Leone Rise (SLR). Note that concentrations are in 

%volume. The x indicates that the Maceral group was present, but a volume 

concentration was not expressed due to scarcity.  

 

Figure S1. The total organic carbon (TOC) versus the soot-like black carbon 

(BC) fractions for all sediments samples from each region. The respective 

correlations (R
2
) are as follows: Amazon Delta (0.11), Niger Delta (0.20), 

Senegal Delta (0.002), Sierra Leone Rise (0.003), and South Atlantic (0.02). 
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Figure S2. Figure 2: Source apportionment of all surface sediments using the 

ratio of indeno(1,2,3,c,d)pyrene (IP) and benzo(g,h,i)perylene (Bghi) versus 

fluoranthene (Fl) and pyrene (Py). The following PAHs were quantified:  

Napthalene, 2-methyl naphthalene, acenapthylene, acenapthene, biphenyl, 1,5-

dimethyl naphthalene, flourene, 2,3,5-trimethyl naphthalene, phenanthrene, 

anthracene, 2-methyl flourene, dibenzothiophene, 1-methyl phenanthrene, 9-

methyl antracene, 2-methyl dibenzothiophene, pyrene, fluoranthene, 4,5-dimethyl 

phenanthrene, 3,6-dimethyl phenathrene, 1-methyl pyrene, retene, perylene, 

benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene, and dibenze(a,h)anthracene. 

 

Figure S3. Microscopic images of anthropogenic particles from the Amazon 

Delta (A,B) and Sierra Leone Rise (C,D). A) soot and char particle, B) high 

volatile bituminous coal, C) soot, and D) char. 

 

Figure S4. Mass concentrations of black carbon versus sediment depth at the (A) 

Amazon Delta and (B) Sierra Leone Rise. Black carbon concentrations at these 

two sites were derived using three methods: pyrene fluorescence loss (PFL), 

chemothermal oxidation at 375°C (CTO), and by petrographic analysis (Petro). 

The bulk total organic carbon (%TOC) is also included. 
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Sediment 

ID 

Sampling 

Month/Year 
Latitude Longitude Location 

Water 

Depth (m) 

1 July 2010 4.282778 -47.484444 Amazon Delta 2365 

2a July 2010 5.915833 -45.001111 Amazon Delta 3545 

2b July 2010 5.900833 -45.002222 Amazon Delta 3520 

3 July 2010 6.168333 -44.8525 Amazon Delta 3999 

5d August 2010 0.485556 -23.1225 Equator 3567 

5e August 2010 0.47 -23.068611 Equator 3690 

6 August 2010 7.003889 -20.795278 Sierra Leone Rise 3853 

7e August 2010 5.018056 -21.243611 Sierra Leone Rise 2811 

7f August 2010 4.968889 -21.201667 Sierra Leone Rise 2787 

7g August 2010 5.005833 -21.250556 Sierra Leone Rise 2794 

8c August 2010 4.560833 -24.509167 Sierra Leone Rise 4030 

9a August 2010 7.435278 -24.010556 Sierra Leone Rise 4065 

9b August 2010 7.450278 -24.010278 Sierra Leone Rise 4052 

GeoB 

4901 

February/March 

1998 
2.668889 6.717222 Niger Delta 2180 

GeoB 

4903 

February/March 

1998 
1.916667 8.166944 Niger Delta 2834 

GeoB 

4904 

February/March 

1998 
0.95 8.8 Niger Delta 1208 

GeoB 

4905 

February/March 

1998 
2.5 9.384444 Niger Delta 2184 

GeoB 

4907 

February/March 

1998 
-0.584722 8.018333 Niger Delta 2060 

GeoB 

4908 

February/March 

1998 
-0.701667 6.834167 Niger Delta 3028 

GeoB 

1701 

Dec./March 

1991/92 
1.95 3.55 Niger Delta 4162 

GeoB 

9501 
April/May 2003 16.834444 -16.719167 Senegal Delta 330 

GeoB 

2814 

July/August 

1994 
-37.618056 -39.116667 South Atlantic 4949 

 

 Table S1. Dates, coordinates, and water depth of sediment sampling. 
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CTO-375 PFL 

 
Sediment 

Core 
Position %TOC %BC BC/TOC %BC BC/TOC CTO/PFL 

1 Amazon 0.5 0.3 64% 0.3 51% 1.2 

2 Amazon 0.8 0.6 78% 0.6 79% 1.0 

3 Amazon 0.6 0.1 24% 0.2 26% 0.6 

5 Equator 2.7 0.5 16% 0.0 0% 0.0 

6 SLR 1.6 0.4 27% 0.5 29% 0.9 

7 SLR 2.0 0.5 28% 0.4 19% 1.6 

8 SLR 1.7 0.3 20% 1.0 52% 0.4 

9 SLR 1.5 0.6 43% 0.2 13% 3.2 

GeoB 

4901 
Niger Delta 1.4 0.8 56% 0.1 10% 5.7 

GeoB 

4903 
Niger Delta 1.4 0.8 59% 0.1 7% 8.9 

GeoB 

4904 
Niger Delta 2.6 0.3 11% 0.3 11% 1.0 

GeoB 

4905 
Niger Delta 3.2 0.5 15% 1.9 59% 0.2 

GeoB 

4907 
Niger Delta 1.4 0.7 50% 0.5 27% 1.5 

GeoB 

4908 
Niger Delta 1.2 0.8 73% 0.2 18% 4.1 

GeoB 

1701 
Niger Delta 0.7 0.7 96% 0.0 0% 0.0 

GeoB 

9501 
Senegal 3.2 0.7 23% 0.0 5% 0.1 

GeoB 

2814 
S-Atlantic 0.8 0.1 15% 0.5 67% 0.2 

 

Table S2. Surface sediment concentrations of black carbon (BC) as quantified using a 

chemothermal oxidation (CTO-375) and pyrene fluorescence loss (PFL) method. 
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Region C<20/C>20 2(C27+C29)/C26+2C28+C30 C27/C31 
(C27+C29+C31)/

Σ n-alkanes 

Amazon Delta 0.7 2.4 10.1 27% 

Niger Delta 1.2 2.3 19.1 30% 

Senegal Delta 6.0 0.0 0.0 7% 

Sierra Leone Rise 0.4 0.2 3.8 10% 

South Atlantic 28.8 0.0 0.0 1% 

 

Table S3. Array of n-alkane indices to apportion the source of the sediment organic 

carbon. The following n-alkanes (Σn-alkanes) were quantified: decane, undecane , 

dodecane, tridecane, tetradecane, pentadecane,  hexadecane, heptadecane, octadecane, 

nonadecane, eicosane, heeicosane, decosane,  tetracosane, pentacosane, hexacosane, 

heptacosane,  octacosane, nonacosane, triacosane, hentriacontane, triacontane, 

dotricosane, tetratricosane, hexatriacontane, and tetracosane. 
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Region δ
13

C-TOC (‰) δ
13

C-BC (‰) %CO3
2-

 

Amazon Delta -19 ± 1.2 -28 ± 4.0 21 ± 6% 

Niger Delta -19 ± 1.1 -23 ± 3.8 11 ± 8% 

Senegal Delta -20 ± 0.02 -23 ± 0.01 1% 

Sierra Leone Rise -17 ± 0.6 -24 ± 3.0 29 ± 6% 

South Atlantic -23 ± 0.35 -26 ± 1.74 3% 

 

Table S4. The regional average stable carbon fraction (δ13
C) of the total organic 

carbon (TOC) and black carbon (BC), and carbonate concentration (CO3
2-

). 
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A. Amazon Delta 
 

(0-6 cm) (5.5-9 cm) (8.5-9 cm) 

Maceral Group Maceral subgroup (vol. %) (vol. %) (vol. %) 

Huminite Telohuminite 
   

 
Detrohuminite 

   

 
Gelohuminite 

   
Vitrinite Telovitrinite 0.6 x x 

 
Detrovitrinite 2.4 3 2.2 

 
Gelovitrinite 

   
Liptinite Sporinite x x x 

 
Cutinite x x 

 

 
Fluorinite 

   

 
Suberinite 

   

 
Resinite x x x 

 
Chlorophyllinite 

   

 
Telalginite 1.4 0.8 1.8 

 
Lamalginite 

   

 
Liptodetrinite 1.4 0.6 x 

 
Bituminite (AOM) grey 60.4 26.6 40 

 
Bituminite (AOM) gray-brown 30.9 67.6 55.2 

 
Migrabitumen 

   

 
Oil inclusions 

   

 
Oil expulsions 

   
Inertinite Fusinite x x 

 

 
Semifusinite 0.2 x x 

 
Secretinite 0.4 x 0.2 

 
Macrinite 

   

 
Micrinite 

   

 
Inertodetrinite 0.7 0.2 0.2 

Natural Coke 
    

Natural Char 
    

Hard Coal Sub-bituminous x 0.2 x 

 
High volitile bit. Coal x 0.2 

 

 
Medium-volitile bit. Coal 

   

 
Low-volitile bit. Coal 

   

 
Anthracite 

  
x 

Coke (coal carbonization) 
 

x x 
 

Char (coal combustion) 
 

x x x 

Soot (traffic combustion) 
 

1.4 1 0.4 

Coal/petroleum-derived 
 

x x x 

Plastic 
 

0.2 x x 
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B. SLR 
 

(0-4 cm) (4-9 cm) 

Maceral Group Maceral subgroup (vol. %) (vol. %) 

Huminite Telohuminite 
  

 
Detrohuminite 

  

 
Gelohuminite 

  
Vitrinite Telovitrinite 0.2 0.6 

 
Detrovitrinite 7.4 8.4 

 
Gelovitrinite 

  
Liptinite Sporinite x x 

 
Cutinite 0.2 x 

 
Fluorinite 

  

 
Suberinite 

  

 
Resinite 

  

 
Chlorophyllinite 

  

 
Telalginite x x 

 
Lamalginite 

  

 
Liptodetrinite x x 

 
Bituminite (AOM) grey 46.2 76 

 
Bituminite (AOM) gray-brown 41.2 10.6 

 
Migrabitumen 

  

 
Oil inclusions 

  

 
Oil expulsions 

  
Inertinite Fusinite 0.4 0.2 

 
Semifusinite 0.2 1.4 

 
Secretinite 1 0.2 

 
Macrinite 

  

 
Micrinite 

  

 
Inertodetrinite 1 0.8 

Natural Coke 
   

Natural Char 
   

Hard Coal Sub-bituminous 
  

 
High volitile bit. Coal 

  

 
Medium-volitile bit. Coal 

  

 
Low-volitile bit. Coal 

 
x 

 
Anthracite 

  
Coke (coal carbonization) 

 
x x 

Char (coal combustion) 
 

0.4 x 

Soot (traffic combustion) 
 

1.4 x 

Coal/petroleum-derived 
 

x x 

Plastic 
 

0.4 0.2 
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Table S5. Summary chart of petrographic analysis for sediments from the (A) 

Amazon Delta and (B) Sierra Leone Rise (SLR). Note that concentrations are in 

%volume. The x indicates that the Maceral group was present, but a volume 

concentration was not expressed due to scarcity.  
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Figure S1. The total organic carbon (TOC) versus the soot-like black carbon (BC) 

fractions for all sediments samples from each region. The respective correlations (R
2
) 

are as follows: Amazon Delta (0.11), Niger Delta (0.20), Senegal Delta (0.002), Sierra 

Leone Rise (0.003), and South Atlantic (0.02). 
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Figure S2. Source apportionment of all surface sediments using the ratio of 

indeno(1,2,3,c,d)pyrene (IP) and benzo(g,h,i)perylene (Bghi) versus fluoranthene (Fl) 

and pyrene (Py). The following PAHs were quantified:  Napthalene, 2-methyl 

naphthalene, acenapthylene, acenapthene, biphenyl, 1,5-dimethyl naphthalene, 

flourene, 2,3,5-trimethyl naphthalene, phenanthrene, anthracene, 2-methyl flourene, 

dibenzothiophene, 1-methyl phenanthrene, 9-methyl antracene, 2-methyl 

dibenzothiophene, pyrene, fluoranthene, 4,5-dimethyl phenanthrene, 3,6-dimethyl 

phenathrene, 1-methyl pyrene, retene, perylene, benzo(g,h,i)perylene, indeno(1,2,3-

c,d)pyrene, and dibenze(a,h)anthracene. 
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Figure S3. Microscopic images of anthropogenic particles from the Amazon Delta 

(A,B) and Sierra Leone Rise (C,D). A) soot and char particle, B) high volatile 

bituminous coal, C) soot, and D) char. 
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Figure S4. Mass concentrations of black carbon versus sediment depth at the (A) 

Amazon Delta and (B) Sierra Leone Rise. Black carbon concentrations at these two 

sites were derived using three methods: pyrene fluorescence loss (PFL), chemothermal 

oxidation at 375°C (CTO), and by petrographic analysis (Petro). The bulk total 

organic carbon (%TOC) is also included. 
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Key Points: 

1) Black carbon composed significant fractions of the sedimentary organic carbon 

2) The labile organic carbon fraction has a δ
13

C suggestive of terrestrial inputs 

3) Most carbon was terrestrial in origin across tropical Atlantic sediments  

 

Abstract 

 

Biomarker evidence predicts <50% of input terrestrial organic matter is buried in 

sediments, despite this carbon form being recalcitrant. Terrestrial organic matter 

includes black carbon (BC), a refractory incomplete combustion byproduct which 

constitutes significant fractions of sedimentary organic carbon. We quantified two 

separate organic carbon fractions (BC and labile organic carbon) to assess terrigenous 

organic carbon concentrations in tropical Atlantic sediments.  Black carbon composed 

15-62% of the pelagic organic carbon. Bulk organic carbon had an average δ
13

C of -

20±2‰, indicative of marine plankton. When this δ
13

C is adjusted for the BC inputs, 

the labile organic carbon is more enriched with an average of -15±7‰, indicative of 

C4 plant inputs. This adjusted δ
13

C suggests C4 material is more resistant to 

degradation, possibly due to the heavier isotopic signature. Tropical Atlantic 

sediments contained as little as 12% marine materials, implying that terrestrial organic 

carbon composes a greater sedimentary fraction than previously measured.  

 

1. Introduction 

Terrestrial organic matter reaching the ocean is refractory due to its aromaticity, 

nitrogen depletion, and older age than marine fixed carbon (Hopkinson et al., 1998; 
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Kaushal and Binford, 1999; Raymond and Bauer, 2001). Biomarker evidence, 

however, estimates that <50% of input terrestrial material is buried in sediment 

(Hedges et al., 1997; Schlunz and Schneider, 2000; Schubert and Calvert, 2001). At 

least 0.5 Pg yr
-1

 of terrestrial organic carbon is deposited into the ocean by fluvial and 

atmospheric transport (Hedges et al., 1997; Schlunz and Schneider, 2000; Schlesinger 

and Melack, 1981). The atmospheric flux alone is roughly equivalent to the burial of 

marine phytoplankton in modern sediments (Berner, 1989; Hedges and Keil, 1995; 

Hedges et al., 1997). Despite this large input, deep pelagic sediments contain only 10-

20% terrestrial organic material demonstrating an imbalance between the inputs and 

our understanding of the fate of terrigenous carbon in the ocean
 
(Prahl et al., 1994; 

Schlunz and Schneider, 2000). The lack of evidence that terrestrial organic material is 

preserved in sediments could be due to our inability to trace the original structures 

once they enter the ocean and are subjected to photochemical and microbial 

degradation.  

 

Total organic carbon (TOC) can be operationally divided into two fractions: the 

refractory black carbon (BC) and the thermally labile organic carbon (OC) fraction 

(Gustafsson et al., 1997). Black carbon is a highly graphitized form of terrestrial 

organic carbon created through incomplete combustion and is protected from 

degradation in soils but subjected to breakdown into smaller fragments upon entry into 

the ocean (Stubbins et al., 2012; Masiello and Louchouarn, 2013). There is on-going 

debate whether BC structures survive long enough in the ocean to compose significant 

fractions of the sediment, or whether they are partially oxidized and enter into the 
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dissolved organic carbon pool (Middelburg et al., 1999; Burdige, 2005; Masiello and 

Louchouarn, 2013). While the BC fraction is terrestrially derived by definition, the 

labile OC fraction could be a mix of marine and terrestrial material and is presumed to 

be more labile and susceptible to degradation (Schmidt and Noack, 2000; Lohmann et 

al., 2009; Sanchez-Garcia et al., 2012). 

 

Few studies have measured BC and other forms of terrestrial organic matter in pelagic 

sediments. It is assumed that rivers are the primary transport of terrestrial organic 

matter to the ocean thus the majority (≥90%) of BC is deposited on the continental 

shelf (Suman et al., 1997; Mitra et al., 2002). However, the bulk TOC is rarely 

assessed as two separate fractions (BC + labile OC), thus this terrigenous signal can be 

diluted when it is not isolated from the sedimentary TOC pool. Sedimentary BC was 

found to compose 15% of the TOC from the equatorial Pacific (depth >4000m) and up 

to 34% in the Equatorial Atlantic (>1200m). Not including BC as a separate fraction 

can substantially under-estimate terrigenous inputs to the sediment (Masiello and 

Druffel, 1998; Lohmann et al., 2009).  

 

Pelagic sediments in the tropical Atlantic have the potential to receive elevated inputs 

of terrigenous materials due to a combination of fluvial and atmospheric inputs. The 

Amazon, Congo, and Niger Rivers all flow into the equatorial Atlantic region in 

addition to the intense grassland burnings delivered by the African emission plume 

(Cahoon et al., 1992). Atmospheric deposition of terrestrial organic matter, such as 

BC, could contribute high inputs to the tropical Atlantic sediments. A previous study 
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determined that up to 40% of BC deposited in coastal sediments originates from 

atmospheric deposition, thus the atmospheric input into pelagic sediments could be 

equally significant (Masiello and Druffel, 1998).  

 

The aims of this work were to 1) assess the contribution BC makes to the sedimentary 

TOC in the tropical Atlantic, 2) to apply stable carbon isotope ratios to determine the 

source of the labile organic carbon (TOC-BC) fraction, and 3) to estimate the 

maximum contribution that terrigenous organic carbon could contribute to the 

sediments analyzed in this study. 

 

2. Methodology 

Sediments from the Amazon Delta (4.282778, -47.484444) and Sierra Leone Rise 

(7.435278, -24.010556) were collected in the summer of 2010 on the R/V Endeavor 

(EN-480 to EN-481) using a multicorer (Fig. 1). Additional sediments from the Niger 

and Senegal Deltas and NW Argentina basin were received from the University of 

Bremen as previously collected and stored by the German Research Foundation 

(Lohmann et al., 2009). A total of 17 sediments cores were used throughout the 

tropical Atlantic basin ranging from surface sediments (0-4 cm) up to 33 centimeters 

below the sea floor. 

 

All sediments were acidified with 10% hydrochloric acid, dried at ambient 

temperature, and homogenized with mortar and pestle before analysis. A portion of the 

decalcified sediment was analyzed for bulk total organic carbon (TOC) by an 
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Elementar Vario MICRO cube elemental analyzer coupled to an Isoprime100 isotope 

ratio-mass spectrometer (IR-MS). Soot-like black carbon (BC) was quantified using a 

chemothermal oxidation at 375°C (CTO-375) in which a thin layer of sediment is 

heated at 375°C with an inflow of excess oxygen for 24 hours (Gustafsson et al., 1997; 

Elmquist et al., 2004). This process oxidizes the thermally labile organic carbon (OC) 

fraction and the remaining carbon measured via IR-MS is defined as soot-like BC.  

The labile OC fraction was defined as the difference between the BC and TOC 

fractions.  The IR-MS instrumentation also determined the stable carbon isotope ratios 

(δ
13

C) of the TOC and BC portions. 

 

A series of standard reference materials (SRM), including 1941b (marine sediment), 

1649a (urban dust), grass char, and sand (as a methodological blank) were quantified 

via CTO-375 with the sediment samples as a measure of quality control. All SRMs 

produced soot-like BC concentrations as expected at 0.7% for 1941b and 2.4% for 

1649a (Hammes et al., 2007; Lohmann et al., 2009). No grass char mass was 

recovered after the CTO-375 process, which was expected since the chemothermal 

oxidation is optimized to quantify the soot-like BC fraction and will oxidize the more 

labile char-like fractions. This result suggests that minimal organic matter charring 

occurred during our quantification. No carbon was detected on the sand. 

 

Radiocarbon (Δ
14

C) values for sediments from the Amazon Delta and Sierra Leone 

Rise were analyzed at the National Ocean Science-Accelerated Mass Spectrometry 
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facility at Woods Hole Oceanographic Institute using the reconnaissance method 

(Burke et al., 2010; Xu et al., 2007).  

 

3.0 Soot-like black carbon and labile organic carbon concentrations 

In this study, we analyzed sediments from four remote and one coastal region 

throughout the tropical Atlantic basin (Fig. 1). Fluvial-influenced sites included the 

Amazon, Niger, and Senegal Deltas. In contrast, sediments from the remote Sierra 

Leone Rise and NW Argentina Basin were also analyzed; these pelagic sites were 

assumed to receive minimal fluvial inputs. The Sierra Leone Rise is located in the 

African emission plume where enhanced atmospheric deposition of grassland and 

agricultural burnings can be expected while the NW Argentina basin has neither 

significant fluvial nor atmospheric inputs (Cahoon et al., 1992).  

 

The surface sediment soot-like BC concentrations were greatest in the fluvial-

influenced regions (Table 1). Soot-like BC concentrations ranged from 3±2 gBC 

kgsediment
-1

 in the Amazon Delta to 7±1 gBC kgsediment
-1

 in the Senegal Delta up to 8±4 

gBC kgsediment
-1

 in the Niger Delta. The Amazon Deltaic sediments were the furthest 

from the river mouth compared to the Senegal and Niger sites. These lower soot-like 

BC concentrations could be due to preferential deposition near the coast or enhanced 

remineralization in the water column. Amazon plume water is known as a microbial 

hotspot, thus the potential for biological and photogenic degradation could be elevated 

in this region (Aller and Blair, 2006).  
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The labile OC fraction (TOC-BC) at these fluvial sites ranged widely between 2±2 gOC 

kgsediment
-1

 in the Amazon Delta to 18±5 gOC kgsediment
-1

 in the coastal Senegal Delta, 

with the Niger Delta at a median value of 9±10 gOC kgsediment
-1

. The sedimentary total 

organic carbon concentration in the Amazon Delta was the lowest measured in the 

entire study (6±2 gTOC kgsediment
-1

), which further supports that either enhanced 

degradation was occurring or there was a reduced deposition of organic matter.  The 

Senegal Delta had the overall greatest TOC concentration within the region at 25±5 

gTOC kgsediment
-1

. 

 

For both the Sierra Leone Rise and NW Argentina basin, atmospheric deposition is 

presumed to be the main BC transport mechanism to these sediments, as they are 

removed from major fluvial inputs. The Sierra Leone Rise had elevated BC 

concentrations of 5±2 gBC kgsediment
-1

 compared to the NW Argentina basin with a 

concentration of 1±0 gBC kgsediment
-1

 (Table 1). This five times greater BC 

concentration at the Sierra Leone Rise is presumably due to the high aeolian inputs 

from the African grasslands (Cahoon et al., 1992; Lohmann et al., 2009). The NW 

Argentina basin site is located approximately 2600 km off the coast of Argentina and, 

as expected, had the lowest BC concentrations measured in this study. Labile OC 

concentrations were also elevated in the Sierra Leone Rise compared to the NW 

Argentina basin at 14±5 and 6±1 gOC kgsediment
-1

, respectively. In addition to the 

atmospheric emission plume, the Sierra Leone Rise is also located in a region of 

equatorial upwelling, which could promote additional productivity (Weingartner and 

Weisberg, 1990). 
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The TOC concentrations of all measured sediments were plotted against the soot-like 

BC and thermally labile OC concentrations in order to assess linearity as a quality 

control measure (Fig. 2). We found that the thermally labile OC fraction was 

significantly correlated to the TOC (R2=0.83; p-value < 0.01), however there was no 

correlation to the BC fraction. This gives evidence that two separate carbon pools 

were isolated and that soot-like BC concentrations were independent of the organic 

matter input. This allows us to conclude that the charring of organic carbon during the 

CTO-375 method was minimal. 

 

4) Soot contribution to the total organic carbon pool 

Black carbon is by definition a form of terrigenous organic matter since it is a 

byproduct of incomplete combustion (Schmidt and Noack, 2000). We assessed the 

fraction of soot-like BC to TOC to establish the minimum amount of terrigenous 

organic material detected in these Tropical Atlantic sediments. Soot-like BC 

composed 15-62% of the TOC with the trend of being highest in the fluvial regions 

(Fig. 1). Black carbon composed 62±36, 57±33, and 30±6% of the TOC for the 

Amazon, Niger, and Senegal Deltas, respectively. This elevated fraction of BC in 

fluvial sediments displays the environmental stability and refractory nature of this 

carbon form (Seiler and Crutzen, 1980; Kuhlbusch, 1998; Masiello, 2004). 

 

The ratio of soot-like BC to the TOC (BC/TOC) in the Sierra Leone Rise was nearly 

double that found in the NW Argentina Basin (Fig. 1). The regional average 
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percentage of BC/TOC in the Sierra Leone Rise was 28±14%, despite minimal fluvial 

contribution. Soot-like BC composed 15±4% of the TOC in the NW Argentina basin, 

as similarly found in the equatorial Pacific and Mississippi River (Masiello and 

Druffel, 1998; Mitra et al., 2002). The basin-wide average fraction of BC/TOC in the 

tropical Atlantic was 38±20% demonstrating that terrestrial inputs of BC were 

elevated compared to other regions. The fraction of soot-like BC/TOC has been 

measured up to 6% off the Washington, USA coast (Dickens et al., 2004), 7% off the 

Swedish continental shelf (Sanchez-Garcia et al., 2012), and 29% in the Iberian 

Margin within the Atlantic Ocean (Middelburg et al., 1999). We hypothesize that the 

African emission plume and the numerous large river-systems contributed elevated 

BC inputs to the tropical Atlantic region. 

 

5) Radiocarbon age and assessment 

The stable carbon ratio (δ
13

C) is often measured to assess the sources of sedimentary 

carbon. The bulk TOC-δ
13

C in marine surface sediments is typically in the range for 

marine phytoplankton between -19 and -22‰ (Holtvoeth et al., 2003). Generally, the 

TOC in pelagic marine sediments is driven by phytoplankton deposition and burial 

coupled with poor terrestrial organic carbon preservation (Hedges et al., 1997; 

Westerhausen et al., 1993). Conversely, a mixing between the two dominant terrestrial 

carbon fixation pathways, the Calvin-Benson cycle (C3) and the Hatch-Slack cycle 

(C4), could produce an artificial marine signal. The typical δ
13

C range of C3 carbon 

fixation is -25 to -28‰ while the C4 fractionation is more enriched between -10 to -

14‰ (Farquhar et al., 1989). Despite C4 biomass only composing ~13% of modern 
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day plant metabolism, the Subtropical Atlantic receives significant C4 inputs from 

Savanna grasses from Africa delivered by the easterly winds (Cahoon et al., 1992; 

Cerling et al., 1993). Thus, a mix of C3 and C4 plant material, in addition to marine 

plankton, could lead to an artificial marine signature in the tropical Atlantic Ocean due 

to the African emission plume.  

 

5) Stable carbon mass balance 

The stable carbon ratio (δ
13

C) is often measured to assess the sources of sedimentary 

carbon. The bulk TOC-δ
13

C in marine surface sediments is typically in the range for 

marine phytoplankton between -19 and -22‰ (Holtvoeth et al., 2003). Generally, the 

TOC in pelagic marine sediments is driven by phytoplankton deposition and burial 

coupled with poor terrestrial organic carbon preservation (Hedges et al., 1997; 

Westerhausen et al., 1993). Conversely, a mixing between the two dominant terrestrial 

carbon fixation pathways, the Calvin-Benson cycle (C3) and the Hatch-Slack cycle 

(C4), could produce an artificial marine signal. The typical δ
13

C range of C3 carbon 

fixation is -25 to -28‰ while the C4 fractionation is more enriched between -10 to -

14‰ (Farquhar et al., 1989). Despite C4 biomass only composing ~13% of modern 

day plant metabolism, the Subtropical Atlantic receives significant C4 inputs from 

Savanna grasses from Africa delivered by the easterly winds (Cahoon et al., 1992; 

Cerling et al., 1993). Thus, a mix of C3 and C4 plant material, in addition to marine 

plankton, could lead to an artificial marine signature in the tropical Atlantic Ocean due 

to the African emission plume.  
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We assessed the δ
13

C of the TOC, BC, and adjusted labile OC fractions separately.  

The δ
13

C -TOC had a regional average of -20±2‰ (-17±2 to -23±1‰) which is 

typically interpreted as in situ marine productivity. The δ
13

C -BC showed a wide range 

of values from -30±5 (Amazon Delta) to -21±4‰ (Senegal Delta and Sierra Leone 

Rise) where the more depleted ratios were found in the western basin and enriched 

δ
13

C values were closer to the African continent. This enrichment in the Niger Delta (-

24±6‰) and Sierra Leone Rise is interpreted as C4 grass inputs from the southern 

African Savanna and South American Pampas and Chaco grasslands (Table 1).  

  

A weighed mass balance was applied to determine the δ
13

C of the labile OC since BC 

composed a considerable fraction (15-62%) of the TOC (Eq. 1; Fig. 3). These high 

fractions of soot-like BC to the TOC have the potential to dilute the labile OC δ
13

C 

signal within the bulk TOC. 

 

δ
     

        δ             δ      

    
      (1) 

 

Most regions in the tropical Atlantic had a labile OC-δ
13

C fraction that was more 

enriched compared to the TOC- δ
13

C, suggesting an input from a non-marine organic 

carbon source (Table 1). Stable carbon isotope ratios at the Senegal Delta (-19±2‰) 

and NW Argentina basin (-22±1‰) sites still suggested a predominantly marine origin 

of the labile OC pool. We propose that this was the result of the elevated sedimentary 

TOC concentration, indicative of a highly productive region, and shallow water depth 

in the Senegal Delta and the small BC fraction in the NW Argentina basin site.  
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In contrast, both the Amazon Delta and Sierra Leone Rise had a labile OC-δ
13

C of -

14‰, which we apportioned as terrestrial C4 material. The BC in the Amazon Delta 

BC was presumably from a C3 plant source (-30±5‰), but the labile OC appears to be 

dominated by large inputs of C4-like materials. BC has a higher mass yield in woody 

(C3) plants since the oxygen to fuel ratio is smaller than in grassy or shrub (C4) plants 

(Schmidt and Noack, 2000).  

 

δ
          

δ
     

     
δ
     

        δ
            (2) 

 

We implemented a 3-endmember model to estimate the potential contributions of 

marine and terrestrial organic carbon to the labile OC fraction (Eq. 2). We used the 

median values of -12, -26, and -20‰ for the C4, C3, and marine components, 

respectively. Both the Amazon Delta and Sierra Leone Rise require an input of at least 

69% C4 biomass to achieve the enriched labile δ
13

C-OC of -14‰ (Fig. 3). This 

suggests that only 31% of the labile OC fraction was actually marine in origin. 

Overall, the estimated contribution of marine plankton was 12% for the Amazon Delta 

and 22% for the Sierra Leone Rise, which implies that terrestrial material dominated 

the TOC despite the bulk δ
13

C-TOC displaying a marine signature.  

 

We propose that C4-derived labile OC either is more refractory than C3 biomass or is 

preferentially transported to deep sediments. Tropical grasses have a lower digestion 

rate than temperate species and mesophyll, a component of lignin, has been shown to 
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degrade slower in C4 plants than C3 (Akin et al., 1983). Additionally, C3 derived 

material is lost quicker in coastal ecosystems than C4 since it is isotopically lighter 

(Mayer et al., 2007). Marine materials composed at least 70% and 60% of the labile 

OC for the Senegal Delta and NW Argentina basin, respectively, with variable inputs 

of C3 and C4 biomass. Our results emphasize the importance of assessing the BC and 

labile OC as separate fractions in areas with significant atmospheric or fluvial 

contributions. 

 

6. Conclusion 

The tropical Atlantic receives high inputs of atmospheric deposition from elevated 

regional biomass burning attributed to the Savanna grasslands. The weighted δ
13

C-OC 

calculation implies that the thermally labile organic carbon fraction is partially of 

terrestrial origin, especially in the Amazon Delta and Sierra Leone Rise. Thus, more 

terrestrial organic matter is preserved in deep marine sediments than indicated by 

biomarkers (Prahl et al., 1994; Schlunz and Schneider, 2000). Future work needs to 

evaluate the total organic carbon as two separate carbon pools and work towards 

structurally identifying that thermally labile organic carbon. Our results imply that 

terrestrial organic matter composes a larger fraction of marine sediments than 

previously estimated. These elevated terrestrial organic carbon concentrations should 

similarly be found in other regions with high biomass burning depositional plumes.  
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Tables 

 

Regional 

Average 

Water 

Depth (m) 
δ

13
C-TOC δ

13
C-BC δ

13
C-OC TOC BC OC 

Amazon Delta 3360 -20±2 -30±5 -14±13 6±2 3±2 2±2 

Niger Delta 2500 -18±4 -24±6 -5±17 17±8 8±4 9±10 

Senegal Delta 330 -20±1 -21±4 -19±2 25±5 7±1 18±5 

Sierra Leone Rise 3500 -17±2 -21±5 -14±6 18±5 5±2 14±5 

NW Argentina  4949 -23±1 -26±2 -22±1 7±1 1±0 6±1 

 

Table 1. Surface sediment regional averages of organic carbon concentrations (gBC 

kgsediment
-1
) and stable carbon isotope ratios (δ

13
C, ‰) in tropical Atlantic sediments 

for the total organic carbon (TOC), black carbon (BC), and the thermally labile 

organic carbon (OC) fractions. The sediments used were ≤ 4cm from the surface and 

presumed to be well mixed as indicated by the radiocarbon ages.  
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Figures 

 

Figure 1. The fraction of black carbon (BC) and thermally labile organic carbon (OC) 

within the total sedimentary organic carbon (TOC) in the tropical Atlantic Ocean.  The 

dark gray shading is the soot-like BC fraction and the lighter gray shading is the labile 

OC fraction as determined by the chemothermal oxidation at 375°C method. The 

Amazon, Senegal, and Niger Deltas are fluvial-influenced sites while the Sierra Leone 

Rise and NW Argentina basin are presumed to have minimal freshwater inputs, thusly 

are dominated by atmospheric deposition. The Sierra Leone Rise is within the African 

dust plume which is associated with elevated aerosol deposition. 
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Figure 2. Linear regression of the total organic carbon (TOC) versus the 

thermally labile organic carbon (OC) on the primary axis and soot-like black 

carbon (BC) on the secondary axis. The TOC and labile OC fractions were 

significantly correlated (R
2
=0.83, p<0.5); no correlation was found for the TOC 

versus the BC fractions. 
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Figure 3. The maximum contribution of marine material required to balance the 

δ
13

C-OC as derived by a weighed mass balance between the δ
13

C-TOC and δ
13

C-

BC. A three end-member model (Eq. 2) was used to estimate the maximum 

contribution of marine material required to balance the stable carbon isotope of 

the labile organic carbon fraction. Terrestrial is the sum of C4 and C3 carbon 

fixation pathways for terrestrial plants. The Niger Delta was removed since its 

average stable carbon is below that of 100% C4 plant material, possibly due to 

kerogen or petroleum inputs.   
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Introduction 

 

This supporting information provides all data used to derive the regionally averaged 

sedimentary concentrations of black carbon (BC), total organic carbon (TOC), and 

thermally labile organic carbon (OC) as defined as the difference between the TOC 

and BC fractions. It also includes the stable carbon isotope (δ
13

C) for the BC, TOC, 

and weighed mass balance derived OC. Additional information on the collection and 

storage of the GeoB sediment cores can be found at the global inventory 

www.pangaea.de.  

 

 

 

 

Table S1: All data compiled for the Amazon Delta; core 1 was taken with a multi-core 

and grab-1 and grab-2 was taken with a Van Veen grab sampler during July 2010 on 

EN-480. 

 

 

 

 

 

 

 

 

 

 

Amazon 

Delta 

Depth 

(cmbsf) 

δ
13

C-

TOC (‰) 

δ
13

C-BC 

(‰) 

% 

TOC 

% 

BC 

% 

OC 

δ
13

C-OC 

(‰) 
BC/TOC 

Core 1 1 -20 -32 0.49 0.31 0.18 1.37 0.64 

 
2.5 -20 -32 0.57 0.36 0.21 -0.73 0.63 

 
3.5 -21 -30 0.52 0.34 0.18 -4.51 0.66 

 
4.5 -24 -30 0.62 0.28 0.34 -18.63 0.45 

 
6.5 -21 -30 0.58 0.25 0.33 -14.03 0.43 

 
7.5 -23 -33 0.37 0.13 0.24 -16.98 0.35 

 
8.5 -22 -33 0.38 0.35 0.03 101.00 0.92 

 
9.5 -22 -35 0.41 0.31 0.11 15.29 0.74 

 
10.5 -21 -28 0.49 0.17 0.32 -16.96 0.34 

 
11.5 -21 -28 0.37 0.10 0.27 -18.24 0.27 

Grab 1 1 -18 -33 0.64 0.82 
-

0.18 
-84.95 1.28 

 
1 -14 -30 0.74 0.51 0.23 19.51 0.69 

 
1 -18 -36 0.65 0.75 

-

0.10 
-149.52 1.16 

 
1 -19 -28 0.88 0.44 0.44 -9.84 0.50 

 
1 -19 -22 0.94 0.25 0.69 -17.46 0.27 

Grab 2 1 -18 -23 0.60 0.10 0.50 -16.84 0.17 

http://www.pangaea.de/
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Niger 

Delta 

Depth 

(cmbsf) 

δ
13

C-TOC 

(‰) 

δ
13

C-BC 

(‰) 
%TOC %BC %OC 

δ
13

C-OC 

(‰) 
BC/TOC 

GeoB 

4901 
4.5 -2 -6 1.49 0.96 0.53 3.21 0.65 

 
8.5 -20 -37 1.39 0.95 0.44 16.63 0.68 

 
13.5 -20 -34 1.23 1.01 0.22 43.74 0.82 

 
20.5 -20 -33 1.30 1.00 0.30 24.78 0.77 

 
26.5 -20 -35 1.40 0.81 0.59 0.68 0.58 

 
32.5 -21 -31 1.34 0.70 0.64 -9.55 0.52 

 
69.5 -20 -33 1.30 0.73 0.57 -2.95 0.56 

 
100.5 -19 -35 1.27 0.79 0.48 7.04 0.62 

 
109.5 -19 -35 1.28 0.84 0.44 11.27 0.65 

 
128.5 -19 -33 1.49 1.21 0.28 41.08 0.81 

 
147.5 -18 -35 1.54 0.84 0.70 1.46 0.54 

GeoB 

4905 
0.75 -20 -23 3.21 0.45 2.76 -19.94 0.14 

 
1.25 -21 -22 3.07 0.37 2.70 -21.03 0.12 

 
1.75 -21 -18 3.04 0.24 2.80 -21.13 0.08 

 
2.25 -20 -30 2.67 0.20 2.47 -19.71 0.07 

 
2.75 -20 -30 2.93 0.17 2.76 -19.88 0.06 

 
3.5 -20 -30 2.86 0.25 2.61 -19.15 0.09 

 
4.5 -20 -18 2.69 0.25 2.44 -20.06 0.09 

 
6.25 -20 -15 2.53 0.16 2.37 -19.87 0.06 

 
8.75 -20 -13 2.38 0.17 2.21 -19.98 0.07 

 
12.5 -20 -14 2.41 0.15 2.25 -20.35 0.06 

 
17.5 -20 -16 2.45 0.23 2.22 -20.02 0.10 

GeoB 

4903 
0.75 -19 -24 1.38 0.81 0.57 -13.49 0.59 

 
1.25 -16 -26 1.44 1.03 0.41 7.85 0.71 

 
1.75 -19 -18 1.35 1.14 0.21 -22.08 0.84 

 
2.25 -19 -22 1.35 0.69 0.66 -16.58 0.51 

 
2.75 -19 -30 1.24 0.97 0.27 19.68 0.78 

 
3.5 -19 -20 1.46 0.78 0.68 -18.31 0.53 

 
4.5 -19 -22 1.31 0.77 0.54 -14.93 0.59 

 
8.75 -22 -26 1.31 0.88 0.43 -13.92 0.67 

 
12.5 -16 -25 1.47 1.28 0.20 35.96 0.87 

GeoB 

4901 
0.75 -19 -26 1.44 0.81 0.63 -9.99 0.56 

 
1.75 -19 -19 1.57 1.04 0.53 -18.67 0.66 

 
2.25 -19 -23 1.77 0.93 0.83 -14.01 0.53 

 
2.75 -19 -21 1.46 0.90 0.56 -15.63 0.62 

 
3.5 -19 -20 1.18 0.97 0.21 -14.45 0.82 

 
4.5 -19 -19 1.49 0.96 0.53 -18.07 0.65 
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6.25 -19 -18 1.15 0.63 0.52 -19.82 0.55 

 
8.75 -19 -19 0.97 0.87 0.10 -21.39 0.90 

 
12.5 -19 -33 1.45 1.35 0.10 161.72 0.93 

 
17.5 -19 -32 1.58 1.30 0.28 41.19 0.82 

GeoB 

4904 
3.5 -17 -16 2.56 0.29 2.27 -17.71 0.11 

 
4.5 -18 -17 2.66 0.36 2.30 -17.68 0.14 

 
8.75 -18 -28 2.30 0.71 1.59 -13.17 0.31 

 
12.5 -18 -27 2.35 0.71 1.64 -13.58 0.30 

 
17.5 -18 -22 2.59 0.51 2.08 -16.51 0.20 

GeoB 

4908 
0.75 -19 -26 1.15 0.84 0.31 -0.69 0.73 

 
1.75 -19 -31 0.95 0.79 0.16 39.34 0.83 

 
2.25 -19 -29 0.88 0.69 0.19 15.97 0.79 

 
2.75 -19 -19 0.96 1.22 -0.26 -20.66 1.27 

 
3.5 -19 -29 0.85 0.74 0.11 43.97 0.86 

 
6.25 -19 -29 0.93 0.64 0.29 2.35 0.69 

 
8.75 -19 -24 0.93 0.74 0.19 -1.53 0.80 

 
11.25 -19 -28 0.92 0.75 0.17 17.67 0.81 

 
13.75 -20 -24 1.09 0.75 0.34 -9.31 0.69 

GeoB 

4907 
0.75 -21 -25 1.42 0.71 0.71 -16.64 0.50 

 
1.25 -20 -26 1.82 0.80 1.02 -16.27 0.44 

 

Table S2: All data compiled for the Niger Delta; GeoB cores were collected using a 

box corer during February-March 1998 by the German Research Foundation. These 

sediments were provided by Dr. M. Zabel from Bremen University. 

 

 

 

 

 
Senegal 

Delta 

Depth 

(cmbsf) 

δ
13

C-TOC 

(‰) 

δ
13

C-BC 

(‰) %TOC %BC %OC 

δ
13

C-OC 

(‰) BC/TOC 

GeoB 

4901 1.5 -20 -23 3.19 0.75 2.45 -19.09 0.23 

 

4.5 -20 -17 2.22 0.82 1.41 -21.74 0.37 

 

9.5 -20 -23 2.78 0.74 2.04 -18.92 0.26 

 

14.5 -19 -17 2.39 0.67 1.72 -19.77 0.28 

 

19.5 -20 -26 1.93 0.73 1.20 -16.33 0.38 

 

Table S3:  All data compiled for the Senegal Delta; GeoB core 4901 was collected 

using a box corer during April-May 2003 by the German Research Foundation. These 

sediments were provided by Dr. M. Zabel from Bremen University. 
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Sierra 

Leone Rise 

Depth 

(cmbsf) 

δ
13

C-

TOC (‰) 

δ
13

C-BC 

(‰) 
%TOC %BC %OC 

δ
13

C-OC 

(‰) 
BC/TOC 

Grab 5a 0.5 -17 -16 3.03 0.48 2.55 -16.92 0.16 

Grab 6a 0.5 -18 -21 1.55 0.42 1.13 -16.08 0.27 

Grab 7a 0.5 -14 -17 1.43 0.39 1.03 -13.21 0.28 

Grab 7b 0.5 -14 -17 2.22 0.63 1.59 -12.48 0.28 

Grab 7c 0.5 -16 -19 2.09 0.46 1.63 -15.39 0.22 

Grab 7d 0.5 -17 -27 2.09 0.70 1.39 -12.52 0.34 

Core 8 0.5 -17 -20 1.68 0.14 1.54 -16.31 0.08 

 
0.5 -18 -22 1.85 0.29 1.57 -17.76 0.15 

 
0.75 -17 -25 1.63 0.59 1.04 -13.29 0.36 

Core 9 0.5 -18 -28 1.49 0.64 0.84 -9.58 0.43 

 
1.5 -17 -26 1.46 0.68 0.78 -9.14 0.47 

 
2.5 -17 -30 1.54 0.90 0.64 0.59 0.58 

 
3.5 -16 -28 1.34 0.89 0.45 6.86 0.67 

 
4.5 -17 -25 1.42 0.52 0.90 -13.11 0.36 

 
5.5 -17 -22 1.22 0.52 0.70 -13.31 0.43 

 
6.5 -17 -23 1.19 0.67 0.52 -9.98 0.56 

 
8.5 -16 -31 1.12 0.54 0.58 -2.04 0.49 

 

Table S4: All data compiled for the Sierra Leone Rise; core 8 and core 9 were taken 

with a multi-core and grabs 5-7 were collected with a Van Veen grab sampler during 

EN-481 during the summer of 2010. 
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NW 

Argentina 

Depth 

(cmbsf) 

δ
13

C-

TOC (‰) 

δ
13

C-BC 

(‰) 
%TOC %BC %OC 

δ
13

C-OC 

(‰) 
BC/TOC 

GeoB 

2814 
0.75 -23 -26 0.76 0.12 0.65 -22.13 0.15 

 
1.25 -23 -25 0.75 0.08 0.67 -22.19 0.11 

 
1.75 -21 -24 0.60 0.14 0.46 -20.71 0.23 

 
3 -22 -24 0.75 0.08 0.67 -21.46 0.11 

 
6 -23 -26 0.68 0.11 0.57 -22.85 0.17 

 
10 -23 -24 0.49 0.06 0.43 -22.67 0.13 

 
14 -24 -26 0.64 0.11 0.53 -23.94 0.17 

 
18.5 -24 -32 0.74 0.12 0.62 -22.09 0.16 

 
23 -23 -26 0.63 0.11 0.52 -22.66 0.17 

 
27 -23 -27 0.78 0.10 0.68 -22.40 0.13 

 
31 -23 -23 0.71 0.10 0.61 -22.81 0.14 

 

Table S5: All data compiled for the Northwest (NW) Argentina basin; GeoB 2814 was 

collected with a box corer during July-August of 1994 by the German Research 

Foundation and were provided by Dr. M. Zabel from Bremen University. 

 

 

 

 

 

 

 

Region Marine Terrestrial  Black Carbon 

Amazon  Delta 12% 26% 62% 

Senegal Delta 65% 5% 31% 

Sierra Leone Rise 22% 50% 28% 

NW Argentina Basin 64% 21% 15% 

 

Table S6: Regional organic carbon contribution estimates to pelagic sediments. These 

estimates represent the lowest percentage of marine material required to achieve a 

mass balance of the labile organic carbon fraction.  
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Sediment 

ID 

Sampling 

Month/Year 
Latitude Longitude Location 

Water Depth 

(m) 

Core 1 July 2010 4.282778 -47.484444 Amazon Delta 2365 

Grab 1 July 2010 5.915833 -45.001111 Amazon Delta 3545 

Grab 2 July 2010 6.168333 -44.8525 Amazon Delta 3999 

Grab 5a August 2010 0.485556 -23.1225 
Sierra Leone 

Rise 
3567 

Grab 6a August 2010 7.003889 -20.795278 
Sierra Leone 

Rise 
3853 

Grab 7a August 2010 5.018056 -21.243611 
Sierra Leone 

Rise 
2811 

Grab 7b August 2010 4.968889 -21.201667 
Sierra Leone 

Rise 
2787 

Grab 7c August 2010 5.005833 -21.250556 
Sierra Leone 

Rise 
2794 

Core 8 August 2010 4.560833 -24.509167 
Sierra Leone 

Rise 
4030 

Core 9 August 2010 7.435278 -24.010556 
Sierra Leone 

Rise 
4065 

GeoB 4901 February/March 1998 2.668889 6.717222 Niger Delta 2180 

GeoB 4903 February/March 1998 1.916667 8.166944 Niger Delta 2834 

GeoB 4904 February/March 1998 0.95 8.8 Niger Delta 1208 

GeoB 4905 February/March 1998 2.5 9.384444 Niger Delta 2184 

GeoB 4907 February/March 1998 -0.584722 8.018333 Niger Delta 2060 

GeoB 4908 February/March 1998 -0.701667 6.834167 Niger Delta 3028 

GeoB 9501 April/May 2003 16.834444 -16.719167 Senegal Delta 330 

GeoB 2814 July/August 1994 
-

37.618056 
-39.116667 NW Argentina 4949 

       

Table S7: Auxiliary data including the collection date, sampling coordinates, location, 

and water depth of all sediments analyzed in this study. 
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Figure S1: Scatter plot of all sediment carbon concentrations (%) versus the stable 

carbon isotope ratio (δ
13

C) for the total organic carbon (TOC), black carbon (BC), and 

labile organic carbon (OC) fractions. 
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Abstract 

Combustion-derived aerosols in the marine boundary layer have been poorly studied, 

especially in remote environments such as the open Atlantic Ocean. The tropical 

Atlantic has the potential to contain a high concentration of aerosols, such as black 

carbon, due to the African emission plume of biomass and agricultural burning 

products. Atmospheric particulate matter samples across the tropical Atlantic 

boundary layer were collected in the summer of 2010 during the Southern 

Hemispheric dry season when open fire events were frequent in Africa and South 

America. The highest black carbon concentrations were detected in the Caribbean Sea 

and within the African plume, with a regional average of 0.6 μg m
-3

 for both. The 

lowest average concentrations were measured off the coast of South America at 0.2 to 

0.3 μg m
-3

. Samples were quantified for black carbon using multiple methods to 

provide insights into the form and stability of the carbonaceous aerosols (i.e. thermally 

unstable organic carbon, soot-like, and charcoal-like). Soot-like aerosols composed up 

to 45% of the carbonaceous aerosols in the Caribbean Sea to as little as 4% within the 

African Plume. Charcoal-like aerosols composed up to 29% of the carbonaceous 

aerosols over the oligotrophic Sargasso Sea, suggesting that non-soot-like particles 

could be present in significant concentrations in remote environments. To better 

apportion concentrations and forms of black carbon, multiple detection methods 

should be used, particularly in regions impacted by biomass burning emissions. 
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1 Introduction 

Black carbon (BC) is the byproduct of the incomplete combustion of biomass and 

fossil fuels that is composed of highly condensed matrices of aromatic sheets 

(Goldberg, 1985). It has the potential for long range atmospheric transport which 

makes it ubiquitous in the environment (Ogren and Charlson, 1983; Chuang et al., 

2002; Masiello, 2004). Atmospheric BC is an important forcing factor with respect to 

climate change, second only to carbon dioxide (Husain et al., 2007; Bond et al., 2013; 

Novakov and Rosen, 2013). Its optical properties make it a strong absorber of incident 

sunlight and its deposition to the ocean is a potential long-term sink for fixed carbon 

and organic pollutants (Schmidt and Noack, 2000; Forbes et al., 2006). Black carbon 

is rarely measured in remote environments causing aerosol models such as 

MOGUNTIA, NCAR GM3, GISS ModelE, and ECHAM5-HAM-OM1 to deal with 

significant uncertainty in ground-truthing their predictions (Lohmann et al., 2009). 

Instead, results are often extrapolated to estimate BC concentrations in these remote 

regions. This uncertainty is further exacerbated by the fact that BC results are 

operationally defined by the selected analytical method (Schmidt et al., 2001; Andreae 

and Gelencser, 2006). 

 

Combustion-derived aerosols in the marine boundary layer have been poorly 

investigated. Field investigations in the North Atlantic have determined that a ‘clean 

air’ background concentration of black carbon ranges from 20-40 ng m
-3

, 

demonstrating that black carbon is ubiquitous even in remote marine systems (Cavalli 

et al., 2004; O’Dowd et al., 2004). Peak concentrations of black carbon in the remote 

marine boundary layer have been reported up to 600 ng m
-3

 in the Azores 



 

94 

 

(summertime) and 300 ng m
-3

 in the Indian Ocean (Corrigan et al., 2008; Spracklen et 

al., 2008). The tropical Atlantic Ocean has the potential to contain even greater BC 

concentrations due to the intense emission plume originating from equatorial Africa. 

Simulations from the NCAR GM3 model coupled to IMPACT have projected that one 

of the strongest anthropogenic surface BC signals is confined in-between 0-40°N as a 

result of African biomass and fossil fuel emissions (Liu et al., 2009).  

 

The subtropical Atlantic Ocean is expected to have elevated BC concentrations due to 

this African emission plume, which is a combination of intense grassland and 

agricultural burning transported off-shore by easterly winds (Chester et al., 1979; 

Perry et al., 1997; Bond et al., 2004; Ramanathan and Carmichael, 2008; Koch et al., 

2009; Lohmann et al., 2009).  High concentrations of water soluble biomass burning 

products created by this intercontinental plume, which can be seen in satellite images, 

are horizontally ejected into the planetary boundary layer below 6 km (Talbot et al., 

1986). Model simulations by the LMD GCM model have predicted that the residence 

time of BC aerosols generated from Africa is approximately 7 days compared to 5 

days from South America, representing 10% and 6% of the global mean BC 

emissions, respectively (Reddy and Boucher, 2007). This emission plume has the 

potential to contain high concentrations of fire-derived aerosols with atmospheric 

residence times sufficient for significant remote marine boundary layer concentrations.  

 

Analytical methods to measure BC are classified into numerous different approaches: 

light absorption, thermal radiation, thermal carbon evolution, Raman Spectroscopy, 
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and mircoscopy, with some hybridization of these approaches (Schmidt and Noack, 

2000; Currie et al., 2002; Petzold et al., 2013). Black carbon is composed of various 

forms classified by its thermal recalcitrance, ranging from less stable charcoal to the 

highly refractory soot (Masiello, 2004; Elmquist et al., 2006). Charcoal is the solid 

combustion residue that retains some cellular characteristics of its parent material 

(Schmidt and Noack, 2000). It will be oxidized when exposed to a significant 

combination of heat and oxygen, thus methods that utilize high temperature 

combustion to isolate BC will result in a loss of charcoal (Forbes et al., 2006). Soot 

particles are formed by the re-condensation of volatiles during combustion. Generally, 

soot is smaller than charcoal (typically <1 μm), thus is expected to be a dominant 

fraction in remote environments due to enhanced export (Andreae et al., 1983; 

Masiello, 2004; Lohmann et al., 2009). However, micro-charcoal has been found and 

well studied in deep sediment cores. It is often used as a paleo-fire proxy for 

ecosystem reconstructions (Verardo and Ruddiman, 1996; Hoetzel et al., 2013). 

 

The application of multiple BC analytical methods, such as chemothermal oxidation, 

thermal optical transmittance, pyrene fluorescence loss, and optical transmission 

attenuation, offers unique insights into the form and spatial trend of the various 

components of the BC combustion continuum (Masiello, 2004). The BC combustion 

continuum implies that BC is an operational definition of various forms of 

carbonaceous combustion byproducts which are classified by formation temperature, 

size, reactivity, and remnants of original organic material. It ranges from the solid 

residues of combustion termed charcoal to the re-condensed volatile aromatic 
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structures termed soot. A multi-analytical approach is optimal in determining the 

fraction of soot-like and charcoal-like combustion-derived aerosols in poorly studied 

regions, such as the tropical Atlantic. Both the chemothermal oxidation and thermal 

optical transmittance methods evolve the less refractory carbon constituents; the 

remaining carbon quantified is termed elemental carbon (Zencak et al., 2007; 

Gustafsson et al., 2009). Elemental carbon consists of highly reduced, graphitic-like, 

combustion-derived aerosols that is methodologically defined as a structure that will 

be oxidized at temperatures upward to ~800°C (Birch and Cary, 1996; Lavanchy et al., 

1999; Sharma et al., 2004; Park et al., 2006; Chow et al., 2009; Dutkiewicz et al., 

2009). The pyrene fluorescence loss and optical transmission attenuation methods do 

not use gas evolution to isolate the refractory combustion-derived aerosols, thus have 

the potential to measure less stable combustion-derived aerosols, such as charcoal and 

macromolecular organics (Flores-Cervantes et al., 2009).  

 

We hypothesize that (1) black carbon would be elevated in the tropical Atlantic 

boundary layer compared to other remote environments due to the African emission 

plume, (2) soot would be the dominant fraction of black carbon, and (3) the use of 

multiple methods would enable us to assess the relative proportions of the 

combustion-derived aerosols present i.e. charcoal-like versus soot-like aerosols.  

 

2 Materials and Methods 

2.1 Sample Collection 
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A high volume air sampler (Tisch Environmental Model TE-PNY1123) was used to 

collect total suspended particulate samples on QM-A quartz fiber filters (QFF) on the 

R/V Endeavor cruises EN-479 to EN-482 during the summer (July-August) of 2010 

(Table 1). Filters were precombusted (450°C) before use and stored in precombusted 

aluminum foil in a freezer at -10°C. An average of 500 m
3
 of air was filtered per QFF 

at a flow rate of 0.42 m
3 

min
-1

 for QFF 1-12 and thereafter an average air volume of 

3860 m
3
 at a flow rate of 1.35 m

3 
min

-1
 was filtered when we adjusted the flow to 

increase the sample size. Each filter sampled for approximately 20 hours (QFFs 1-12) 

and 48 hours (QFFs 13-24) and had an exposed area of 414 cm
2
. Sampling was 

conducted when underway and was stopped when wind direction blew exhaust 

towards our sampler and during stationary periods. After a sample was collected, 

filters were returned to the foil and freezer until analysis. Four laboratory blanks and 

two field blanks, of which 1 m
3
 of air was sampled, were also collected. All blanks 

were treated identically to sample QFFs.  

 

Atmospheric BC samples were collected from four regions:  The Caribbean Sea (QFF 

1-9; QFF 11-13), South America (QFF 9-10; QFF 14), the African Plume (QFF 15-

19), and the subtropical Atlantic (QFF 20-24). We note that QFF-9 was placed in both 

the Caribbean and South America since we had crossed the inter-tropical convergence 

zone during sampling (Table 1). The NOAA HYSPLIT (HYbrid Single-Particle 

Lagrangian Integrated Trajectory) model was used to estimate the wind backward 

trajectory (20 m) at the end time of each sample extending for ten days (Draxler and 
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Rolph, 2013; Rolph, 2013; Figure 1). Based on back trajectories, the inter-tropical 

convergence zone was around 10°N.  

 

2.2 Chemothermal oxidation at 375°C (CTO-375) 

Duplicates of a 2.4 cm
2
 punch from each filter sample were acidified for 24 hours with 

hydrochloric acid vapors to remove carbonate carbon. Filters were then oxidized in a 

Barnstead Thermolyne muffle oven at 375°C with a steady flow of high purity air 

following the procedure by Gustafsson et al. (1997) and Gelinas et al. (2001). Samples 

were pelletized in 30 mm diameter tin discs then analyzed on a Carlo Erba elemental 

analyzer coupled to a GV Optima 588 system isotope ratio mass spectrometer (IR-

MS) to determine carbon concentration and δ
13

C value. Total organic carbon (non-

oxidized but acidified 2.4 cm
2
 filter punches) was also quantified. The detection limit 

for the instrument was 0.1 µg of carbon. Carbon values quantified with the CTO-375 

method will be denoted as ECCTO.  

 

2.3 Thermal Optical Transmittance 

Samples were measured by the thermal optical transmittance (TOT) method for EC 

(ECTOT) at Arizona State University. A thermal-optical instrument (Sunset laboratory 

TOT analyzer, NIOSH protocol) detects both the organic carbon and ECTOT 

concentrations using one filter (adapted from Birch and Cary, 1996) and has a 

detection limit of 0.1 µg cm
-2

. Organic carbon was analyzed with varying time steps 

between 60 s and 200 s during the organic carbon evolution at 310, 475, 615, and 

870°C in an inert atmosphere. This was followed by the ECTOT analysis with 
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temperature profiles of 550, 625, 700, 775, and 850°C with hold time of 45 s and a 

final hold at 870°C for 120 s in an oxidizing environment (Adapted from Birch and 

Carey, 1996). In the TOT method, any pyrolytic carbon formation is corrected by 

optical transmission measurements, however, in the present study, no pyrolytic carbon 

formation was observed. Samples 1 and 22-24 were not quantified via TOT since 

filters shrank during analysis, suggesting they were glass filters. We will still refer to 

these samples as QFFs in text. 

 

2.4 Pyrene Fluorescence Loss 

The initial fluorescence of a 1 μg L
-1

 aqueous pyrene solution with 0.05 M sodium 

azide was measured using an RF-1501 Shimadzu fluorometer in the emission range of 

300 to 450 nm with excitation at 275 nm. Five aqueous pyrene standards with 

concentrations ranging from 0.5 to 2.0 μg L
-1

 were used to produce a calibration curve 

(R
2
=0.99).  Duplicates of a 1.5 cm diameter punch were added to the pyrene spiked 

MilliQ water and placed on a shaker table in a closed 50 mL amber vial to equilibrate 

for 30 days at ambient conditions (Flores-Cervantes et al., 2009). The final 

fluorescence was measured and used to calculate the BC concentration (BCPFL) as 

outlined by Flores-Cervantes et al. (2009). The methodological detection limit was 0.1 

µg cm
-2

 of BCPFL (methodological information in Supplementary Materials). 

 

2.5 Optical transmission attenuation (OT-21) 

Filter samples were analyzed for BC (BCOT21) at Magee Scientific in Berkeley, 

California using the optical Transmissometer Model OT21. This instrument measured 
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the light attenuation through a 25 mm diameter punch of each QFF at the a wavelength 

of 880 nm, and compared it to that of a blank filter using an  absorption coefficient of 

16.6 m
2 

g
-1

 to convert the absorbance to a BCOT21 concentration. (Husain et al., 2007; 

Ahmed et al., 2009; Dutkiewicz et al., 2009). and an The detection limit was 0.06 µg 

cm
-2

.  

 

2.6 Methodological Comparisons 

We applied multiple methods to quantify EC and BC concentrations to gain insights 

into the forms (charcoal, soot), long range transport capability, and recalcitrance of 

combustion-derived aerosols in a remote environment. The CTO-375 method has been 

shown to detect only the most reduced and condensed EC forms since the thermal 

oxidization process will volatilize the less thermally stable forms of BC, such as 

charcoal (Flore-Cervantes et al., 2009). Thus, the measured ECCTO has been termed in 

the literature soot-like carbon since it detects only the most refractory and structurally 

ordered portion of the BC combustion continuum (Gustafsson et al., 1997; Masiello 

2004; Lohmann et al., 2009; Han et al., 2013).  

 

Similarly, the TOT method also uses high temperature treatments to quantify the 

fraction of EC present in aerosols. The TOT method was originally developed, in part, 

to detect diesel exhaust particles, which are generally more graphitized than biomass 

burning carbonaceous byproducts due to the lower oxygen to fuel ratio (Birch and 

Cary, 1996; Schmidt and Noack, 2000; Elmquist et al., 2006; Keiluweit et al., 2010). It 

is projected that the CTO-375 and TOT methods will give insight into the more 
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reduced, thermally stable, and environmentally persistent forms of soot-like EC 

produced by the condensation of volatiles during combustion (Hammes et al., 2007). 

Typically, the CTO-375 quantifies a lower EC concentration compared to the TOT 

method on the same sample since it represents only the soot fraction of EC (Han et al., 

2013). 

 

The CTO-375 and TOT methods, in addition to quantifying the more thermally stable 

and lower volatile EC fraction of the combustion continuum, also measure the 

concentration of organic carbon. Thus, implementing these two thermally-based 

detection methods allows for an additional inter-method comparison of the presence of 

the thermally unstable primary and secondary organic aerosols. Additionally, the 

CTO-375 method allows for the measurement of the stable carbon isotope ratio, 

allowing for source apportionment between the organic carbon and EC fractions. 

 

The novel pyrene fluorescence loss technique does not have a thermal bias and is 

suggested to detect a broader portion of the BC combustion continuum, including 

charcoal-like fractions. This pyrene fluorescence loss method has been shown to 

report black carbon in grass and wood chars while the CTO-375 method routinely 

oxidizes the entire sample (Flores-Cervantes et al., 2009). The PFL method utilizes the 

chemical adsorption of pyrene to black carbon particles and has been demonstrated to 

quantify the solid residue combustions byproducts, i.e. charcoal, in addition to 

condensed volatiles, i.e. soot. Likewise, the OT-21 method uses an optical approach 
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and the wavelength of 880 nm has been show to quantify larger fractions of forest fire-

produced aerosols in comparison to the TOT method (Jeong et al., 2004). 

 

 We propose that the PFL and OT-21 methods will detect a broader spectrum of 

combustion-derived byproducts whereas the CTO-375 and TOT methods are 

optimized to quantify only the soot and non-volatile fractions. Differences between 

quantified EC (CTO-375 and TOT) and BC (PFL and OT-21) values for the same 

sample would suggest the presence of non-soot-like carbon. Alternatively, similar 

values between these four methods would suggest that soot-like carbon dominated in 

the samples. 

 

2.7 Quality Control and Quality Assurance 

Quality control and assurance was assessed on all QFF samples using a combination 

of blanks and standard reference materials. Field and laboratory blank QFFs were 

treated and handled identically to all samples. No carbon was detected on blank QFFs 

for the pyrene fluorescence loss method. We note that optical transmission attenuation 

corrects for the blank as part of the protocol. Carbon was detected on blank filters for 

the CTO-375 and TOT techniques. There was no difference found between the field 

and laboratory blanks. We subtracted the average blank BC concentration of 1.7 ± 0.5 

µg cm
-2

 for the CTO-375 method and 0.04 ± 0.1 µg cm
-2

 for the TOT method from 

each sample. We hypothesized that this inherent carbon was entrained inside of the 

filters, and was liberated during the high temperate oxidation step. We confirmed in 

follow-up experiments that the blank associated carbon remained constant regardless 
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of the air volume filtered. A laboratory GFF blank was also quantified via pyrene 

fluorescence loss and CTO-375. No BCPFL was detected and an ECCTO value of 2.6 ± 

0.4 µg cm
-2

 was produced. We note that samples 1 and 22-24 could have had a higher 

associated blank carbon value if they were GFF instead of QFF filters. 

 

Methodological quality control was assessed using the NIST standard reference 

material NIST 1649a (urban dust). The international standard grass char was also used 

for the CTO-375 method only as suggested by the BC ring trial (Hammes et al., 2007). 

Elemental carbon mass fractions for the CTO-375 method were within the expected 

range for NIST 1649a at 2.7 ± 0.1%. An insufficient mass of the grass char was 

recovered, as expected, since the CTO-375 is optimized to measure the soot-like 

fraction and chars are oxidized (Gustafsson et al., 1997; Flores-Cervantes et al., 2009). 

The absence of grass char recovery suggests that methodological charring did not 

occur. Higher BCPFL concentrations were detected with NIST 1649a (7.9%) using the 

pyrene fluorescence loss method, which was expected (Flores-Cervantes et al., 2009). 

The TOT method produced an expected median value of 4.2 ± 0.4% (Currie et al., 

2002). Precombusted sand blanks were also used for the CTO-375 and pyrene 

fluorescence loss methods with no carbon detected. Statistical analyses were 

conducted using the data analysis tool in Microsoft EXCEL. 

 

3 Results and Discussion 

3.1 Regional trends for black carbon with respect to the total organic carbon 

3.1.1 General black carbon concentrations and trends 



 

104 

 

The highest BC concentrations were found in the Caribbean Sea and the African 

Plume (Table 3; Figure 1). Concentrations of BC for the Caribbean Sea ranged from 

below instrumental detection limit (of all quantification methods) to 3.4 µg m
-3

 and 

had an average regional concentration of 0.6±0.4 µg m
-3

. Black carbon concentrations 

for the African Plume, located in the remote equatorial Atlantic, had an equivalent 

average concentration of 0.6±0.4 µg m
-3

 with concentrations ranging from below 

detection limit to 1.4 µg m
-3

. We had anticipated the greatest concentrations in the 

region to be impacted by the African Plume; however, we had not expected the 

Caribbean Sea to have the overall highest measured BC concentrations. Samples 

collected from the Caribbean Sea were closest to land, suggesting that local urban 

burning could have dominated the regional tropical marine boundary layer (Duncan et 

al., 2003). The samples collected in the African Plume were between 815-1700 km 

directly removed from land, and at least 4300 km away from the projected source 

region of the African Savanna according to the backward wind trajectories.  

 

Black carbon concentrations were lowest in the Subtropical Atlantic (above the 

oligotrophic Sargasso Sea) and South America (>2km removed from land in the 

tropical Western Atlantic). Both regions had an average BC concentration of 0.2 µg m
-

3
. Black carbon concentrations from the Subtropical Atlantic and South American 

ranged from below detection limit to 0.6 µg m
-3

 and from 0.1 to 0.5µg m
-3

, 

respectively. Backward wind trajectories suggest that the regional Subtropical Atlantic 

air could have been diluted by clean arctic air inputs, supporting the low BC 

concentrations we detected (Koch and Hansen, 2005; Wang et al., 2013; Fig. 1). The 
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greatest measured BC concentration between these two regions was detected on the 

last sample, which was influenced by outflow from the North American airshed.  

 

3.1.2 Total organic carbon concentrations and trends 

Total organic carbon (TOC) concentrations varied considerably and followed a similar 

regional pattern as the BC (Table 2; Figure 1). Total organic carbon concentrations 

were measured using two different instruments, an isotope ratio mass spectrometer 

and a Sunset TOT analyzer. Total organic carbon concentrations between the two 

methods were significantly correlated in the African Plume and Caribbean Sea regions 

(p-value = 0.002; R
2
 = 0.98; p-value = 3 E

-5
; R

2
 = 0.84, respectively). Greatest TOC 

concentrations, for both methods, were measured in the Caribbean Sea with a range 

from 0.3 to 6.1 µg m
-3

 and a regional average of 1.9±1.8 µg m
-3

. Our TOC 

concentrations exceeded the GISS ModelE simulations of ≤5.0 µg m
-3

, possibly due to 

a wildfire event which caused temporary elevated BC concentrations, and may not be 

representative of a seasonal summer TOC mean (Koch et al., 2007).  The elevated 

TOC concentrations from the Caribbean Sea also could have included biomass 

generated molecules such as a macromolecular humic acids and polycyclic aromatic 

hydrocarbons. 

 

Total organic carbon concentrations in the African plume also had a similar pattern to 

the BC and contained the second highest TOC concentration range of 0.1 to 1.9 µg m
-

3
, with a regional average of 1.0±0.6 µg m

-3
. This agreed with the modeled organic 

carbon concentrations of 0.5 to 5.0 μg m
-3

 (Liousse et al., 1996; Koch et al. 2007). 
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Likewise, previous field measurements across the Atlantic Ocean in the July-August 

of 2002 and 2004 measured an average TOC aerosol concentration of 4.5±1.6 µm m
-3

 

and 1.4±0.7 µm m
-3

, respectively (Bates et al., 2006). The TOC concentrations were 

greatest closer the grassland burning source region. We propose that TOC 

concentrations in the marine boundary layer were a mix between degraded secondary 

organic aerosols from marine precursor volatile organic carbons, and primary organic 

aerosols ejected from sea spray (Keene et al., 2007; O’Dowd and Leeuw, 2007; 

Hodzic et al., 2010).  

 

The lowest TOC concentrations, similar to the regional BC patterns, occurred in the 

South Atlantic (0.2 to 0.9 with a mean of 0.4±0.2µg m
-3

) and the Subtropical Atlantic 

(0.1 to 0.4 with a mean of 0.3±0.1 µg m
-3

) regions for both methods. The main form of 

TOC in these remote environments were likely marine secondary organic aerosols, 

thus may represent a background level of TOC for the remote marine boundary layer 

with minimal urban influence (O’Dowd and Leeuw, 2007). Model simulations in 

South America have estimated a wide range in organic matter concentrations from 0.1-

1.0 µg m
-3 

(Koch et al., 2007). The same study had predicted low anthropogenic 

sulfate (<100 pptv) which indicates that biomass burning rather than fossil fuel 

combustion is the primary mechanism for combustion-derived aerosols in this region. 

 

3.1.3 BC/TOC regional patterns 

The Caribbean Sea and South Atlantic both had the largest ratio of ECCTO/TOCCTO 

(0.45). This ratio measured the fraction of soot-like EC (ECCTO) that composed the 
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organic aerosols (primary and secondary), thus implied that nearly 50% of the 

carbonaceous aerosols were soot-like. The Subtropical Atlantic region had an 

ECCTO/TOCCTO of 0.36, which also suggests that ECCTO composed large fractions of 

remote aerosols despite being removed from point sources of biomass burning and 

fossil fuel combustion. The African Plume has the lowest regional ECCTO/TOCCTO of 

0.16, which indicated that the organic aerosols within this plume dominate over the 

ECCTO transport. 

 

The ratio of ECTOT/TOCTOT was not significantly correlated to the ECCTO/TOCCTO in 

any of the regions investigated during this study, but were opposite in trends. The 

highest ECTOT/TOCTOT occurred in the African Plume and the Subtropical Atlantic at 

0.73 and 0.67, respectively (Table 2). The lowest ECTOT/TOCTOT was 0.40 for South 

America and 0.16 for the Caribbean Sea. The elevated BC concentrations in the 

Caribbean Sea, and to a lesser extent South America, suggest local burning activities 

had significant inputs of carbonaceous aerosols and were favored over long-range 

transport. Methodological comparisons of ECTOT and ECCTO concentrations commonly 

differ by a factor of 2 on the same sample, implying different aerosol properties 

(Watson et al., 2005). 

 

The difference in EC/TOC ratios between the two methods (CTO-375 and TOT) 

reflects on black carbon properties and local vs. distant sources. We detected a fraction 

of EC by the TOT method which was oxidized as thermally unstable organic carbon in 

the CTO-375 method (Fig. 1). Thus, the tropical Atlantic atmosphere contained EC-
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like aerosols other than the extremely inert graphitic-like carbon which could contain 

valuable nutrients like nitrate and phosphate for the oligotrophic Atlantic (Talbot et 

al., 1986). 

 

We used the ECCTO value, and its associated TOCCTO value, with the BCPFL 

concentration to assess the fraction of soot and charcoal-like aerosols in the study area, 

where ECCTO represents only soot-like carbon, BCPFL measures all portions of the BC 

combustion continuum, and TOCCTO measures the thermally unstable (non-black 

carbon) organic carbon (Fig. 1). We assumed that BCPFL would measure soot-like 

combustion byproducts in addition to the more thermally unstable fraction, such as 

charcoal. Thus, we determined the fraction of ECCTO, or soot-like carbon that 

composes the BCPFL in order to access soot-like vs. charcoal like aerosols in this study 

region. 

 

The average ratio of soot-like ECCTO/BCPFL was <1 for all regions except for the 

Caribbean Sea (Fig. 1). The ratio of ECCTO/BCPFL for the NIST standard reference 

material 1650 (diesel particulate matter) is 3.1, which indicates that our samples, with 

the possible exception to the Caribbean, were not dominated by fossil fuel-generated 

BC but by biomass-produced BC components, in agreement previous studies (Andreae 

1983; Swap et al. 1996).  We suggest that the Caribbean Sea region was dominated by 

soot-like EC. The Caribbean Sea had a ratio of ECCTO/BCPFL of 1.2, implying that 

100% of the combustion-derived aerosols were soot-like and that minimal charcoal-

like particulates were present.  
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The South American region contained the second highest ratio of ECCTO/BCPFL at 0.6 

(Fig. 1). The marine boundary layer of South America could be composed of 27% 

soot-like and 18% charcoal-like materials compared to the TOCCTO. The African 

Plume and Subtropical Atlantic were dominated by the thermally unstable organic 

carbon that is a combination of secondary and primary organic aerosols. The African 

Plume was calculated to be 87% thermally unstable organic carbon, 4% soot-like, and 

9% charcoal-like carbon. The African Plume, although >815 km from land, contained 

more charcoal-like particulates than soot-like. Similarly, the remote and oligotrophic 

Subtropical Atlantic region was estimated to be 64% thermally unstable organic 

carbon, 7% soot-like, and 29% charcoal-like. Both the African Plume and Subtropical 

Atlantic results reject our hypothesis that soot-like EC would be the dominant form of 

combustion-derived aerosols (Masiello 2004; Lohmann et al. 2009). This implies that 

charcoal-like (and other combustion derived macromolecules) could be present in 

significant concentrations in remote marine locations.  

 

3.2 Stable carbon isotope analysis for source apportionment 

Stable carbon isotopes (δ
13

C) can be utilized to assess the source of both the TOCCTO 

and ECCTO carbon pools (Table 2). The δ
13

C-TOCCTO values within the African Plume 

(-21‰), Caribbean Sea (-22‰), and Subtropical Atlantic (-23‰) were indicative of a 

marine plankton signature. This marine plankton signature is likely as mix of degraded 

secondary organic aerosols and primary organic particulates from sea spray (Keene et 

al. 2007; O’Dowd and Leeuw 2007; Hodzic et al. 2010). A previous study found that 
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primary submicron organic carbon aerosols can be present in significant 

concentrations in the mixed boundary layer, even in an oligotrophic environment 

(Keene et al. 2007). We cannot ignore that the δ
13

C-TOCCTO range of -23 to -21‰ 

could also be a mixing of C4 and C3 carbon fixation constituents. However, previous 

studies have shown that the mixed boundary layer aerosols are dominated by marine 

organic carbon, thus marine plankton is the most probable source of TOC in these 

regions (Putaud et al., 2000; O’Dowd et al., 2004).  

 

The South America regional δ
13

C-TOCCTO was more depleted at -27‰, which is 

indicative of C3 plant material and is too depleted to be solely marine plankton or C4 

grass material (Table 2). The backward wind trajectories showed that the air originated 

from a distal source in southern Africa, but local burning activities of C3 plants and 

crops in the Amazon rainforest was likely a significant source of the organic material. 

 

Both the African Plume and Subtropical Atlantic regions had δ
13

C-ECCTO values more 

enriched than their δ
13

C-TOCCTO values at -17 and -15‰, respectively (Table 2). This 

enrichment strongly indicates that the ECCTO was a byproduct of grass combustion, 

presumably from the African Savanna based on backward wind trajectories (Fig. 1; 

Farquhar et al., 1989; Lohmann et al., 2009). Underlying sediments in the African 

Plume region, such as from the Niger Delta, have been measured to be similarly 

enriched at -17‰, which agrees with our data (Holtvoeth et al., 2005). 
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The average δ
13

C-ECCTO values of the Caribbean Sea (-34‰) and South America (-

28‰) were strongly depleted, which is indicative of C3 carbon fixation carbon. We 

retrieved the intensity of open forest fires during the sampling time from the global 

fire emissions data base (Giglio et al., 2003; Davies et al., 2004). Elevated 

concentrations of ECCTO could be partly due to forest fires, specifically in Cuba and 

central South America. We hypothesized that C4 grass combustion was not an 

important source of ECCTO to the Caribbean Sea and South America regions, thus 

more local burning events were a likely source of the combustion-derived aerosols.  

 

3.3 Carbonaceous combustion aerosol analysis by sub-region 

3.3.1 African Plume 

A primary objective of this study was to sample the African emission plume to 

determine if the remote tropical Atlantic could be receiving significant inputs of 

combustion-derived aerosols. The GISS ModelE aerosol simulation estimated that up 

to 60%, and an average of 18%, of the global BC from biomass emissions originates 

from Africa, most of which are transported to the Atlantic Ocean (Koch et al. 2007). 

We sampled this plume during the Southern Hemispheric dry season when large scale 

South African Savanna fires were frequent (Cahoon et al., 1992). Approximately 13% 

of the air parcels originated from the African continent according to the mean 

backward wind trajectory predictions (Fig. 1).  

 

African Plume ECCTO concentrations resulted in distinctly different concentrations 

compared to the other three methods. The ECCTO (0.1 µg m
-3

) detected the lowest 
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concentrations and ECTOT and BCOT21 detected the greatest concentrations, both with 

regional averages of 0.8 μg m
-3

 (Table 3). Models simulations from the GISS ModelE 

estimated that BC concentrations in this region could range from 0.5 to 1.0 µg m
-3

, 

with BC concentrations decreasing with increasing distance from Africa (Koch et al. 

2007; Allen et al., 2012). Our data found a similar trend of decreasing BC 

concentrations with distance from the African Savanna, however, many of our 

concentrations exceeded this model simulation. Aerosols from Africa during the 

Austral winter could compose a higher contribution to the global BC emissions than 

previously believed, which could cause changes in moisture transport and climate 

forcing, as well as the deposition of aerosols into the ocean.  

 

The highest ECTOT concentration in the African plume region was 1.4 μg m
-3

, which 

was close in magnitude to the highest BCOT21 concentration (1.3 μg m
-3

) and BCPFL 

concentration (0.9 μg m
-3

). Both BCPFL and BCOT21 were found to be significantly 

correlated to each other (p-value = 0.01; R
2
 = 0.90). Additionally, the ECTOT and 

ECCTO were also significantly correlated (p-value = 0.006; R
2
 = 0.94). The non-

thermal methods, yielded BCPFL and BCOT21 concentrations similar to model 

simulations and were elevated compared the convention of 40 ng m
-3

 used to defined 

‘clean’ area in over North America (Cavalli et al., 2004; O’Dowd et al., 2004). These 

concentrations are also elevated compared to the mixed boundary layer current over 

the oligotrophic southeast Pacific of which 2 ng m
-3

 was detected with single particle 

soot photometer instrumentation (Shank et al., 2012).   
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3.3.2 Caribbean Sea 

The greatest concentrations of combustion-derived aerosols measured in this study 

occurred in the Caribbean Sea region, particularly between the highly developed and 

populated islands of the Dominican Republic and Puerto Rico (Table 3; Fig. 3). The 

greatest measured BC concentration (BCPFL) had a regional average of 1.1 μg m
-3

 with 

four of the samples exceeding 1 μg m
-3

. Similarly, ECCTO had a maximum 

concentration of 3.2 μg m
-3

 and a regional average of 0.8 μg m
-3

. The BCPFL and 

BCOT21 were found to be significantly correlated (p-value = 0.048; R
2
 = 0.37) as was 

the BCOT21 and ECTOT method (p-value = 0.007; R
2
 = 0.62).  

 

Few BC concentrations have been reported for the Caribbean Sea, leading to poor 

resolution in model predictions in the marine boundary layer. Mean summertime BC 

observation and model predictions in this region range from 0.01-0.1 µg m
-3

 (Hansen 

et al., 1990; Koch et al. 2007; Wang et al. 2013). All measurements of EC and BC in 

this study exceed the previous model simulations and field investigations. We caution 

that model estimates are generally integrated over larger vertical and horizontal scales 

than the direct measurements from this study; hence model estimates may be diluted in 

comparison to our measurements. Our data cannot differentiate if these elevated BC 

and EC concentrations are typical for the summer, or a time specific anomaly, such as 

the occurrence of nearby wildfires. 

 

3.3.3 South America 
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The South America region was represented by three samples collected >200 km off 

the Brazilian Coast. Black and elemental carbon concentrations were lower in the 

South American region than the Caribbean Sea (Table 3). These samples represented 

Southern Hemispheric air (austral winter), as indicated by the backward wind 

trajectories (Fig. 1). The wind directionality was unfavorable for large organic aerosol 

deposition. Samples were taken in close proximity to the Amazon River mouth.  

 

The highest regionally averaged concentration was 0.3 µg m
-3

 for both BCPFL and 

BCOT21. Elemental carbon (ECCTO and ECTOT) had an average concentration of 0.2 μg 

m
-3

.  Black carbon concentrations are generally higher in the winter months due to 

increased biomass burning and dryness, which reduces wet deposition (Wolff and 

Cachier, 1998; Sharma et al., 2004; Novakov and Rosen, 2013). The atmospheric 

residence time for soot-like BC in the Southern Hemisphere is longer, averaging ~8 

days (Chuang et al., 2002; Reddy and Boucher 2007), suggesting that we sampled 

local aerosols from Brazil as well as long range transport aerosols from Southern 

Africa.  

 

Very few BC and EC measurements have been made in the remote South American 

region, especially in the marine boundary layer. The South America region had been 

estimated to range in BC aerosols from 0.02-0.5 µg m
-3

 with concentrations highest 

closest to the Amazon River mouth and diminishing with distance offshore (Koch et 

al. 2005; Koch et al. 2007). Our measurements of 0.2 to 0.3 µg m
-3

 fall within this 

expected range and agree with the Fire Emission Data Base that we sampled above 
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regional BC averages, but not at peak concentrations (Cooke and Wilson, 1996; Koch 

and Hansen, 2005). The measured concentrations reported here suggest that 

atmospheric deposition is an important transport mechanism of BC to the tropical 

Atlantic Ocean, in addition to fluvial deposition from the Amazon River.  

 

3.3.4 Subtropical Atlantic  

Northern Hemisphere air originating from the open ocean and the Arctic was sampled 

in the subtropical Atlantic region which crossed the Sargasso Sea (Fig. 1). 

Concentrations of BC and EC were low in the subtropical Atlantic, as expected, but 

increased upon approaching the United States coast. Previous studies have suggested 

that the clean Arctic air inputs would result in lowered BC concentrations, as 

compared to urban regions, with concentrations ≥0.05 μg m
-3

 (Koch and Hansen, 

2005). Similarly, the GISS ModelE simulates than BC inputs would be diluted by the 

organic matter aerosols in this region, which is supported by our data (Koch et al. 

2007).  

 

Samples from the Subtropical Atlantic displayed greatest BC concentrations near the 

African and United States coast and smallest across the subtropical gyre. Regional BC 

averages for this region were among the lowest measured in this study. Both BCPFL 

and BCOT21 measured their overall lowest mean concentrations in this region at 0.4 μg 

m
-3

 and 0.2 μg m
-3

 respectively. The ECCTO concentration was an average of 0.1 μg m
-

3
 for the Subtropical Atlantic, which was comparable to the method’s lowest regional 

average, measured in the African Plume (0.1 μg m
-3

).  
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4 Conclusions 

Black carbon particulates were collected in four sub-regions within the tropical 

Atlantic Ocean to determine the concentrations and distributions of combustion-

derived aerosols in a remote and poorly sampled region. As expected, black carbon 

concentrations from C4 grass combustion were elevated in the African emission plume 

at 0.1 to 0.8 µg m
-3

. However, the greatest overall black carbon concentrations were 

measured in the Caribbean Sea at concentrations up to 1.1 µg m
-3

. Black carbon 

concentrations were still elevated above ‘clean air’ concentrations of 40 ng m
-3

 in all 

sub-regions. Soot-like carbon was expected to be the dominant type of combustion-

derived aerosols according to the black carbon combustion continuum. Multiple 

analytical methods were implemented to assess the contributions of thermally unstable 

organic carbon, soot-like, and charcoal-like carbon in the tropical marine boundary 

layer. We determined that up to 29% of the Subtropical Atlantic (over the oligotrophic 

Sargasso Sea), 19% of the Western Atlantic (South America), and 9% of the African 

emission plume could be composed of charcoal-like aerosols. Future work should aim 

to both measure the entire black carbon combustion continuum and to apportion 

charcoal-like versus soot-like particulates when evaluating carbonaceous aerosols.  
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Tables 

  
(2010) (min) (m3) Start End (km) 

Sample Region 
Start 

Collect 

Sample 

Time 
Volume Lat. Long. Lat. Long. Distance 

1 CS 6-Jul 721 408 22.136 -77.483 20.983 -74.988 288 

2 CS 7-Jul 725 308 20.983 -74.988 20.021 -70.654 464 

3 CS 7-Jul 684 97 20.021 -70.654 19.285 -68.575 233 

4 CS 8-Jul 737 104 19.285 -68.575 17.615 -67.033 246 

5 CS 8-Jul 707 100 17.615 -67.033 16.550 -65.483 203 

6 CS 9-Jul 741 315 16.550 -65.483 15.416 -63.783 221 

7 CS 9-Jul 708 301 15.416 -63.783 14.338 -62.223 206 

8 CS 10-Jul 691 294 14.338 -62.223 13.453 -60.817 181 

9 CS/SA 14-Jul 2823 1199 13.453 -60.817 7.079 -49.156 1458 

10 SA 16-Jul 2455 1043 7.079 -49.156 5.906 -45.011 476 

11 CS 20-Jul 2884 1225 5.906 -45.011 11.179 -55.835 1326 

12 CS 22-Jul 1420 603 11.179 -55.835 13.100 -59.650 466 

13 CS 23-Jul 2794 3758 13.100 -59.650 9.483 -51.266 989 

14 SA 27-Jul 3287 4421 9.483 -51.266 4.600 -46.200 778 

15 AP 30-Jul 3983 5358 4.600 -46.200 1.580 -28.767 1966 

16 AP 3-Aug 3353 4510 1.580 -28.767 3.961 -21.667 832 

17 AP 6-Aug 4532 6096 3.961 -21.667 4.977 -21.215 123 

18 AP 10-Aug 2235 3006 4.977 -21.215 4.554 -24.496 367 

19 AP 15-Aug 2209 2971 4.554 -24.496 12.813 -20.066 1035 

20 SubAt 21-Aug 2682 3608 12.813 -20.066 20.521 -25.118 1009 

21 SubAt 23-Aug 2718 3656 20.521 -25.118 25.717 -32.768 918 

22 SubAt 25-Aug 2863 3851 25.717 -32.768 30.167 -41.027 950 

23 SubAt 27-Aug 2846 3828 30.167 -41.027 31.871 -50.100 886 

24 SubAt 29-Aug 943 1269 31.871 -50.100 32.516 -53.764 353 

 

Table 1. Sampling dates, volumes, coordinates, and total distance for each sample 

collected. Regional abbreviations are CS (Caribbean Sea), SA (South America), AP 

(African Plume, and SubAt (Subtropical Atlantic). 
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Regional Average 

(Range) 
TOC

a
 TOC

b
 δ

13
C-TOC δ

13
C-BC 

African Plume 
1.1±0.4 0.9±0.5 -21±4 -17±5 

(0.2 - 1.9) (0.1 - 1.5) (-19 to -26) (-2 to -26) 

Caribbean Sea 
1.9± 0.3 1.8±1.7 -22±8 -34±18 

(0.4 - 6.1) (0.4 - 5.8) (-9 to -34) (-22 to -42) 

South America 
0.5±0.1 0.4±0.1 -27±2 -28±14 

(0.2 - 0.9) (0.2 - 0.5) (-24 to -32) (-16 to -35) 

Subtropical 

Atlantic 

0.3±0.1 0.2±0.0 -23±5 -15±12 

(0.1 - 0.4) (0.2 - 0.3)  (-17 to -25) (3 to -27) 

 

Table 2. Average regional total organic carbon concentrations and ranges (μg m
-3

) for 

the TOT methods (TOC
a
) and CTO-375 (TOC

b
) methods and the δ

13
C value (‰) for 

the total organic carbon and black carbon determined by the CTO-375 method. 
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Regional Average 

(Range) 
CTO-375 TOT PFL OT-21 

African Plume 
0.1 ± 0.1 0.8 ± 0.4 0.5 ± 0.3 0.8 ± 0.4 

(0 - 0.2) (0.2 - 1.4) (0.3 - 0.9) (0.2 - 1.3) 

Caribbean 
0.8 ± 0.9 0.3 ± 0.2 1.1 ± 1.2 0.2 ± 0.2 

(0 - 3.2) (0 - 0.6) (0 - 3.4) (0 - 0.7) 

South America 
0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.2 

(0.1 - 0.3) (0.1 - 0.2) (0.2 - 0.3) (0.1 - 0.5) 

Subtropical Atlantic 
0.1 ± 0.1 0.2 ± 0.0 0.4 ± 0.2 0.2 ± 0.1 

(0 - 0.2) (0.2) (0.1 - 0.6) (0 - 0.3) 

 

Table 3. Average black carbon concentrations and range by region (μg m
-3

) using four 

different methods: the chemothermal oxidation at 375°C (CTO-375), thermal optical 

transmittance (TOT), pyrene fluorescence loss (PFL), and optical attenuation (OT-21). 
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Figures 

 

Figure 1. HySPLIT estimates of a 10-day backward wind trajectory at the end 

of each filter sample at a height of 20 meters and the average regional fraction 

of black carbon within the total organic carbon (Mercator projection). Black 

carbon is further divided between labile organic carbon, soot (CTO-375), and 

charcoal (pyrene fluorescence loss). The size of each pie chart is in accordance 

to regional average total organic carbon concentration ranging from 0.2 to 1.8 

µg m
-3

. 
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Figure 2. Comparison of black carbon concentrations (μg m
-3

) from the four selected 

methods grouped by region with one standard deviation. Error associated with the OT-

21 method was ±0.1 µg m
-3

. 
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Supporting Information 

Black carbon concentrations and sources in the marine boundary layer of the tropical 

Atlantic Ocean using four methodologies 

 

Kari Pohl 

Mark Cantwell 

Pierre Herckes 

Rainer Lohmann 

 

Included in the supporting information are: 

Materials and Methods 

Table S1. Black carbon concentration (µg m
-3

) per individual filter for each method. 

Table S2. Total organic carbon concentrations as measured by the CTO-375 (TOC
a
) 

and TOT (TOC
b
) methods and the δ

13
C values for the total organic carbon and black 

carbon determined for each filter by CTO-375 after blank correction. 

 

Table S3. Regional average of soot-like black carbon (CTO-375) to the broader black 

carbon spectrum (PFL) ratio and the ratio of black carbon in the total organic carbon 

determined by the CTO-375 and TOT methods. 

 

Table S4. Measured elemental carbon (EC) values of lab blanks and field blanks via 

the chemothermal oxidation (CTO-375) method (µgEC cm
-2

). An average laboratory 

glass fiber filter blank (GFF) is also included.  

 

Figure S1. Global fire maps generated from the MODIS Terra and Aqua satellites for 

(a) June 30-July 9, 2010, (b) July 20-27, 2010, (c) July 30-August 8, 2010, and (d) 

August 18-28, 2010. Both (a) and (b) co-occurred during the Caribbean and South 

America regional sampling, (c) occurred during the African Plume regional sampling, 

and (d) for the subtropical Atlantic.  The color indicates the number of detected 

wildfires from red (low) to yellow (high). Credits: Jacques Descloitres, Louis Giglio, 

and Reto Stokli. 

 

Figure S2. HySPLIT estimates of a 10-day backward wind trajectory at the end of 

each filter sample at a height of 20 meters and the average regional fraction of black 

carbon within the total organic carbon (rectilinear projection). Black carbon is further 

divided between labile organic carbon, soot (CTO-375), and charcoal (pyrene 

fluorescence loss). The size of each pie chart is in accordance to regional average total 

organic carbon concentration ranging from 0.2 to 1.8 µg m
-3

. 
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Materials and Methods: The pyrene fluorescence loss method is a novel approach to 

quantify a broader portion of the BC combustion continuum (Flores-Cervantes et al., 

2009). BC concentrations were calculated from the loss of dissolved pyrene based on 

eq. 1 – 3. 

 

                                                   
  

  
                                      (1) 

 

Where fw is the fraction of pyrene lost from solution due to adsorption to the BC, i.e. 

ratio of the final (Cf) to the initial pyrene concentration (Ci). 

 

                                                    
      

     
                     (2) 

 

The solid-water partitioning coefficient (Kd) for pyrene was determined using equation 

(2), where rsw is the solid-water ratio (kg L
-1

).  

 

                                                 
           

     
                     (3) 

 

The calculated Kd was used to determine the fraction of BC (fBC) according to 

equation (3). The KOC and KBC are the previously determined pyrene partitioning 

coefficients of 10
4.7 

(L kgOC
-1

) for organic carbon (OC) and 10
6.25 

(L kgBC
-1

) for BC 

(BC), respectively (Accardi-Dey and Gschwend, 2002). The Cw
n-1 

is the initial truly 

dissolved pyrene concentration, where n is the Freundlich exponent of 0.62. An initial 
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concentration of 1 μg L
-1

 pyrene was purposely selected to allow the Cw term to 

approach 1 since the Freundlich exponent is the component with the highest degree of 

uncertainty. Finally, the fOC is the fraction of the total organic carbon determined by 

the IRMS during the CTO-375 analysis. We assumed that BC would be a minor 

constituent so that the total organic carbon would be equivalent to the organic carbon 

concentration, as was done in Flores-Cervantes (2009).  

 

Additionally, the salinity of five pyrene solutions with double the filter mass and half 

the volume were measured with a refractometer in order to assess if salinity could 

have affected pyrene’s solubility in solution. A measurement of 0 ppt was received in 

triplicate for all five samples, concluding that the salting out effect of pyrene would be 

minimal in our set-up. 

 

A series of blank filters were placed on a high volume air sampler at the Graduate 

School of Oceanography, Narragansett, Rhode Island at a rate of 1.35 m
3
min

-1
 (47.5 

CFM) for 10, 20, 30, 60, and 120 minutes to test if the carbon blank would decrease 

inversely as air volume filtered increased. The associated carbon blank was constant 

for all air volumes, suggesting that the carbon detected by the thermal methods was 

not due to contamination but rather the filter matrix. 

 

In separate work, corn pollen was analyzed by both CTO-375 and the pyrene 

fluorescence loss technique to assess its possible interference on the BC 

measurements. No BC was detected on the pollen using the pyrene fluorescence loss 
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method; however approximately 66% of the pollen remained after the CTO-375 

treatment.  

 

Methodological quality control for the CTO-375 and pyrene fluorescence loss method 

was also assessed and compared using the NIST standard reference materials 1941b 

(marine sediment). BC mass fractions for were within the expected range of 0.7 ± 

0.1% for the CTO-375 method and 1.6% for the pyrene fluorescence loss (Hammes et 

al., 2007; Flores-Cervantes et al., 2009). 
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QFF CTO-375 PFL TOT OT-21 Region 

1 0.00 0.62 0.32 0.00 Caribbean 

2 1.17 1.12 0.00 0.08 Caribbean 

3 0.64 3.56 0.00 0.52 Caribbean 

4 3.37 2.86 0.00 0.72 Caribbean 

5 1.71 2.98 0.00 0.00 Caribbean 

6 1.02 0.95 0.00 0.16 Caribbean 

7 0.00 0.99 0.00 0.08 Caribbean 

8 1.39 0.00 0.00 0.00 Caribbean 

9 0.02 0.19 0.00 0.14 Caribbean/South America 

10 0.35 0.42 0.00 0.53 South America 

11 0.04 0.06 0.00 0.18 Caribbean 

12 0.83 0.53 0.00 0.14 Caribbean 

13 0.02 0.25 0.00 0.23 Caribbean 

14 0.09 0.33 0.06 0.19 South America 

15 0.04 0.33 0.00 0.20 African Plume 

16 0.01 0.47 0.03 0.83 African Plume 

17 0.08 0.21 0.03 0.92 African Plume 

18 0.03 0.91 0.03 1.33 African Plume 

19 0.19 0.74 0.01 0.73 African Plume 

20 0.03 0.36 0.00 0.30 Subtropical Atlantic 

21 0.02 0.40 0.00 0.33 Subtropical Atlantic 

22 0.03 0.00 0.18 0.09 Subtropical Atlantic 

23 0.03 0.09 0.00 0.13 Subtropical Atlantic 

24 0.30 0.56 0.14 0.00 Subtropical Atlantic 

 

Table S1. Black carbon concentration (µg m
-3

) per individual filter for each method. 
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Sample TOC
a
 ug m

-3
 TOC

b
 ug m

-3
 δ

13
C-TOC δ

13
C-BC 

1 0.4 0.9 -22 2 

2 2.1 2.3 -32 -91 

3 3.1 3.9 -27 -64 

4 3.8 6.1 -27 -39 

5 5.8 5.2 -34 -41 

6 1.1 0.4 -33 -42 

7 1.2 0.8 -9 -17 

8 1.9 1.6 -26 -36 

9 0.4 0.4 -24 -16 

10 0.5 0.9 -26 -35 

11 1.0 0.4 22 -23 

12 0.8 0.7 -28 -40 

13 0.3 0.4 -27 -6 

14 0.2 0.2 -32 -34 

15 0.1 0.2 -26 -18 

16 0.7 1.1 -19 -26 

17 1.3 1.6 -19 -16 

18 1.5 1.9 -20 -2 

19 0.7 0.9 -22 -24 

20 0.2 0.4 -23 -13 

21 0.3 0.4 -24 3 

22 0.2 0.1 -25 -27 

23 0.2 0.2 -17 -17 

24 0.2 0.4 -25 -21 

 

Table S2. Total organic carbon concentrations as measured by the CTO-375 (TOC
a
) 

and TOT (TOC
b
) methods and the δ

13
C values for the total organic carbon and black 

carbon determined for each filter by CTO-375 after blank correction. 
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Regional Average CTO/PFL BC/TOC-IRMS BC/TOC-TOT 

Caribbean 1.2 0.45 0.16 

South America 0.6 0.45 0.40 

African Plume 0.3 0.13 0.73 

Subtropical Atlantic 0.2 0.36 0.67 

1650 diesel particulate matter 3.1 0.62 
 

Table S3. Regional average of soot-like black carbon (CTO-375) to the broader black 

carbon spectrum (PFL) ratio and the ratio of black carbon in the total organic carbon 

determined by the CTO-375 and TOT methods. 

 

 

 

Blank CTO-375  (µgEC cm
-2

) 

lab-1 1.7 

lab-2 1.7 

lab -3 2.7 

lab-4 1.3 

field-1 1.7 

field-1 1.4 

Average 1.7 ± 0.5 

GFF 2.6 ± 0.4 

 

Table S4. Measured elemental carbon (EC) values of lab blanks and field blanks via 

the chemothermal oxidation (CTO-375) method (µgEC cm
-2

). An average laboratory 

glass fiber filter blank (GFF) is also included.  
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Figure S1. Global fire maps generated from the MODIS Terra and Aqua satellites for 

(a) June 30-July 9, 2010, (b) July 20-27, 2010, (c) July 30-August 8, 2010, and (d) 

August 18-28, 2010. Both (a) and (b) co-occurred during the Caribbean and South 

America regional sampling, (c) occurred during the African Plume regional sampling, 

and (d) for the subtropical Atlantic.  The color indicates the number of detected 

wildfires from red (low) to yellow (high). Credits: Jacques Descloitres, Louis Giglio, 

and Reto Stokli. 

 

(a) (b) 

(c) (d) 
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Figure S2. HySPLIT estimates of a 10-day backward wind trajectory at the end of 

each filter sample at a height of 20 meters and the average regional fraction of black 

carbon within the total organic carbon (rectilinear projection). Black carbon is further 

divided between labile organic carbon, soot (CTO-375), and charcoal (pyrene 

fluorescence loss). The size of each pie chart is in accordance to regional average total 

organic carbon concentration ranging from 0.2 to 1.8 µg m
-3

. 

 

 

 

 

 

 

 



 

138 

 

References 

Accardi-Dey, A., and Gschwend, P. M.: Assessing the combined roles of natural 

organic matter and black carbon as sorbents in sediments, Environ Sci Technol, 36, 

21-29, Doi 10.1021/Es010953c, 2002.  

 

Flores-Cervantes, D. X., Reddy, C. M., and Gschwend, P. M.: Inferring Black Carbon 

Concentrations in Particulate Organic Matter by Observing Pyrene Fluorescence 

Losses, Environ Sci Technol, 43, 4864-4870, Doi 10.1021/Es900043c, 2009.  

 

Hammes, K., Schmidt, M. W. I., Smernik, R. J., Currie, L. A., Ball, W. P., Nguyen, T. 

H., Louchouarn, P., Houel, S., Gustafsson, O., Elmquist, M., Cornelissen, G., 

Skjemstad, J. O., Masiello, C. A., Song, J., Peng, P., Mitra, S., Dunn, J. C., Hatcher, P. 

G., Hockaday, W. C., Smith, D. M., Hartkopf-Froeder, C., Boehmer, A., Luer, B., 

Huebert, B. J., Amelung, W., Brodowski, S., Huang, L., Zhang, W., Gschwend, P. M., 

Flores-Cervantes, D. X., Largeau, C., Rouzaud, J. N., Rumpel, C., Guggenberger, G., 

Kaiser, K., Rodionov, A., Gonzalez-Vila, F. J., Gonzalez-Perez, J. A., de la Rosa, J. 

M., Manning, D. A. C., Lopez-Capel, E., and Ding, L.: Comparison of quantification 

methods to measure fire-derived (black/elemental) carbon  in soils and sediments 

using reference materials from soil, water, sediment and the  atmosphere, Global 

Biogeochem Cy, 21, Artn Gb3016 Doi 10.1029/2006gb002914, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

139 

 

CHAPTER 5 

 

Particulate black carbon concentrations in the surface mixed layer across the 

Subtropical Atlantic Ocean 

 

This manuscript has been submitted and has been formatted for the journal 

Geochimica et Cosmochimica Acta 

 

Kari Pohl
1
, Mark Cantwell

2
, Rainer Lohmann

1
* 

 

1
Graduate School of Oceanography-University of Rhode Island, Narragansett, RI, 

USA 
2
U.S. Environmental Protection Agency, Atlantic Ecology Division, Narragansett, 

Rhode Island, U.S.A. 

 

* Corresponding author: (email: rlohmann@mail.uri.edu ; Tel: 401-874-6612; Fax: 

401-874-6811) 

 

 

 

 

 

 

 

 

mailto:rlohmann@mail.uri.edu


 

140 

 

 

Abstract 

Black carbon (BC) particles are the highly condensed, carbonaceous, and aromatic 

structures produced by the incomplete combustion of fossil fuels and biomass burning. 

The transport and fate of particulate BC through the marine environment is largely 

unknown, but critical in understanding the role of BC as a terrestrial nutrient source 

and sink for fixed carbon. We collected surface water particles across the Subtropical 

Atlantic during two cruises in the summer of 2010 and the spring of 2013 to measure 

the BC concentrations in the surface mixed layer. Black carbon was detected on all 

samples with regionally-averaged concentrations ranging from 0.9±0.4 µg L
-1

 in the 

oligotrophic Sargasso Sea to 3.0±3.0 µg L
-1

 in the southwestern Atlantic along the 

eastern coast of South America. The overall basin-wide average BC concentration in 

the spring/summer of the Subtropical Atlantic was 1.9±1.8 µg L
-1

. Black carbon 

composed between 2-61% (average 17±6%) of the particulate organic carbon. Black 

nitrogen was detected on 40% of the samples and represented up to 18% of the 

particulate nitrogen. This suggests that BC is present in substantial concentrations in 

the surface mixed layer and may be a potential nutrient source to oligotrophic 

environments. Surface water BC concentrations are greater than previously measured 

deep sediment concentrations, indicating that either significant degradation must occur 

to the BC or that the deep ocean could be a larger BC sink than previously understood.  
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Highlights:  

-Particulate black carbon detected in all surface water samples 

-Black carbon composed an average of 17% of the particulate organic carbon 

-Black nitrogen was detected on 40% of the samples and composed up to 18% of the 

bulk nitrogen 

 

Keywords: black carbon, particulate organic carbon, black nitrogen, stable carbon 

isotopes, terrigenous organic matter, Redfield ratio 

 

1. Introduction 

Black carbon (BC) is the thermally refractory form of terrestrial organic carbon that is 

composed of a complex matrix of condensed aromatic sheets (Gustafsson et al., 1997; 

Schmidt and Noack, 2000; Dickens et al., 2004; Elmquist et al., 2008; Lohmann et al., 

2009). It is a byproduct of the incomplete combustion of fossil fuels and both natural 

and anthropogenic biomass burning. Black carbon is operationally defined as the 

spectrum of carbonaceous particles ranging from the re-condensed volatiles called 

soot to the solid combustion residues called chars (Masiello, 2004). The generated BC 

species is largely dependent on temperature and the amount of oxygen relative to fuel 

during combustion (Schmidt and Noack, 2000; Keiluweit et al., 2010). In general, high 

temperature combustion increases the degree of BC aromaticity, making it more 

environmentally stable (Elmquist et al., 2006; Keiluweit et al., 2010). Additionally, 

dense biomass materials and fossil fuels are more likely to produce soot-like BC since 
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they have a lower oxygen transfer efficiency (Schmidt and Noack, 2000; Schmidt et 

al., 2001; Elmquist et al., 2006). The degree of BC graphitization will control the 

lability of BC by determining the concentration of nutrients and plant remnants, in 

addition to its molecular stability.   

 

Black carbon deposition to marine sediments removes organic carbon from the active 

carbon cycle, making it a sink for fixed atmospheric CO2 (Gustafsson and Gschwend, 

1998; Dickens et al., 2004). However, the transport and fate of BC as it moves through 

the environment before sediment deposition is poorly understood. Field measurements 

of particulate BC are biased to coastal sediments since estimates have predicted that 

up to 90% of the BC input to the ocean deposits on the continental shelf (Gustafsson et 

al., 1998).The main BC input pathways into the marine environment is through fluvial 

and aeolian deposition (Masiello and Druffel, 1998; Mitra et al., 2002). Fluvial BC 

concentrations composed up to 0.78% of the total suspended solids in the Mississippi 

River and aerosols over London and the tropical Atlantic marine boundary layer were 

up to 3.0% and 0.72% BC by mass, respectively (Mitra et al., 2002; McMeeking et al., 

2010; Pohl et al., 2013). Black carbon deposited via fluvial transport has the potential 

to be more refractory than atmospherically-deposited BC since the labile fraction can 

undergo alterations through microbial degradation in the soil before it enters the 

ocean, presumably allowing for a more refractory form to enter the marine 

environment (Jaffe et al., 2013; Masiello and Louchouarn, 2013).  
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Sediment BC concentrations are mostly lower than the aerosol and fluvial input 

concentrations. Black carbon has been detected in sediments at concentrations of 0.3% 

off the Swedish continental shelf and coastal Brazil to 0.1% in deep (>3500 m) 

abyssal sediments (Ribeiro et al., 2004; Sanchez-Garcia et al., 2012, Lohmann et al., 

2009). This imbalance between the inputs and presumed sediment sink indicates that 

surface water and the deep ocean must be a significant loss or storage reservoir for 

particulate BC. It is possible that photochemical and microbial interactions within the 

water column could dictate the degree of recalcitrance of the BC exported to pelagic 

sediments. However, there is little known about the concentration of this refractory 

black carbon pool in the surface ocean.  One pivotal study detected BC water column 

concentrations in the Gulf of Maine ranging from <0.1 to 16 µg L
-1

 (Flores-Cervantes 

et al., 2009). In this coastal region, particulate BC composed between 1-20% of the 

particulate organic carbon, implying that it is a significant intermediate pool of organic 

carbon prior to deposition to the sediments.  

 

 The transport and fate of BC before it is deposited must be understood in order to 

assess the role that marine sediments play as a sink for organic carbon. It will also help 

to assess the role that BC, a form of terrestrial organic matter, could play in 

transporting terrestrial nutrients to the marine system. The predicted BC production 

does not equate to the concentrations of BC found in soils and sediments, thus a 

portion of the BC must be lost or stored before deposition (Jaffe et al., 2013). Thus, 

the surface mixed layer has the potential to contain high BC concentrations. It is 
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unclear if BC undergoes substantial degradation in the surface water or if aqueous BC 

could be an additional longer-term carbon storage reservoir. 

 

The subtropical Atlantic Ocean has the potential to be a large reservoir for BC 

(Lohmann et al., 2009). Numerous major rivers, including the Amazon, Congo, 

Paraná, and Niger have far reaching plumes into the mid-Atlantic basin. Likewise, the 

African atmospheric emission plume, which contains high concentrations of grass and 

agricultural byproducts, deposits into the equatorial Atlantic region (Cahoon et al., 

1992; Ramanathan and Carmichael, 2008).  

 

Particles from the surface mixed layer of the subtropical Atlantic were collected from 

two separate cruises during the summer of 2010 and the spring of 2013 to quantify the 

concentration of particulate BC in the surface ocean. This study had three main 

hypotheses: 1) Black carbon composes a large percentage of the particulate organic 

carbon (POC) in the surface ocean, 2) biomass burning is a significance source of 

particulate black carbon due to the African emission plume, and 3) BC is an important 

source of terrestrially-derived nitrogen to the oligotrophic Atlantic.  

 

2. Materials and Methods 

2.1 Study Area 

Filtered surface water samples were collected during two cruises within the 

subtropical Atlantic (Fig 1). A total of 70 glass fiber filter (GFF) samples were 

collected during EN-479 to EN-482 on the R/V Endeavor during the summer of 2010 
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(July 4-September 1) with an average water volume of 800 L filtered per sample. An 

additional 28 GFFs were collected during KN210-04 on the R/V Knorr during the 

spring of 2013 (March 25-May 9) with an average of 740 L filtered per sample. We 

used the Ocean Surface Current Analysis- Real Time (OSCAR) model by NOAA to 

estimate the surface current velocity and directionality (Fig. S1). 

 

Samples were grouped into 6 sub-regions based on geographical location to assess the 

major trends of surface water BC concentrations in the subtropical Atlantic: Caribbean 

Sea (EN-GFF 1-10, n=9), Amazon (EN-GFF 11-35, KN-GFF 19-28, n=32), Equator 

(EN-GFF 36-44, KN-GFF 16-18, n=12), Sargasso Sea (EN-GFF 59-70, n=12), 

Southwest Atlantic (KN-GFF 1-15, n=15), and East Atlantic (EN-GFF 45-58, n=13). 

The East Atlantic region is within the African emission plume and the Southwest 

Atlantic is along the eastern coast of South America (Fig. 1). 

 

2.2 Sample Collection 

Surface mixed layer particles were collected during transit using Whatman binder-free 

glass microfiber filters with minimum particle retention of 1 µm from an inflow pump 

positioned approximately 5 m under the vessel. The exposed filter area was 133 cm
2
. 

Glass fiber filters were pre-combusted at 450°C before sample collection; after 

collection, GFFs were stored loosely in pre-combusted aluminum foil and kept frozen 

at -10°C until analysis. Water was filtered for 24 hours or was stopped when the flow 

rate decreased below 1 L min
-1

. We note that GFF samples from KN210-04 were 
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additive for the 24 hour period whereas GFFs samples from EN-479 to EN-482 were 

treated as an individual samples even if sampled for <24 hours.  

 

2.3 Elemental Analysis 

Both POC and BC were measured using an Elementar Vario MICRO cube elemental 

analyzer (EA) coupled to an Isoprime100 isotope ratio-mass spectrometer (IR-MS). 

The instrumental limit of detection was 100 ng of carbon. Black carbon was isolated 

using a chemothermal oxidation at 375°C (CTO-375) as outlined by Gustafsson et al. 

(1997) and Elmquist et al. (2004). Briefly, filters were combusted at 375°C for 24 

hours with excess oxygen present. This process oxidizes the labile organic (OC) 

carbon fraction while the thermally refractory soot-like BC remains.  Subsamples of 

2.4 cm
2
 were first acidified in a desiccator with concentrated hydrochloric acid vapors 

for 24 hours with a water vapor trap in order to remove carbonate carbon. Half of the 

acidified filters were analyzed for POC and the remaining filters were processed for 

BC using the CTO-375 method. Approximately 75% of the filters were analyzed for 

POC and BC in duplicate using IR-MS with <15% difference from the mean. 

Elemental analysis detected both the carbon and nitrogen concentration. 

 

We determined the fraction of labile OC by subtracting the BC concentration as 

follows: [OC] = [POC] – [BC]. 

 

Laboratory and field blanks were also analyzed. All blanks were handled and stored 

identically to sample filters; field blanks had approximately 1 L of water filtered 
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through. A total of 6 blanks were collected from the R/V Endeavor cruises and 5 for 

the R/V Knorr cruise. There was no significant difference between field and laboratory 

blanks. We blank-corrected our data with the following values for each data set (R/V 

Endeavor and R/V Knorr, respectively): 0.9 and 1.3% for POC, 1.1 and 1.3% for BC, 

0.2 and 0.3% for total nitrogen, and 0.2 and 0.3% for black nitrogen. In additional 

experiments, the blank-associated carbon and nitrogen remained constant despite a 

varying volume of filtered water. We assumed that this carbon and nitrogen was an 

inherent blank from retained carbon and nitrogen within the filters and remained 

constant during sampling.     

2.4 Isotopic analysis  

Stable carbon (δ
13
C) and nitrogen (δ

15
N) isotopes for the POC and BC fractions were 

assessed using the IR-MS alongside the elemental analysis. We used acetanilide as the 

standard reference material along with a laboratory blue mussel tissue (BLUM) 

standard (Smyntek et al., 2007). 

 

We derived the thermally labile δ
13

OC values using a weighed mass balance (eq. 1). 

 

δ
     

        δ             δ      

    
      (1) 

 

2.5 Quality Control and Quality Assurance 

Black carbon is operationally defined by method and there are numerous approaches 

established for quantification. We selected the CTO-375 method, which is optimized 

to detect the soot-like BC portion from the BC combustion continuum (Masiello, 
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2004). The CTO-375 method has brought forth a concern that charring during the 

thermal oxidation process could artificially elevate the BC concentrations (Gelinas et 

al., 2001). To demonstrate the validity of our data, we employed numerous standard 

reference materials (SRM) as recommended by the BC ring trials (Hammes et al., 

2007). We used the SRMs NIST 1941b (marine sediment), NIST 1649a (urban dust), 

mollisol, grass char, melanoidin, and sand; at least one SRM was analyzed per 9 

samples.  

 

All SRM analyses produced CTO-375 derived BC values similar to previous studies 

(Currie et al., 2002; Hammes et al., 2007; Flores-Cervantes et al., 2009; Lohmann et 

al., 2009). Standard reference materials NIST 1941b, NIST 1649a, and mollisol had 

average values of 0.8±0.1% (n=17), 3.0±0.2% (n=4), and 0.2±0.0% (n=3), 

respectively. Melanoidin (n=2) and sand (n=8), both of which are non-BC materials, 

were below the detection limit of the analysis. Likewise, no grass char mass was 

recovered after chemothermal oxidation, which was expected since the CTO-375 

method is optimized to quantify soot-like carbon and routinely oxidized char-like 

substances (Flores-Cervantes et al., 2009). The lack of carbon recovered on the grass 

char and non-BC polymer melanoidin supports that limited methodological charring 

occurred during analysis.  

 

Previous studies have brought forth the concern that charring potential could increase 

at higher levels of organic carbon. Gelinas et al. showed that produced BC values 

appeared to increase linearly with organic carbon values (2001). We applied a 
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regression analysis to determine if the labile OC fraction was statistically correlated to 

the BC values produced for our samples for each sub-region. We repeated this test 

with the δ
13

C-OC and δ
13

C-BC. 

 

We found that BC was not significantly correlated to the labile OC fraction in four of 

the six sub-regions: the Caribbean Sea, Sargasso Sea, Southwest Atlantic, and East 

Atlantic regions were all found to have p-values >0.05, indicating that the BC 

concentrations did not display a significant correlation with the organic carbon 

fraction. This further suggests that BC was not a charring artifact of the organic matter 

present of the filters. The Amazon and Equator, although found to be correlated, both 

had the lowest ratio of BC/POC at 10% in the study region. Likewise, we found that 

the δ
13

C-OC and δ
13

C-BC data were significantly different from each other in all 

regions with the exception of the Sargasso Sea. This further verifies that we sampled 

two separate carbon pools. Another indicator of quality control is the C/N ratio of the 

labile OC and the BC pools on the samples of which nitrogen was detected. All sub-

regions had COC/NOC statistically different than the CBC/NBC.   

 

Lastly, our data (see next section) shows that elevated BC fractions do not co-vary 

with the regions with elevated POC concentrations. Additionally, there was no linear 

trend in the concentration of BC and POC with water volume filtered (Fig. S2). The 

lack of a positive y-intercept indicates that there was minimal dissolved organic 

carbon adsorption to the GFFs during sampling (Moran et al., 1999). Finally, we 

suggest that minimal ship contamination occurred since two research vessels were 
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used for surface water collection and displayed similar patterns for the low-

concentration black carbon regions, such as the Amazon.  

 

3. Results and Discussion 

3.1. Particulate black carbon concentrations 

Particulate black carbon concentrations were detected in every sample and were 

greatest when surface waters were directly influenced by a terrestrial source (Figure 1; 

Table 1). Both the black carbon (BC) and bulk particulate organic carbon (POC) were 

not significantly different between the two cruises, thus were treated as one data set. 

The sub-regions with the greatest BC concentrations each received fluvial inputs from 

a major river. These regions, with average concentration, were the Southwest Atlantic 

(3.0±3.0 µg L
-1

), Amazon (2.1±1.4 µg L
-1

), and Caribbean Sea (2.0±1. µg L
-1

), and 

received input from the Paraná, Amazon, and Orinoco Rivers, respectively. The 

Equator and East Atlantic sub-regions both received elevated atmospheric deposition 

due to the African emission plume and had average concentrations of 1.5±1.6 µg L
-1

 

and 1.3±1.9 µg L
-1

, respectively. The lowest sub-regional average BC concentrations 

occurred in the oligotrophic Sargasso Sea within the North Atlantic gyre at 0.9±0.4 µg 

L
-1

. The mean BC concentration for the entire subtropical Atlantic basin was 1.9±1.8 

µg L
-1

.  

 

Previous studies have hypothesized that fluvial runoff, and to a lesser degree aeolian 

transport, would favor coastal and near shore deposition of BC particles due to their 

density (Mitra et al., 2002; Duncan et al., 2003; Koch et al., 2007). Fluvial plumes can 
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extend hundreds of kilometers away from the fresh water-marine boundary, however 

most particles deposit 30-50 m from the river mouth (Wright and Nittrouer, 1995; 

Geyer et al., 2004). The input of fresh water into the marine environment creates a 

positively buoyant plume that can range in thickness from 10 cm to 10 m, which acts 

to trap and transport sediments horizontally.  In general, organic matter concentrations 

are positively correlated to river discharge (Paolini, 1990; Moreira-Turcq et al., 2003). 

The western boundary of the Atlantic Ocean (Southwest Atlantic region), along the 

South American coast, had BC concentrations up to 10.5 µg L
-1

 and had the 

significantly greatest regional concentration (3.0 ± 3.0 µg L
-1

). This region was closest 

to the terrestrial biosphere, including the Paraná and Saõ Francisco River plumes and 

urban inputs from Bueno Aires, Río de Janero, and Saõ Paulo.  The Paraná River is the 

second largest river in South America and the Chaco and Pampas grasslands fall 

within its watershed, thus have a potential to transport high concentrations of fire-

derived organic matter, including BC-like materials (Depertris and Lenardon, 1982; 

Moreira-Turcq et al., 2003).  

 

Elevated BC concentrations were expected in the Eastern Atlantic and Equatorial 

regions of the subtropical Atlantic due to the intense African grassland and 

agricultural burning activities which are transported to this region by the easterly trade 

winds (Perry et al., 1997; Lohmann et al., 2009). Surface water within the East 

Atlantic region, within this atmospheric emission plume, was observed to have one of 

the highest BC concentrations detected at 7.6 µg L
-1

 (Figure 1). The atmospheric 

deposition of BC has the potential to be younger (less degraded) than fluvial-
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discharged organic matter; black carbon will age in soil but little aging is expected 

between the creation of BC and atmospheric deposition into the ocean (Raymond and 

Bauer, 2001; Masiello and Louchouarn, 2013).  

 

Black carbon concentrations across the oligotrophic Sargasso Sea were significantly 

lower than the basin-wide mean concentration (1.9±1.8 µg L
-1

) at 0.9 ± 0.4 µg L
-1

. 

This region has minimal fluvial and atmospheric deposition potentials, thus the 

presence of BC above detection limit on every sample in the Sargasso Sea 

demonstrates the ubiquity of BC particles and their persistence (Figure 1, Table 1). 

The Sargasso Sea region also contains a high density of marine traffic, thus these low 

BC concentrations further suggests that ship-produced soot was minimally sampled 

(Fig. S3). 

 

There was no statistical difference between the BC concentrations from the summer 

2010 (EN-479 to EN-482) and spring 2013 (Kn-210-04) cruises. The first cruise 

occurred during a strengthened South Equatorial Current, thus elevated equatorial BC 

concentrations during the sampling period were strongly influenced by water advected 

from Central Africa (Figure S1). Likewise, the Amazon River plume and Equatorial 

Counter Current also had an elevated eastward velocity, thus particles collected above 

5°N likely contained Amazonian plume water. Current velocities during the spring 

2013 cruise were weaker and trended more southward, presumably due to the position 

of the Intertropical Convergence Zone. The Brazilian Current had weaker velocities 
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and likely had a minimal influence on transporting BC from the Southern Atlantic 

Ocean.  

 

The average dry weight BC concentration in the subtropical Atlantic waters was 

1.8±0.8% (BC/POC average of 17±6%) with a sub-regional average of 1.3% in the 

Amazon region up to 2.2% in the Southwest Atlantic region. These surface water 

concentrations are an order of magnitude higher than the previously measured BC 

concentrations in the underlying sediments (Lohmann et al., 2009). However, the ratio 

of BC/POC is fairly constant, possibly due to different inorganic mineral 

contributions. Sediment BC concentrations in the Amazonian fan ranged from 0.11 to 

0.12% (BC/POC between 13-33%) and were ≤0.11% (BC/POC between 3-12%) off 

the west African coast of Cameroon and Angola (Lohmann et al., 2009). These surface 

water concentrations were also greater than urban-influenced coastal sediments from 

the Gulf of Maine (≤0.173% with a BC/POC between 3-15%) and from total 

suspended solids from the Mississippi River plume in the Gulf of Mexico, which had 

BC concentrations up to 0.78% with a BC/POC between 1-20% (Gustafsson and 

Gschwend, 1998; Mitra et al., 2002).  

 

This indicates that proportional degradation must occur to the surface water BC 

particles, in addition to the POC, before they are deposited to the sediment (Table 1). 

Black carbon concentrations from the marine boundary layer from the same cruise 

2010 (EN-479 to EN-482) had concentrations ranging from 0.4 to 0.7% (regional 
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average of 0.5±0.1%), suggesting that atmospheric deposition alone cannot account 

for the measured surface water BC concentrations (Pohl et al., 2013). 

 

3.2. Bulk particulate organic carbon concentrations 

Particulate organic carbon concentrations were significantly greater in the Amazon 

plume (compared to the basin-wide mean of 15.2±12.6 µg L
-1

) with an average 

concentration of 21.3 ± 11.2 µg L
-1

 (Table 1). This agrees with previous literature that 

the Amazon-Atlantic interface is highly productive up to hundreds of kilometers from 

the river mouth (Muller-Karger et al. 1995; Subramaniam et al. 2008). Particulate 

organic carbon concentrations in the regions influenced by the African emission plume 

(East Atlantic and Equator) were also elevated at 15.6 ± 16.9 µg L
-1

 and 12.3 ± 20.2 

µg L
-1

, respectively. These two regions had the potential for nutrient inputs, thus 

enhanced productivity, due to equatorial upwelling and atmospheric deposition from 

the emission plume (Wefer and Fischer, 1993). Bulk POC concentrations in the 

Caribbean Sea had a regional average of 13.9 ± 11.5 µg L
-1

, presumably due to a 

combined input of the Orinoco River and local activities of the Caribbean Islands. The 

Caribbean Sea and Orinoco watershed is well documented to have temporal wildfire 

events highly coupled to climatic events resulting from agricultural practices 

(Armenteras-Pascual et al., 2011)  

 

As expected, the lowest POC concentrations were found within the oligotrophic 

Sargasso Sea region. Average POC concentrations for this region were 4.4 ± 2.2 µg L
-

1
, which were significantly lower compared the overall mean POC concentrations 
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detected in this study (15.2±12.6 µg L
-1

). These concentrations agree with previously 

measured particulate organic carbon concentrations in this region from 0.48 to 13.3 µg 

L
-1

 (Schulz-Bull et al., 1998). Since the measurements of POC include black carbon, it 

is necessary to assess the thermally labile organic carbon (OC) fraction which is the 

difference between the POC and BC as determined by the chemothermal oxidation 

(Table 1). All concentrations of non-BC organic matter were reduced by a basin 

average of 14 ± 5%. This indicates that an average of 14% of the bulk POC pool (i.e., 

the BC) is at least semi-labile or recalcitrant.  

 

The general pattern of bulk POC concentrations in the subtropical Atlantic surface 

waters were similar to the BC concentrations (Table 1). This could indicate that 

particulate BC inputs may be attributed to nutrient deposition that promotes 

productivity. Previous works have shown that the wet deposition of black carbon and 

NOy are positively correlated from boreal fire events and vehicular combustion-derive 

materials (Martin et al., 2006; Vanderstraeten et al., 2011). This supports our 

hypothesis that the BC atmospheric deposition is associated with the marine limiting 

nutrient nitrogen, and may be a source of nutrients, via fluvial and atmospheric 

transport, to oligotrophic regions (Talbot et al., 1986).  

 

Satellite observations using the SeaWIFS model have projected concentrations of POC 

in the subtropical Atlantic ocean to range from 11.8 to 61.3 µg L
-1, 

with the lower 

concentrations occurring within the North and South Atlantic gyres and the higher 

concentrations occurring within the fluvial plumes attributed to the Congo, Niger, and 
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Amazon rivers (Gardener et al., 2006; Thomalla et al., 2006). The POC concentrations 

measured in this study agreed with the lower end of these satellite estimates. 

 

3.3: Stable carbon and nitrogen isotope analysis for source assessment 

The stable carbon isotope ratio (δ
13

C) for the POC, with the exception of the 

Southwest Atlantic region, narrowly ranged from -19.5 to -21.8‰ and is apportioned 

as marine plankton (Table 2; Holtvoeth et al., 2003). We applied a weighted mass 

balance to remove the δ
13

C-BC signature to assess the labile OC fraction. The labile 

δ
13

C-OC fraction remained in the marine plankton range from -18.8 to -22.7‰, 

including the Southwest Atlantic region. While the marine signature of the POC in this 

region could result from the mixing of terrestrial C3 and C4 carbon fixation, previous 

studies have shown that equatorial Atlantic organic carbon is mostly marine-derived 

through chl-a analysis and plankton identification (Fischer, 1991; Agusti and Duarte, 

1999; Putuad et al., 2000; O’Dowd et al. 2004).  

 

By definition, BC can only be derived from the terrestrial biosphere (Schmidt and 

Noack, 2000; Mitra et al. 2002; Dickens et al., 2004). All regions had an enriched 

δ
13

C-BC than the δ 
13

C-POC (Table 2). The δ
13

C-BC had a regional range from -17.5 

to -22.2‰. This enrichment could be the result of significant C4 inputs from the 

African and South American savanna biomes (Cahoon et al., 1992; Wagner and 

Dupont, 1999; Lohmann et al., 2009). The subtropical Atlantic receives elevated 

inputs of grass-carbon from the African and South American grasslands although C4 

carbon fixation composes < 15% of modern day vegetation (Schwartz et al., 1986; 
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Cerling et al., 1993). Additionally, this δ
13

C-BC enrichment could be the result of the 

preferential degradation of the 
12

C isotope via photolysis and respiration or a greater 

residence time for 
13

C-enriched materials. Previous laboratory works have shown that 

C4 materials degrade slower than C3 materials under the same environmental 

conditions; likewise, the lighter C3 materials have a greater advection potential, thus 

C4 organic matter could have a longer residence time in the surface waters (Akin et al., 

1983; Mayer et al., 2007). 

 

There was little variation in the stable nitrogen isotope ratio (δ
15

N) between the POC 

and BC pools (Table 2). The δ
15

N-POC and δ
15

N-BC ranged from 3.4 to -0.6‰ and 

3.7 to -0.4‰, respectively. These low δ
15

N values could be attributed to significant 

inputs of degraded terrestrial soil organic matter, such as leaf and root litter, which 

span the range of δ
15

N from -3.8 to -1.6‰ (Nadelhoffer and Fry, 1988). Additionally, 

low δ
15

N values have been previously quantified in the oligotrophic northern 

Subtropical Atlantic as a function of newly fixed nitrogen inputs by diazotrophs such 

as Trichodesmium (Benner et al., 1997; Montoya et al., 2002). 

 

3.4. BC/POC ratio: Redefining lability of POC in the Atlantic 

We determined that 17 ± 6% of the bulk POC in the subtropical Atlantic was 

composed of soot-like BC. Thus, not only was particulate BC found on every sample 

in this region, it also composed a significant fraction of the perceived bio-available 

organic carbon. These concentrations help bridge the knowledge gap of the BC cycle; 

specifically that it is found in particulate form in remote marine surface waters and 
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could be a sink for fixed atmospheric carbon and persistent organic pollutants as these 

particles are transported to the deep ocean and sediment (Schmidt and Noack, 2000; 

Lohmann et al., 2009).  

 

The structure of BC, compared to the labile OC fraction, is more condensed and 

organized, and thus presumed to be more refractory to biological respiration (Schmidt 

and Noack, 2000; Lohmann et al. 2009). The ratio of BC/POC is an estimate of the 

minimum fraction of terrestrial carbon within the bulk total organic matter.  The 

highest ratios of BC/POC were found in the Caribbean Sea (0.23±0.29) and Southwest 

Atlantic (0.25±0.27) regions (Table 1). Approximately a quarter of the bulk POC in 

these regions was terrestrial in origin and is potentially semi-labile. The BC/POC 

fraction for both regions is largely controlled by lowered POC concentrations (Table 

1). Both regions have fluvial inputs and bordered land susceptible to wildfire events 

(Koch et al., 2007; Ramanthan and Carmichael, 2008; Armenteras-Pascual et al., 

2011). In general, the ratio of BC/POC tended to decrease with increasing distance 

from a BC source region (Wagner and Dupont, 1999).  

 

We suggest that atmospheric deposition provided a large fraction of the overall BC 

concentration to the surface water. The BC/POC ratio for the oligotrophic Sargasso 

Sea (0.16±0.11) was comparable to the East Atlantic region (0.15±0.12) which was 

influenced by the African emission plume (Table 1). Both of these regions are remote 

(non-coastal and not within a fluvial plume or major current), thus atmospheric 

deposition is presumably the primary BC input (Gustafsson et al. 1997; Gustafsson 



 

159 

 

and Gschwend, 1998). The Amazon and Equator regions had the lowest regional 

average BC/POC ratio in the subtropical Atlantic at 0.10±0.05 and 0.10±0.13, 

respectively. For the Amazon region, the POC was significantly elevated and diluted 

the BC. It is possible that the extremely productive Amazon plume could have 

enhanced microbial respiration to degrade the particulate BC pool (Aller and Blair, 

2006). Additionally, both the Amazon and Equator regions have the potential for BC 

to undergo enhanced photolysis due to the buoyancy of the Amazon plume and the 

vertical upwelling of water near the equator (Atkinson et al., 2002; Geyer et al., 2004). 

 

3.5: C/N ratios: The presence of black nitrogen 

Black nitrogen is defined here as the nitrogen which remained after the chemothermal 

oxidation and was detected on 40% of the samples. Black carbon is part of a 

combustion continuum in which lower formation temperatures, often called chars in 

the literature, can retain nitrogen (Masiello, 2004). Nitrogen retention from 

combustion is particularly true for grass chars since its cellulose is stable and will not 

fully oxidize at a lower combustion temperature, typically <300°C (Knicker, 2010). 

This terrestrial nitrogen could be a nutrient source to the subtropical Atlantic. Upwards 

to 18% of the particulate organic nitrogen was deemed as black nitrogen (Table 2). 

 

The bulk POC carbon was significantly correlated to the total organic nitrogen (TON) 

and the regional average C/N ratio was 7.7±2.7 (R
2
 = 0.89, p = 0.005; Figure 4). The 

labile OC to labile N ratio was 7.0±2.7, which is classically apportioned as marine as 

predicted by the Redfield ratio (Redfield, 1958). The ratio of BC to black nitrogen was 
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also significantly correlated (R
2
 = 0.48, p-value = 0.5 E

-14
) and had a regional average 

of 16.1±17.0 for the subtropical Atlantic (Figure 4). Terrestrial organic matter is 

typically characterized as being depleted in nitrogen relative to carbon (Hedges et al., 

1997). Glaser et al. found that pine wood char, at a combustion temperature of 300°C, 

had C/N ratios ranging from 34-50, which suggests that this terrestrial organic matter 

is more nitrogen-enriched (1998). The deviation of the BC fraction from the Redfield 

ratio is an additional indicator of terrestrial origin. 

 

Black nitrogen appeared to have greater concentrations in the regions directly 

influenced by biomass combustion, such as wildfires from the Savanna grasslands. 

Concentrations of black nitrogen were highest in the Southwest Atlantic at 0.4±0.6 µg 

L
-1

, which agrees with the elevated black carbon concentrations likely due to inputs 

from the Paraná River (Table 2). The Amazon region and African plume influenced 

Equator and East Atlantic regions all had a black nitrogen concentration of 0.1 µg L
-1

. 

The oligotrophic Sargasso Sea and Caribbean Sea had an average regional black 

nitrogen concentration below the detection limit. This is expected for the Sargasso Sea 

since it has minimal terrestrial inputs and δ
13

C data suggests that combustion 

byproducts from the Caribbean Sea region are derived by fossil fuel combustion, 

which would have less efficient nitrogen retention (Knicker, 2010).  

 

3.6: Estimate of surface water BC flux 

We estimated the magnitude of BC export from the surface mixed layer to the deep 

ocean in an oligotrophic marine environment. For that purpose, we combined the 
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measured ratio of BC to the POC in the surface ocean with previously reported POC 

export fluxes (>53µm) from the Equatorial Atlantic region during the spring/summer 

season using 
234

Th-
238

U disequilibria, sediment traps, and model simulations (Jahnke, 

1996; Buesseler, 1998; Charette and Moran, 1999; Antia et al., 2001; Anderson and 

Pondaven, 2003; Thomalla et al., 2006). 

 

 The following assumptions were made in order to approximate the magnitude of BC 

export fluxes: 1) that little variation occurs to POC export fluxes within a given region 

during different years, 2) that the >53 µm particulate organic carbon size fraction is 

representative of the >1 µm size fraction collected and analyzed in this study, and 3) 

that the BC/POC ratio remained constant within the water column. An estimated BC 

export flux has not been assessed in a remote region and its magnitude could provide 

valuable insight to the movement of BC in an aquatic environment. 

 

Black carbon export fluxes from the surface mixed layer ranged from 0.2 gC m
-2

 yr
-1

 

in the Sargasso Sea region up to 16.3 gC m
-2

 yr
-1

 in the East Atlantic region within the 

African emission plume (Table 3).  Estimated BC export fluxes were lowest in the 

Sargasso Sea and Caribbean Sea, at 0.2-4.8 and 1.7 gC m
-2

 yr
-1

, respectively. This is 

expected since the Sargasso Sea had significantly the lowest regional average BC 

concentration and very few export estimates have been measured in the Caribbean 

Sea. The regions with terrestrial influence all had greater BC export fluxes. The 

Southwest Atlantic region, near the Paraná River, had a regional BC export flux range 
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from 1.5 up to13.1 gC m
-2

 yr
-1

 while the Amazon region had a large range from 0.6-

13.1 gC m
-2

 yr
-1

.  

 

Charette and Moran (1999) estimated a regional POC export flux of 78.0 gC m
-2

 yr
-1

 

from a transect across the Equatorial Atlantic region during the spring of 1996. We 

applied the basin-wide BC/POC average of 17% from this study to deduce that the 

spring/summer average BC export flux for the subtropical Atlantic was 12.5 gC m
-2

 yr
-

1
 (Table 1; Table 3). For comparison, Flores-Cervantes et al. (2009) estimated that the 

average BC export in the Gulf of Maine during the spring/summer of 2006 was ~10 

gC m
-2

 yr
-1

 with a range between 0.7 to 31 gC m
-2

 yr
-1

.  

 

Our estimated remote regional values fall within the same order of magnitude as the 

coastal Gulf of Maine. Our BC/POC ratio was derived from a surface water depth of 

~5 m and is not representative of the chlorophyll-a maximum depth. Thus the mean 

integrated surface mixed layer BC/POC ratio is likely smaller than our derived ratio at 

5 m due to non-steady state POC production. Thus we can conclude that the upper 

limit estimate of BC export flux for this region is ~12.5 gC m
-2

 yr
-1

. This demonstrates 

that remote regions with elevated fluvial and atmospheric inputs can have BC export 

ratios comparable to a coastal environment. These novel flux approximations suggest 

that surface mixed layer BC export is an important pathway for transporting this fixed 

carbon to the deep ocean. 
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Additionally, the estimated BC export fluxes were implemented to predict the BC 

residence time in the surface mixed later of the equatorial Atlantic region. Moran and 

Charette (1999) had determined POC residence times in this region to average 14±27 

days with the longest residence time occurring in an oligotrophic gyre (29 days) and 

the shortest occurring in the region of equatorial upwelling (1.7 to 4.9 days). Likewise, 

POC residence time in the Pacific Ocean was 14 days within the equatorial upwelling 

and 6-7 days elsewhere (Peña et al., 1991). 

 

The estimated BC residence time within the surface mixed layer (fixed to 70 m, the 

approximate depth of the surface mixed layer boundary) ranged from 4 to 15 days. 

The shortest residence times were estimated within the equatorial and Amazon regions 

at 4 and 8 days, respectively, while the longer residence times occurred within the 

Eastern Atlantic (9 days), Sargasso Sea (10 days), and Southwest Atlantic (15 days). 

These BC residence times suggest that the lifetime of BC in the surface mixed layer is 

on the order of days to weeks. 

 

4. Conclusion 

Particulate black carbon was detected in all surface water samples within the 

subtropical Atlantic Ocean. Sub-regional average black carbon concentrations ranged 

from 0.9 to 3.0 µg L
-1

 and composed a basin-wide average of 1.8% of the collected 

particulates. This concentration is an order of magnitude higher than black carbon 

concentrations quantified in the underlying sediments, suggesting that black carbon 

undergoes substantial degradation between input into the surface waters and 
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deposition to marine sediments or that the surface mixed layer and deep ocean could 

be a temporary storage reservoir for BC. Stable carbon analysis suggests that C4 plant 

material was the primary source of black carbon to the region and that atmospheric 

deposition could account for a substantial fraction of carbon input. Black carbon 

composed an average of 17±6% of the particulate organic carbon. Black nitrogen, as 

defined by the chemothermal oxidation method, was detected on 40% of the samples, 

suggesting that particulate black carbon could be a source of terrestrial nitrogen to 

oligotrophic environments. 
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Tables 

 

[BC] 

ug/L 

[POC] 

ug/L 

[OC] 

ug/L 
BC/POC CBC/NBC CPOC/NPOC COC/NOC 

Caribbean 

Sea 
2.0±1.3 13.9±11.5 11.9±11.5 0.23±0.29 20.7±10.8 9.9±3.6 7.8±4.5 

Amazon 2.1±1.4 21.3±11.2 19.2±10.2 0.10±0.05 16.4±21.0 7.0±2.1 6.8±2.3 

Equator 1.5±1.6 15.6±16.9 14.1±15.2 0.10±0.13 20.2±15.6 6.9±1.4 6.3±1.1 

Sargasso 

Sea 
0.9±0.4 4.4±2.2 3.6±2.2 0.16±0.11 15.8±6.0 10.3±3.6 9.0±3.7 

SW 

Atlantic 
3.0±3.0 10.6±7.5 10.6±8.1 0.25±0.27 15.0±23.3 6.7±1.3 6.4±2.5 

E. Atlantic 1.3±1.9 12.3±20.2 10.9±18.3 0.15±0.12 12.2±4.7 7.2±2.1 6.5±2.0 

 

Table 1. Concentrations of particulate black carbon (BC), bulk particulate organic 

carbon (POC), and the labile organic carbon (OC) fraction (POC-BC), along with the 

ratio of BC within the POC, and the carbon to nitrogen ratio for each organic carbon 

pool. 
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Region δ
13

C-POC δ
13

C-BC δ
13

C-OC 
δ

15
N-

POC 

δ
15

N-

BC 

PON 

ug/L 

BN 

ug/L 

Caribbean 

Sea 
-19.5±1.8 -17.5±5.1 -20.7±3.5 -0.6±1.1 3.7±1.2 1.4±0.7 0.0±0.1 

Amazon -20.4±3.4 -18.9±2.8 -18.8±4.8 0.5±2.1 -0.4±4.7 3.2±1.9 0.1±0.2 

Equator -21.8±2.1 -18.9±2.4 -21.9±1.4 1.0±1.1 2.0±1.3 2.5±2.0 0.1±0.1 

Sargasso Sea -21.5±0.6 -19.2±3.9 -20.5±7.1 0.3±1.7 1.5±0.8 0.5±0.4 0.0±0.0 

SW Atlantic -24.0±2.3 -22.2±1.0 -22.7±2.7 3.4±2.3 2.0±1.8 2.2±1.4 0.4±0.6 

E. Atlantic -21.3±1.4 -19.4±3.0 -18.7±9.7 0.8±1.2 -0.2±4.5 1.9±2.9 0.1±0.1 

 

Table 2. Stable carbon (δ13
C) and nitrogen (δ15

N) ratios for the particulate organic 

carbon (POC) and black carbon (BC) fractions, as well as particulate organic nitrogen 

(PON) and black nitrogen (BN) concentrations. 

 

 

 

 

 

 

 

 

 

 



 

174 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Deduced black carbon (BC) export flux approximations using reported 

particulate organic carbon (POC) export fluxes. 
a
Anderson and Pondaven, 2003, 

b
Buesseler, 1998, 

C
Jahnke, 1996; 

d
Thomalla et al., 2006; 

e
Antia et al., 2001, 

f
Charette 

and Moran, 1999, 
g
Flores-Cervantes et al., 2009. 

 

 

 

 

 

 

Region 
POC Flux  

(gC m
-2

 yr
-1

) 

BC Flux  

(gC m
-2

 yr
-1

) 

Sargasso Sea 1.2 - 29.8
abc

 0.2 - 4.8 

E. Atlantic 1.1 - 109
cde

 0.2 - 16.3 

Amazon 6.0 - 131
cf

 0.6 - 13.1 

SW Atlantic 6.0 - 52.6
cef

 1.5 - 13.1 

Equator 3.6 - 219
cf

 0.4 - 21.9 

Caribbean Sea 7.2
c
 1.7 

Eq. Atlantic
f
 78.0

f
 12.5 

Gulf of Maine
g
 - 0.7 - 31 
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Figures 

 

Figure 1. Concentrations of A) particulate black carbon (BC) and B) bulk particulate 

organic carbon (POC) for all samples within the study region. Concentrations are in 

µg L
-1

 and gray dots represent the endpoint of water filtration. 
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Figure 2. Scatter plot of the particulate organic carbon (POC) versus particulate 

organic nitrogen and black carbon (BC) versus black nitrogen. 
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Supporting Information 

Particulate black carbon concentrations in the surface mixed layer across the 

Subtropical Atlantic Ocean  

 

Kari Pohl 

Rainer Lohmann 

 

Included in the supporting information are: 

Table S1. Average black carbon (BC) concentration and number of samples (n) 

derived for each standard reference material (SRM) used in the analysis. The nd is a 

non-detect and represents carbon values below the instrumental detection limit. 

 

Table S2. The average blank carbon and nitrogen value for the total organic carbon 

(POC), total organic nitrogen (PON), black carbon (BC), and black nitrogen (BN) for 

this study. All sample concentrations were blank correlated by these averaged values. 

 

Figure S1. Surface water current direction and intensity for A) July 15, 2010 and B) 

April 15, 2013 predicted from the Ocean Surface Current Analysis- Real Time 

(OSCAR) model through NOAA. 
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SRM (BC) Average (%) n 

1941b 0.8±0.1 17 

1649a 3.0±0.2 4 

mollisol 0.2±0.0 3 

grass char nd 3 

melanodin nd 2 

sand nd 8 

 

Table S1. Average black carbon (BC) concentration and number of samples (n) 

derived for each standard reference material (SRM) used in the analysis. The nd is a 

non-detect and represents carbon values below the instrumental detection limit. 

 

 

Blank POC (%) BC (%) PON (%) BN (%) n 

R/V Endeavor 0.9±0.5 1.1±0.6 0.2±0.2 0.2±0.1 6 

R/V Knorr 1.3±0.4 1.3±0.2 0.3±0.2 0.3±0.5 5 
 

Table S2. The average blank carbon and nitrogen value for the total organic carbon 

(POC), total organic nitrogen (PON), black carbon (BC), and black nitrogen (BN) for 

this study. All sample concentrations were blank correlated by these averaged values. 
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Figure S1. Surface water current direction and intensity for A) July 15, 2010 and B) 

April 15, 2013 predicted from the Ocean Surface Current Analysis- Real Time 

(OSCAR) model through NOAA. 

A B 
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CHAPTER 6 

 

CONCLUSION 

 

Black carbon was found to be a ubiquitous form of terrestrial organic carbon in the 

Subtropical Atlantic Ocean as it was detected in all samples measured in this 

investigation regardless of location or environmental medium. The presence of black 

carbon in these deep sediments demonstrates the environmental stability and 

persistence of these structures from significant photochemical and microbial 

degradation. The universal detection and stability of sedimentary black carbon in aged 

sediments also indicates its ability to be a short-term sink for fixed atmospheric 

carbon. Similarly, the detection of black carbon on all samples quantified in the 

marine atmospheric boundary layer and marine surface mixed layer shows that the 

atmosphere and surface ocean are important reservoirs for black carbon before 

sediment deposition. Likewise, the ubiquity of black carbon on filtered water and air 

samples demonstrates that both atmospheric and fluvial transport are important 

mechanisms for moving black carbon from the terrestrial to the marine environment. 

The dominance of black carbon in this remote study region implies that the long-range 

transport of black carbon should allow for global distribution despite proximity to a 

point source.  

 

The study area was specifically selected due to the enhanced terrestrial contributions 

from numerous major rivers, including the Amazon, Niger, Congo, Paraná, and 
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Orinoco. Samples within these fluvial plumes had elevated black carbon 

concentrations in the surface mixed layer and underlying sediments. This demonstrates 

that black carbon transport and deposition is greatest in areas directly influenced by a 

fixed terrestrial source. Additionally, the Subtropical Atlantic Ocean receives inputs 

from the African emission plume, which transports wildfire, agricultural burning, and 

fossil fuel emissions westward across the equator. Samples quantified within this 

emission plume were elevated compared to regions without significant fluvial or 

atmospheric contributions. Black carbon concentrations on average were 5X 

(sediments), 4X (marine boundary layer), and 1.5X (surface mixed layer) greater 

within this emission plume compared to regions with assumed minimal terrestrial 

inputs, such as the Sargasso Sea. 

 

 This combination of significant fluvial and atmospheric deposition allows the 

Subtropical Atlantic Ocean to contain elevated concentrations of combustion 

byproducts such as black carbon. Similar regions with fluvial inputs or wind-driven 

transport could also have an enhanced potential for elevated black carbon deposition 

and should be investigated in the future. For example, this research would suggest that 

black carbon concentrations would be elevated in the fluvial plumes of the Ob, 

Yenisey, and Lena Rivers in the Arctic Ocean as well as in the Bay of Bengal from the 

atmospheric deposition originating from India. These regions must be studied in order 

to enhance the understanding of the global mass balance of black carbon. 
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Black carbon is part of a combustion continuum of forms ranging in stability from 

char-like (less stable) to soot-like (highly stable). Since there is no standard protocol, 

black carbon is operationally defined by the method used for quantification. This study 

implemented numerous measurement techniques; however, the chemothermal 

oxidation at 375°C was used on all environmental matrices (sediment, filtered 

atmospheric and surface water particles) to detect soot-like black carbon. Sediment 

soot-like black carbon concentrations ranged between 1±0 gBC kgsediment
-1

 off the 

eastern coast of Argentina up to 7±2 gBC kgsediment
-1

 in the Niger and Senegal Deltas. 

The overall average soot-like black carbon concentration for the Subtropical Atlantic 

was 5±2 gBC kgsediment
-1

, which exceeded previous pelagic estimates.  Soot-like black 

carbon composed significant levels of the bulk sedimentary organic carbon, ranging 

between 15-55%. A second measurement technique called the pyrene fluorescence 

loss was also utilized in order to broaden the sediment black carbon measurements to 

include the more thermally labile fractions, such as char-like materials. The ratio of 

black carbon via chemothermal oxidation to the black carbon via pyrene fluorescence 

loss was ~1 in all regions, suggesting that soot-like carbon was the dominate form of 

sedimentary black carbon. 

 

Soot-like black carbon concentrations from the atmospheric marine boundary layer 

were elevated above previous model outputs. Atmospheric soot-like black carbon 

concentrations ranged from 0.1±0.1 µg m
-3

 within the African emission plume up to 

0.8±0.3 µg m
-3

 in the Caribbean Sea with an overall average of 0.5±0.7 µg m
-3

 for the 

Subtropical Atlantic. These soot concentrations were lower than initially hypothesized 
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for the African emission plume but greater over the Caribbean Sea. However, black 

carbon concentrations were greater within the emission plume when alterative 

measurements were used. In the African emission plume, the thermal optical 

transmission method measured 0.4±0.4 µg m
-3

 while optical transmission attenuation 

measured 0.3±0.4 µg m
-3

. The pyrene fluorescence loss technique (soot + char 

components) detected a regional average of 0.7±0.9 µg m
-3

, suggesting a large 

contribution of char-like materials, presumably from grass combustion. This highlights 

that only using soot-like measurements could drastically under-estimate the 

contribution of combustion-derived aerosols in emission plumes. Future atmospheric 

analyses of black carbon should implement numerous techniques in order to best 

apportion and assess the total black carbon concentration. Correctly quantifying the 

atmospheric concentrations of combustion-derived aerosols will allow for better 

estimates of albedo alterations (in regards to climate change and cloud formation) as 

well as human health risks in urban environments.  

 

One novel feature of this work was quantifying the particulate black carbon 

concentrations in the surface mixed layer, which previously had not been done in a 

remote region. Soot-like black carbon was detected on all filtered particles with 

concentrations ranging from 0.9±0.4 µg L
-1

 in the Sargasso Sea up to 3.0±3.0 µg L
-1

 in 

the Paraná River plume, with an overall basin average of 1.9±1.8 µg L
-1

. The soot-like 

black carbon composed between 10-25% (regional average of 17±6%) of the 

particulate organic carbon, suggesting that terrigenous-derived carbon had a dominant 

presence in the Subtropical Atlantic surface water and that up to a quarter of the 



 

184 

 

organic carbon was not autochthonous production. Additionally, black nitrogen was 

detected on 40% of the chemothermally oxidized samples and contributed up to 18% 

of the particulate nitrogen. Thus, black carbon could be an important terrestrial source 

of the macronutrient nitrogen to oligotrophic regions. 

 

Black carbon and organic carbon source was accessed on all samples using the stable 

carbon isotope fraction (δ
13
C). Regardless of environmental matrix, the δ

13
C of the 

bulk total organic carbon was significantly different than the soot-like black carbon. 

The δ
13

C of the sedimentary black carbon had the trend of becoming more enriched 

closer to the African continent, suggesting large inputs of C4-derived terrestrial 

material, such as grass burning. A similar trend was observed in the marine boundary 

layer samples, and to a smaller extent, the surface water particles. This indicates that 

C4 plant material had a significant contribution to the marine organic matter pool in 

the Subtropical Atlantic region.  

 

Additionally, the δ
13

C of the labile organic carbon fraction (the non-black carbon 

portion of the bulk total organic carbon) also had an enriched δ
13

C indicative of C4 

inputs (terrestrial source). This estimates that the maximum contribution of terrestrial 

organic material to deep Subtropical Atlantic sediments could range from 35-88%, 

proposing that previous measurements of terrestrial-derived organic carbon may have 

under-estimated the fraction of terrigenous materials preserved in sediments. 

Sedimentary organic carbon should be further investigated as two separate fractions 

(black carbon and the thermally labile fraction) to assess if the Subtropical Atlantic 
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Ocean is a unique storage basin for terrestrial organic matter, or if the presence of 

terrestrial organic materials in the ocean has been underestimated. The optimal 

location for this question would be to investigate an area with minimal C4 plant inputs, 

such as the Arctic Ocean. 

 

Black carbon fluxes to deep sediments were derived in multiple locations throughout 

the Subtropical Atlantic Ocean. Fluxes of soot-like black carbon ranged from 0.9 µg 

cm
-2

 ka
-1

 in the Southeast Atlantic up to 38 µg cm
-2

 ka
-1

 in the Senegal Delta. The 

fluvial-influenced regions had greater black carbon fluxes, agreeing with previous 

studies that fluvial transport was the primary mechanism for the black carbon 

deposition to the marine environment. However, atmospheric emission plumes, such 

as the African plume, are quantitatively important. Fluxes of soot-like black carbon 

were approximately 6X greater in the Sierra Leone Rise sediments (directly influenced 

by the African plume) than the Southwest Atlantic (remote) site. This emphasizes that 

the atmospheric deposition of black carbon is important and should be considered as a 

significant black carbon transport vector to remote regions. 

 

This study allowed for black carbon fluxes to be assessed in three separate 

environmental matrices in order to compare the magnitude and importance of the 

ocean as a sink for this form of organic carbon. Sediment fluxes (as described in 

Chapter 2, Table 1) were determined using three approaches including previously 

published sedimentation rates, radiocarbon dating, and a depth-based algorithm. 

Surface mixed layer fluxes (as described in Chapter 5, Table 2) were approximated 
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using previously measured particulate organic carbon export fluxes. Atmospheric 

black carbon fluxes (Table 3) were calculated using a combination of previously 

measured dry deposition velocities and Stoke’s Law (Eq. 1) where Vt is the terminal 

settling velocity of black carbon, ρBC is the average density of soot (1 g cm
-3

), DBC is 

the diameter of a soot particle (defined as 10 µm), g is the gravitational acceleration 

constant of 9.807 m s
-2

, and µ is the dynamic viscosity of air at sea level and under 

standard temperature and pressure (1.81 X 10
-5

 Pa s). 

 

   
      

  

   
       (1) 

 

Sediment and atmospheric black carbon fluxes were smaller than the black carbon 

export flux out of the surface mixed layer (Table 4). The sedimentary black carbon 

flux was the smallest of the three environmental matrices; however, it was on the same 

order of magnitude as the atmospheric flux. These deep sediments represent older 

(>400 years before present) black carbon accumulation thus there is a potential lag 

between the contemporary atmospheric and surface ocean black carbon fluxes and 

these aged sediments. In addition, temporary black carbon fluxes are well above pre-

industrial fluxes, suggesting that average sediment fluxes over the last few centuries 

should be below fluxes out of the atmosphere and surface water. This work suggests 

that sediment fluxes will increase with time as more anthropogenic-produced black 

carbon particles are included in the sedimentation. 
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The atmospheric black carbon flux to the surface ocean ranged between 5.1 to 15.7 µg 

cm
-2

 yr
-1

 and was on the same order of magnitude as the sediment black carbon flux 

(Table 4). The magnitude of this depositional flux is as predicted from model 

estimates for the Equatorial Atlantic. The ECHAM5-HAM-OM1 atmospheric model 

predicts that elemental carbon depositional fluxes in this region would range between 

0.1 to 25 µg cm
-2

 yr
-1

 where the greatest fluxes are within the African emission plume 

and closest to the terrestrial environment. Our
  
black carbon depositional fluxes were 

greatest over the Caribbean Sea (15.7 µg cm
-2

 yr
-1

), Amazon Region (9.2 µg cm
-2

 yr
-1

),  

and within the African Plume (8.9 µg cm
-2

 yr
-1

), agreeing with the ECHAM5-HAM-

OM1 model outputs. Black carbon has a short atmospheric half-life of < 30 days. 

Thus, the marine boundary layer is a source of recently produced black carbon to the 

surface ocean and is an important transport mechanism of black carbon to remote 

environments, especially in regions close land or within an emission plume.  

 

The greatest black carbon fluxes were determined to be in the surface mixed layer. 

These export fluxes were calculated using the low-end estimated black carbon fluxes 

derived from previously measured POC export. Although this flux approximation is 

attributed with the most uncertainty, it provides insight that the deep ocean could have 

a greater black carbon storage potential than previously estimated. Surface water black 

carbon fluxes followed a similar trend to the atmospheric fluxes such that regions with 

a high atmospheric input were also attributed to greater surface mixed layer fluxes 

(Table 4). The greatest surface water black carbon export was determined in the 
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Northwest Argentina region (150 µg cm
-2

 yr
-1

) followed by the Amazon region (60 µg 

cm
-2

 yr
-1

), and Caribbean Sea (40 µg cm
-2

 yr
-1

). 

 

 

One important parameter that future investigation needs to better quantify is the flux 

of particulate black carbon from the surface mixed layer to the deep ocean. Black 

carbon concentrations and fluxes were greater in the surface water than the underlying 

sediments by an order of magnitude, suggesting that some degradation (photochemical 

and/or biological) could occur during the vertical flux of black carbon. Black carbon 

concentrations need to be measured vertically in the water column in order to assess 

degradation throughout the surface mixed layer and into the deep ocean. One 

parameter missing from this study is the understanding of how the ratio of black 

carbon to particulate organic carbon changes with depth. This ratio would have 

significantly improved our black carbon export flux calculations and should be 

quantified in future investigations. 

 

The disequilibrium of 
234

Th/
238

U would be a helpful tool to validate the black carbon 

export fluxes made in this study.  It is important to assess if the movement of black 

carbon from the surface to deep ocean is great enough for the deep ocean to be 

considered a storage reservoir for black carbon. Additionally, the spatial distribution 

of black carbon needs to be measured globally in the deep ocean, as this 

environmental matrix has not yet been measured for particulate black carbon 

concentrations to date. 
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Overall, black carbon is an important form of organic matter and its presence in the 

tropical Atlantic Ocean suggests that this region has the potential to remove black 

carbon from the active carbon cycle for geological time scales. We need to better 

understand the degradation of black carbon before and after its deposition to marine 

sediments in order to fully understand the scale and magnitude of this sink. 

Additionally, we need to better quantify the black carbon fluxes from the surface 

mixed layer to the deep ocean in order to give insights to the possible role black 

carbon plays in the biological pump and transfer of carbon out of the euphotic zone. 

This investigation needs to be applied to other regions with known emission plumes, 

such as the coastal environments near the United Kingdom and China, in order to fully 

understand the global mass balance of black carbon and the fate of terrestrial organic 

carbon in the environment.  
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Tables 

 
Surface Ocean FBC (g m

-2
 yr

-1
) 

Region Average Range Low-High 

Sargasso Sea 2.3            0.2 - 4.8 

African Plume 3.6 0.2 - 16.3 

Amazon Region 6.9 0.6 - 13.1 

Southwest Atlantic 5.3 1.5 - 13.1 

Equator 11.1 0.4 - 21.9 

Caribbean Sea 1.7 
 

Gulf of Maine
a
 10.0              0.7 - 31 

 

Table 1: Deduced black carbon export flux (FBC) from the surface mixed layer to the 

deep ocean. 
a
Flores-Cervantes et al., 2009. 
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Sediment FBC (µg cm

-2
 yr

-1
) 

A) Region Literature Δ
14

C
 

Depth 

Amazon Region 2.9 4.1 18.5 

Sierra Leone Rise 6.3 10.0 23.6 

Niger Delta 22.5 n/a 47.0 

Senegal Delta 38 n/a 870.4 

S-Atlantic 0.9 n/a 0.6 

 

 
Sedimentation Rate (cm ka

-1
) 

B) Region Literature Δ
14

C Depth 

Amazon Region 1.3 4.4 18.6 

Sierra Leone Rise 2.7 3.4 16.0 

Niger Delta 10.0 n/a 48.5 

Senegal Delta 6.9 n/a 316.3 

S-Atlantic 2.5 n/a 3.0 

 

 

Table 2: A) Sediment black carbon fluxes (FBC) derived by the chemothermal 

oxidation method using B) sedimentation rates from previously reported values from 

www.pangaea.de (Literature), radiocarbon (Δ
14

C), or from a depth-based algorithm 

(Depth) using Middelburg et al., 1997. 
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Atmospheric 
FBC (µg cm

-2
 yr

-1
) 

Jurado et 
al., 2004 

Stoke's 
Law 

        -Gaya 
et al., 2014 

Nho-Kim 
et al., 2004 

Vong et 
al., 2010 

Caribbean Sea 2.6 52.8 7.9 15.0 20.5 0.7 10.0 

Amazon Region 0.6 11.3 1.7 20.6 28.1 0.1 2.1 

African Plume 0.4 7.2 1.1 22.0 30.1 0.1 1.4 

Sargasso Sea 0.2 4.9 0.7 12.1 16.6 0.1 0.9 

Dp (µm) 1 10 10 0.7-2.7 >2.7 0.5-1.0 0.78 

Vd (cm s
-1

) 0.1 2.0 0.3 - - 0.03 0.4 

FDD (g m
-2 

d
-1

) - - - 0.4 0.5 - - 

 

Table 3: Estimated atmospheric black carbon settling fluxes (FBC) to the Tropical 

Atlantic surface ocean using previously derived depositional velocities (vD) or dry 

deposition particle fluxes (FDD) for various particle diameters (Dp). 
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Flux (µgBC cm

-2
 yr

-1
) 

Region 
Marine Boundary 

Layer 

Surface Mixed 

Layer 

Pelagic 

Sediments 

Amazon Region 9.2 60 2.9 

African Plume 8.9 20 6.3 

Sargasso Sea 5.1 20 na 

Caribbean Sea 15.7 40 na 

NW Argentina na 150 0.9 

Previous Estimates 0.1 - 25* 4.4** 0.002-3.6*** 

 

 

Table 4. Summary of black carbon fluxes (µgBC cm
-2

 yr) in all environmental 

matrices analyzed in this work. Black carbon fluxes in this table were derived using 

the chemothermal oxidation at 375°C method since this approach was used for all 

samples. Marine boundary layer predicts the terminal black carbon flux out of the 

atmosphere into the surface water using depositional velocities from Table 3, the 

surface mixed layer flux is the black carbon export from the surface to deep ocean 

using the low-end export fluxes in Table 2, and pelagic sediment is the black carbon 

flux to the sediments using the sedimentation rates in Table 1.  *Lohmann et al., 2009 

**pre-industrial estimate derived by Coppola et al., 2014 ***Suman et al., 1997. 
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