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ABSTRACT

The ocean temperature (especially the Sea Surface Temperature (SST)) is

very important to the formation and development of tropical cyclones. Warm wa-

ter from the sea surface evaporates and provides energy to drive hurricanes. As

a tropical cyclone passes over the ocean, the SST behind it becomes significantly

cooler than what it was prior to the hurricane’s arrival. The surface temperature

declines as a result of turbulent mixing as well as upwelling following a divergence

of surface currents. This cooling (hereafter the “cold wake”) is important to un-

derstand in order to develop better tropical cyclone models. The key to modeling

this is the momentum flux budget at the air-sea interface.

Current models assume that the momentum flux into the ocean currents is

equal to the wind stress. However, this does not take into account momentum lost

to or gained from a growing or decaying surface wave field or from wave-induced

Coriolis-Stokes forcing. This study seeks to develop a fully coupled ocean-wave

model to enhance understanding of the air-sea momentum flux budget in tropical

cyclones and as a result improve models of the cold wake. The ocean model com-

ponent used is the Princeton Ocean Model (POM) with a 1/12 degree resolution

and 23 half sigma levels. It calculates the ocean temperature and currents driven

by a prescribed wind stress interpolated from hurricane message files generated by

the National Hurricane Center. The wave model used is Wave Watch 3.14 and also

has a 1/12 degree resolution. It uses a prescribed wind speed based on the same

hurricane message file and calculates the momentum flux lost to or gained from

a growing or decaying wave field and the momentum flux lost to or gained from

Coriolis-Stokes forcing. In the coupled model, the ocean currents are used in the

wind stress calculations and in the wave model component.

Results of idealized and real hurricane simulations demonstrate clearly that



the altered wind stress (by including the ocean current effect), wave momentum

flux budget, and Coriolis-Stokes forcing significantly alter the momentum flux into

the ocean currents and in turn the cold wake. While the wave momentum flux

budget and reduced wind stress decrease the surface cooling, the Coriolis-Stokes

forcing may lead to increased surface cooling. It is also shown that these three

effects can alter the latent heat flux that fuels hurricanes.
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CHAPTER 1

Introduction

The ocean temperature is of critical importance to the formation and main-

tenance of hurricanes. This includes both the sea surface temperature (SST) and

the upper mixed layer thickness. Following the passage of a hurricane over the

ocean, there is a marked cooling in the SST known as the cold wake. The cold

wake exists due to storm-induced turbulent mixing and upwelling.

Several numerical studies have shown that the air-sea momentum flux

during hurricanes is very important to the SST response (Price, 1981;

Ginis and Dikinov, 1989; Jacob et al., 2000; Morey et al., 2006; Fan et al., 2009).

The NOAA operational Geophysical Fluid Dynamics Laboratory (GFDL) hurri-

cane forecast system uses primitive equations and movable nested mesh grids to

represent the interior structure of tropical cyclones (Kurihara et al., 1998). It is

coupled to the Princeton Ocean Model (Bender et al., 2007). In the coupled sys-

tem, wind stress, heat, moisture, and radiative fluxes are passed to the ocean

model, which calculates the SST changes. The new SST is then used in the atmo-

spheric model over the next time step. Another NOAA operational model, Hur-

ricane Weather Research and Forecasting system (HWRF), became operational

in 2007. It consists of WRF model software infrastructure, the Non-Hydrostatic

Mesoscale Model (NMM) dynamic core, the Princeton Ocean Model (POM) as an

ocean model, and the NCEP coupler (Tallapragada et al., 2013).

Neither one of these operational hurricane models is coupled to a wave model.

Thus, they do not include explicitly the impact of waves on the air-sea momentum

flux or on the ocean response and assume that the momentum flux into the ocean

subsurface currents is equal to the wind stress. Waves affect the air-sea momentum

1



flux through wave breaking, sea spray, adjusting the albedo, increasing or decreas-

ing momentum through a growing or decaying wave field and the Coriolis-Stokes

force. This study seeks to investigate the role that two effects of waves on the air-

sea momentum flux: 1) the growing/decaying wave field and 2) the Coriolis-Stokes

forcing have on the air-sea momentum flux and the SST. The following questions

are addressed: What is the relevant contribution of each of the two wave effects?

Does either significantly alter the magnitude and spatial distribution of the SST

in the cold wake? Does the translation speed of the tropical cyclone alter the

impact of the waves on the air-sea momentum flux? How do ocean currents affect

wave-related fluxes?
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CHAPTER 2

Methodology

2.1 Wave Model

The coupled ocean-wave model used for this study consists of the Princeton

Ocean Model (POM), and Wave Watch 3.14 (WWIII). Wave Watch 3.14, de-

veloped and operated by NOAA/NCEP, is used to calculate the wave field and

wave-wave interactions and solves the spectral action density balance equation for

wavenumber-direction spectra (Tolman, 2009):

∂N

∂t
+∇x · [(~Uλ + ~Cg)N ]− ∂

∂k
(~k · ∂

~Uλ
∂s

N) +
∂

∂θ
(
1

k
~k · ∂

~Uλ
∂m

N) = F (1)

where N = ψ(k, θ)/ω is the wave action spectrum, ψ(k, θ) is the directional

wave spectrum, ~Uλ are the currents at depth L/(4 ∗ π) (where L is the mean

wavelength), ~Cg is the group velocity, ~k is the wavenumber vector, θ is the wave

direction, s is a coordinate in the direction of the waves, m is a coordinate perpen-

dicular to the waves, and F stands for all of the forcing terms. Note: the currents

at depth (~Uλ) are not passed to the wave equation in every hurricane experiment.

The impact of the ocean currents on the wave evolution will be investigated in

special experiments described below.

The spectrum is discretized by wavenumber and wave direction and broken

down into two parts: a peak frequency spectrum, and a spectral tail. The peak

frequency spectrum is discretized using 40 frequencies from 0.0285 Hz to 1.1726

Hz and the spectral tail is an additional 22 frequencies from 1.2899 Hz to 9.5455

Hz where each frequency is calculated fn+1 = 1.1 ∗ fn. The wavenumbers are

calculated from these intrinsic frequencies using the dispersion relationship for

deep-water waves ω =
√
gk where ω = 2πf . There are 24 different wave directions

from 0 to 6.0214 radians with π/2 radian increments. The significant wave height
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(Hs) is calculated by Wave Watch III and defined as:

Hs = 4
√
E = 4

√∫∫
ψ(f, θ) dθdf (2)

where the relationship with the wave spectrum ψ(k, θ) is:

ψ(f, θ) =
∂k

∂f
ψ(k, θ) =

2π

cg
ψ(k, θ) (3)

The wave model has a resolution of 1/12 degree and has meridional boundaries

at 10 and 43 degrees North latitude. Its zonal range is from -108 to -60 degrees

East longitude for the idealized hurricane experiments and -98 to -50 degrees East

longitude for the real hurricane experiments. The idealized wave domain is on an

f-plane centered at 22.4◦N , while the Coriolis parameter in the wave grid (f =

2Ω sin θ) varies with latitude (θ) in the real hurricane experiments.

2.2 Ocean Model

The Princeton Ocean Model (POM) is a 3D, primitive equation, numeri-

cal ocean model that uses sigma and curvilinear orthogonal coordinates and an

Arakawa C differencing scheme (Mellor, 2004). It consists of 23 different vertical

half sigma levels that are fixed and extend from a depth of 2.5 m to 2500 m for

the idealized hurricanes, but fluctuate with the bathymetry for the real hurricanes.

POM is used to calculate the ocean temperature and current response to the mo-

mentum flux. It is initialized with a horizontally uniform ocean temperature and

salinity as well as a vertical temperature profile based on Gulf of Mexico Common

Water from the late summer or early autumn in the idealized hurricane experi-

ments (Figure 1). For real hurricane experiments, the temperature and salinity

vary with geography and there are background ocean currents including the Gulf

Stream. The output ocean temperature and current response for real hurricanes

are interpolated onto 23 defined half sigma levels extending from a depth of 5 m

to 5500 m.
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Figure 1: Initial vertical temperature profile in Princeton Ocean Model used in
idealized hurricane experiments.

The ocean model resolution is nearly, but not exactly 1/12 degree. Its merid-

ional domain ranges from 10 to 47.5 degrees North latitude, and its zonal domain

ranges from -108.5 to -60 degrees East longitude for idealized hurricane experi-

ments and -98.5 to -50 degrees East longitude for real hurricane experiments. As

with the wave grid, the idealized ocean domain is on an f-plane centered at 22.4◦N ,

while the Coriolis parameter in the ocean grid (f = 2Ω sin θ) varies with latitude

(θ) in the real hurricane experiments.

2.3 Coupled Model

2.3.1 Air-Sea Momentum Flux

The coupled ocean-wave model is used to investigate the effect of waves dur-

ing tropical cyclones via air-sea momentum flux calculations. There are different
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momentum flux parameterizations available, including sea state dependent sur-

face momentum flux parameterizations. In this study, we will use the theoretical

framework described in (Fan et al., 2010). The momentum flux at the sea surface

is expressed as

~τc = ~τair − ~τdiff − ~τcor (4)

where ~τair is the wind stress, ~τc is the momentum flux into subsurface ocean

currents, ~τdiff is the wave momentum flux budget and ~τcor is the Coriolis-Stokes

force, as described below.

Figure 2: Diagram of the coupled ocean-wave model. Wind subroutines drive both
models, with the ocean model requiring an input wind stress and the wave model
requiring an input wind speed, blue font indicates ocean model variables, green
font indicates wave model variables; Note: wind 4ocn.f and wind 4ww.f are the
wind subroutines for the ocean and wave models respectfully, w3flx5md.f90 is a
module that calculates the frictional velocity in the wave model, mfbudgetmf.f90
is a module that calculates the momentum budget and energy budget terms and
wmbg.f90 is a module that calculates the momentum flux budget based on the
local wave field using temporal and spatial derivatives
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Table 1: Description of symbols in Figure 2.

Symbol Explanation

~Uall Ocean currents at all depths

~Uc Surface ocean currents

~Uλ Ocean currents at z = L/(4 ∗ π)

~τair Wind stress

~τc Mom. flux into currents (calculated in ocean model)

ψ(k, θ) Wave spectrum

~U10 Wind speed at 10 meter height

~τdiff Momentum flux into wave field

~τcor Coriolis-Stokes forcing

~u∗w Friction velocity in the wave model

fpi Input peak frequency

~M/ ~MF Total momentum/momentum flux in the wave field

Some of the momentum from the wind is lost to surface waves in the form of

wave momentum when the wave field is not fully developed. Growing or decaying

wave fields gain or lose momentum and thus lead to either more or less momen-

tum reaching the subsurface currents than the wind stress (Fan et al., 2009). As

tropical cyclones have very high winds and generate a complex wave field, it is nec-

essary to account for both momentum changes in time and in spatial dimensions.

In addition to the momentum from the air being lost due to a changing wave field,

some momentum is also lost to the Coriolis-Stokes force. The Coriolis-Stokes force

is a force in a rotating fluid due to the interaction of the Coriolis effect and Stokes

drift.

The diagram of the interaction between POM and WWIII is shown in Figure 2.

POM is driven by the momentum flux from the wind (or wind stress) (~τair), which
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can be modified by the surface ocean currents (~Uc):

~τair = ρairCD|~U10 − ~Uc| ∗ (~U10 − ~Uc) (5)

and WWIII is driven by the wind speed 10 meters above the ocean surface

(~U10) that can also be altered by the surface currents:

~U10 = ~U10 − ~Uc (6)

As the two models fully interact with each other, the ocean currents are passed

into the wave model and interact with the waves, and the two momentum flux

components of the waves (~τdiff and ~τcor) are passed into the ocean model.

The currents affect the coupled model in three different ways. In the first, they

modify the wind stress driving the ocean model when wind speeds are calculated

relative to current speeds. In another couple of affects, the currents are passed to

the wave model. The surface currents also reduce the wind driving the wave model

(~U10) if they are in the same direction as the wind. They add to the wind forcing

if they are in the opposite direction. Finally, currents at a depth of L/(4 ∗ π)

are passed into the wave equation. Currents at a depth L/(4 ∗ π) are passed to

the wave equation instead of surface currents because these currents modify the

apparent phase speed of the wave train [please refer to (Fan et al., 2009) for a

detailed explanation].

2.3.2 Wave Momentum Flux Budget

The wave momentum is decomposed into two horizontal components and is

calculated from the directional wave spectrum ψ(k, θ) (Figure 3) where k is the

wavenumber and θ is the wave direction.
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Figure 3: Example of the directional wave spectrum in a hurricane, based on a
model simulation.

Mx =
∫∫

ρwψ(k, θ) cos θ
√
gk dθdk (7)

My =
∫∫

ρwψ(k, θ) sin θ
√
gk dθdk (8)

The horizontal fluxes of Mx and My are calculated:

MFxx =
∫∫

ρwψ(k, θ)Cg cos2 θ
√
gk dθdk (9)

MFxy =
∫∫

ρwψ(k, θ)Cg cos θ sin θ
√
gk dθdk (10)

MFyx =
∫∫

ρwψ(k, θ)Cg sin θ cos θ
√
gk dθdk (11)

MFyy =
∫∫

ρwψ(k, θ)Cg sin2 θ
√
gk dθdk (12)

where the x and y fluxes of Mx are MFxx and MFxy respectively, and the

x and y fluxes of My are MFyx and MFyy respectively. Other terms included in

the calculations are the angular velocity (which in deep water is ω =
√
gk), the
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density of water ρw, and for the momentum fluxes, the velocity with which the

wave energy propagates (or group velocity ~Cg). The momentum flux gained or lost

by growing or decaying wave fields respectively is calculated:

τdiffx =
∂Mx

∂t
+
∂MFxx
∂x

+
∂MFxy
∂y

(13)

τdiffy =
∂My

∂t
+
∂MFyx
∂x

+
∂MFyy
∂y

(14)

where the first term is the local time derivative of momentum in waves, and

the other two terms are the horizontal divergence of the horizontal momentum

flux. This set of terms is referred to as ~τdiff because of the work of Fan et al. 2009

and Fan et al. 2010 where it described the difference between the wind stress ~τair

and the momentum flux into the currents ~τc.

2.3.3 Coriolis-Stokes Forcing

The Stokes drift is the average Lagrangian transport due to waves

(Phillips, 1977; Polton et al., 2005). For instance, a particle floating at the free

surface of water waves, experiences a net Stokes drift velocity in the direction of

wave propagation. For an inviscid fluid in a rotating frame, there is no net mass

transport from Stokes drift (Pollard, 1970), but for a fluid with viscosity of any

size there is always a non-zero net mass transport (Hasselmann, 1970). The re-

lationship between planetary vorticity and Stokes Drift results in a force present

in the Eulerian Momentum balance ~f × ~us (Hasselmann, 1970) that Polton (2005)

referred to as the Coriolis-Stokes force. Polton (2005) gave two different explana-

tions of this. The first is that there is a vortex force on the flow resulting from

the Stokes drift trying to tilt and stretch planetary vorticity in the horizontal.

Another perspective he presents is the divergence of wave-induced stress. There

are two components of the Eulerian velocity: mean velocity u and highly varying

wave orbital velocity ũ. The Coriolis acceleration tilts the plane of the orbital ve-
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locity along the wave crest direction (perpendicular to the wave direction), which

introduces a new orbital component ṽ (also perpendicular to the wave direction).

As this velocity is correlated with the vertical term w̃, there is a wave stress ρṽw̃

whose divergence is perpendicular to the wave direction (Figure 4).

Figure 4: Schematic illustrating the orbital path for a particle under a wave is
tilted, by planetary rotation, in the along-wave crest direction. The new ṽ com-
ponent orbital velocity correlates with the w̃ component to produce a nonzero
stress. The divergence of this stress can be written as (Hasselmann, 1970) −ρ~f×~us
(Polton et al., 2005)

Stokes drift for a single wave is defined with a wavenumber k, wave amplitude

a, and phase speed c as:

us = c(ak)2 e2kz (15)

and the Coriolis-Stokes forcing is calculated as (Polton et al., 2005):

~τw(0) = −
∫ 0

−∞
ρw ~f × ~usdz (16)

Since the Coriolis-Stokes force is subtracted from the wind stress (~τair) to get

the momentum flux into the ocean currents (~τc), it is defined in this paper as a

negative version of what Polton has:

~τcor = −~τw(0) =
∫ 0

−∞
ρw ~f × ~usdz (17)
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Substituting the Stokes Drift (equation 15) and the phase speed c = ω/k along

with the dispersion relation ω =
√
gk into equation 17 yields:

~τcor = ρw ~f ×
∫ 0

−∞
a2k

√
gke2kzdz = −ρw ~f × a2

√
g
∫ 0

−∞
k3/2e2kzdz (18)

Integrating equation 18 gives an equation for the Coriolis-Stokes forcing for a

single wave:

~τcor = ~f × 1

2
a2ρw

√
gk (19)

For a wave field, the mean square displacement ζ2 is equal to the integrated

wave spectrum:

ζ2 =
1

2
|a2| (20)

1

2
|a2| =

∫∫
ψ(k, θ) dθdk (21)

ζ2 =
∫∫

ψ(k, θ) dθdk (22)

Substituting for the mean square displacement (equation 21) into the defined

Coriolis-Stokes (equation 19) forcing leaves:

~τcor = ~f ×
∫∫

ρwψ(k, θ)
√
gk dθdk (23)

The vertically integrated Stokes Drift is the same as the wave momentum:

~M =
∫∫

ρwψ(k, θ)
√
gk dθdk (24)

Thus, the Coriolis-Stokes forcing can be defined in terms of the wave momen-

tum:

~τcor = ~f × ~M (25)

The Coriolis-Stokes forcing can then be broken down into x and y components:

τcorx = −f ∗My (26)

τcory = f ∗Mx (27)
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2.3.4 Hurricane Wind Specification

For the idealized hurricanes, the axisymmetric wind field distribution is based

on the wind field derived from an analytic Holland profile (Holland, 1980), with a

central pressure of 950 hPa, environmental pressure of 1013 hPa, maximum wind

speed (MWS) of 45 m/s, radius of maximum wind (RMW) of 70 km, air density of

1.28 kg/m3, and exponential decay parameter (B) defined as V 2
meρa/(pn−pc), where

e = 2.718. For moving idealized experiments, ~UT/2, is added to the axisymmetric

wind, where ~UT is the hurricane translation speed vector.

For real hurricane simulations, the wind field is specified based the NCEP

Tropical Cyclone Vitals Database (TCVitals) provided at 6-hour increments. The

wind field is angular dependent and calculated using the RMW, MWS, and the

radii at which the sustained winds reach 18 m/s (R18) and 26 m/s (R26) in all four

quadrants of the storm (Moon et al., 2003). For more details on the TCVitals for

Hurricane Irene (2011) please refer to Chapter 4, and for Hurricane Sandy (2012)

please refer to Chapter 5.

2.3.5 Experimental Design

Our experiments are designed to investigate the importance of each term in the

momentum flux budget in real hurricane cases in addition to the idealized ones.

The experiments are described in Table 2. In the control case, the momentum

flux into the ocean currents is equal to the wind stress: ~τc = ~τair. The fully

coupled case includes all momentum flux components: (~τc = ~τair − ~τdiff − ~τcor).

Other experiments exclude the Coriolis-Stokes term (~τcor), the wave momentum

term (~τdiff ) only, or both. Another model experiment includes all of the terms

(~τc = ~τair − ~τdiff − ~τcor), but does not pass the ocean currents to the wave model.

While the ocean model runs over its entire domain, the wave model runs

with a 6 by 6 degree grid around the storm center and ice covering the remaining
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domain for the moving hurricanes because of computational limitations, including a

tendency of Wave Watch III to produce a wave field with an unrealistic “sprinkler”

effect after a larger distance from the storm center. The “sprinkler” effect refers

to a computational wave field with uneven regions with many local minima and

maxima when in reality the wave field should be continuous.

Table 2: Description of hurricane coupled model experiments.

Experiment Explanation

1 (~τc = ~τair) Control

2 (~τc = ~τair) Wind stress forcing ocean model modified by surface
currents

3 (~τc = ~τair) Currents z = (L/(4 ∗ π)) passed to wave equation

4 (~τc = ~τair) Wind forcing wave model modified by surface currents

5 (~τc = ~τair) Combination of 3 and 4

6 (~τc = ~τair) Combination of 2 and 5

7 (~τc = ~τair−~τdiff ) Currents not passed to wave model or to wind
stress forcing ocean model

8 (~τc = ~τair − ~τcor) Currents not passed to wave model or to wind
stress forcing ocean model

9 (~τc = ~τair − ~τdiff − ~τcor) Currents not passed to wave model or
to wind stress forcing ocean model

10 (~τc = ~τair − ~τdiff − ~τcor) Fully Coupled

An important part of the study is the analysis of the different experiments.

This entails comparing the momentum flux into the currents for different exper-

iments, as well as the SST and current comparisons. It also involves examining

both idealized hurricanes and real hurricane cases.
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CHAPTER 3

Idealized Experiments

Three different sets of idealized hurricane experiments driven by wind based

on the Holland wind model are examined. The first is an axisymmetric, station-

ary hurricane. In the other two, the hurricane moves westward along a constant

latitude at different translation speeds (4.8 m/s and 9.6 m/s). In all of these

experiments, the hurricane has tangential wind with no inflow angle, a maximum

wind speed (MWS) = 45 m/s and a radius of maximum wind (RMW) = 70 km.

3.1 Stationary Hurricane

Figure 5: (a) Axisymmetric wind field (contours every 5 m/s), (b) significant wave
height (contours every 2 m), (c) SST (contours every 0.5◦C) for the stationary
hurricane Control Experiment after 24 hours

Each of the stationary hurricane experiments has an axisymmetric wind, wave

field, and temperature distribution similar to that of the Control Experiment 1 seen

in Figure 5. We will thus review the results of these experiments along the radial

direction only.

The significant wave height (Hs), surface currents (~Uc), change in sea surface

temperature (δSST ), and momentum flux into the ocean (~τc) are compared to

evaluate the impact of different effects on the coupled model. Only the experiments

in which either the ocean currents at a depth of L/(4 ∗ π) are passed to the wave
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equation and/or the wind (~U10) is modified by the surface currents is there a

reduced significant wave height (Hs) (Figure 6a).
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Figure 6: Results for the stationary axisymmetric hurricane near the radius of
maximum wind (RMW) after 24 hours: (a) significant wave height (m), (b) sur-
face current magnitude (m/s), (c) change in sea surface temperature (◦C), (d)
magnitude of the momentum flux into the ocean (N/m2)

Experiments 5 and 6 are not substantially different from Experiment 3 or

Experiment 10. Experiment 4 also has a reduced significant wave height (Hs), but

the remaining sensitivity experiments are consistent with the control experiment

(Figure 6a). Thus, the radial plots shown in Figure 7 focus on Experiments 1, 3,

4, and 10.

The significant wave height is reduced between 0 and 3 RMW, but the re-

duction is most obvious after the wave height stops increasing exponentially and

before the wave height decreases (between 0.5-2.0 RMW) (Figure 7). Passing cur-

rents at depth to the wave equation reduces the significant wave height more than

reducing the wind forcing with the surface currents. This is not surprising given

the relatively strong wind forcing (maximum wind speed: 45 m/s).
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Figure 7: Significant wave height (m) for the stationary axisymmetric hurricane
after 24 hours

For the stationary hurricane, Experiment 3 is more important to the sig-

nificant wave height than Experiment 4. The combined effect (seen in the fully

coupled Experiment 10) is much more similar to Experiment 3 than to Experiment

4 (Figure 7).

The individual components from the sensitivity experiments that alter the

cooling from the control experiment are: the surface current is subtracted from the

wind in the wind stress calculation (~Uc to ~τair), the wave momentum flux budget

is subtracted from the wind stress in the calculation of the momentum flux into

the ocean, and the Coriolis-Stokes forcing is subtracted from the wind stress in the

calculation of the momentum flux into the ocean (Figure 8a). Experiment 9 clearly
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differs from Experiments 7 and 8 as well as the Fully Coupled Experiment 10. It

reduces the cooling less than Experiments 7 and 10, but more than Experiment 8.

Passing the ocean currents to the wave model has no effect on the cooling if that is

not combined with a modification of the momentum flux into the currents through

either adjusting the wind stress or including one or both of the wave momentum

terms in the ~τc calculation.

In contrast to the wave field (Figure 7), the changes in the SST anomalies

(δSST ) are sensitive to the changes of the surface currents and momentum fluxes

into the ocean (Figure 8 a, b, and c).

A key aspect of cooling relates to the ocean currents. As surface currents

increase in magnitude, vertical current shear also increases. This gives rise to

turbulent mixing, which in turn leads to an entrainment of cooler water to the ocean

surface that simultaneously increases the subsurface ocean temperature. In the

experiments in which the ocean currents are the same as the control experiment, the

SST is the same (Figure 6 b and c). However, when the ocean currents are modified

(Figure 8b), the change in SST over the 24-hour integration time is different from

the control experiment (Figure 8a). Of the individual components, the Coriolis-

Stokes forcing modifies the currents over the largest area, but the wave momentum

flux budget reduces the currents by the largest magnitude. These differences can

be explained as follows. The Coriolis-Stokes forcing shifts the current direction to

the right (in the same direction as the Coriolis force) while the wave momentum

flux budget has a larger impact on the current magnitude. Another reason is that

~τdiff is large but more concentrated because the wave field grows or decays the

most close to the RMW, while ~τcor more closely follows the overall wave field (thus

having a broader impact but a smaller maximum magnitude).
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Figure 8: Results for the stationary hurricane after 24 hours: (a) δSST (◦C), (b)
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Near the radius of maximum wind (RMW), Experiment 7 reduces the cool-

ing more than Experiments 2 and 8 do (Figure 6c) and (Figure 8a). However,

Experiment 2 reduces the cooling over the largest area. This is reflected in the

momentum flux into the ocean currents (~τc) (Figure 8c). Experiment 7 reduces the

momentum flux into the ocean currents (~τc) more than Experiments 2 or 8 do near

the RMW, but the difference is much smaller close to the storm center and even

farther away from it. Including the Coriolis-Stokes forcing (~τcor) in the calculation

of the momentum flux into the ocean (~τc = ~τair−~τcor) leads to the cooling actually

increasing in some areas despite a reduction in magnitude of the momentum flux

into the currents. This result can be explained as follows. In addition to turbulent

mixing, the hurricane generates upwelling (upward advection of colder thermo-

cline water) near the storm center, which is caused by the divergence of the ocean

currents in the upper ocean. This upwelling leads to an increase of the turbu-

lent mixing and the SST cooling (Price, 1981; Yablonsky and Ginis, 2009). Since

the Coriolis-Stokes forcing shifts the currents to the right, it enhances the current

divergence and upwelling (Figure 9). As a result, the SST cooling is increased.
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Figure 9: Surface current vectors (m/s) after (a) 6 hours and (b) 24 hours for a
stationary, axisymmetric TC 1.93 km west of and 101.1 km north of storm center
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Near the RMW and close to the storm center, the cooling in Experiment 10

is very similar to that of Experiment 7 (Figure 8a). However, as the distance from

the eye increases, Experiment 10 clearly has less cooling than the other experi-

ments until it converges with Experiment 2 (around 3 RMW). This is somewhat

consistent with the momentum flux into the ocean currents for Experiment 10

(Figure 8c). While the momentum flux into the ocean currents (~τc) is smallest in

Experiment 10 along almost the entire radial profile, the difference between it and

the other experiments is more pronounced between (0.5 and 2 RMW). Between

1.5 and 2 RMW, Experiment 1 clearly has the largest surface current magnitude.

The Experiment 9 momentum flux into the ocean profile resembles a combined

effect of the two individual wave momentum components of Experiments 7 and

8 (Figure 8c). In fact, the difference between Experiments 7 and 9 is similar to

the difference between Experiment 8 and Control Experiment 1. However, the

Experiment 9 δSST profile resembles an average between Experiments 7 and 8

(Figure 8a). The Experiment 8 δSST radial profile is also closer to the Con-

trol Experiment 1 profile than any other sensitivity experiment is. However, it is

not identical and the cooling actually slightly increases due to the Coriolis-Stokes

forcing.

3.2 Moving Hurricane

Two sets of idealized moving hurricane experiments were conducted. In both,

the hurricane moved along a constant latitude of 22.4◦N with a constant transla-

tion speed (4.8 m/s and 9.6 m/s) to the west. This led to larger significant wave

heights, as well as larger differences between the various momentum budget exper-

iments and the control experiment (Figures 13 and 15) compared to the stationary

hurricane experiments.
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Figure 10: Control Experiment momentum flux into the ocean (~τc) (contours every
0.5 N/m2) after 72 hours for moving TC with TSP= (a) 4.8 m/s and (b) 9.6 m/s;

The momentum flux into the ocean for the control experiments is simply the

wind stress. It is continuous and larger to the right of the storm track due to

the translation speed being in the same direction there (Figure 10). Differences

between the momentum flux into the ocean for each experiment and the Control

Experiment 1 also are continuous (Figure 11). Experiment 7 and Experiment 8

both alter the wind stress by a greater vector magnitude difference than Experi-

ment 2. However, Experiment 7 modifies the vector flux into the ocean over the

smallest geographic range. The 9.6 m/s version of Experiment 7 differs from the

other individual component sensitivity experiments in that it has a second region

with an altered flux into the ocean in the left rear quadrant that is reflected in

Experiment 9 and in the fully coupled Experiment 10.

Experiment 2 reduces the air-sea momentum flux to the right of the storm

track for both moving idealized tropical cyclones, although the magnitude and

range of the reduction are both smaller for the 4.8 m/s translating hurricane than

its 9.6 m/s counterpart (Figure 12 a and b). The air-sea momentum flux is reduced

by a larger magnitude during Experiment 7 than Experiment 2, but the reduction

is confined to a smaller region (Figure 12 c and d). For the 4.8 m/s translating
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hurricane, this change is mostly confined to the rear right quadrant, but not far

from the storm center. However, for the 9.6 m/s translating hurricane, one region

of smaller momentum flux is located just inside of the front right quadrant, while

there is a second region of reduction to the left of the storm track. Experiment

8 actually increases the air-sea momentum flux, but in the rear right quadrant,

but slightly reduces it in the front left quadrant (Figure 12 e and f). The two

different versions of Experiment 9 vary considerably: the 4.8 m/s momentum flux

is reduced to the right of the storm track and slightly more behind than even with

the storm center, but the 9.6 m/s momentum flux is reduced more in front of

the storm, while it is increased in the rear right quadrant (Figure 12 g and h).

Experiment 10 leads to values of |~τc| differing the most from the control for both

hurricanes, and the same discrepancies between the 4.8 and 9.6 m/s hurricanes,

except there is no increased flux in the rear right quadrant this time (Figure 12 i

and j).

As expected, the wave fields are largest in the front right quadrant due to

the large fetch, wind duration and the direction of the translation speed of the

storm (Figure 13). This is consistent with other numerical hurricane experiments

(Young, 1988; Moon et al., 2003; Young, 2003; Fan et al., 2009; Fan et al., 2010)

and observations (Young and Burchell, 1996; Wright et al., 2001). The maximum

significant wave height (Hs) is increased from 15.6 m to 20.9 m as the translation

speed is increased from 4.8 m/s to 9.6 m/s. For both translating hurricanes,

the significant wave height is reduced by passing currents to the wave equation

and by subtracting the surface currents from the wind driving the wave model

(Figure 15). Consistent with the stationary hurricane, passing the currents at

depth z = L/(4 ∗ π) to the wave equation (Figure 15 a and b) reduces the wave

heights more than modifying the wind (Figure 15 c and d).
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Figure 11: Momentum flux into the ocean (~τc) differences (Current Experiment -
Control) (contours every 0.05 N/m2) for moving TCs with TSP = 4.8 m/s (left
column) and 9.6 m/s (right column): Experiment 2 (a) and (b); Experiment 7 (c)
and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10 (i)
and (j)
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Figure 12: Momentum flux into the ocean (~τc) magnitude differences (Current
Experiment - Control) (contours every 0.05 N/m2) for moving TCs with TSP =
4.8 m/s (left column) and 9.6 m/s (right column): Experiment 2 (a) and (b);
Experiment 7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h);
Experiment 10 (i) and (j)
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Figure 13: Control Experiment significant wave height (m) (contours every 2 m)
after 72 hours for moving TC with TSP= (a) 4.8 m/s and (b) 9.6 m/s

For the 9.6 m/s translating hurricane, Experiment 3 has a second large dif-

ference region well behind the storm center and away from the largest section of

the wave field. This second area of major wave height reduction for the 9.6 m/s

translating hurricane is probably due to an increase of the region of the largest

waves and the different ocean current structure in comparison with the 4.8 m/s

translating hurricane (Figure 14).

While the influence of the currents modifying the wave equation is larger

than the reduced wind forcing on the significant wave height, the fully coupled

experiment clearly has a wave field with a greater difference from the control

experiments for both the 4.8 m/s and 9.6 m/s translating hurricanes (Figure 15

e and f). The change is the largest in the region of the highest waves. Both the

area and the magnitude of the difference are larger for the fully coupled experiment

than either of the other two difference experiments. As is the case for Experiment 3

for the 9.6 m/s translating hurricane, Experiment 10 has a second large difference

region behind and to the right of the storm center. The magnitude and size of

this region are slightly larger in the fully coupled experiment than Experiment 3,
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which can be attributed to the effect of reducing the wind forcing and the slightly

different resulting ocean currents that modify the wave equation.

Figure 14: Control Experiment ocean currents (m/s) (contours every 0.2 m/s)
after 72 hours for moving TC with TSP= 4.8 m/s (left column) and 9.6 m/s
(right column), top row are surface currents, bottom row are currents at depth
L/(4 ∗ π)

The cold wake is clearly visible behind the storm center, especially to the right

of the storm track (Figure 16 a and b). There is less cooling to the left of the storm

track due to weaker currents and in turn less turbulent mixing (Figure 14 a and

b). The currents are larger to the right of the storm due to the resonance effect

between the moving hurricane and the inertial rotation of the currents. To the

right of the storm track, at any given location, the wind direction rotates to the

right as the hurricane passes, while to the left of the storm track, the wind rotates

to the left (Figure 17).
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Figure 15: Significant wave height differences (m) (Current experiment - Control)
(contours every 0.5 m) after 72 hours for moving TC with TSP = 4.8 m/s (left
column) and TSP = 9.6m/s (right column): Experiment 3 (a) and (b); Experiment
4 (c) and (d); Experiment 10 (e) and (f)
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Figure 16: Control Experiment SST (contours every 0.5◦C) after 72 hours for
moving TC with TSP= (a) 4.8 m/s and (b) 9.6 m/s

Since the storm occurs in the northern hemisphere, the Coriolis effect causes

the ocean currents to be to the right of the wind forcing. This means that to

the right of the storm track, the Coriolis effect and wind rotation are in the same

direction, while to the left of the storm track they work against each other. The

cooling is reduced for Experiment 2 (Figure 18 a and b), Experiment 7 (Figure 18

c and d), Experiment 8 (Figure 18 e and f), Experiment 9 (Figure 18 g and h), and

in Experiment 10 (Figure 18 i and j). While the change in cooling is not the same

for the modified wind stress experiments and the wave momentum flux budget

experiments (~τc = ~τair − ~τdiff ), it is difficult to determine which effect has a larger

impact on the temperature (especially for the hurricane with a western translation

speed of 9.6 m/s).

In the case of the 4.8 m/s hurricane, the maximum cooling reduction is larger

for the wave momentum flux budget Experiment 7 and the contours are slightly

different from the modified wind stress Experiment 2 but the reduction in cooling

is still very similar. Both experiments actually have a slight increase in cooling in

different bands as well. This includes localized regions along the storm track.
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Figure 17: Resonance effect for a hurricane moving to the west along the magenta
arrow. At the initial time (dashed circle), the wind direction at two selected points
to the right and left of the storm center follows the dashed blue lines, but at the
next timestep (solid line circle), the wind direction at those same locations has
shifted to the solid blue arrows. The red arrows indicate the direction of the wind
shift. Note: to the right of the storm track, the wind direction shifts to the right,
but to the left of the storm track, it shifts to the left

For the 9.6 m/s hurricane, the differences are again very small, but the modi-

fied wind stress Experiment 2 has a slightly more reduced cold wake than the wave

momentum flux Experiment 7. Experiment 2 has a larger region of cooling to the

left of the storm track, but Experiment 7 has a region of increased cooling in front

and to the right of the storm track.

The impact of including the Coriolis-Stokes forcing in the momentum flux into

the ocean is similar in the moving storms to what it is for the stationary hurricane

experiments. The cooling actually increases slightly (Figures 18 e and f). For the

4.8 m/s idealized hurricane, the cooling increases mostly along the storm track on

both sides, slightly biased towards the right. This increase in SST cooling is due

to an enhancement of upwelling near the storm center caused by the shift to the

right of the ocean current in Experiment 8 (Figure 22). There are also a couple of

bands where the cooling is reduced on both sides of the storm track.
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Figure 18: SST differences (Current Experiment - Control Experiment) (contours
every 0.1◦C) after 72 hours for moving TCs with TSP = 4.8 m/s (left column)
and TSP = 9.6 m/s (right column): Experiment 2 (a) and (b); Experiment 7 (c)
and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h) ; Experiment 10 (i)
and (j)

31



Figure 19: δSST ratios (Current Experiment/Control Experiment *100) (contours
every 5 %) after 72 hours for moving TCs with TSP = 4.8 m/s (left column) and
TSP = 9.6 m/s (right column): Experiment 2 (a) and (b); Experiment 7 (c) and
(d); Experiment 8 (e) and (f); Experiment 9 (g) and (h) ; Experiment 10 (i) and
(j)
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The cooling increases almost exclusively to the right of the 9.6 m/s translat-

ing hurricane storm center with only a small band of increased cooling to the left

and behind the storm. There is also a small segment of slightly reduced cooling

to the left of the storm track. Furthermore, both the 4.8 m/s and the 9.6 m/s

idealized hurricane versions of Experiment 8 have surface currents that vary more

significantly from the control experiment (Figure 20 e and f) than the other ex-

periments that alter the cold wake (Figure 20 a, b, c and d). On top of that,

the surface current vector for Experiment 8 has a larger angle difference with the

control experiment surface current vector than Experiments 2 and 7 do for both

moving hurricanes (Figure 22).

The fully coupled Experiment 10 has the largest reduction of cooling for both

moving tropical cyclones (Figure 18 i and j), although Experiment 9 is only slightly

different. While the region of the largest difference with the control experiment for

the 4.8 m/s hurricane corresponds to the maxima in Experiment 2 and Experiment

7, it also happens to be about in the same region where Experiment 8 has both a

minimum and a local maximum. Several of the maxima for the 9.6 m/s hurricane

Experiment 10 line up with maxima in Experiments 2, 7, and 8 in a similar matter.

It is clear that the different components of the momentum flux into the ocean

(~τair, ~τdiff , and ~τcor) and the translation speed of the hurricane have important

effects on the resulting cold wake.

What is also striking is that the changes in the cold wake from the control

experiment to the other experiments are not uniform. Instead, they occur in

different bands of local minima and maxima. These minima and maxima are a

reflection of the non-uniform changes to the ocean surface currents (~Uc) (Figure 20).

The surface currents are significantly larger in the right rear quadrant than

any of the other 3 quadrants (Figure 14) due to the resonance effect illustrated

33



in Figure 17. This differs from the significant wave height, but resembles the sea

surface temperature distribution. As with the sea surface temperature, the higher

translation speed leads to even smaller values to the left of the storm track.

Experiment 8 has currents that differ from the control experiment (Figure 20

e and f) much more than Experiment 2 (Figure 20 a and b) and Experiment 7

(Figure 20 c and d). However, the surface current magnitude differences show a

different result (Figure 21). Experiment 2 and Experiment 7 have large sections

where the current magnitude is reduced, along with smaller regions with larger

surface current magnitudes than the control. Experiment 8 tends to slightly in-

crease the surface current magnitude especially behind the storm center. Along

and in front of the storm center, the surface current magnitude is larger than the

control. Experiment 9 and especially the fully coupled Experiment 10 both have

surface currents that consistently have a smaller magnitude than the control to

the right of the storm track. As with the sea surface temperature and magnitude

of the surface current vector differences, the surface current magnitude differences

form banded structures.

Experiment 9 has surface current differences with the control experiment very

similar to Experiment 8 for both the 4.8 m/s and 9.6 m/s translating hurricanes.

But, the magnitudes of these differences are slightly larger and the surface current

vectors for Experiment 9 are to the right of the control experiment for both moving

idealized hurricanes (Figure 22).
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Figure 20: Surface current differences (m/s) (Current experiment - Control) (con-
tours every 0.025 m/s) after 72 hours for moving TCs with TSP= 4.8 m/s (left
column) and 9.6 m/s (right column): Experiment 2 (a) and (b); Experiment 7 (c)
and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10 (i)
and (j)
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Figure 21: Surface current magnitude differences (m/s) (Current experiment -
Control) (contours every 0.025 m/s) after 72 hours for moving TCs with TSP=
4.8 m/s (left col.) and 9.6 m/s (right col.): Experiment 2 (a) and (b); Experiment
7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10
(i) and (j)
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Figure 22: Surface current vectors (m/s) after 72 hours for moving TCs: TSP=
(a) 4.8 m/s and (b) 9.6 m/s

The direction of the surface current vector shown in Figure 22 is largely bro-

ken into two different groups: experiments with the Coriolis-Stokes forcing in-

cluded, and those without it. Experiments with the Coriolis-Stokes forcing in-

cluded are consistently to the right of the experiments without the Coriolis-Stokes

forcing. This, along with the surface current magnitude differences indicates that

the Coriolis-Stokes forcing primarily alters the direction of the surface currents

and has a much smaller impact on the magnitude.

Figure 23: Control Experiment latent heat flux (contours every 100 W/m2) after
72 hours for moving TC with TSP= (a) 4.8 m/s and (b) 9.6 m/s
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In order to measure the potential effect of the changes in SST and surface

currents on hurricane intensity in different experiments we calculate the latent

heat flux into the atmosphere. The flux is calculated assuming a fixed horizontally

homogenous atmosphere with 10-m air temperature of 25◦C, 95% relative humidity,

and a fixed atmospheric pressure of 980 hPa. These values are similar to those

used in (Cione and Uhlhorn, 2003). The latent heat flux, HL is computed by

HL = ρLvCeU(qsst − qA) (28)

where ρ is the air density, U is the 10-m wind speed, Ce is the dimensionless

coefficient of moisture exchange at 10 m, Lv is the latent heat of vaporization, and

qSST and qA are the saturation mixing ratios at the SST and the air temperature

respectively.

There is a strong latent heat flux out of the ocean ahead of the idealized

hurricanes. However, the latent heat flux is very small in the cold wake region

and even goes to zero in the case of the 4.8 m/s translating hurricane (Figure 23

a). Given the strong cooling in the case of the 4.8 m/s hurricane (Figure 16 a),

it is not surprising to see there is no latent heat flux in this region. As the ocean

temperature cools, eventually, it might drop below the air temperature (assumed to

be 25.5◦C everywhere in these simplified experiments). Colder, dry air suppresses

the latent heat flux. The 9.6 m/s hurricane latent heat flux has a larger maximum

and is strongest in the front right quadrant (Figure 23 b). But, even to the left

of the storm (in front of, alongside, and behind the storm center) the 9.6 m/s

hurricane has a larger latent heat flux.

For all 4.8 m/s hurricane experiments, the latent heat flux is suppressed in a

large section of the cold wake as noted above. Thus, the sensitivity experiments

are not different from the Control in this section. Experiment 2 increases the latent

heat flux into the atmosphere more so to the right of the storm track than the left,
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over a larger region for the 9.6 m/s hurricane than the 4.8 m/s hurricane (Figure 24

a and b). There are also segments of reduced latent heat flux, especially in the

front right quadrant for both storms. Experiment 7 alters the latent heat flux in a

similar manner to Experiment 2, but it does not have the reduction in front of the

storm center or even in small, localized regions behind or alongside it (Figure 24

c and d). Experiment 8 has section of the largest reduction of the latent heat flux

(Figure 24 e and f). The 4.8 m/s hurricane even has regions where the magnitudes

of latent heat flux increases are larger than its reductions. Experiment 9 tends to

mostly increase the latent heat flux (especially to the right of the storm track)

for the 4.8 m/s hurricane, but its 9.6 m/s counterpart has a more complicated

impact (Figure 24 g and h). While the 9.6 m/s Experiment 9 increases the latent

heat flux over a larger geographic range than it reduces it, the magnitudes of the

increases and reductions are comparable. Experiment 10 has the largest increases

in the latent heat flux and for both hurricanes; these increases are considerably

larger to the right of the storm track (Figure 24 i and j). For all experiments, the

changes in latent heat flux for the 9.6 m/s hurricane are further behind the storm

center than the 4.8 m/s hurricane.

Hurricanes receive their energy from the latent heat flux occurring close to

the storm center more than the latent heat flux in the cold wake region. Thus, the

changes in the latent heat flux for the 4.8 m/s translating hurricane are actually

more important to hurricane formation and development than the 9.6 m/s trans-

lating hurricane latent heat flux changes. An enhanced latent heat flux indicates a

potential strengthening of tropical cyclones, while a reduced latent heat flux may

lead to weaker hurricanes.
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Figure 24: Latent heat flux differences (W/m2) (Current experiment - Control)
(contours every 10 W/m2) after 72 hours for moving TCs with TSP= 4.8 m/s (left
column) and 9.6 m/s (right column): Experiment 2 (a) and (b); Experiment 7 (c)
and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10 (i)
and (j)
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CHAPTER 4

Hurricane Irene (2011)

4.1 Background

Hurricane Irene was the first hurricane to make landfall over the United States

since Ike had over Texas nearly 3 years earlier in September 2008. It began as a

tropical wave that moved away from western Africa on August 15, 2011. Just

before August 21 at 0000 UTC, the tropical wave had organized and strengthened

into Tropical Storm Irene 120 nautical miles east of Martinique and it reached

hurricane status over Puerto Rico just after 0535 UTC on August 22. Hurricane

Irene reached its peak intensity of 105 knots (approximately 54 m/s) as a Category

3 Hurricane on the 24th at 1200 UTC with the storm centered between Mayaguana

and Grand Inagua in the Bahamas. From there, it translated west-northwest

before the subtropical ridge steering it shifted eastward and Irene moved in a

north-northeastern direction. It briefly made landfall near Cape Lookout, North

Carolina on August 27 1200 UTC with an intensity of 75 knots (38.6 m/s) and

later reached New Jersey close to Atlantic City on August 28 0935 UTC. The high

winds in the right front quadrant remained over the ocean while Irene moved across

New Jersey and New York, sparing both states from greater damage. Irene’s status

changed to extra-tropical on August 29 0000 UTC with the center close to the New

Hampshire/Vermont border before it was finally absorbed by a frontal system over

Northeastern Canada on August 30 0600 UTC (Avila and Cangialosi, 2011).

Despite Hurricane Irene being directly responsible for 49 total deaths across

the Dominican Republic, Haiti, and the eastern United States, it was not re-

sponsible for any over the Bahamas when it reached peak intensity. From North

Carolina northward, it damaged homes, felled trees and caused widespread power

outages. Parts of the Chesapeake Bay experienced storm surge and heavy rain
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in Pennsylvania and New Jersey led to major flooding. New York City did not

have massive damage due to the strongest winds remaining to the east, but it

did experience problems caused by storm surge. However, inland New York state

along with New England (especially central and southern Vermont) suffered from

catastrophic flooding (Avila and Cangialosi, 2011).

4.2 Results

The Coupled Ocean Wave Model was run from August 22, 2011 at 1200 UTC

to 1800 UTC on August 27. Wind forcing was specified based on the TCVitals

file shown in Table 3. Unlike the idealized hurricanes, the ocean bathymetry is

important for real hurricanes. When a hurricane, such as Irene, passes over land

boundaries it causes a rapid decay of significant wave height (Hs) and the wave

momentum flux budget (~τdiff ). Along her pass, Hurricane Irene also interacted

with a major ocean current, the Gulf Stream. To avoid these complications, we

selected the integration time where the hurricane was over the open ocean (Fig-

ure 25). We will analyze the results at 0600 UTC on August 26. At this time,

Hurricane Irene was translating northward at a speed of 5.7 m/s.

The wind stress (~τair) and in turn the momentum flux into the ocean (~τc) for

the control experiment is continuous and larger to the right of the storm track

(Figure 26). Experiment 2 modifies the momentum flux into the ocean slightly to

the right and behind the storm center (Figure 27 b), while Experiment 7 alters it

by a larger vector magnitude but over a smaller geographic area in front of the

storm (Figure 27 d). Experiment 8 modifies the flux mostly along the edge of the

front right quadrant (Figure 27 f). Both Experiment 9 and Experiment 10 have

larger changes in the vectors of the momentum flux into the ocean than each of the

individual effect experiments do. However, Experiment 9 modifies the flux vectors

more in front of the storm (Figure 27 h), while Experiment 10 also alters the flux
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vectors along the storm track in the rear right quadrant (Figure 27 j).

Figure 25: Storm track for Hurricane Irene with coupled model starting on August
22, 2011 at 12:00 UTC and output 90 hours later on August 26, 2011 at 06:00
UTC on top of Atlantic Ocean bathymetry

Experiment 2 reduces the air-sea momentum flux in the right rear quadrant

along the storm track and not far from the storm center (Figure 28 b). It also

slightly increases the flux into the ocean to the left of the storm, but this can

be attributed to the Gulf Stream. Experiment 7 reduces the momentum flux

into the ocean by a larger magnitude than Experiment 2, but only in a small

region surrounding the storm center with a bias to the right side (Figure 28 d). It

increases the flux into the ocean in the right rear quadrant. But, this occurs along

the Bahamas where the wave momentum flux budget rapidly decays. Experiment
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8 slightly increases the flux into the ocean to the right and slightly behind the

storm center, while it also reduces the flux to the left of and slightly in front of the

eye (Figure 28 f). Experiment 9 reduces the flux by a larger magnitude than any

of the individual component experiments, but this is mostly confined to a small

region near the storm center (Figure 28 h). The Fully Coupled Experiment 10

reduces the flux by the largest magnitude of all the experiments, and does so much

more to the right of the storm than to the left, both just in front of and behind

the storm center (Figure 28 j).

Figure 26: Control Experiment momentum flux into the ocean (~τc) for Irene on
August 26, 2011 at 06:00 UTC (contours every 0.5 N/m2)
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Figure 27: Momentum flux into the ocean ~τc (left col.) and differences (Current
experiment - Control) (right col.) for Irene: Experiment 2 (a) and (b); Experiment
7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment
10 (i) and (j) on August 26, 2011 at 06:00 UTC (contours every 0.5 N/m2) and
(difference contours every 0.05 N/m2)
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Figure 28: Momentum flux into the ocean ~τc (left col.) and magnitude differ-
ences (Current experiment - Control) (right col.) for Irene: Experiment 2 (a) and
(b); Experiment 7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g) and
(h); Experiment 10 (i) and (j) on August 26, 2011 at 06:00 UTC (contours every
0.5 N/m2) and (difference contours every 0.05 N/m2)
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Figure 29: Control Experiment significant wave height (m) for Hurricane Irene on
August 26, 2011 at 06:00 UTC (contours every 2 m)

The different components of the coupled model are investigated by examining

the Significant Wave Height (Hs), sea surface temperature (SST ), and surface cur-

rents (~Uc). As expected, the Significant Wave Height for Hurricane Irene is largest

in the right front quadrant and smallest in the left rear quadrant (Figure 29).

Also consistent with the idealized hurricanes, only experiments in which currents

at depth L/(4 ∗ π) are passed to the wave equation and/or the wind forcing the

wave model is modified by the surface currents have a wave field that differs from

the control experiment. Passing currents to the wave equation (Figure 30 b) has a

much larger impact on the surface waves; the maximum significant wave height is

reduced by 3.5 m. Adjustment of the wind forcing on the wave model by includ-

ing surface currents has a smaller effect; the maximum significant wave height is

slightly decreased in the front of the storm, but slightly increased to behind and

to the right of the storm center. (Figure 30 d).
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Figure 30: Significant wave height (m) (left column) and differences (m) (Current
experiment - Control) (right column) for Irene: Experiment 3 (a) and (b); Exper-
iment 4 (c) and (d); Experiment 10 (e) and (f) on August 26, 2011 at 06:00 UTC
(wave contours every 2 m) and (difference contours every 0.5 m)

49



Figure 31: Control Experiment surface currents (m/s) for Irene on August 26, 2011
at 06:00 UTC (contours every 0.2 m/s)

Hurricane Irene drives ocean currents that are much stronger to the right of

the storm track than to the left (Figure 31). The background Gulf Stream is clearly

visible to the left of the storm track.

Surface current vectors and their differences are shown in Figure 32. Experi-

ment 2 modifies the surface currents in the right rear quadrant (Figure 32 b), while

Experiment 7 modifies them by a larger magnitude in a small region just to the

right of the storm center and at several locations near the Bahamas islands behind

the hurricane (Figure 32 d). Experiment 8 changes the surface currents across a
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larger area to the right of the storm track (Figure 32 f). This change in the surface

currents is more due to the Coriolis effect altering the direction of the currents

than their magnitude. Experiment 9 and Experiment 10 have surface currents dif-

fering the most from the control experiment. Experiment 9 modifies the currents

primarily in the right front quadrant of the storm (Figure 32 h). Experiment 10

has a larger region of modified currents just to the right of the eye, but also has

discretized modifications behind it near the Bahamas (Figure 32 j).

Surface current magnitudes and their differences are shown in Figure 33. Ex-

periment 2 clearly reduces the currents in the right rear quadrant (Figure 33 b),

but Experiment 7 reduces them by a larger magnitude just to the right of the

storm center and near the Bahamas along the storm track (Figure 33 d). It also

slightly increases the current magnitude along two regions to the left of the storm

track also near the Bahamas. Unique among the individual effects, Experiment 8

reduces the current magnitude in front of and to the left of the storm center (Fig-

ure 33 f). Even though Experiment 9 modifies the current vectors over a larger

area than Experiment 10, it has a smaller impact on the magnitude (Figure 33 h).

Experiment 10 reduces the surface current magnitude in the right rear quadrant

along the storm track and in a couple of banded structures farther to the right

(Figure 33 j).

Hurricane Irene has produced a clear cold wake in the right rear quadrant

(Figure 34 a) coinciding with the region of largest surface currents (Figure 31).

Also visible is the warm water of the Gulf Stream current to the west. This

provides a clear contrast that better illustrates the effect of Irene on the SST just

north of the Bahamas.
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Figure 32: Surface current (left col.) and differences (Current experiment - Con-
trol) (right col.) for Irene: Experiment 2 (a) and (b); Experiment 7 (c) and (d);
Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10 (i) and (j) on
August 26, 2011 at 06:00 UTC (contours every 0.2 m/s) and (difference contours
every 0.025 m/s)
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Figure 33: Surface current magnitude (left col.) and differences (Current experi-
ment - Control) (right col.) for Irene: Experiment 2 (a) and (b); Expriment 7 (c)
and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10 (i)
and (j) on August 26, 2011 at 06:00 UTC (contours every 0.2 m/s) and (difference
contours every 0.025 m/s)
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Figure 34: Control Experiment (a) SST and (b) δSST = SST (output) −
SST (24 hours earlier) for Irene on August 26, 2011 at 06:00 UTC (contours
every 0.5 ◦C)

The cooling is clearly reduced in Experiment 2 (Figure 35 b) and Experiment

7 (Figure 35 d). Consistent with the idealized hurricanes, both have regions where

the cooling increases slightly: Experiment 2 in a small streak to the left of the storm

track and just behind the storm center and Experiment 7 in several discretized

regions along the storm track. Experiment 8 clearly increases the cooling to the

right of the storm track (Figure 35 f), although the magnitude of this augmentation

is less than similar regions in Experiment 7. This leads to an interesting dynamic of

an area of increased cooling next to one with decreased cooling in Experiment 9 and

the Fully Coupled Experiment 10. Experiment 9 has a large section of increased

cooling along the storm track on both sides (Figure 35 h), but Experiment 10

mostly reduces the surface temperature in the right rear quadrant, with a maximum

to the right and behind the storm center alongside a small patch of increased

cooling (Figure 35 j).
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Figure 35: δSST (left column) and differences (Current Experiment - Control
Experiment) (right column) for Irene: Experiment 2 (a) and (b); Experiment 7 (c)
and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10 (i)
and (j) on August 26, 2011 at 06:00 UTC (contours every 0.5◦C) and (difference
contours every 0.1◦C)
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Figure 36: Control Experiment latent heat flux (contours every 100 W/m2) for
Irene on August 26, 2011 at 06:00 UTC

The Hurricane Irene latent heat flux calculations are done the same way as the

idealized hurricane latent heat flux calculations in Chapter 3. The maximum esti-

mated latent heat flux reaches about 850 W/m2 in front of the storm (Figure 36).

In the left rear quadrant of the storm over the cold wake, the flux is significantly

reduced. Experiment 2 has alternating regions of increased and reduced latent heat

flux into the atmosphere near the storm center (Figure 37 b). It also increases the

latent heat flux in the right rear quadrant (along the cold wake) and to the left of

the storm track (along the Gulf Stream). Experiment 7 also leads to alternating

regions of increased and reduced latent heat flux near the storm center (Figure 37

56



d), but the magnitude of the increase is larger than the Experiment 2 maximum

enhanced latent heat flux. The latent heat flux is reduced in Experiment 8 along

the storm track and to the right, but to a smaller magnitude than Experiment

7, and the small section of increased latent heat flux is small in both geographic

size and in magnitude (Figure 37 f). Experiment 9 has two neighboring regions of

latent heat flux increases and reductions to the right and slightly behind the storm

center with greater magnitude than Experiments 2, 7, and 8 (Figure 37 h). The

latent heat flux is also reduced slightly in small localized regions along the storm

track. The magnitudes of neighboring small sections of increased and reduced la-

tent heat flux are slightly larger for Experiment 10 (Figure 37 j) than Experiment

9. Also, like Experiment 2, there is a larger section of slightly increased latent heat

flux in the right rear quadrant and to the left of the storm track along the Gulf

Stream.
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Figure 37: Latent heat flux (left column) (contours every 100 W/m2) and differ-
ences (Current experiment - Control) (contours every 10 W/m2): Experiment 2
(a) and (b); Experiment 7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g)
and (h); Experiment 10 (i) and (j) for Irene on August 26, 2011 at 06:00 UTC
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CHAPTER 5

Hurricane Sandy (2012)

5.1 Background

Hurricane Sandy was a late season Atlantic Ocean basin Hurricane that be-

gan as a tropical wave moving off of western Africa on October 11, 2012. By 1200

UTC on October 22, it had become organized enough to be a tropical depression

and reached hurricane status 48 hours later centered 80 nautical miles south of

Kingston, Jamaica. It rapidly intensified after it passed over Jamaica and be-

came a major hurricane (Category 3) with maximum sustained winds of 100 knots

(51.4 m/s) when it made landfall on Cuba at 0525 UTC on October 25. Hurricane

Sandy weakened slightly over Cuba and then even more so afterwards as a result

of a strong southwesterly wind shear. Shortwave ridging in the western Atlantic

and a negatively titled upper level trough slowed Sandy and changed its trajectory

from north-northeast to north-northwest towards the Bahamas. By 0000 UTC on

October 27, it had weakened below hurricane strength, but the size had dramat-

ically increased: the average radii of its tropical storm force winds were nearly

double the radii of when it made landfall in Cuba as a hurricane. Sandy changed

direction again to the northeast and sped up in advance of a mid-tropospheric

trough over the central United States and regained hurricane status on October

27 at 1200 UTC. However, an anomalous blocking pattern over the North Atlantic

prevented Sandy from moving out to sea and it strengthened again because of

baroclinic forcing, a low vertical wind shear from the midtropospheric trough, and

passage over warm Gulf Stream water. The trough also caused Hurricane Sandy

to accelerate in a northwestern direction where it moved into a region with a cold

air mass and cooler waters, thus weakening before making landfall at 2330 UTC

on October 29 near Brigantine, New Jersey. Over land, Sandy slowed and turned
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west-northwest, before eventually merging with a low-pressure area over eastern

Canada on November 1 or 2 (Blake et al., 2013).

Hurricane Sandy was directly responsible for 147 total deaths and with 72 of

those occurring in the U.S., it was the deadliest U.S. hurricane outside of southern

states since Hurricane Agnes in 1972. It was also responsible for at least 87 indirect

deaths. Across the entire east coast, water levels rose with the highest storm

surges occurring in New Jersey, New York, and Connecticut which included setting

new storm tide records in New York City. Rhode Island and Massachusetts also

experienced large storm surges and even New Hampshire and Maine recorded large

storm surges. Torrential rainfall affected parts of Cuba, Jamaica and Hispaniola,

while Mid-Atlantic States also experienced heavy rainfall. (Blake et al., 2013)

5.2 Results

The sensitivity experiments for Hurricane Sandy were conducted using the

TCVitals data in Table 4 beginning on October 24 at 1800 UTC and ending on

October 30 at 0000 UTC. For most of its duration, it had a lower wind speed

than either Hurricane Irene or the idealized hurricanes, but was a larger storm.

We analyzed the results on October 29 at 0000 UTC (Figure 38) when the storm

was located over the open ocean and away from the Gulf Stream that would skew

the wave momentum flux into the ocean (~τdiff ). Hurricane Sandy was moving

northeast at 6.2 m/s at that time.

As in other experiments discussed above, the Coupled Model sensitivity exper-

iments for Hurricane Sandy are analyzed through investigation of the significant

wave height (Hs), sea surface temperature (SST), ocean surface currents (~Uc), and

momentum flux into the ocean (~τc). The momentum flux into the ocean for the

Hurricane Sandy control experiment is equivalent to the wind stress and is demon-

strably larger to the right of the storm track. It does not have a particularly large
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magnitude, but the size of the storm is very large (Figure 39). Experiment 8 (Fig-

ure 40 f) changes the momentum flux into the ocean (~τc) vectors more than either

Experiment 2 or 7 (Figure 40 b and d). Finally, Experiment 9 modifies the flux

into the ocean vectors over the largest area and to the greatest vector difference

magnitude (Figure 40 h). Experiment 10 has an unusual section to the right of the

storm track where the flux into the ocean is only slightly altered from Experiment

1 (Figure 40 j).

Figure 38: Storm track for Hurricane Sandy with coupled model starting on Oc-
tober 24, 2012 at 18:00 UTC and output 102 hours later on October 29, 2012 at
00:00 UTC on top of Atlantic Ocean bathymetry
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Figure 39: Control Experiment momentum flux into the ocean (~τc) for Sandy on
October 29, 2012 at 00:00 UTC (contours every 0.5 N/m2)

Experiment 2 slightly weakens the flux into the ocean to the right of the

storm center (Figure 41 b). Experiment 7 reduces the flux by a slightly larger

magnitude (Figure 41 d) and over a larger area to the right of the storm center

than Experiment 2. Once again, Experiment 8 slightly increases the flux into

the ocean to the right of the hurricane eye, but moderately reduces it in front of

the storm (Figure 41 f). The magnitude of reduction is larger for Experiment 9

than the preceding experiments. However, the reduction is mostly in the right

front quadrant, while the flux increases close to and to the right of the storm

center (Figure 41 h). The fully coupled Experiment 10 consistently decreases the

air-sea momentum flux over the largest area and magnitude of all the sensitivity

experiments. The largest reduction in magnitude is confined to the right frontal

quadrant (Figure 41 j).
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Figure 40: Momentum flux into the ocean ~τc (left col.) and differences (Current
experiment - Control) (right col.) for Sandy: Experiment 2 (a) and (b); Experiment
7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment
10 (i) and (j) on October 29, 2012 at 00:00 UTC (contours every 0.5 N/m2) and
(difference contours every 0.05 N/m2)
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Figure 41: Momentum flux into the ocean ~τc (left col.) and magnitude differences
(Current experiment - Control) (right col.) for Sandy: Experiment 2 (a) and (b);
Experiment 7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h);
Experiment 10 (i) and (j) on October 29, 2012 at 00:00 UTC (contours every
0.5 N/m2) and (difference contours every 0.05 N/m2)
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Figure 42: Control Experiment significant wave height (m) for Hurricane Sandy
on October 29, 2012 at 00:00 UTC (contours every 2 m)

In response to the large size of Sandy (RMW at output time = 222 km as

opposed to 19 km for Irene and 70 km for the idealized hurricanes), the geographic

size of the wave field is also larger (Figure 42). Consistent with Hurricane Irene

and the idealized hurricanes, the wave field only differs from the control when the

currents at depth L/(4 ∗ π) are passed to the wave equation and/or the surface

currents modify the wind forcing the wave model. Also as with previous hurricanes,

Experiment 3 alters the significant wave height much more than Experiment 4

(Figure 43 b and d respectfully). As in Hurricane Irene, the maximum reduction

of the significant wave height for Experiment 10 is comparable to Experiment 3.
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Figure 43: Significant wave height (m) (left column) and differences (m) (Current
experiment - Control) (right column) for Sandy: Experiment 3 (a) and (b); Ex-
periment 4 (c) and (d); Experiment 10 (e) and (f) on October 29, 2012 at 00:00
UTC (wave contours every 2 m) and (difference contours every 0.5 m)
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Figure 44: Control Experiment surface currents (m/s) for Sandy on October 29,
2012 at 00:00 UTC (contours every 0.2 m/s)

Consistent with Irene and the idealized hurricanes, Sandy has strong currents

to the right of the storm track (Figure 44). But the magnitude of the Gulf Stream

current to the northwest is comparable. Figure 45 shows the surface current vectors

and their differences in different experiments and Figure 46 shows the magnitude

of the surface currents and their differences in different experiments. Experiment

8 alters the surface current vectors more than either Experiment 2 or 7. How-

ever, Experiments 2 and 7 both alter the surface current magnitude more than

Experiment 8 does. Experiment 2 reduces the surface current magnitude to the

right of the storm track, while Experiment 7 reduces it in a region to the right

of the storm track. Experiment 8 increases the surface current magnitude in two

localized regions: one along the storm track, and the other well to the right of

it. This leads to Experiments 9 and 10 having current magnitude differences with

the Control Experiment with localized regions of increased and decreased current

magnitudes (Figure 45 h and j; Figure 46 h and j).
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Figure 45: Surface current (left col.) and differences (Current experiment - Con-
trol) (right col.) for Sandy: Experiment 2 (a) and (b); Experiment 7 (c) and (d);
Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10 (i) and (j) on
October 29, 2012 at 00:00 UTC (contours every 0.2 m/s) and (difference contours
every 0.025 m/s)
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Figure 46: Surface current (left col.) and magnitude differences (Current exper-
iment - Control) (right col.) for Sandy: Experiment 2 (a) and (b); Experiment
7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment
10 (i) and (j) on October 29, 2012 at 00:00 UTC (contours every 0.2 m/s) and
(difference contours every 0.025 m/s)
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Figure 47: Control Experiment (a) SST and (b) δSST = SST (output) −
SST (24 hours earlier) for Sandy on October 29, 2012 at 00:00 UTC (contours
every 0.5◦C)

There is a marked cooling in the ocean surface temperature following Hurri-

cane Sandy primarily to the right of the storm (Figure 47). The relatively short

proximity of the Gulf Stream to the left of the storm did not effect this cooling.

Experiment 2 and Experiment 7 have a comparable impact on the cold wake

(Figure 48 b and d respectfully). While the area over which the cooling is reduced

is similar, Experiment 2 reduces it over a slightly larger area. Experiment 7 has a

small region of increased cooling near the storm track. However, there is a section

along the Gulf Stream where Experiment 2 actually increases the cooling (similar

to the pattern seen along the Florida Current with Hurricane Irene). Experiment 8

has an uneven effect on the cooling. Along alternating streaks, it slightly increases

or decreases the cooling from the control experiment. This leads to a rather com-

plex change in cooling for Experiment 9 and for Experiment 10, but overall the

cooling the largely reduced.
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Figure 48: δSST (left column) and differences (Current Experiment - Control
Experiment) (right column) for Sandy: Experiment 2 (a) and (b); Experiment 7
(c) and (d); Experiment 8 (e) and (f); Experiment 9 (g) and (h); Experiment 10 (i)
and (j) on October 29, 2012 at 00:00 UTC (contours every 0.5◦C) and (difference
contours every 0.1◦C)
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Figure 49: Control Experiment latent heat flux (contours every 100 W/m2) for
Sandy on October 29, 2012 at 00:00 UTC

The Hurricane Sandy latent heat flux calculations are done the same way as

the Hurricane Irene latent heat flux calculations in Chapter 4 and the idealized

hurricane latent heat flux calculations in Chapter 3. There is a large section of a

significant increase of latent heat flux into the atmosphere primarily in the right

frontal quadrant (Figure 49). In the left frontal quadrant, there is another small

segment of the latent heat flux increase corresponding to the Gulf Stream. As

with previous experiments, the latent heat flux is inhibited in the cold wake region.

However, Hurricane Sandy is unique in that there is a large segment of suppressed
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latent heat flux into the atmosphere around the storm center. This may be due to

the larger size of Hurricane Sandy as well as the relatively low wind speed.

The latent heat flux is increased in the right rear quadrant mostly in the cold

wake region, but also further to the right (Figure 50 b) in Experiment 2. This is

primarily due to the reduction of cooling in the cold wake. There is also a second

region of increased latent heat flux in the left frontal quadrant corresponding to the

Gulf Stream. However, over most of the area in front of the storm, the latent heat

flux is slightly reduced from the Control Experiment. Experiment 7 increases the

latent heat flux in a similar manner to Experiment 2 (Figure 50 d). Experiment 8

reduces the latent heat flux in a larger segment in the right rear quadrant, but also

in different patches along the storm track (Figure 50 f). It also slightly increases

the latent heat flux near the storm center and in a few smaller regions along the

storm track. This leads to Experiment 9 mostly increasing the latent heat flux by

a larger magnitude than Experiment 2, 7, or 8, but with a clear section of reduced

heat flux in the rear right quadrant and small patches close to the storm track

(Figure 50 h). The Fully Coupled Experiment 10 increases the latent heat flux

by the largest magnitude and perhaps over the largest area of all the sensitivity

experiments (Figure 50 j). However, it also has sections of reduced heat flux

(including the area in front of the storm center and a portion to the right of the

storm track). As with Experiment 2, the Gulf Stream influence on increasing the

heat flux is clear in the upper left edge of the figure.
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Figure 50: Latent heat flux (left column) (contours every 100 W/m2) and differ-
ences (Current experiment - Control) (contours every 10 W/m2): Experiment 2
(a) and (b); Experiment 7 (c) and (d); Experiment 8 (e) and (f); Experiment 9 (g)
and (h); Experiment 10 (i) and (j) for Sandy on October 29, 2012 at 00:00 UTC
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CHAPTER 6

Conclusions

This study sought to develop a fully coupled ocean-wave model to enhance

understanding of the air-sea momentum flux budget in tropical cyclones and as a

result, improve models of the cold wake. The ocean model component used is the

Princeton Ocean Model (POM) with a 1/12 degree resolution and 23 half sigma

levels. It calculates the ocean temperature and currents driven by a prescribed

wind stress interpolated from hurricane message files generated by the National

Hurricane Center. The wave model used is Wave Watch 3.14 and also has a 1/12

degree resolution. It uses a prescribed wind speed based on the same hurricane

message file and calculates the momentum flux lost to or gained from a growing or

decaying wave field and the momentum flux modified by Coriolis-Stokes forcing.

In the coupled model, the ocean currents are used in the wave model and the wind

stress calculations.

Results of idealized and real hurricane simulations demonstrate clearly that

the altered wind stress (by including the ocean current effect), wave momentum

flux budget, and Coriolis-Stokes forcing significantly alter the momentum flux into

the ocean currents and in turn the cold wake. While the wave momentum flux

budget and reduced wind stress decrease the surface cooling, the Coriolis-Stokes

forcing may lead to increased surface cooling. It is also shown that these three

effects can alter the latent heat flux that fuels hurricanes.

6.1 Wave Field

In the idealized and real hurricane experiments, passing the currents to the

wave equation reduces the significant wave height more than subtracting the sur-

face current in the wind forcing. There are two different effects from the currents
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being passed to the wave equation: the modulation of the wavenumber and in turn

the wave action due to spatial variation of the currents, and the currents adjusting

the wave propagation speed. Given the relatively strong wind forcing, it is more

likely that the wave packet propagation speed being adjusted by the currents is the

more important effect. Since the currents are in the same direction as the wind,

the waves will propagate faster, thus causing them to be in the high wind regions

for a shorter period of time, reducing the wave height.

Combining the faster wave packets with reduced wind would be expected to

lead to the smallest wave fields (as it did for both the idealized and real hurri-

canes). For the idealized experiments, the reductions in wave height are larger for

the faster hurricane translation speed. The larger waves are likely a result of the

higher hurricane translation speed being closer to the wave group velocity (~Cg),

leading to the larger waves remaining under the high wind region of the hurricane

for longer time. For the stationary hurricane and 4.8 m/s translating hurricane,

the waves are able to “outrun” the hurricane, and thus the wind duration is shorter.

Hurricane Irene and Hurricane Sandy both have translation speeds in between the

4.8 m/s and 9.6 m/s translating idealized hurricanes: 5.7 m/s and 6.2 m/s respec-

tively. However, the translation speed and direction varies for real hurricanes along

with the radius of maximum wind and maximum wind speed. Thus, comparing

the significant wave height for the idealized hurricane experiments with the real

hurricane experiments requires some care. Hurricane Irene has a similar maximum

wind speed (MWS) to the idealized experiments and a translation speed slightly

closest to the 4.8 m/s translating idealized hurricane. However, it also has a much

smaller radius of maximum wind (RMW) at the output (19 km) than the idealized

hurricanes. This works against the larger translation speed and slightly higher

maximum wind speed. The surface currents generated by Irene are much larger
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than the background currents during the output time to the right of and close

to the storm track and have a similar magnitude and distribution as the moving

idealized hurricanes. Hence, its wave field and difference plots are similar to the

idealized experiments and closer to the 4.8 m/s hurricane.

Hurricane Sandy has a much larger radius of maximum wind (222 km) and

a significantly lower maximum wind speed (33 m/s) than Irene and the idealized

hurricanes, and its translation speed is slightly higher than Irene’s. The increase in

translation speed effects helps to counteract the weaker wind forcing on the waves.

To the right of the storm track, the translation speed, wind speed, and waves are all

in the same direction, so there is a resonance wind forcing there. Since the waves

tend to move at a faster speed than the hurricanes, a greater translation speed will

lead to the largest waves being in the high wind region for a longer period of time.

However, for higher winds, there are also larger currents that further reduce the

time that the large waves are in the high wind region.

6.2 Currents and Surface Cooling

The wave field is important to the momentum flux into the ocean because

it affects the momentum flux lost to or gained from the wave field growing or

decaying (~τdiff ) and introduces the additional Coriolis-Stokes forcing (~τcor).

Both the moving and stationary idealized hurricanes show the same general

trends from adjusting the momentum flux into the ocean currents (~τc). When

the wave momentum flux (~τdiff ) is included in the calculation of the momentum

flux into the ocean (~τc), there is an overall reduction in cooling with some small,

localized regions of slightly increased cooling. But, the Coriolis-Stokes forcing

alters the surface current vectors more than the modified wind stress or the wave

momentum flux budget primarily by shifting the direction of the surface currents

to the right as opposed to altering the magnitude. This leads to an increased
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divergence of ocean surface currents, which in turn leads to cooler water near the

storm track due to enhanced upwelling.

The momentum flux into the currents (~τc) to the right of the storm track, and

the currents themselves increase with the translation speed. In fact, the stationary

hurricane also has the smallest magnitude reductions in the air-sea momentum flux,

while the 4.8 m/s translating hurricane has the largest reductions of the idealized

hurricanes. For the stationary hurricane, the largest difference between the control

flux and the fully coupled flux is approximately 0.5 N/m2. The difference is about

0.65 and 0.9 N/m2 for the 4.8 and 9.6 m/s translating hurricanes respectfully.

As the translation speed increases, the surface cooling decreases. The change

in surface temperature between the output and initial conditions for the control

(δSST ) is over 9◦C for the stationary hurricane, nearly 6.5◦C for the 4.8 m/s hur-

ricane, and about 3.5◦C for the 9.6 m/s hurricane. The maximum reductions of

cooling in the fully coupled experiments are approximately 0.75, 1.25, and 0.5◦C

for the stationary, 4.8, and 9.6 m/s translating hurricanes respectively. This indi-

cates that for the idealized hurricanes, reducing the duration of the wind is more

important to surface cooling than the changes in the momentum flux resulting

from the various sensitivity experiments.

Hurricane Irene and Hurricane Sandy show more complicated responses to

changes in the momentum flux into the ocean. For both hurricanes, the modified

wind stress and wave momentum flux tend to decrease the cooling to the right of the

storm track. However, there are also sections of increased cooling for Experiment

7 (Wave momentum flux budget experiment) for Irene and Sandy. The increased

cooling for Irene overlaps with local maximum current vector differences with the

control experiment. The increased cooling for Sandy also occurs along a section

of localized maximum current vector differences from the control experiment. The
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modified wind stress also has some sections of increased cooling for both hurricanes,

but they are due to the background Gulf Stream current. Coriolis-Stokes forcing

also increases the cooling near the storm track for Hurricane Irene due to increased

upwelling. But, for Hurricane Sandy, the increased cooling due to the Coriolis-

Stokes forcing occurs in regions more displaced from the storm track along with

two small, localized sections along the track. This is due to the large modification

of the surface currents in Experiment 8 for Hurricane Sandy mostly occurring away

from the storm track.

Results from the real hurricanes suggest that changing the surface currents

will alter the cold wake by either changing the turbulent mixing or increasing or

decreasing the surface divergence and in turn the resulting upwelling. However,

the turbulent mixing process is not uniform or linear. The greatest increases and

reductions in cooling do not necessarily align directly with the regions of the largest

surface current alterations. This points to the importance of subsurface currents,

the nonlinearity of turbulent mixing, and the effect of upwelling resulting from a

divergence of surface currents. Both Irene and Sandy also show that the surface

current magnitude has a greater impact on the cold wake than changes in the

current direction.

Despite the differences in the Irene and Sandy simulations, general results from

both are consistent with those of the idealized hurricanes. The wave momentum

flux budget tends to reduce surface cooling while the Coriolis-Stokes forcing tends

to slightly enhance it. Cooling usually increases slightly along the storm track, but

warming in the cold wake occurs slightly farther from the storm track with the

distances and patterns varying with the specific storms. A faster tropical cyclone

tends to have higher winds, larger waves, and a weaker cold wake. The exact role

of the ocean currents is not obvious and requires further analysis. In addition to
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the surface currents, the vertical current profile and upwelling all affect turbulent

mixing. For the real hurricanes, the background currents are also important.

6.3 Latent Heat Flux

The latent heat flux is the primary mechanism behind hurricane mainte-

nance/intensification. It tends to be largest where the difference between the

sea surface temperature (SST) and the air temperature is the largest. For sim-

plicity, the air temperature is assumed to be spatially uniform in each of these

experiments for both the idealized and real hurricanes. Thus, the flux is smallest

in the cold wake and largest in front of the storms. Since the 4.8 m/s translat-

ing hurricane has a greater cold wake than the 9.6 m/s hurricane, it also has a

more suppressed latent heat flux in the right rear quadrant. It also has less latent

heat reach the atmosphere in front of the storm than the faster moving hurricane

does. The modified wind stress and the wave momentum flux budget (which both

reduce the cold wake) increase the latent heat flux into the atmosphere from the

control, while the Coriolis-Stokes forcing (which increases the magnitude of the

cold wake) reduces the latent heat flux into the atmosphere. The net impact of

the two wave momentum flux components more closely resembles the wave momen-

tum flux budget difference than the Coriolis-Stokes forcing, but does demonstrate

the impact of both (more so for the 9.6 m/s hurricane). Once again, the fully cou-

pled experiment has the largest difference from the control of all of the sensitivity

experiments, proving the importance of all effects working simultaneously to in

some areas increase the latent heat flux, while reducing it in others.

Since the SST is larger in front of Hurricane Irene than Hurricane Sandy,

it is no surprise that the latent heat flux in front of Irene is also larger than its

counterpart in Sandy. Also, the magnitudes of Irene’s cold wake reductions are

larger than Sandy’s, explaining the greater changes in the latent heat flux.
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