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Optimization of Ground- and Excited-State Wave Functions
and van der Waals Clusters

M. P. Nightingale and Vilen Melik-Alaverdian
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

(Received 26 October 2000; published 9 July 2001)

A quantum Monte Carlo method is introduced to optimize excited-state trial wave functions. The
method is applied in a correlation function Monte Carlo calculation to compute ground- and excited-state
energies of bosonic van der Waals clusters of up to seven particles. The calculations are performed using
trial wave functions with general three-body correlations.
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Weakly bound clusters display strong anharmonicity,
and this makes solving the Schrödinger equation for
such systems a formidable computational challenge. The
discrete variable representation (DVR) method [1] was
applied with success to compute the energies of vibrational
states for systems with up to six degrees of freedom.
Its computational complexity scales exponentially with
dimension, a problem that Monte Carlo methods can
avoid. Indeed, correlation function Monte Carlo [2,3]
and the projector operator imaginary-time spectral
evolution (POITSE) [4] methods are applicable to higher-
dimensional systems, although in practice they are re-
stricted to a smaller number of excited states.

The accuracy of Monte Carlo projection methods can be
improved dramatically by employing approximate eigen-
functions. In fact, without good initial approximations,
one rarely obtains results of sufficient accuracy. In this
Letter, we discuss a systematic and efficient method to
construct approximate eigenfunctions by optimization of
many-parameter trial functions. We then use these func-
tions in a correlation function Monte Carlo calculation. We
expect that POITSE calculations can also be improved by
the same means. A variant of the method described here
was applied previously to study critical dynamics of lattice
systems [5,6].

We compute energy levels of bosonic van der Waals
clusters of atoms of mass m, interacting via a Lennard-
Jones potential with core radius s and well depth e. In
dimensionless form, the pair potential is r212 2 2r26 and
the Hamiltonian is H � P2�2m 1 V ; P2�2m and V
are the total kinetic and potential energies. The only
parameter is the inverse dimensionless mass m21 �
h̄2�ms2e, which is proportional to the square of the
de Boer parameter [7].

We use the position representation, and denote by R
the Cartesian coordinates of a cluster of Nc atoms. For the
parameter optimization we generate a sample of configura-
tions Rs, s � 1, . . . , S, sampled with relative probabili-
ties cg�Rs�2; the choice of the guiding function c2

g will
be discussed later. The sample typically consists of sev-
eral thousand configurations, which are kept fixed during
the optimization.

The trial functions are linear combinations of about one
hundred elementary basis functions, each of which de-
pends on nonlinear parameters. Correspondingly, we have
a linear optimization nested in a nonlinear one. The re-
sult is a set of functions serving as basis functions in a
correlation function Monte Carlo calculation. These basis
functions are constructed one at a time, from the ground
state up, as follows.

Suppose we fix at initial values the nonlinear parame-
ters of the elementary basis functions denoted by bi , i �
1, . . . , n. Ideally, these functions span an n-dimensional
invariant subspace of the Hamiltonian H . Then there ex-
ists an n 3 n matrix E so that

H bi�Rs� �
X
j

bj�Rs�Eji . (1)

In that case, for k � 1, . . . , n,

c̃ �k��R� �
X

i

bi�R�d�k�
i (2)

is an eigenvector of H with an eigenvalue Ẽk equal to the
exact energy Ek , if d�k� is a right eigenvector of E with
eigenvalue Ẽk. We rewrite Eq. (1) in matrix form:

B0 � BE , (3)

where Bsi � b̂i�Rs� and B0
si � b̂

0
i�Rs�, with

b̂i � bi�cg and b̂
0
i � H bi�cg.

In practice, the subspace spanned by the basis functions
is not invariant, so that, for given matrices B and B0, Eq. (3)
is an overdetermined set of equations for the unknown
matrix E . If one multiplies through, from the left by BT ,
the transpose of B, one obtains by inversion

E � �BT B�21�BT B0� � N21H . (4)

As readily verified, this is the least-squares solution of
Eq. (3); note that the rows of the matrices B and B0 are
weighted by the guiding function so that the elements of
the matrices N and H approach the standard quantum
mechanical overlap integrals and matrix elements in the
limit of an infinite Monte Carlo sample. Equations (2)
and (4) are usually derived from stationarity (in the linear
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parameters) of the average energy. If the latter is estimated
by a finite-sample average, requiring stationarity of this es-
timate yields Eq. (4) with H replaced by its symmetrized
analog. Since the exact quantum mechanical expression
is indeed symmetrical, one might be inclined to use the
symmetrized H. However, only the nonsymmetric expres-
sion BT B0 in Eq. (4) satisfies the zero-variance principle
of yielding exact results independent of the configuration
sample if the basis functions span an invariant subspace
of the Hamiltonian. As in the ideal case, Eq. (2) deter-
mines the linearly optimized trial functions, but now one
has Ek & Ẽk , an inequality [8] which for a finite Monte
Carlo sample may be violated because of statistical noise.

The solution for E as written in Eq. (4) is numerically
unstable since the matrix N is ill conditioned because of
the near-linear dependence of the bk. The solution to this
problem [9,10] is to use a singular value decomposition
to obtain a numerically regularized inverse B21 [11]. In
terms of the latter, one finds, from Eq. (3),

E � B21B0. (5)

With the linear variational parameters optimized for
fixed nonlinear parameters in the elementary basis func-
tions, we optimize— following Umrigar et al. [12]— the
nonlinear parameters by minimization of

x2 �

P
s�ĉ �k�0�Rs� 2 Ẽkĉ�k��Rs ��2P

s ĉ�k��Rs �2
, (6)

the variance of the local energy of the wave function given
in Eq. (2); again, the guiding function is incorporated via
ĉ�k� � c̃�k��cg and ĉ�k�0 � H c̃�k��cg.

We now address the choice of the guiding function
cg. To obtain acceptable statistical errors, the sample
has to have sufficient overlap with the desired excited
states. In our case, this can be accomplished [2] with
c

p
g � c̃�1� with a power p in the range 2 & p & 3, while

the ground-state wave function c̃�1� is obtained after a few
initial iterations.

The elementary basis functions [13,14] are the final in-
gredient of the computation. They are defined as func-
tions of all interatomic distances rst and scaled variables
r̂st � f�rst�. Here, f maps the interatomic distances
monotonically onto the interval �21, 1� such that most of
the variation occurs where the wave function differs most
from zero; the explicit form of f is not important for the
current discussion.

The elementary basis functions used for energy level k
have nonlinear variational parameters a

�k�
j , and are of the

form

bi�R� � si�R� exp

" X
j

a
�k�
j sj�R�

2
X

s,t

µ
kkrst 1

p
m

5r5
st

∂#
. (7)

s, t, y � 1, . . . , Nc are atom indices. The polynomial si

is characterized by three non-negative integral powers nil:

si�R� �
X

s,t,y

3Y
l�1

�r̂ l
st 1 r̂ l

ty 1 r̂ l
ys�nil . (8)

The prefactor polynomial si has bosonic symmetry, and
contains general three-body correlations, since all polyno-
mials symmetric in x, y, and z can be written as poly-
nomials in the three invariants Il � xl 1 yl 1 zl , with
l � 1, 2, 3 and vice versa [13]. The number of elementary
basis functions is limited by a bound on the total degreeP

l lnil; the polynomials sj in the exponent are of the same
form as those in the prefactor, and their number in Eq. (7)
is similarly limited.

The constant kk is determined self-consistently so that
the wave function has the correct exponential decay in the
limit that a single atom goes off to infinity. Assuming— as
is plausible for the small clusters studied here— that the
energy of a cluster is roughly proportional to the number
of atom pairs [15], we find

kk �
2

Nc 2 1

s
2mẼk

Nc
. (9)

The r25
st term in Eq. (7) ensures that H bi�bi has

a weaker divergence than with r212
st in the limit

rst ! 0 [13].
States of higher energy are found with the same opti-

mization scheme by using the appropriate eigenvector d�k�

of the matrix E in Eq. (2). We use the same scaling func-
tion f for all states, but different nonlinear parameters a

�k�
j

and kk. This scheme works as long as the trial functions
possess the variational freedom accurately to represent the
eigenstates. Otherwise, for the Monte Carlo samples of
the size we are using, states may be skipped or spuriously
introduced. We found it useful to check the consistency
of eigensystems obtained with this basis set and one that
includes the variational wave functions of previously de-
termined, lower-lying states.

Instead of the hybrid method discussed in this Letter,
which treats linear and nonlinear variational parameters
differently, we originally attempted to use minimization
of the variance of the energy for both types of parameters
simultaneously. Although that works for statistical me-
chanical applications [6], it fails here, except for the low-
est two or three energy levels. We could only make this
work (and even then only for small de Boer parameters) for
higher levels by first constructing approximate wave func-
tions using a conventional approximation, and then fitting
these functions by the basis functions used in this Letter.
Finally, the parameter values obtained in these fits served
as starting values for further optimization [16].

We used the optimized trial wave functions as basis
functions in a correlation function Monte Carlo calcula-
tion [2,3]. Formally, this means that the n elementary basis
functions bi are replaced by a small number of functions
exp�2 1

2 tH �c̃�k�. For this part of the computation, the
analog of Eq. (4) is used to compute eigenvalues, rather
than Eq. (5). The singular value decomposition (SVD)
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cannot be used for the correlation function Monte Carlo
because there are too many configurations Ra to store the
required matrices B and B0. However, since the optimized
basis functions are few in number and roughly orthonor-
mal — at least for small projection times t— the SVD is
not essential in this case.

Before we present estimates of the excited state ener-
gies, we discuss the sources of error of this method [2].
In addition to the statistical errors, there are two system-
atic errors. For any finite projection time t and in the limit
of vanishing statistical errors, the energies computed by
this method are upper bounds to the exact energies [8]. In
practice, since the statistical errors increase with projection
time, one should choose the smallest projection time such
that the projection and statistical errors are of the same or-
der of magnitude. To pinpoint that time, one has to distin-
guish real trends from false trends due to correlated noise.
This is always tricky, but a troublesome detail is that at that
point the results tend to have a non-Gaussian distribution
[17], which makes it difficult to produce error bars with a
well-defined statistical meaning. In addition, there is the
time-step error, which arises because the imaginary-time
evolution operator exp�2tH � has to be evaluated as the
limit t ! 0 of �exp�2tH � 1 O�t2��t�t , but this error is
much easier to control.

Next we present results for excited-state energies for
clusters with up to seven atoms. We computed energies
for trimers of Ne, Ar, Kr, and Xe (m21 � 7.092 3 1023,
6.9635 3 1024, 1.9128 3 1024, and 7.8508 3 1025).
Since our variational functions contain general three-body
correlations, the accuracy of the wave functions and
energies for the trimers can be improved without any
apparent limit other than the machine precision. During
optimization of the wave functions for the trimers, we
typically start with the ground-state wave function which
has a prefactor degree of 5 or 6. For the trimers we
chose not to vary the polynomial coefficients in the
exponent and simply used the fixed terms required by the
boundary conditions. The quality of the wave functions
may be improved by varying polynomial coefficients in
the exponent, and for larger clusters it becomes important
to include such polynomials.

For the optimization we used samples consisting of 4000
configurations, and we gradually increased the prefactor
degree to improve the quality of the trial functions. For
Ne trimers we performed diffusion Monte Carlo [18] cal-
culations using optimized wave functions with prefactor
degrees up to 14. Although, in principle, for trimers noth-
ing should preclude further improvement, the observed
changes were statistically insignificant in the 12 to 14 de-
gree range. Table I contains results for degree 12.

There was no statistically significant difference between
time steps t � 0.4, 0.2, and 0.1, and thus no noticeable
time-step error. In the diffusion Monte Carlo calculations
we used 1.3 million Monte Carlo steps. For Ar, Kr, and
Xe trimers we found that the quality of the wave functions

TABLE I. Energy levels Ek of the rare gas trimers; the errors
are estimated to be a few units in the least significant digit.

k Ne3 Ar3 Kr3 Xe3

1 21.719 560 22.553 289 43 22.760 555 34 22.845 241 50
2 21.222 83 22.250 185 5 22.581 239 0 22.724 955 8
3 21.142 0 22.126 361 22.506 946 8 22.675 064 8
4 21.038 21.996 43 22.412 444 22.608 615
5 20.890 21.946 7 22.387 973 22.592 226

does not improve beyond the prefactor degree 10. The
results in Table I for the three more massive noble gas
atoms were obtained using trial wave functions with such
polynomials. Convergence with respect to the time step
was established by comparing t � 0.8, 0.6, and 0.4. The
number of Monte Carlo steps is the same as for Ne. Except
for the energy of the fifth level of Ne, which is 0.009 too
high, the results in Table I agree with, and in some cases
improve upon, those of Leitner et al. [15].

In Table II we present results for the energies of the first
five levels of Ar clusters of sizes four through seven. Our
method allows one to go beyond seven atom clusters, but
as one can see from Table II the statistical error increases
with system size. To obtain more accurate results for larger
clusters it would probably be helpful to include higher
order correlations in the wave function. In the calculations
for four through seven atom clusters we used a 10 degree
prefactor and an exponent of degree 3. Again, 1.3 million
step diffusion Monte Carlo results were compared for t �
0.8, 0.6, and 0.4.

As to the performance of our method as the mass m
decreases and the atoms become more weakly bound, we
find that both the optimization and the projection meth-
ods begin to fail, because the elementary basis functions
lack the required variational freedom. This breakdown is
illustrated in Fig. 1, which contains three energy levels as
a function of mass for a 4 atom cluster. The results are
plotted using variables chosen so that there is linear de-
pendence both for large masses and for energies close to
zero [14]. As the energy of the levels approaches zero,
the scatter in the data points increases, and ultimately the
method fails to produce reliable results. Again, the use of
trial wave functions with four-body correlations is likely
to make it possible to continue to smaller masses.

TABLE II. Energy levels of Ar clusters of up to seven atoms;
the errors are estimated to be a few units in the least significant
digit.

k Ar4 Ar5 Ar6 Ar7

1 25.118 11 27.785 1 210.887 9 214.191
2 24.785 27.567 210.561 213.969
3 24.674 27.501 210.51 213.80
4 24.530 27.39 210.46 213.74
5 24.39 27.36 210.35 213.71
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FIG. 1. 2
p

2Ek of lowest three levels (k � 1, 2, 3) for 4 atom
clusters vs m21�2. The estimated errors for most energies are
smaller than the plot symbols, and increase for decreasing mass.
Missing data points indicate that no reliable estimates were ob-
tained. The vertical arrows indicate Kr, Ar, Ne, and He; the
horizontal arrow indicates the classical value 2

p
6.

As mentioned earlier, exponential scaling with dimen-
sionality limits the applicability of the DVR method. We
can only speculate how the Monte Carlo method discussed
here scales, since the accuracy of the results is determined
mostly by the elusive quality of the basis functions. It is
precisely the degradation of the trial functions which is re-
sponsible for the big differences in accuracy among the
results we presented. Clearly, more highly excited states
have more structure, but the harmonic approximation sug-
gests that the corresponding increase in complexity scales
with a low power of the excitation level. It is plausible
that it suffices to include in the elementary basis functions
n-body correlations up to some finite order n only, which
suggest polynomial complexity for the computation of the
basis functions. Much evidence suggests that the projec-
tion stage of the calculations also scales with a small power
of system size. We performed the projection part of the
calculations by a variant of pure diffusion Monte Carlo
[2,19]. The statistical noise of this approach for large sys-
tems increases exponentially, but there are alternatives to
avoid this, and there it is likely that the usual power law
behavior of diffusion Monte Carlo methods [20] can be re-
covered. Let it suffice to say that the longer runs typically
took a few hours, on a Four Processor SGI Origin 200, to
produce the results presented here.
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