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Radiative Corrections and Quantum Chaos

Yuri A. Dabaghian

Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881
(Received 4 June 19%6

This Letter discusses the question of how the white noise of radiative corrections affects the chaotic
properties of an original quantum system. It is shown, by an explicit mathematical analysis, that the
radiative corrections, in effect, remove the original chaos in the system. [S0031-9007(96)01180-5]

PACS numbers: 05.45.+b, 03.65.5Sq, 05.40.+j, 11.10.-z
One of the most interesting questions in the theory of m Xy _ P,(r) — gA%(X). 2)
quantum chaotic systems is the question about the inter- dr K’

relations between the chaos and the quantum fIuctuation)'g\.na“yzing the behavior of that dynamical system, one

This question will be studied below in the example of a new.,, make some interesting statements about the quantum

m_odel of quantum chaos, sugges_te_d recently@n Ref. [1]. 'Eystem described by the Green's functioif)(4%). For

will be demonstrated that the radiative corrections can sURfstance. if the system (2) is chaotic then (see [2])

press the chaos found in the exact QED Green's functionge Green's function unavoidably inherits ultrasensitive

of potential theory. The possible mechanism of chaos SURyependence on the initial conditions, which are expressed

pression is discussed below in detail. in terms of functional variabl®, (7). This situation, as
The chaotic behavior of the quantum system can bepgyn in [1] and [2], can be naturally interpreted as chaos

understood by analyzing the expression for the Green's, 5 quantum system.

function of the system: The dynamical system (1) describes the motion of a

particle of “momentum’P () in an electromagnetic field

GO%x,y | A% = [ dre "™[dX]|F (X, T) in terms of its vector potential. This is analogous to the
0 X relation between the generalized momentum of a particle
X 6(—“ - lPM + &40 (X)), and it's velocity,mdjj + gAY (X) = P,, for the particle
dr m m *

that moves along the geodesics of the connecﬁﬁn

The interesting question is: If this is really a quantum

chaos system, then how can the quantum fluctuations (the
which is equivalent to what was obtained in [1] us-radiative corrections), which naturally appear in a real

ing the Fradkin representation. Hetreis the “proper physical system, change the result?

time” of the particle, and the exact form @t(X, 7) is The system with quenched radiative corrections is

specified and discussed in Ref. [2]. The important feagescribed by the Green’s functian,

ture of (1) is that this expression contains explicitly the
8(%% — 4P, — £A%(X)) under the integral, so that the G = ¢ /2 [3/040D0 61080 o),

m

functional integration over the trajectori&s, () actually
goes over the solutions to the effective dynamical systefmzvhich, as shown in [1], can be presented in the form

(1)

G — f [dX]dre ™ o178 [0 [, dmidmldX, /dr—(1/m)P,—(g/mALXOKnIK }72)[dX, /d7a—(1/m)P,— (g /m)AS, (X)]

1
X F(X,7) = (detk, )2,
g

where(7|K ., |72) = g°D,, (71, 72), and D, (1, 72) is the photon propagator. So tlefunctional is replaced by a

smooth Gaussian distribution. Seemingly, the previous analysis is not applicable anymore to the system, as far as we
are not restricted to the solutions of any dynamical system; and, consequently, one cannot ascribe dynamic Lyapunov
exponents to the paths, as in (1). But, actually, using a simple transformation, one can restofarttigonal in the
expression for the Green'’s function. Let us write the expressio for the form

¢ zf[dA][ f dre T (1/8) [0 [ drmdna(a,=A0)mIK L Im) (4, - AD)

di: _ % P, - %AM(X)>F(X,T) [dX]. 3)

X (detK;;)l/z(s(
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Here we have introduced a new functional variah)g  distributed around the initial system (1) described by
and an additional integration over it, which due to theA?. To understand the dynamical properties of the
5(%” — %pﬂ — %A,L(X)) is trivial, can be performed ensemble, we have to understand how “chaotic” a typical

explicitly, and evidently does not change the result. Butsystem in the ensemble is, and how the different systems
now the last three term§©(x, y, r | A%) = f5[ddﬁ —  contribute to the whole picture. Although the force
2 b T

1 g ; o functions A, are “g close” to the original chaotict’

—P, — 2A,(X)]F(X,7)[dX]in (3) resemble the initial . © AN “

m* M m‘pm 5

expression for the Green’s functio6,”(4), without the !N tphe sense o;;lthe d|str|bL:t|pr|1 (5'),t somsl O_f the systems
radiative corrections, although defined on the solutions tg the ensemble are certainly integrable, even more,

some other dynamical system. It should be mentioned 'S well_known _that integrab!e trajectories are dense
that, as far as we have only one integration over the utime,around each nonintegrable trajectory, so these functions

7 for the whole ensemble, th@®'’s are not exactly the Ay, which correspond to the integrable systems, are not

Green’s functions of the systems. In other words, thd '€ [S]Id' o th | princiol f ¢
systems in the ensemble are not independent, the Gaussiahﬁa‘c.Cor Ing to the general principles of gquantum me-
chanics, in order to find the probability of a particle to

distribution mixes them up. The variabfeintroduced in ; . . dd th babil
(3) would stand for the “force function” of that dynamical go from pointx to pointy, one must add the probability
amplitudes of the transition, and calculate the square of

system, the modulus of this sum:
1704
e - a0, @ :
Tom tom v | St — )
The Green’s function then becomes i
= D lile = )P + X e = g — y).

G(x,y) _ f e—(l/gz)f; f; dryd7y (A, —A%) (11K T2) (A, —AY) i

X (det KW)I/ZG(O)(x,y, 7 | A)[dA]. (5)  The first term on the right hand side gives the probability

flow along each individual amplitude, and the second one

One can see from this expression that the tdtalis is the interference term. In our case, if one takes the

a result of the averaging over the infinite ensemblesquare of modulus of the expression (5), and retains only

of dynamical systems, where each system has its owthe term that describes the probability flow along each
force functionA,, and that thesed,’s are Gaussian system, then

_ f oW [ [T amidri iRl (A =0+ (/%) [T [ dridrh(a, =402 1K 72) (A, =AY,

X (det K,)G(x,y, 71 | ADG"(x,y, 72 | A2)[dA1[dA2] 14, =4,

_ 2 71 71 ! ! __ A0 ! ! __ A0 - -~
_ fe (l/g)f72 ‘[72 dridTy(A, A#)<T]|K,Ur|7'2>(Ay A,,)(det KMV)I/ZG(X,y,Tl |A)G*(X,y,7'2 |A) [dA] (6)

The variable$dA|] and[dA,], which appear in the second order functional integraifoare defined over the different
intervals of time, so for the diagonal part of the sum, wign= A,, the probabilityw can be represented as a single
integration over the variablgiA], which is the same over the whole time scale. The evaluation of the determinant
detkK,, in (6) is different from that in (5) (see [4]), so it retains its powee.

The interference is not important for most of the amplitudes, since the lengths of the trajectories for different systems
and hence their phases are very different, so the main contribution to the probability sum should come from (6), and
this is the only contribution considered here. In the Fradkin representation [5] the explicit expression for the Green’s
functionG©(x,y | A) has the form

GO,y | A) = if dT[[dv]
0
% e—irmei _[;dT/va(T,)[m _ 'yMUM(T)]e_ig ‘[;dT’y#(T’)A#(y_f; v)

% (eg f;dT’(r“"(T’)Fw,(y—f; U))+5<x —y + [

0

’ v>. @)
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Now, using the substitution,, = ‘Z(—:, and the “identity”  exponential terms of the previous expression we will have

x —y + [yvdr' = 0 (the argument of thé function),

one has * ;
GO®%,y | A) = i] dre” '™ | [m — yuv,]
0

© . .o d L[
G(O)(X,y | A) — lj;) dre m-mel ‘/‘y vy X[I.I:m _ ’)/MU#(T)] > el fy[(dXH/dT)‘FgA“(X)]dXH
i [ AudX,( g [ Fu(X)ordx, *F o (X)ohdX,,
x o LAt ), [av:]. X (f LE 0y 141 @)

The integration in the exponents goes over a path) 5
such that = 7/ = r, and[dy,] represents the functional The functionG(x,y, r |~A) has no integration over, so
integration over all paths. Combining the first two we finally have for thdG(x,y, 7 | A)|* the following:

Glx,y, 71 | AG*(x,y, 72 | A) = [[[dyl][dyz]e"(“_“)mlm — Yuvul?

=i ["VldXu/dr+eA OhdX,+i [ aX, /AT +gAu (X bdX, | (g [ Fu(X)otrdX,
X e y ’ e 7

y

|2

+

(9)

I
The integration in the two different brackets in the Here one can see the type of solutions needed to extremize
exponent goes over two different pathd ;) andy,(7,).  the functional (9). One solution should start at the point
In order to understand where the main contributionx and come to the point by the timer;, and the other
to the total probability comes from, we shall look at should go back fromy to x, starting at the timer,.
the saddle point of the expression (6). In Feynmann'sThe “back path”vy, is different from y;. We did not
formalism, a typical Green’s function is obtained from thechange the sign of, so y, is not, generally speaking,

functional integral v1(—=7). The system needs, indeed, two kinds of solutions
G(x.y) = [ S gl y] to minimize (9). The possibility exists, for example, if
4 vl the system (4) is integrable that it has closed periodic

where the “saddle point” of the functiondl is given trajectories. In this case, the system can return back to the
by the classical solutiog’>~ = 0. In the same way, in Starting point, and then repeat this process infinitely many
=i [ax /d:E:LA (X)]dx i [ Paax times. It's solutions simply wind around tori in the phase
the expressiom 7+ " . "=e J» " ""the space and yield closed loops. Hence the integrable system
path that corresponds to the solution‘—?{ﬁt + gA,(X) =  can appear at the point (or x) at different moments of
P, will extremize the functional. This means, in turn, time 7, 73,..., 7., ..., and these moments of time are not
that the exponent in the expression (9) finds it's extremunarbitrary, since the system performs periodic motion. The
value on the two paths. If we change the order ofcharacteristic frequencies of the system should satisfy
integration in the second integral

y(m) rdX =
if <_M- + gA,Ud(X)>dX/L winy + wyny + + wpng 0,
x(0) dr
. X0 rdX, which relation guarantees that there are closed-loop paths
—_— 1 + gAM(X) dXM 5 .
v\ dT in the phase space. In the case when= 7, the sum of

two exponents (10) gives a single integration over a closed
loop. And whenr; and 7, are not equal, then between
y(m) fdX . . o
[ < B gA,L(X)> dx,, these moments of time the trajectory will simply run over
x(0) dr o the tori several times. Thus, for the integrable trajectories
O rdx i
n f < B gAM(X)>dX,L. (10) f[he sum of two exponents in (10) can be presented as an
() integration over a closed loop,

then the total argument of the exponents will be

[ i, o [ (st of (2
x dr )78 e\ dT A c\ dr AN
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where fC(T) is the integration over the periodj, =  motion is not completely restricted by the integrals of
A,(X,). The number of times the solution winds aroundmotion “diffuses” in phase space in between the web of
a torus,n, is just one of the guantum numbers of thethe rational tori. Formula (9) predicts, in fact, the same
system. thing. A system will use the available tori in phase space
In any case, if we are looking for the saddle pointtO minimize the integral (9), but if the number of integrals
trajectories for the expression (10), one must consider thi less than the number of degrees of freedom, part of it's
solutions according to which system (4) appears twice airajectories will wander all over the phase space and yield
the same point, at the moments of timgand r,. This  Some “diffusion.” But once the radiative corrections are
is actually a rather strong requirement that is imposed oficluded, the situation becomes very different. According
the system. For instance, if a system is not completelyo the distribution (1), the particle could choose among
integrable, then it has solutions which do not wind aroundhe different trajectories—solutions to the system (2)—
any tori, they simply cover the whole phase space. |pout according to the distribution (6) it can now choose
that kind of trajectory will appear in the vicinity of the the system which provides the most suitable trajectories.
same point more than once, it will do it, firstly, fairly Thus the particle tends to go along the “virtual tori,”
irregularly, and, secondly, after a very long period ofwhich appear as the result of quantum fluctuations in
time, which is certainly longer than any characteristicchase space. In the limg — 0, when the Gaussian
time — for most of the integrable trajectories [4]. For d|_str_|but|00n shrinks and yields thé function of the
these reasons the trajectories that are chaotic will not givariginal A, system, all field fluctuations disappear and so
a serious contribution to the expression (9). The mairflo the virtual tori; the_ particle starts to dn‘fuse_accordmg
contribution of (9) comes from the integrable trajectoriesto the Arnold scenario, and the system again becomes
of the system (1). In other words, the larger the amount OphaOtIC.. Tha’F means that the “white noise of the radiative
integrable trajectories of a system, the more will be theiccorrections,” in effect, restructures the phase space, and,
contribution in the sum (9) . as a result, removes the original chaos of Fhe system.
So, at this point, we can see that for each system in theince these arguments lead to the conclusion that the
expression (9) the majority of the trajectories will not give MagnituddG.(x, y)| [of the two-point function containing
an important contribution. According to (9), the main duantum fluctuations of the field,,(z) appearing in the
contribution to the probability of a system which is not Green’s functionG.(x, y | A)] should not be sensitive to
completely integrable (where some of it's trajectories arechaotic fluctuations, it follows that chaos can appear only
integrable and some are not) should flow along the intel the phase of this two-point function. _ _
grable paths. The amount of integrable trajectories in the | @m grateful to Professor H. M. Fried for introducing
original chaotic system (2) is probably not that large, butme to the problem and for stimulating discussions. | have
the fluctuations ofA° in phase space language producea!so be_neflted greatly from the helpfu_l suggestions and
something like “fluctuating tori,” which appear and disap-discussions of Professor A. E. Meyerovich.
pear all the time. These tori create additional integrable
trajectories, and the biggest contribution in (9) comes ex-
actly from these integrable, “fluctuating” trajectories in
the ensemble. Thus the probability flo@kng the web
of the “virtual,” resonant tori in phase space, the tori

for which the conditionw n; + wany + -+ + wrng = [1] H.M Fried, Y. Gabelini, and B. H.J. McKellar, Phys. Rev.
0 holds. Even the majority of the irrational tori drop off. Lett. 74, 4373 (1995); H. M. Fried and Y. Gabelini, Phys.
An irrational torus should be “almost rational” in order Rev. D51, 890 (1995).

to give a significant contribution. That is, if the “irra- [2] H.M. Fried, Y. Gabelini, and B.H.J. McKellar, Phys.
tionality” of the torus can be approximated by a rational __ Rev. D 51, 7083 (1995).. ,

number, then the trajectories can appear in a given small3l L E. Reichl, The Transition to ChaogSpringer-Verlag,
vicinity of certain points rather regularly. On the other 4] l\l\/llevcv Ygﬂ;\ﬁi?bha(}s in Classical and Quantum Me-
hand, one can say that a dynamical system is as mucIJi cHaﬁics(Springe}-Verlag Berlin, 1990)

integrable as it has independent “closed loop” solutions.[S] E.S. Fradkin, Nucl, Phy,/s76, 588 (1966); H.M. Fried,
In this sense, the largest contribution to the integral (9) "~ Functional Methods and Eikonal Mode{&dition Fron-

comes from the integrable systems of the ensemble. tieres, Gif-sur-Yvette, France, 1990).
There is a rather beautiful effect in classical mechanics[6] V.I. Arnol'd, Russ. Math. Surveyl8, 9 (1963);18, 85
known as “Arnold diffusion” [6]. A particle whose (1963); B. V. Chirikov, Phys. Refb2, 265 (1979).
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