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Radiative Corrections and Quantum Chaos

Yuri A. Dabaghian
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

(Received 4 June 1996)

This Letter discusses the question of how the white noise of radiative corrections affects the chaotic
properties of an original quantum system. It is shown, by an explicit mathematical analysis, that the
radiative corrections, in effect, remove the original chaos in the system. [S0031-9007(96)01180-5]

PACS numbers: 05.45.+b, 03.65.Sq, 05.40.+j, 11.10.–z

One of the most interesting questions in the theory of
quantum chaotic systems is the question about the inter-
relations between the chaos and the quantum fluctuations.
This question will be studied below in the example of a new
model of quantum chaos, suggested recently in Ref. [1]. It
will be demonstrated that the radiative corrections can sup-
press the chaos found in the exact QED Green’s functions
of potential theory. The possible mechanism of chaos sup-
pression is discussed below in detail.

The chaotic behavior of the quantum system can be
understood by analyzing the expression for the Green’s
function of the system:

Gs0dsx, y j A0d 
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0
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which is equivalent to what was obtained in [1] us-
ing the Fradkin representation. Heret is the “proper
time” of the particle, and the exact form ofFsX, td is
specified and discussed in Ref. [2]. The important fea-
ture of (1) is that this expression contains explicitly the
dsssdXm

dt 2
1
m Pm 2

g
m A0

msXdddd under the integral, so that the
functional integration over the trajectoriesXmstd actually
goes over the solutions to the effective dynamical system:

m
dXm

dt
 Pmstd 2 gA0

msXd . (2)

Analyzing the behavior of that dynamical system, one
can make some interesting statements about the quantum
system described by the Green’s functionGs0dsA0d. For
instance, if the system (2) is chaotic then (see [2])
the Green’s function unavoidably inherits ultrasensitive
dependence on the initial conditions, which are expressed
in terms of functional variablePmstd. This situation, as
shown in [1] and [2], can be naturally interpreted as chaos
in a quantum system.

The dynamical system (1) describes the motion of a
particle of “momentum”Pmstd in an electromagnetic field
in terms of its vector potential. This is analogous to the
relation between the generalized momentum of a particle
and it’s velocity,m

dXm

dt 1 gA0
msXd  Pm, for the particle

that moves along the geodesics of the connectionA0
m.

The interesting question is: If this is really a quantum
chaos system, then how can the quantum fluctuations (the
radiative corrections), which naturally appear in a real
physical system, change the result?

The system with quenched radiative corrections is
described by the Green’s functionG,

G  e2siy2d
R

sdydAmdDmnsdydAmdGs0djA!0 ,

which, as shown in [1], can be presented in the form
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wherekt1jKmnjt2l  g2Dmnst1, t2d, andDmnst1, t2d is the photon propagator. So thed functional is replaced by a
smooth Gaussian distribution. Seemingly, the previous analysis is not applicable anymore to the system, as far as we
are not restricted to the solutions of any dynamical system; and, consequently, one cannot ascribe dynamic Lyapunov
exponents to the paths, as in (1). But, actually, using a simple transformation, one can restore thed functional in the
expression for the Green’s function. Let us write the expression forG in the form
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Here we have introduced a new functional variableAm,
and an additional integration over it, which due to the
dsssdXm

dt 2
1
m Pm 2

g
m AmsXdddd is trivial, can be performed

explicitly, and evidently does not change the result. But
now the last three terms̃Gs0dsx, y, t j A0d ;

R
dfdXm

dt 2
1
m Pm 2

g
m AmsXdgFsX, td fdXg in (3) resemble the initial

expression for the Green’s function,Gs0dsAd, without the
radiative corrections, although defined on the solutions to
some other dynamical system. It should be mentioned
that, as far as we have only one integration over the “time”
t for the whole ensemble, thẽGs0d’s are not exactly the
Green’s functions of the systems. In other words, the
systems in the ensemble are not independent, the Gaussian
distribution mixes them up. The variableA introduced in
(3) would stand for the “force function” of that dynamical
system,

dXm

dt


1
m

Pm 2
g
m

AmsXd . (4)

The Green’s function then becomes
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One can see from this expression that the totalG is
a result of the averaging over the infinite ensemble
of dynamical systems, where each system has its own
force function Am, and that theseAm’s are Gaussian

distributed around the initial system (1) described by
A0

m. To understand the dynamical properties of the
ensemble, we have to understand how “chaotic” a typical
system in the ensemble is, and how the different systems
contribute to the whole picture. Although the force
functions Am are “g close” to the original chaoticA0

m

in the sense of the distribution (5), some of the systems
in the ensemble are certainly integrable; even more,
it is well known that integrable trajectories are dense
around each nonintegrable trajectory, so these functions
Am, which correspond to the integrable systems, are not
rare [3].

According to the general principles of quantum me-
chanics, in order to find the probability of a particle to
go from pointx to point y, one must add the probability
amplitudes of the transition, and calculate the square of
the modulus of this sum:
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The first term on the right hand side gives the probability
flow along each individual amplitude, and the second one
is the interference term. In our case, if one takes the
square of modulus of the expression (5), and retains only
the term that describes the probability flow along each
system, then
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The variablesfdA1g andfdA2g, which appear in the second order functional integral forw, are defined over the different
intervals of time, so for the diagonal part of the sum, whenA1  A2, the probabilityw can be represented as a single
integration over the variablefdAg, which is the same over the whole time scale. The evaluation of the determinant
detKmn in (6) is different from that in (5) (see [4]), so it retains its power1y2.

The interference is not important for most of the amplitudes, since the lengths of the trajectories for different systems
and hence their phases are very different, so the main contribution to the probability sum should come from (6), and
this is the only contribution considered here. In the Fradkin representation [5] the explicit expression for the Green’s
functionGs0dsx, y j Ad has the form
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2667



VOLUME 77, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 23 SEPTEMBER1996

Now, using the substitutionym 
dXm

dt , and the “identity”
x 2 y 1

R
t

0 ydt0  0 (the argument of thed function),
one has
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The integration in the exponents goes over a pathgst0d
such that0 # t0 # t, andfdgtg represents the functional
integration over all paths. Combining the first two

exponential terms of the previous expression we will have
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The functionG̃sx, y, t j Ad has no integration overt, so
we finally have for thejG̃sx, y, t j Adj2 the following:
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(9)

The integration in the two different brackets in the
exponent goes over two different pathsg1st1d andg2st2d.

In order to understand where the main contribution
to the total probability comes from, we shall look at
the saddle point of the expression (6). In Feynmann’s
formalism, a typical Green’s function is obtained from the
functional integral
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Z
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where the “saddle point” of the functionalS is given
by the classical solutiondS

dxstd  0. In the same way, in

the expressione
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path that corresponds to the solution to

dXm

dt 1 gAmsXd 
Pm will extremize the functional. This means, in turn,
that the exponent in the expression (9) finds it’s extremum
value on the two paths. If we change the order of
integration in the second integral
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then the total argument of the exponents will beZ yst1d
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µ
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Here one can see the type of solutions needed to extremize
the functional (9). One solution should start at the point
x and come to the pointy by the timet1, and the other
should go back fromy to x, starting at the timet2.
The “back path”g2 is different from g1. We did not
change the sign oft, so g2 is not, generally speaking,
g1s2td. The system needs, indeed, two kinds of solutions
to minimize (9). The possibility exists, for example, if
the system (4) is integrable that it has closed periodic
trajectories. In this case, the system can return back to the
starting point, and then repeat this process infinitely many
times. It’s solutions simply wind around tori in the phase
space and yield closed loops. Hence the integrable system
can appear at the pointy (or x) at different moments of
time t2, t3, . . . , tn, . . . , and these moments of time are not
arbitrary, since the system performs periodic motion. The
characteristic frequencies of the system should satisfy

v1n1 1 v2n2 1 · · · 1 vknk  0 ,

which relation guarantees that there are closed-loop paths
in the phase space. In the case whent1  t2 the sum of
two exponents (10) gives a single integration over a closed
loop. And whent1 and t2 are not equal, then between
these moments of time the trajectory will simply run over
the tori several times. Thus, for the integrable trajectories
the sum of two exponents in (10) can be presented as an
integration over a closed loop,

Z yst1d
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1 gAm

∂
dXm 1

Z x
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where
H

CsTd is the integration over the period,Am 
Am

°
Xm

¢
. The number of times the solution winds around

a torus,n, is just one of the quantum numbers of the
system.

In any case, if we are looking for the saddle point
trajectories for the expression (10), one must consider the
solutions according to which system (4) appears twice at
the same point, at the moments of timet1 and t2. This
is actually a rather strong requirement that is imposed on
the system. For instance, if a system is not completely
integrable, then it has solutions which do not wind around
any tori, they simply cover the whole phase space. If
that kind of trajectory will appear in the vicinity of the
same point more than once, it will do it, firstly, fairly
irregularly, and, secondly, after a very long period of
time, which is certainly longer than any characteristic
time 1

v for most of the integrable trajectories [4]. For
these reasons the trajectories that are chaotic will not give
a serious contribution to the expression (9). The main
contribution of (9) comes from the integrable trajectories
of the system (1). In other words, the larger the amount of
integrable trajectories of a system, the more will be their
contribution in the sum (9) .

So, at this point, we can see that for each system in the
expression (9) the majority of the trajectories will not give
an important contribution. According to (9), the main
contribution to the probability of a system which is not
completely integrable (where some of it’s trajectories are
integrable and some are not) should flow along the inte-
grable paths. The amount of integrable trajectories in the
original chaotic system (2) is probably not that large, but
the fluctuations ofA0 in phase space language produce
something like “fluctuating tori,” which appear and disap-
pear all the time. These tori create additional integrable
trajectories, and the biggest contribution in (9) comes ex-
actly from these integrable, “fluctuating” trajectories in
the ensemble. Thus the probability flowsalong the web
of the “virtual,” resonant tori in phase space, the tori
for which the conditionv1n1 1 v2n2 1 · · · 1 vknk 
0 holds. Even the majority of the irrational tori drop off.
An irrational torus should be “almost rational” in order
to give a significant contribution. That is, if the “irra-
tionality” of the torus can be approximated by a rational
number, then the trajectories can appear in a given small
vicinity of certain points rather regularly. On the other
hand, one can say that a dynamical system is as much
integrable as it has independent “closed loop” solutions.
In this sense, the largest contribution to the integral (9)
comes from the integrable systems of the ensemble.

There is a rather beautiful effect in classical mechanics
known as “Arnold diffusion” [6]. A particle whose

motion is not completely restricted by the integrals of
motion “diffuses” in phase space in between the web of
the rational tori. Formula (9) predicts, in fact, the same
thing. A system will use the available tori in phase space
to minimize the integral (9), but if the number of integrals
is less than the number of degrees of freedom, part of it’s
trajectories will wander all over the phase space and yield
some “diffusion.” But once the radiative corrections are
included, the situation becomes very different. According
to the distribution (1), the particle could choose among
the different trajectories—solutions to the system (2)—
but according to the distribution (6) it can now choose
the system which provides the most suitable trajectories.
Thus the particle tends to go along the “virtual tori,”
which appear as the result of quantum fluctuations in
phase space. In the limitg ! 0, when the Gaussian
distribution shrinks and yields thed function of the
original A0

m system, all field fluctuations disappear and so
do the virtual tori; the particle starts to diffuse according
to the Arnold scenario, and the system again becomes
chaotic. That means that the “white noise of the radiative
corrections,” in effect, restructures the phase space, and,
as a result, removes the original chaos of the system.
Since these arguments lead to the conclusion that the
magnitudejGcsx, ydj [of the two-point function containing
quantum fluctuations of the fieldAmszd appearing in the
Green’s functionGcsx, y j Ad] should not be sensitive to
chaotic fluctuations, it follows that chaos can appear only
in the phase of this two-point function.

I am grateful to Professor H. M. Fried for introducing
me to the problem and for stimulating discussions. I have
also benefited greatly from the helpful suggestions and
discussions of Professor A. E. Meyerovich.
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