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Critical properties of the one-dimensional spin-12 antiferromagnetic Heisenberg model
in the presence of a uniform field

A. Fledderjohann, C. Gerhardt, K. H. Mu¨tter,* and A. Schmitt
Department of Physics, University of Wuppertal, D-42097 Wuppertal, Germany

M. Karbach
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881

~Received 12 April 1996!

In the presence of a uniform field the one-dimensional spin-1
2 antiferromagnetic Heisenberg model develops

zero frequency excitations at field-dependent ‘‘soft-mode’’ momenta. We determine three types of critical
quantities, which we extract from the finite-size dependence of the lowest excitation energies, the singularities
in the static structure factors and the infrared singularities in the dynamical structure factors at the soft mode
momenta. We also compare our results with the predictions of conformal field theory.
@S0163-1829~96!08734-6#

I. INTRODUCTION

In this paper we are going to study the zero-temperature
dynamics of the one-dimensional spin-1

2 antiferromagnetic
Heisenberg model

H[2(
x51

N

SW ~x!SW ~x11!22B(
x51

N

S3~x! ~1.1!

in the presence of a uniform external fieldB. The quantities
of interest are the dynamical structure factors at fixed mag-
netizationM[S/N:

Sa~v,p,M ,N!5(
n

d@v2~En2Es!#u^nuSa~p!us&u2,

a53,1,2. ~1.2!

They are defined by the transition probabilities
u^nuSa(p)us&u2 from the ground statesus&[uS,S35S& in sub-
spaces with total spinS and energyEs to the excited states
un& with energyEn . The transition operators we are con-
cerned with are the Fourier transforms of the single-site spin
operatorsSa(x),

Sa~p![
1

AN(
x51

N

eipxSa~x!, a53,1,2. ~1.3!

The structure factors~1.2! have been investigated previously
by Müller et al.1 They performed a complete diagonalization
of the Hamiltonian~1.1! on small systems (N<10), and ana-
lyzed the spin-wave continua by approximately solving the
Bethe ansatz equations for the low-lying excitations. In par-
ticular, they found a lower bound

v>uv3~p,M !u, ~1.4!

v3~p,M !52Dsin
p

2
sin

p2p3~M !

2
~1.5!

for the excitations contributing to the longitudinal structure
factorS3(v,p,M ). The constantD on the right-hand side of
~1.5! is fixed by the magnetization curve2

B~M !52DsinpM . ~1.6!

The lower bound vanishes atp50 and at the field-dependent
momentum

p3~M !5p~122M !, ~1.7!

signaling the emergence of zero-frequency modes~soft
modes! in the spectrum of excitation energies. The analysis
of the spin-wave continua relevant for the transverse struc-
ture factorsS6(v,p,M ) leads to the approximate lower
bounds

v>v6~p,M !, ~1.8!

for the excitations produced by the raising and lowering op-
eratorsS1(p),S2(p), respectively:

v1~p,M !52DFsinp2cosS p22pM D2sinpM G
for

p1~M !<p<p ~1.9!

and

v2~p,M !5uv3~p2p,M !u for 0<p<p. ~1.10!

Both bounds vanish atp5p and atp5p1(M )52pM . The
soft modes at the field-dependent momentapj (M ), j51 and
3, produce characteristic structures in the momentum depen-
dence of the corresponding static structure factors.3,4 It is the
purpose of this paper to analyze singularities in the static
structure factors, and infrared singularities in the dynamical
structure factors~1.2! at the soft-mode momenta. In Sec. II
we review our method to compute the excitation energies
and transition probabilities for finite rings (N<36). The
finite-size dependence of the lowest excitation energy at the
soft mode momenta is analyzed by solving the Bethe ansatz
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equations on large systems (N<2048). The critical behavior
of the static structure factors at the soft-mode momenta
p5pa(M ), a51 and 3 and fixed magnetizationM5 1

4 is
investigated in Sec. III based on a numerical computation of
the ground state on rings withN512,16,. . . ,32,36 sites. In
Sec. IV, we demonstrate how infrared singularities emerge in
a finite-size scaling analysis of the dynamical structure fac-
tors in the Euclidean time representation. Finally, in Sec. V
we compare our numerical results with the predictions of
conformal field theory.

II. SOFT MODES IN THE EXCITATION SPECTRUM

An approximate scheme to determine low-lying excitation
energies and transition probabilities has been proposed in
Ref. 5. It starts from the recursion algorithm,6 which gener-

ates a tridiagonal matrix. Eigenvalues and eigenvectors of
this matrix yield the exact excitation energies and transition
probabilities. There are, however, two sources of numerical
errors in this scheme. The orthogonality of the states pro-
duced by the recursion algorithm is lost more and more with
an increasing number of steps, due to rounding errors. More-
over, the iteration has to be truncated before the Hilbert
space is exhausted.

Nevertheless the method yields good results for the
lowest 10 excitations—provided that these contain the domi-
nant part of the spectral distribution. This condition is satis-
fied for the excitations inSa(v,p,M ,N), a53,1. For
S2(v,p,M ,N) near the soft-mode momentump1(M ), how-
ever, this is not the case. In Table I we compare the low-
lying excitations for S2(v,p,M ,N), M5 1

4, p5p, and
p5p/222p/16 on a ring withN516 sites, as they follow

TABLE I. Energies and transition probabilities for the lowest excitations in the transverse structure factorS2(v,p,M ,N) for M5
1
4, and

N516, p5p ~left-hand part!; andp25p/222p/16 ~right-hand part!. The upper and lower parts in the table contain the results of an exact
diagonalization and the recursion method, respectively.

S2(t50,p5p)52.523 604 278 922 20 S2(t50,p5p2)55.013 848 769 698 9431021

vn(p) wn(p) vn(p2) wn(p2)

0.244 903 181 204 07 7.695 433 363 399 1331021 0.876 103 276 253 77 1.954 987 610 124 6531021 *
2.000 624 236 617 84 9.814 682 018 286 5831022 2.509 396 243 236 48 5.594 000 643 834 8631022

3.162 714 788 205 13 2.645 725 074 408 1431024 3.473 984 785 232 09 6.945 758 289 762 9231023

3.578 650 171 744 11 6.853 045 073 523 0931023 3.603 249 228 192 52 9.821 628 583 478 7131024

3.980 619 720 787 59 4.713 901 191 664 3631022 3.713 270 710 282 90 8.014 159 463 064 6631022

4.352 696 524 991 91 9.627 111 596 805 9831025 4.214 054 148 294 30 2.865 647 260 321 4531024

4.729 943 842 646 68 8.688 809 239 198 7731024 4.170 339 854 626 45 7.714 555 418 915 0931022

5.112 245 989 300 47 4.946 920 330 047 2431024 4.306 160 243 214 60 2.501 483 219 298 6531022

5.259 958 354 631 19 3.778 430 154 397 3731025 4.399 600 774 592 70 1.180 633 402 366 1331023

5.453 186 955 024 60 7.320 760 782 290 3631023 4.779 417 562 570 73 7.947 471 971 000 1331023

5.742 238 217 304 04 3.486 978 636 107 7031022 4.991 533 660 936 31 5.419 697 079 217 7331026

6.142 234 177 714 73 2.739 406 641 977 7331026 5.100 457 413 216 37 5.507 304 902 798 4431022

6.203 717 051 547 30 2.049 482 726 629 7131024 5.250 087 787 897 24 6.305 399 859 183 6831022

6.287 195 281 196 78 7.304 078 086 745 9831024 5.376 160 003 775 36 7.355 758 177 222 7131024

6.383 874 044 845 64 1.682 084 007 360 7631025 5.469 637 280 712 08 1.833 312 377 348 5131021 *
6.564 066 124 982 08 1.690 231 998 059 6131022 5.487 680 193 617 61 1.770 040 855 588 5731026

6.769 643 306 484 90 1.810 726 846 334 9931027 5.703 409 466 350 26 3.361 983 377 347 6931026

6.794 958 978 768 59 8.477 376 822 003 0031023 5.711 491 865 604 78 3.444 856 331 653 3431022

6.815 339 154 894 40 3.058 251 618 980 8531025 5.780 887 269 704 25 1.070 710 792 672 9831024

6.830 026 863 400 33 9.957 905 849 211 6231024 5.895 735 704 493 84 1.380 330 537 225 5031021 *

S2(t50,p5p)52.523 604 278 923 49 S2(t50,p5p2)55.013 848 769 705 0131021

vn(p) wn(p) vn(p2) wn(p2)

0.244 903 181 204 08 7.695 433 363 395 2031021 0.876 103 276 253 76 1.954 987 610 122 2231021 *
2.000 624 236 617 91 9.814 682 018 281 7731022 2.509 396 243 236 56 5.594 000 643 828 9131022

3.162 714 788 204 83 2.645 725 075 263 2031024 3.473 985 466 693 44 6.945 942 947 964 9231023

3.578 650 171 737 75 6.853 045 072 385 6131023 3.603 434 615 393 55 9.858 170 673 307 0831024

3.980 619 720 664 78 4.713 901 185 295 3531022 3.713 275 740 769 44 8.013 879 790 435 9231022

4.352 694 258 890 94 9.626 931 152 412 9231025 4.170 721 017 669 60 7.789 640 971 330 7931022

4.729 942 332 777 89 8.688 919 125 175 1131024 4.311 234 173 060 11 2.563 192 362 225 8731022

5.113 525 671 195 04 5.062 605 748 090 4031024 4.777 307 133 519 60 8.296 132 141 156 9531023

5.451 596 877 607 25 7.285 531 240 031 7931023 5.129 265 354 985 99 8.404 108 705 622 4031022

5.741 618 702 167 59 3.486 620 204 790 7631022 5.418 372 489 214 89 1.834 871 713 305 9831021 *
6.105 752 469 338 84 3.840 802 147 539 8431024 5.668 799 489 069 28 8.773 679 984 736 7631022

6.511 959 824 206 24 1.067 767 162 920 1431022 5.944 244 724 155 45 1.419 057 704 675 9131021 *
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from an exact diagonalization~upper part of Table I! and the
recursion algorithm~lower part of Table I!, respectively.

At p5p, 76.95% of the spectral weight is found in the
first excitation. The energy and relative spectral weight of
the first excitation are reproduced within 13 digits. The fol-
lowing seven excitations can be identified term by term with
decreasing accuracy for the energies and the relative spectral
weights.

The situation is different forp25p/222p/16, which can
be seen in the right hand part of Table I. The exact result
yields large spectral weights—marked by an asterisk—for
the first (19.55%), the fifteenth (18.33%), and the twentieth
(13.80%) excitations. The recursion method reproduces
the energy and spectral weight of the first excitation within
13 digits. The two other excitations with large spectral
weight—marked by an asterisk—are only in rough agree-
ment with the exact result. We found, however, that
this inaccuracy has no effect on the dynamical structure
factors in the Euclidean time representation~4.1!. The
latter will be investigated in Sec. IV. In Figs. 1~a!, 1~b!,
and 1~c!, we present the momentum dependence of the

excitation energies in the dynamical structure factors
Sa(v,p,M51/4, N528) as they follow from the recursion
method. The size of the symbols measures the relative spec-
tral weight wn[u^nuSa(p)us&u2/Sa(p,M ,N). The normaliza-
tion is given by the static structure factors

Sa~p,M ,N!5E
va~p,M ,N!

`

dvSa~v,p,M ,N!, a53,1,2.

~2.1!

There is a strict relation between the static transverse struc-
ture factors,

S2~p,M ,N!5S1~p,M ,N!12M . ~2.2!

It should be noted thatS1(p,M ,N)'0 for p,p1(M ) @cf.
Fig. 3~b!#, which implies that the absolute spectral weight
u^nuS1(p)us&u2 is almost zero forp,p1(M ).

The solid curves represent the lower bounds~1.5!, ~1.9!,
and ~1.10! obtained from the analysis of the spin-wave
continua.1 The emergence of the soft mode at
p5p3(M51/4)5p/2 in the longitudinal case@Fig. 1~a!# is

FIG. 1. Momentum dependence of the excita-
tion energies in the dynamical structure factors at
M5

1
4: ~a! S3(v,p,M5

1
4, N528), and ~b!

S1(v,p,M5
1
4, N528), and~c! S2(v,p,M5

1
4,

N528). The relative spectral weight is character-
ized by the different symbols.
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clearly visible. Note that there are some excitations with
small spectral weights below the bound~1.5! ~for
p.3p/4). We do not know whether the spectral weights
will survive in the thermodynamical limit.

The lowest excitations in the transverse cases@Figs. 1~b!
and 1~c!# are found atp5p and at the field-dependent mo-
menta

p1
6~M !5p1~M !6

2p

N
. ~2.3!

We have analyzed the finite-size dependence of the lowest
excitation energies

v3„p3~M !,M ,N…5E„p5ps1p3~M !,M5S/N,N…

2E~ps ,M5S/N,N!, ~2.4a!

v1~p,M ,N!5E„p5ps1p,M5~S11!/N,N…

2E~ps ,M5S/N,N!, ~2.4b!

v6„p5p1
6~M !,M ,N…5E„ps1p1

6~M !,M5~S61!/N,N…

2E~ps ,M5S/N,N!. ~2.4c!

ps denotes the ground-state momentum in the sector with
total spinS; ps50 if N12S is a multiple of 4, andps5p
otherwise. The lowest-energy eigenvaluesE(p,M ,N) with
momentump and spinS were computed on large systems
(N<2048) by solving the Bethe ansatz equations. The ex-
trapolation of the energy differences~2.4! to the thermody-
namical limit

lim
N→`

Nv3„p3~M !,M ,N…5V3~M !,

lim
N→`

Nv1~p,M ,N!5V1~M !, ~2.5a!

lim
N→`

Nv6„p1
6~M !,M ,N…5V1

6~M !, ~2.5b!

obey the following relations:

V1
6~M !5V3~M !6V1~M !. ~2.6!

Together with the spin-wave velocityv(M ),

2pv~M !5 lim
N→`

N@E~ps12p/N,M ,N!2E~ps ,M ,N!#,

~2.7!

they define the scaled energy gaps

2ua~M !5
Va~M !

pv~M !
, a53,1, ~2.8a!

2u1
6~M !5

V1
6~M !

pv~M !
52@u3~M !6u1~M !#. ~2.8b!

TheM dependence of the quantitiesua(M ), a53 and 1, is
shown in Fig. 2. It turns out that

FIG. 2. The dependence of the scaled energy gapsu1(M ) and
u3(M ) on the magnetizationM .

FIG. 3. The transverse static structure factor
at M5

1
4: ~a! Finite-size behavior atp5p. ~b!

The momentum dependence (12p/p)h1(M )21

for p→p, (122p/p)h1
2(M )21 for p→p/220

~inset upper left!, and u122p/puh1
1(M )21 for

p→p/210 ~inset, lower right!.
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2u1~M !5
1

2u3~M !
~2.9!

in accord with the analytical result of Bogoliubov, Izergin,
and Korepin.7 In the limit M→ 1

2 one finds
2u3(M )5112M .10 The dotted line in Fig. 2 nearM50
indicates the logarithmic singularity

2u3~M ! ——→
M→0

11S ln 1

M2D 21

, ~2.10!

which was obtained by Bogoliubov, Izergin, and Korepin10

by a perturbative approach to the Bethe ansatz equations.

III. CRITICAL BEHAVIOR OF THE STATIC STRUCTURE
FACTORS AT THE SOFT-MODE MOMENTA

The static structure factors of the antiferromagnetic
Heisenberg model in the presence of a magnetic field have
been investigated in a previous numerical study on systems
up toN528.4 Meanwhile we have extended the system size
to N532 and 36 at fixed magnetizationM5 1

4. We find the
following features:

~1! The transverse structure factor at momentump5p
diverges forN→`. A power-law fit

S1~p,M ,N! ——→
N→`

0.503N12h1~M !, ~3.1!

to the finite system results forN536, 32, and 28 leads to the
valueh1(M5 1

4)50.65 for the critical exponent. The same
exponent governs the approach to the singularity in the mo-
mentump,

S1~p,M ,`! ——→
p→p

0.316S12
p
p D h1~M !21

. ~3.2!

The finite-size dependence~3.1! is shown in Fig. 3~a!. The
momentum dependence can be seen in Fig. 3~b! where we
have plottedS1(p5p,M5 1

4,N) versus (12p/p)h1(M )21

using the critical exponent determined in Fig. 3~a!.
~2! The approach to the field-dependent soft mode

p1(M )52pM in the transverse structure factor is shown in

the upper left @p→p1(M )20# and lower right
@p→p1(M )10# insets of Fig. 3~b!. The numerical data be-
have as

S1„p→p1~M !60,M ,`…;U12
p

p1~M !
Uh1

6
~M !21

~3.3!

if the critical exponents are chosen to beh1
1(M5 1

4)52.17,
h1

2(M5 1
4)50.8 . . .1.2. The uncertainty inh1

2(M51/4) re-
flects an instability in the fit to the numerical data. Note that
the right-hand side of~3.3! diverges forh1

2(M5 1
4),1, but

converges forh1
2(M5 1

4).1. An unambiguous determina-
tion of h1

2(M5 1
4) demands much larger systems than

N536.
~3! The finite-size dependence of the longitudinal struc-

ture factors atp5p3(M ),

S3„p3~M !,M ,N… ——→
N→`

20.124N12h3~M !10.308, ~3.4!

is shown in Fig. 4~a! for M5 1
4, p5p3(M )5p/2. A power-

law fit to the finite system results withN536, 32, and 28
yieldsh3(M5 1

4)51.51. The same exponent governs the ap-
proach to the singularity from the left,

S3„p→p3~M !20,M ,N…

——→
N→`

20.312S12
p

p3~M ! D h3~M !21

10.322,

~3.5!

as is demonstrated in Fig. 4~b!. It is not so easy to decide
whether a different exponent is needed to describe the ap-
proach to the singularity from the right. In the inset of Fig.
4~b! we plot the approach from the right versus
u12p/p3(M )uh3(M51/4)21.

The Fourier transform of the singularities in the static
structure factors determines the large distance behavior of
the corresponding spin-spin correlators

FIG. 4. The longitudinal static structure factor
at M5

1
4: ~a! Finite-size behavior at

p5p3(M )5p/2. ~b! The momentum dependence
u122p/puh3(M )21 for p,p/2 and p.p/2 ~in-
set!, respectively.

7172 54A. FLEDDERJOHANNet al.



^suS1~0!S1~x!us&

——→
x→`

cos~px!
A1~M !

xh1~M !

1cos@p1~M !x#S A1
1~M !

xh1
1

~M !
1
A1

2~M !

xh1
2

~M ! D , ~3.6a!

^suS3~0!S3~x!us&2^suS3~0!us&2

——→
x→`

cos@p3~M !x#
A3~M !

xh3~M ! . ~3.6b!

Conformal field theory9 predicts a relation between the criti-
cal exponentsh(M ) in ~3.6! and the scaled energy gaps
~2.8!7,8

2ua~M !5ha~M !, a53,1, ~3.7a!

2u1
6~M !5h1

6~M !. ~3.7b!

A derivation of ~3.7! is presented in the Appendix. A com-
parison of the left- and right-hand sides of~3.7! is presented
in Table II.

IV. FINITE-SIZE SCALING ANALYSIS
OF THE INFRARED SINGULARITIES

The Euclidean time representation

Sa~t,p,M ,N!5E
va~p,M ,N!

`

dve2vtSa~v,p,M ,N!,

a53,1,2 ~4.1!

is most suited to study finite-size effects in the dynamical
structure factors~1.2!. The singularities in the static structure
factorsSa(t50,p,M ,N) at the soft-mode momenta originate
from the infrared singularities in the dynamical structure fac-
tors. In the combined limit

t→`, N→`, ~4.2!

keeping fixed the scaling variables

za~p,M ![tva~p,M ,N!, a53,1,2, ~4.3!

the low-frequency part at the soft-mode momenta
p5p,p5p1(M )62p/N,p5p3(M ) is projected out. We
therefore expect here to see signatures for the infrared sin-

gularities directly. Let us assume that the emergence of the
infrared singularities on finite systems can be described by a
finite-size scaling ansatz

Sa~v,p,M ,N!5v22aa~p,M !ga„v/va~p,M ,N!,na~p,M ,N!…,

a53,1,2. ~4.4!

The scaling functionsga are supposed to depend only on the
scaled excitation energiesv/va(p,M ) and the variable

na~p,M ,N!5@p2pa~M !#N/~2p!, ~4.5!

which describes the approach to the soft-mode momenta.
Ansatz~4.4! induces the following finite-size scaling behav-
ior of the Euclidean time representation~4.1! in the com-
bined limit ~4.2! and ~4.3!:

t122aa~p,M !Sa~t,p,M ,N!5Ga„za~p,M !,na~p,M ,N!…

3exp@2za~p,M !#. ~4.6!

The two scaling functions on the right-hand sides of Eqs.
~4.4! and ~4.6! are related via

G~z,n!5z122aE
1

`

dx e2~x21!zg~x,n!. ~4.7!

Based on our numerical results forSa(t,p,M ,N) at M5 1
4,

a53,1, N516,20,. . . ,36, anda52, N516,20,. . . ,32 at
the soft-mode momenta, we will now test the validity of the
finite-size scaling ansatz~4.6!.

Let us start with the longitudinal structure factor at the
soft modep5p3(M5 1

4)5p/2. In this case the variable~4.5!
is n3(p5p/2,M5 1

4)50. The left-hand side of~4.6! versus
the scaling variablez3(p5p/2,M5 1

4) is shown in Fig. 5~a!
for the following values ofa3(p5p/2,M5 1

4)50.22, 0.23,
and 0.234. Forz3>0.4 @the inset of Fig. 5~a!#, the finite
system results coincide best if

a3~p5p/2,M5 1
4 !50.23. ~4.8!

Therefore, this is the expected critical exponent for the infra-
red singularity in the longitudinal structure factor. Deviations
from this value fora3 on the left-hand side of~4.6! obvi-
ously lead to a violation of finite-size scaling. It is remark-
able that finite-size scaling @with the exponent
a3(p5p/2,M5 1

4)50.23# persists for all valuesz3>0.4. In

TABLE II. The critical quantities 2u(M ), h(M ), and 2@12a(M )# at M5
1
4 and at the soft-mode

momentap5p3(M5
1
4)5p/2, p5p1

1(M5
1
4), andp5p1

2(M5
1
4).

~a! 2u3(M ) h3(M ) 2@12a3(p5p/2,M )#
p5p3(M ) 1.5312 1.51 1.54

~b! 2u1(M ) h1(M ) 2@12a1(p5p,M )# 2@12a2(p5p,M )#
p5p 0.6531 0.65 0.62 0.68

~c! 2u1
1(M ) h1

1(M ) 2@12a1(p5p1
1(M ),M )#

p5p1
1(M ) 2.1843 2.17 2.40

~d! 2u1
2(M ) h1

2(M ) 2@12a2(p5p1
2(M ),M )#

p5p1
2(M ) 0.8781 0.821.2 2.1
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the limit z3→` the first excitation alone survives and we can
conclude on the finite-size dependence of the transition prob-
ability

u^n51uS3~p5p/2!us&u2 ——→
N→`

N2a321. ~4.9!

In other words, the critical exponenta3 for the infrared sin-
gularity can by read off the finite-size dependence of the
transition probability for the first excitation. Indeed this fea-
ture is predicted by conformal field theory7 @cf. ~A9! in the
Appendix#.

Next we turn to the infrared singularities of the transverse
structure factorsS6(v,p5p,M5 1

4). As can be seen from
Fig. 5~b!, finite-size scaling is found for the following choice
of the critical exponents:

a1~p5p,M5 1
4 !50.69, ~4.10a!

a2~p5p,M5 1
4 !50.66. ~4.10b!

In contrast to the longitudinal case, finite-size scaling can be
observed here for all values of the scaling variables
z1 ,z2 .

Finally in Figs. 6~a! and 6~b! we present tests of the finite-
size scaling for the transverse structure factors
S6(t,p5p/262p/N,M5 1

4,N) if we approach the field-
dependent soft modep1(M5 1

4)5p/2 from the left
(p5p/222p/N) and from the right (p5p/212p/N), re-
spectively. The critical exponents are found to be

a1~p5p/212p/N,M5 1
4 !520.20, ~4.11a!

a2~p5p/222p/N,M5 1
4 !520.05. ~4.11b!

Finite-size scaling works quite well forS1 for large and
small values of the scaling variablez1 , as can be seen from
the inset in Fig. 6~a!. This is not the case forS2 . Here
finite-size scaling breaks down for small values ofz2 as is
demonstrated in the inset of Fig. 6~b!. The critical exponent
a2(p5p/222p/N,M5 1

4)520.05 results from the finite-
size scaling analysis for large values ofz2 , where the tran-

sition probability for the first excitation is projected out and
has the following finite-size dependence:

u^n51uS2~p5p/222p/N!us&u2 ——→
N→`

N2a221. ~4.12!

V. DISCUSSION AND CONCLUSIONS

In the presence of a uniform field, the one-dimensional
antiferromagnetic Heisenberg model is critical in the follow-
ing sense: The excitation spectrum is gapless at the momenta
p50, p5p, p5p3(M )5p(122M ), and p5p1(M )
5p2M . In this paper we have tried to answer the following
question: Is conformal field theory applicable to describe the
low-energy excitations at these momenta? To answer this
question we have determined~1! the scaled energy gaps
2u(M ), defined through~2.4!–~2.8!; ~2! the critical expo-
nentsh(M ) for the singularities~3.2!, ~3.3!, and~3.5! in the
static structure factors; and~3! the exponentsa(M ) for the
infrared singularities~4.4! in the dynamical structure factors.

A compilation of the various critical quantities forM5 1
4 is

given in Table II.
The predictions of conformal field theory are reviewed in

the Appendix. In particular the following relation is expected
to hold:

2u~M !5h~M !52@12a~p,M !#. ~5.1!

Looking at Table II we find the following.
~a! The critical quantities 2u3(M5 1

4), h3(M5 1
4), and

222a3(p5p/2,M5 1
4) agree within the numerical uncer-

tainty. Moreover, the critical exponenta3(p5p/2,M5 1
4)

also governs the finite-size dependence of the transition
probability for the lowest excitation~4.9!. We therefore con-
clude that the excitations in the longitudinal structure factors
at the soft modep3(M )5p(122M ) are correctly described
by conformal field theory.

~b! The critical quantities 2u1(M5 1
4), h1(M5 1

4!,
222a1(p5p,M5 1

4), and 222a2(p5p,M5 1
4) agree

within numerical uncertainties. In both cases the finite-size

FIG. 5. Test of finite-size scaling for the in-
frared singularities in the dynamical structure fac-
tors atM5

1
4: ~a! The longitudinal case at the soft

mode p5p3(M )5p/2. The inset resolves scal-
ing violations for small values of the scaling vari-
ablez1 . ~b! The transverse cases atp5p.
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dependence of the transition probability for the lowest exci-
tation is in accord with the prediction of conformal field
theory.

~c! The critical quantities 2u1
1(M5 1

4) and h1
1(M5 1

4)
agree within numerical uncertainties, and deviate by about
15% from the exponent 2@12a1(p5p/212p/N,M5 1

4)].
~d! The scaled energy gap 2u1

2(M5 1
4) agrees with the

critical exponenth1
2(M5 1

4)—within the large numerical
uncertainty—but strongly deviates by more than a factor of 2
from the exponent 2„12a2@p/221/(2N),M5 1

4] …, which
we extracted from the finite-size scaling analysis of the in-
frared singularity in the transverse structure factorS2 at the
soft modep5p1(M )22p/N,M5 1

4. It was demonstrated in
Fig. 6~b! that finite-size scaling only works for large values
of the variablez2 , where the first excitation alone contrib-
utes. Therefore, the exponent 2@12a(p/222p/N,M5 1

4)]
is fixed by the finite-size behavior~4.12! of the transition
probability for the first excitation. The exponent is definitely
different from the scaled energy gap 2u1

2(M5 1
4).

It is worthwhile to note that in the cases~a!, ~b!, and~c!,
where we find agreement of our numerical results with pre-
diction ~5.1! of conformal field theory, the spectral weight of
the excitations is concentrated at low frequencies. This can
be seen directly for case~b! (p5p) in the left-hand part of
Table I. In contrast, the right-hand part of Table I shows the
widespread distribution of the spectral weight for case~d!.
Here we were not able to establish identity~5.1!.
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APPENDIX: CRITICAL EXPONENTS IN CONFORMAL
FIELD THEORY

In the absence of a magnetic field the spin-1
2 Heisenberg

model is known to be conformal invariant. Switching on the
magnetic field, the rotational invariance is broken explicitly.
Nevertheless the system remains gapless. Let us assume that
the low-energy physics of the model is still governed by
conformal field theory. Then the dominant contribution to
the long distance asymptotics of the zero-temperature dy-
namical correlation functions in the infinitex2t plane is
correctly described as10

^suSa~0,0!Sa~x,t !us&2^suSa~0,0!us&2

5eixpa~M !
Aa~M !

@x1v~M !t#2Da~M !@x2v~M !t#2D̄a~M !
.

~A1!

v(M ) is the spin-wave velocity defined in~2.7!, and
Da(M ) andD̄a(M ) are the conformal dimensions of the op-
eratorSa(x,t). The dynamical structure factorSa(v,p) is
just the Fourier transform of~A1! with an appropriate regu-
larization. The latter can be achieved by giving an infinitesi-
mal imaginary part to the spin-wave velocityv(M ). Stan-
dard methods yield

Sa~v,p!;$v7v~M !@p2pa~M !#%2Da~M !12D̄a~M !22, ~A2!

near the singularities

v'6v~M !@p2pa~M !#. ~A3!

Equation ~A2! is obtained if we first consider the case
Da(M )1D̄a(M ). 1

2 and then continue analytically. A con-
formal transformation to a strip geometry of widthN tells us
how the conformal dimensionsDa(M ) and D̄a(M ) are re-
lated to the energy and momentum of the lowest excitation
u1&, provided that the transition matrix element
^suSa(0,0)u1& does not vanish:

FIG. 6. Test of finite-size scaling for the in-
frared singularities in the transverse structure fac-
tors atM5

1
4: ~a! The transverse caseS1 at the

soft mode p5p1
1(M )5p/212p/N. The inset

shows a magnification for small values of the
scaling variablez1 . ~b! The transverse caseS2

at the soft modep5p1
2(M )5p/222p/N. The

inset resolves scaling violations for small values
of the scaling variablez2 .
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2Da~M !5ua~M !1na , ~A4a!

2D̄a~M !5ua~M !2na , ~A4b!

where

na5@p2pa~M !#
N

2p
. ~A5!

Therefore we conclude that the infrared singularity of the
dynamical structure factor,

Sa~v,p!;
1

$v6v~M !@p2pa~M !#%2aa~M ! , ~A6!

is independent ofna :

aa~M !512ua~M !. ~A7!

The critical exponentha(M ) can be read off directly from
~A1!:

ha~M !52Da~M !12D̄a~M !52ua~M !. ~A8!

In ~A1! it is assumed that the coefficientAa(M ) is nonvan-
ishing. From the conformal transformation to the strip geom-
etry, a relation betweenAa(M ) and the transition matrix el-
ement can be derived:

Aa~M !5 lim
N→`

F2SNp D 2ua~M !

eipnau^suSa~x,0!u1&u2G . ~A9!

Therefore, the matrix element is expected to scale as

u^suSa~x,0!u1&u2;N2aa~M !22. ~A10!

If a finite-size analysis of these critical exponents reveals that

ua~M !,12aa~M !, ~A11!

the coefficientAa(M ) vanishes. In this case the expression
~A1! does not represent the dominant contribution to the dy-
namical structure factor.
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