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ABSTRACT 

Three Essays on the Incentive Structure of Energy Conservation Programs 

By 

Edson Ogochukwu Okwelum 

Doctor Philosophy in Environmental and Natural Resource Economics 

University of Rhode Island 

Professor James Opaluch, Chair 

This dissertation is comprised of three related essays examining the potential 

effectiveness of government energy efficiency programs from both the producer and 

consumer perspectives. The first chapter is based on a paper I coauthored with Corey 

Lang. In this manuscript, I address the question of whether strategic behavior by 

consumers could result in the erosion of energy savings in a demand response 

program. Understanding how the strategic behavior of consumers affects the net 

benefits from a demand response program has policy implications because of the 

increasing importance that demand response has come to play in utility load and 

reliability management during peak times. Using data from a large field experiment in 

California in 2007, we test the hypothesis that under a technology program, 

consumers‘ strategic behavior results in outcomes that are opposite what is obtainable 

under a program with price incentive or based of behavior. Chapter II is also an 

empirical study which explores how the preferences of consumers for large and heavy 

vehicles imposes costs on society in the form of external costs of accident. This 

chapter looks at how fleet changes in weight distribution due to corporate average fuel 



 

 

 

economy and consumer demand for heavier vehicles results in fatalities. It is important 

to understand how consumer behavior affects the accident rates so that one can obtain 

unbiased estimates of accident costs that go into benefit-cost analysis of the impact of 

regulations in automobiles. Chapter three addresses how unobserved heterogeneity 

and sorting affect the estimates of the consumer willingness to pay for reduction in 

future gasoline costs. This tradeoff is important to policy makers and manufactures 

because it could help explain why manufacturers fail to adopt technologies for which 

the fuel savings far outweigh the costs. The remainder of the abstract provides a more 

detailed outlines of the three essays. 

Chapter 1 explores strategic behavior by consumers in demand response programs. 

The chapter looks at how the confluences of consumer strategic behavior, technology 

and price incentives in demand response lead to conflicting outcomes. Demand 

response has become an important tool for utilities to manage load during peak 

periods. While the effects of demand response programs on peak load reductions are 

well studied and intuitive, assessments typically fail to recognize the potential for off-

peak behavioral responses that may mitigate the total benefits of the program. Using 

smart meter consumption data on residential air conditioning units enrolled in a direct 

load control program, this paper examines changes in consumption prior to and after 

curtailment events. The manuscript rigorously estimates both peak and off peak 

changes in consumption to better understand net benefits of DR programs. We 

examine Pacific Gas and Electric‘s (PG&E) SmartAC program, which is designed to 

reduce peak cooling load by directly controlling air conditioning units of participants.  



 

 

 

Usually, program evaluation uses the availability of a control group to obtain unbiased 

estimates of program impacts. However, we do not have the luxury of a control group 

in our data. Instead we estimate unit-specific non-linear consumption models and then 

compare load on event days to predicted load. Importantly, we use data from the 

summer 2007 training period  from a stratified random sample of 294 participating AC 

units. In contrast to subsequent summers and normal DR designs, during the training 

period curtailment days were called for many different temperature levels, not just the 

hottest days. This aspect means we are not predicting out of sample, and we can have 

greater confidence in our econometric evidence. Our methodology is validated by a 

falsification test in which we find no changes in consumption during peak or off-peak 

times on non-curtailment days that match the temperature and timing profile of actual 

curtailment days. 

Several key results emerge from this analysis. First, we confirm that the SmartAC 

program, like other DR and DLC programs, reduces peak load during event days. In 

this case, peak consumption was reduced 19% on average. However, we also find 

substantial increases in consumption in the hours preceding and the hours following an 

event by 8% and 7% respectively. Essentially, load is being displaced from peak to 

off-peak times. These behavioral changes mitigate the monetary benefits of the 

program by 41%.  

Chapter II addresses the question of how much accident risks would change if 

consumers who purchase larger, heavier vehicles of the existing fleet where to behave 

strategically given regulatory constraints imposed by corporate average fuel economy.  

The paper estimates both the risk of dying given a crash and the crash frequencies of 



 

 

 

different vehicles in the fleet. We use a unique data set that combines data from 

fatality analysis reporting system (FARS) and NASS
1
 General Estimates Systems. The 

estimation strategy used corrects for selection bias due to moral hazard problems. The 

two equations are estimated simultaneously using simulated maximum likelihood 

without the need for exclusion restrictions (Green 2003, 2007). This approach allows 

us to obtain estimates that are causal. 

One of the main issues that have been left unanswered in earlier works is the existence 

of Peltzman-type moral hazard problems and endogeneity of vehicle choice. In the 

presence of Peltzman-type moral hazard problems, drivers in heavier vehicles will find 

it advantageous to change their behavior in ways that have opposite effect to 

regulations. From a public policy perspective if increasing the weight of a vehicle 

increases the probability of its being involved in collisions, then we might be 

interested in more than the impact of heavier vehicles conditional on a crash 

occurring. We find that increasing the weight of any vehicle increases the probability 

of it being the heavier vehicle in a collision and the probability of it being involved in 

a fatal accident. The external costs translate to about 38 cents/gallon of gasoline. 

Chapter III explores how individual unobserved heterogeneity in tastes could lead to 

different customers sorting into different classes of fuel efficient vehicles and 

therefore affect estimates of consumer‘s ability to tradeoff vehicle costs and 

discounted future gasoline costs. The research question is important for several 

reasons. First, it is interesting from a theoretical basis if consumers make this trade off 

optimally. Many theoretical models in economics make the fundamental assumption 

that consumers equally weigh current and future events when making decisions today. 

                                                 
1 National Automotive Sampling System 



 

 

 

However, plenty empirical and laboratory evidence conclude the contrary. Second, 

Regulatory Impact Analyses (RIA) of regulations on energy efficiency standards 

usually find that the benefits of these programs are in many times larger than the costs, 

with the fuel savings over the life of the vehicle accounting for the majority of the 

benefits. However, if fuel savings are large relative to costs, then the question is why 

are manufacturers not incorporating these technologies in their product offerings?  

Therefore understanding energy paradox is critical for evaluating the standards and 

regulations so that policy makers can identify baseline for assessment in cost-benefit 

analyses.  

In this paper, we contribute to the literature on Energy Paradox in Fuel Economy by 

providing empirical evidence that unobserved consumer heterogeneity could result in 

different consumers sorting into different classes of fuel efficient cars which results in 

consumers undervaluing fuel economy. Unlike existing literature in this topic, this 

paper accounts for sorting bias due unobserved heterogeneity by using a random 

coefficient logit with error components (Train and Winston 2007). We pair the random 

coefficient discrete choice model with a supply side model in which firms compete in 

Bertrand Nash fashion where price depends on elasticity of demand and marginal 

costs. With the random utility model, we can allow taste to vary across consumers. We 

treat the discounted operating costs and vehicle costs as random variables. 

We find that a substantial portion of upper the 95% of households in our sample 

correctly value fuel economy (61%) as they are willing to pay $0.99 to reduce obtain a 

$1.00 discounted future gasoline costs over the lifetime of the vehicle.  And 29% of 

the upper 95% overvalue fuel economy as they are willing to pay $1.57. These results 



 

 

 

are in contrast to those reported elsewhere by Alcott and Wozny (2009) but support 

results from the simulation study by Bento et al 2012 who find that not accounting for 

sorting bias and consumer heterogeneity could lead to a conclusion that consumers 

undervalue fuel economy. 
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PREFACE 

This dissertation is written in three manuscript form. The first manuscript is based 

on a paper I coauthored with Corey Lang and has been submitted to the Energy 

Economics Journal for publication. 

Manuscript 1: The Mitigating Effect of Strategic Behavior on the Net Benefits of a 

Direct Load Control Program 

 

Manuscript 2: Fuel Economy and Vehicle Safety: Selection on Moral Hazard and 

Estimates of External Accident Costs  

 

Manuscript 3: Heterogeneity and Sorting in Consumer Valuation of Energy Efficiency 

Investments: Empirical Evidence from US Automobile Market 
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INTRODUCTION 

The dissertation explores the potential effectiveness of government energy efficiency 

programs and regulations from both the producer and consumer perspectives. The last 

three decades has seen the deployment of various energy conservation policies as part 

of governments‘ energy policies. These energy efficiency programs are driven in part 

by the desire to reduce energy consumption, lower greenhouse gas (GHG) emissions 

in order to mitigate the impacts of climate change, reduce criteria air pollutants, and to 

provide affordable energy services. While it is widely acknowledged that there is still 

a large potential for energy and greenhouse gas savings, the design of effective 

policies to realize these potentials is challenging. For example, estimates from the 

International Energy Association (IEA 2001) suggests that over 34% of the expected 

carbon emissions under a scenario limiting the long term concentration of greenhouse 

gases could be obtained solely from direct end use efficiency measures alone. 

However, achieving this target presupposes that individuals will invest in energy 

efficiency measures and firms will invest in innovations to commercialize energy 

efficient technologies. 

Consumer decision making and/or behavior involving energy consumption and 

investment in energy efficiency projects have attracted increased scrutiny recently. 

Policy design and evaluation have increasingly incorporated consumer behavioral 

responses to policy interventions. Given the inter-relationship between consumer 

behavior, energy and climate policy, it stands to reason that if consumers can be 

nudged to change their behavior and reduce their energy consumption or be more 

responsive to demand for weather induced changes in energy supply, we could 
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significantly reduce the cost of  compliance to several policies. However, the general 

consensus is that consumers are generally not good optimizers with respect to the costs 

and benefits of energy conservation. Consumers generally place different life-cycle 

value on investments in energy efficiency than manufacturers and policymakers. 

Behavioral economics offers insights and different perspectives regarding how 

consumers value energy efficiency products or regard energy conservation efforts. 

Behavioral economics concepts, supported by anecdotal evidence from experimental 

economics suggests a set of reasons other than costs and benefits of why consumers 

are not good optimizers: consumers do not consider energy efficiency issues to be 

priority (work, family, healthcare, education and other family related matters are more 

important than energy efficiency; households exhibit preference and perceptual 

invariance in consumer choice situations; energy efficiency decision scenarios are 

complicated, with multiple options and difficult mathematical calculations; and people 

simply tend to procrastinate a lot (Kahneman and Tversky. 1979, Dhar and 

Glazer1996; Abadie and Gay. 2006; Allcott and Mullainathan 2010, DellaVigna 

2009). Also households show significant differences in behavior which can affect 

energy consumption, suggesting that intervention strategies to promote sustainable 

behaviors should result in significant energy savings in the future.  

If the foregoing is true, then we need to answer the following important questions: 

1. As consumers invest in energy efficiency projects, they will obtain economics 

savings over the life of such projects, an important question is how consumers 

will utilize the economic savings over the lifetime of their investment from an 

energy efficient appliance? 
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2.  What is the impact of strategic behavior by agents on the overall impact of 

energy conservation programs?  

3. If changes in consumers‘ consumption patterns occur, producers are likely to 

adjust their production functions and what will be the effect on the overall 

social welfare? 

4. Are the incentives in some energy policies such that they incentivize agents to 

behave in ways that are in conflict with the goals of regulations? Are these 

incentives such that could lead to unintended consequences? 

5. If consumers are different and choose durables according to some taste 

distributions, are baseline estimates of the marginal willingness to pay for 

reductions in future operating costs biased because of sorting?  

How consumers weigh temporal effects of future fuel costs have policy implications. 

This is because the nature of the temporal weighting helps in determining if market 

failure exists and helps indicate whether policy prescriptions that affect initial vehicle 

costs such as gas guzzlers tax will reduce fuel consumption at lower costs than 

gasoline tax.   

This dissertation answers these questions and more in three different essays. In the 

first manuscript, we examine how consumers‘ strategic behavior could erase the net 

benefits from a DR program. We rigorously estimate both peak and off peak changes 

in consumption to better understand how strategic behavior by consumers affect the 

net benefits of demand response (DR) programs. The main contributions of this 

manuscript are twofold. First, it shows that DR energy policies can lead to unintended 

consequences based on design and implementation.  Second, we provide limited 
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evidence that consumers learn to erase the benefits from DR programs with time under 

a technology program without price incentives. We use data from a stratified random 

sample of 294 participating AC units. Because there is no data for a control group, we 

estimate unit-specific non-linear consumption models and then compare load on event 

days to predicted load on non-curtailment days. Importantly, we use data from the 

summer 2007 training period. In contrast to subsequent summers and normal DR 

designs, during the training period curtailment days were called for many different 

temperature levels, not just the hottest days. This aspect means we are not predicting 

out of sample, and we can have greater confidence in our econometric evidence.  

We use a falsification test in which we find no changes in consumption during peak or 

off-peak times on non-curtailment days that match the temperature and timing profile 

of actual curtailment days to validate our results. First, we confirm that the SmartAC 

program, like other DR and DLC programs, reduces peak load during event days. In 

this case, peak consumption was reduced 19% on average. However, we also find 

substantial increases in consumption in the hours preceding and the hours following an 

event by 8% and 7% respectively.  Essentially, load is being displaced from peak to 

off-peak times. These behavioral changes mitigate the monetary benefits of the 

program by 41%. 

In the second manuscript, we also explore how the interaction of consumer behavior 

and energy policy could result in unintended consequences by looking at how 

consumers‘ choices of vehicle weight could result in increased fatalities under 

regulatory constraints. In this manuscript, , we estimate the external costs of vehicle 

weight in traffic accidents using a random sample of police reported accidents by 
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estimating the number of fatally or seriously injured occupants in two vehicle crashes.  

Our main challenge is that unobserved driver and occupant attributes could induce 

risky drivers to cluster around higher vehicles, and also cause them to switch across 

models as they re-optimize according to the conflicting incentives placed by gasoline 

and safety policies. This is because, there are interrelated human factors, which are not 

easily quantifiable, but are however related to vehicle weight and fatality/injury risk.  

We use an estimation strategy that is robust enough to correct for such biases. The 

estimation strategy is semiparametric and based around baseline gamma density 

function. The estimation strategy is able to account for unobserved driver 

heterogeneity. Unlike earlier studies (Jacobsen 2013; Anderson and Auffhammer 

2013) our unique data set and methodology allows us to adjust for the fact that heavier 

vehicles are involved in more fatal accidents than lighter vehicles ensuring that the 

coefficients of weight are causal. We find that it is vehicle weight dispersion rather 

than the absolute weight of vehicles involved in multiple vehicle crashes that is the 

key factor determining injury severity. In a two-vehicle crash involving a lighter 

vehicle and a heavier vehicle, the external costs imposed on the lighter vehicle 

increases with weight of the heavier vehicle and decreases with own weight. 

Specifically, we find that increasing the weight of the heavier vehicle over the lighter 

vehicle by 1000 pounds increases the expected number of fatalities in the lighter 

vehicle by about 39%. Second, increasing the weight of any vehicle increases the 

probability of it being the heavier vehicle and increases the probability to be the 

heavier vehicle in a collision and the probability of it being involved in a fatal 

accident. The external costs translate to about 34 cents/gallon of gasoline.  
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Finally, we combine these empirical results with a theoretical framework develop 

simple tests to show that selection bias due to drivers of heavier vehicles involvement 

in more fatal/serious injury accidents. The paper contributes to two lines of literature. 

First is the rich set of literature on individual choice of activity on self protection and 

averting behavior. The second area is the literature on the protective and aggressive 

effects of vehicle weight on occupant safety (NRC 2002; Peltzman 1975). 

In the final manuscript, I explore how sorting due to individual unobserved 

heterogeneity could bias estimates of MWTP for lower fuel costs. The paper 

contributes to the existing literature on Energy Paradox by providing empirical 

evidence that unobserved consumer heterogeneity could result in different consumers 

sorting into different classes of fuel efficient cars which results in consumers 

undervaluing fuel economy. Unlike existing literature in this topic, this paper accounts 

for sorting bias due to unobserved heterogeneity by using a random coefficient logit 

with error components. The random utility model allows taste to vary across 

consumers. I treat the discounted operating costs and vehicle costs as random 

variables. This allows us to obtain a distribution of households‘ preferences for fuel 

economy across the population.  

Unlike other recent papers that identify consumers‘ response to fuel economy based 

on monthly variation on gasoline prices alone, this manuscript supplements 

information on gasoline prices with information on vehicle demand and elasticity 

extracted from observed vehicle prices. I use data on household vehicle holdings from 

the automobile extract of the consumer expenditure survey (CEX) covering the period 

2002-2005. This dataset contains information on the vehicle purchases and driving 
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habits of a random sample of US households.  The CEX contains actual data on the 

number of miles travelled by each household, what make of vehicle they buy, when 

they buy and what vehicle they trade-in. The individual household data allows me to 

match vehicles with the household demographic characteristics of those who own 

them and estimate how different segments of the population value fuel economy 

differently.  

I find significant and substantial evidence of sorting and consumer heterogeneity in 

the estimates of MWTP. The heterogeneity arises from huge differences in the amount 

of miles travelled by consumers and heterogeneity in taste and time preferences. We 

find that a substantial portion of the upper 95% of households in our sample correctly 

value fuel economy (61%) as they are willing to pay $0.99 to reduce obtain a $1.00 

discounted future gasoline costs over the lifetime of the vehicle.  These results are in 

contrast to those reported elsewhere by Alcott and Wozny (2009) but support results 

from the simulation study by Bento et al 2012 who find that not accounting for sorting 

bias and consumer heterogeneity could lead to a conclusion that consumers undervalue 

fuel economy. In that light, our results might not necessarily imply that consumers 

overvalue/undervalue fuel economy, but can be interpreted as being heterogeneous in 

their valuation of fuel economy. 

This dissertation is divided into three main parts. The first part, this section provides a 

general introduction to the whole body of work. The second section is composed of 

three different chapters, with each chapter containing a different manuscript. The last 

section provides a general conclusion and tries to tie all the manuscript together.
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Abstract  

Demand response has become an important tool for utilities to manage load 

during peak periods. While the effects of demand response programs on peak load 

reductions are well studied and intuitive, assessments typically fail to recognize the 

potential for off-peak behavioral responses that may mitigate the total benefits of the 

program. Using smart meter consumption data on residential air conditioning units 

enrolled in a direct load control program, this paper examines changes in consumption 

prior to and after curtailment events. The results suggest substantial increases in off-peak 

consumption, which reduce monetary benefits of the program by 41%. 
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Introduction 

Many electricity utilities are challenged to meet demand during peak
2
 

consumption, usually during summer afternoons. Further, peak demand has been 

increasing at an average annual growth rate of 0.8% over the last 10 years (NERC 

2013), heightening the need for solutions. Importing capacity from other areas and 

firing peak generators are two costly solutions; these can increase the cost of 

generation by $29.2-80/MWh. (EIA 2013). Alternatively, demand response (DR) 

programs offer the possibility of no or low cost reductions in peak load, and utilities 

and increasingly implementing these programs. While DR programs come in several 

forms, they are generically classed into two groups. Programs with price incentives- 

Time of Use (TOU), Critical Peak Pricing (CPP), Real Time Pricing (RTP) and Peak 

Time Pricing (PTR); and technology only programs with no price incentive- direct 

load control (DLC) programs in which the utility can control usage of appliances for a 

few hours per day during critical event days.  

In general, all these programs seek to reduce peak load
3
 by changing consumption 

prices or offering incentives to consumers. Impact evaluations have demonstrated 

large benefits of DR programs (e.g., Herter 2007, Herter et al. 2007, Faruiqui and 

George 2002, Crew et al. 1995, Matsukawa 2001, Binswanger 2001, Berkout et al. 

2000, Gillingham et al. 2013, Thomas et al. 2013), and comparison of load reduction 

during event hours show that DLC programs are more effective than programs with 

time-varying price structures (Wolak 2011, Newsham et al 2010). However most of 

                                                 
2 Although, CAISO generally defines peak period as being from Hour Ending (HE) 0700 Pacific 

Prevailing Time (PPT) through HE 2200 PPT, the peak period we refer to in this paper narrowly 

defined to in line with PG&E‘s Summer Peak periods which is from 12:00 noon to 8:00 PM 
3 Although not part of the program design, some of these programs also reduce energy use during off-

peak hours 
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these assessments tend to only examine benefits in terms of peak reductions, thereby 

ignoring behavioral responses that could be happening in technology only and 

potentially overestimating the total benefits. Although behavioral responses in 

programs with time-varying price incentives have been looked at in terms of load 

shifting, the closely related concept of precooling and snapback (two types of 

behavioral responses in technology only) less so (Newsham et al 2010, Jessoe and 

Rapson 2014, Wolak 2011).   

The purpose of this paper is to rigorously estimate both peak and off peak changes 

in consumption to better understand net benefits of DLC programs with no price 

incentive or behavioral aspect. We examine Pacific Gas and Electric‘s (PG&E) 

SmartAC program, which is designed to reduce peak cooling load by directly 

controlling air conditioning units of participants. 

We use data from a stratified random sample of 294 participating AC units. 

Because there is no data for a control group, we estimate unit-specific non-linear 

consumption models and then compare load on event days to predicted load. 

Importantly, we use data from the summer 2007 training period. In contrast to 

subsequent summers and normal DR designs, during the training period curtailment 

days were called for many different temperature levels, not just the hottest days. This 

aspect means we are not predicting out of sample, and we can have greater confidence 

in our econometric evidence. Our methodology is validated by a falsification test in 

which we find no changes in consumption during peak or off-peak times on non-

curtailment days that match the temperature and timing profile of actual curtailment 

days. 
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Several key results emerge from our analysis. First, we confirm that the SmartAC 

program, like other DR and DLC programs, reduces peak load during event days. In 

this case, peak consumption was reduced 19% on average. However, we also find 

substantial increases in consumption in the hours preceding and the hours following an 

event by 8% and 7% respectively. Essentially, load is being displaced from peak to 

off-peak times. These behavioral changes mitigate the monetary benefits of the 

program by 41%.  

The main contribution of this paper is to show DR energy policies can lead to 

unintended consequences. We contribute to the emerging body of work on the 

perverse incentives in energy policies (e.g., Fowlie 2009, Davis and Kahn 2010, 

Goulder and Stavins 2011). Particularly relevant to this paper are works by Holladay 

et al. (2013), and Jessoe and Rapson (2014).  Holladay et al. (2013) examine changes 

in energy production when media outlets relay emergency calls from utilities for 

electricity reduction during off-peak hours on curtailment days. They estimate that 

behavioral responses lead to an increase in generation cost of about $43.70/MWh to 

$61.70/MWh in the late morning and early evening on emergency days. We estimate a 

smaller increase in generation cost, around $21/MWh, but the results largely 

corroborate each other. In contrast, to Jessoe and Rapson (2014) who examine the 

added benefit of load reduction during peak hours on non-event days due to learning, 

we look at behavioral responses on curtailment days in non-event hours in a 

technology only program. 
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Background on the SmartAC Program 

 

PG&E‘s SmartAC program is a DLC program designed to reduce participating 

households cooling load during peak load times. The program works by directly 

controlling air conditioning during peak hours on designated curtailment days. 

Curtailment events can only occur between the hours of 11 am to 7 pm from May 1 to 

October 31 and only for a total of six hours per day and for no more than 100 hours 

per cooling season. Before and after each event, the customer has complete control 

over their AC unit(s).  

Typically, curtailment days are called when system load is expected to be 

burdensome, usually the hottest days of the year. The California Independent System 

Operator (ISO) may declare a system emergency when an electric-resource generation 

facility reaches or exceeds a certain heat rate (usually heat rates of 15,000 British 

thermal units per kW).However, PG&E can also call events to test the devices and for 

other discretionary reasons such as transmission or distribution system overload. The 

Appendix gives a more detailed description of the process of initiating a control event. 

In contrast to the normal objective of the program, summer 2007 was a training 

period, and curtailment days were called on days with a variety of temperatures, not 

just the hottest days of the year. The inclusion of typical summer temperature days is 

important because it allows the utility to test the operational performance of the 

control devices. 

The SmartAC Program uses paging signals to reduce cooling load of enrolled 

air conditioning units during times of peak system demand. The control devices are 

either programmable communicating thermostats (PCTs) and/or direct load control 

adaptive switches (switches). Both technologies receive signals through a paging 
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device but differ by how they lower air conditioning load. Unlike the adaptive switch 

control devices, the thermostats provide additional functionality to participants. 

Demand reduction during curtailment events are achieved by either adjusting 

thermostat temperature set points or limiting the duty cycles of switches in the units. 

The PCTs implement load reduction by increasing the cooling set point temperature 

on the thermostat controls when an event signal is received. Increasing the PCT set 

point ensures that temperature increases are equitably distributed across the population 

irrespective of house, occupant temperature preference and air conditioner attributes. 

The switches on the other hand, reduce air conditioner load by directly controlling 

how the unit‘s compressor operates.
4
The SmartAC program was structured such that 

70% of the program participants had control switches and 30% smart thermostats. 

Customers with either device can only opt out of an event by either calling a toll-free 

number or accessing the program website
5
. 

There were two schedules by which load was reduced for those households 

with PCTs, and PG&E alternated between them. The first schedule set thermostats 

back one degree every other hour, resulting in a maximum setback of three degrees in 

each 6 hour curtailment event. The second schedule set thermostats back one degree 

every hour for the first four hours of the event and then held constant. This last 

strategy was done in an attempt to evenly spread the load reduction resulting in a 

gradual temperature decline as against the steep temperature from the first strategy. 

                                                 
4 Switches generally control air conditioner load by limiting the compressor run-time or duty cycle to a 

maximum over a period. When activated on curtailment days, the switches use adaptive algorithm to 

reduce air conditioner load to a percentage of the load on ―learning days‖. The ―learning days‖ are days 

with similar characteristics as potential curtailment days and are chosen by the program administrator. 

The observed duty cycle on these learning days provides an estimate of expected duty cycle on a 

curtailment day. 
5 While participants had the option to opt of the program, this option was never exercised by the 

households (KEMA 2008). 
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For units with adaptive switches, load reduction during curtailment event was 

achieved by limiting compressor duty-cycle to a maximum amount in the curtailment 

period. 

Using information from focus groups and similar program evaluation surveys 

in other locations, participants were recruited into the SmartAC program through 

direct mail campaigns. Participants into the SmartAC program were first enlisted in 

the spring of 2007 in San Joaquin County. However this has been expanded to include 

all service areas covered by the utility. As at the beginning of July 2007 when the first 

curtailment event was called, the program had enrolled over 2,857. The 297 

households sampled for this evaluation, are located in the city of Stockton  

and it‘s surrounding areas (San Joaquin County). And as of August 2007, which was 

the system peak, there were 8,193 participants in the program, which was almost 

composed exclusively of residential customers with less than 1% commercial 

customers. The program has subsequently grown in popularity to such an extent that 

by January 2008, there were 26,000 households enrolled in the program with an 

additional 22,000 waiting to be supplied control technology. All program participants 

received a one-off incentive payment of $25 in return for up to 100 hours/year of load 

control. In addition, participants in the program evaluation group were given a 

maximum payment of $110, based on the number of questionnaires answered in a 

survey conducted at the completion of the program‘s first year. Also, participants in 

the PCT group were given the thermostats free, with a market value of $200 (KEMA, 

2008).The goal of the program is to enroll a sufficient number of participants to 

achieve load reduction of 305 MW with over 95% coming from residential accounts.  
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Methodology 

We develop a methodology that estimates air conditioner load usage as a function 

of weather control (temperature and humidity) and time of day, parameterizing each 

unit separately. Then we use these predictions to compare actual usage on curtailment 

days to expected usage. While there are several methods for estimating baseline 

consumption patterns and load comparisons, we use a regression-based baseline 

modeling approach. The wide scale adoption of smart grid meters and availability of 

high-resolution, hourly or 15-minute energy consumption data has contributed a great 

deal to improvements in regression-based baseline models (Armel et al. 2013; 

Newsham et al. 2011; Santin and Itard 2010; Santin et al. 2009). Mathieu et al. (2011) 

find that the regression-based baseline model performs better than most models used 

in evaluating demand response programs. Given that the regressions coefficients are 

from a least squares estimator, Mittelhammer et al. (2000) show that coefficients from 

these models should be unbiased and consistent as long as we have controlled for all 

the relevant predictor variables (Newsham et al 2011). In addition, the regression 

based model allows for customer-specific response estimates to be used separately for 

decision making or easily averaged to any degree of aggregation.  

We model each air conditioner‘s baseline electric load as a function of time of the 

day, relative humidity, cooling degree days, heat index and a 631 index. By estimating 

parameters for each unit, we better capture unique occupant cooling preferences and 

differences in physical properties of residences. We use 15-minute-interval fixed 

effects, which captures the pattern of usage of each unit. Cooling degree days enters 

into the model as a 2-breakpoint demand function.
6
 The first breakpoint is the unit‘s 

                                                 
6 Figure 1 depicts the intuition of the 2-breakpoint model. 
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base or reference temperature, which marks the temperature above which air 

conditioning is used. The second breakpoint represents the temperatures point above 

which the air conditioner runs at 100% duty cycle. This specification allows for three 

different regimes of sensitivity to temperature changes. The heat index is a function of 

relative humidity and temperature and gives an idea how hot it given the relative 

humidity and actual air temperature. We use an equation that reproduces NOAA‘s heat 

index chart to estimate the heat index for all participating units. The 631 index is a 

weighted average of temperature and is estimated as 60% of a given day, 30% of prior 

day and 10% of two days prior average temperature readings (CAISO 2013)
7
. 

Specifically, we estimate the baseline model using only non-curtailment days for each 

unit as follows: 

)1(ihdiiihiihiihiihiitithd YXRCBL  

 

where ithdL is the observed load in kWh of unit i in time t of day d, it is unit-15 minute 

fixed effect, and ihB
 
and ihC are the degrees Fahrenheit above the first and second 

breakpoints, respectively. Rih is unit i‘s relative humidity at hour h, Xih is heat index 

for unit i at hour h and Yi is the 631 temperature index for unit i. The breakpoints are 

defined as follows:  
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where Th is the hourly average temperature of day d, and ib and ic are the unit specific 

breakpoints. These equations are similar in structure to the calculation of cooling 

                                                 
7 http://www.caiso.com/Documents/2013SummerLoads_ResourcesAssessment.pdf 

http://www.caiso.com/Documents/2013SummerLoads_ResourcesAssessment.pdf
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degree days, except that cooling degree days is calculated with a set breakpoint, 

usually 65°F, whereas here we allow the breakpoints to take a range of values. α, γ, β, 

δ, ε, δ, and ζ are parameters to be estimated. 

For each unit, we implement a grid search to find the breakpoint values that fit the 

consumption patterns best. We estimate the model for values of ib in the range of 65°F 

to 84°F and for values of ic in the range of 78°F to 90°F, both in increments of 1° and 

with the constraint that ib < ic . The optimal combination of ib and ic  is chosen based 

on which model maximizes R-squared.
8
 

One drawback to using the regression-based approach is that out-of-sample 

predictions could perform poorly due to the parameterization. Regression-based 

baseline models assume that the functional relationship between load and weather 

(cooling degree-days) is the same on curtailment days as on the non-curtailment days 

(KEMA 2008). There are two reasons to be optimistic that this is not a large problem 

in our case. First, our empirical approach allows for non-linearity in the load-weather 

relationship, which should enable the upper tail of the distribution to be modeled 

better. Second, as explained in more detail in the next section, curtailment days were 

not temperature outliers, and so our out-of-sample weather has strong statistical 

overlap with the in-sample days. 

From the parameters of the baseline models determined with non-curtailment days, 

we then predict demand on curtailment days. The difference between actual 

consumption and predicted consumption is the key statistic for determining the effect 

of the program for both hours during the event and hours before and after the event.  

                                                 
8 While R-squared is typically not thought to be a useful judge of predictive power, in this case we are 

only comparing models with the same number of explanatory variables. So R-squared would indicate 

the same breakpoints as optimal as would AIC or BIC.  
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Data 

This section details the multiple sources of data used for the analysis. The main 

dataset is the 15 minute interval consumption data covering the period June 12 through 

October 31, 2007.We additionally use weather data to model consumption and data on 

the marginal cost of generating 1MWh in the wholesale market to monetize the 

benefits of changes in consumption on curtailment days.  

 Electric Load Data 

As part of the SmartAC program load impact assessment, air conditioner load 

loggers were installed on a sample of 352 participating units. These units were 

contained in a stratified random sample of 297 (146 PCTs and 151 switches) program 

participants from a population 2,917.
9
 The sample was stratified by type of device 

(PCT or switch), total number of cooling tons from all units (less than four tons, four 

tons or more), and multiple units (yes or no). The sample design, and stratification as 

well as design sample sizes, and installed sample sizes are presented in Table A1 in 

the Appendix. We removed one unit for having an anomalously high load of 253 kW 

(over 10 times larger than the mean load) and four units for having 0 kW consumption 

throughout the study period. 53 units were dropped because of missing data, which left 

us with a final sample of 254 participants and 294 loggers. 

Figure A5 in the online appendix is a density plot of load with the dashed vertical lines 

representing the quartile positions. About fifty percent of the participating units‘ rated 

KW loads were less than 20KW with the lowest unit having a rated load of 2.8KW 

and the maximum unit with rated KW load of 35KW.  

Electricity consumption for the participating units were recorded by the data 

loggers in 15-minute ampere readings, which recorded the average instantaneous amp 

                                                 
9 Some participants had more than one unit. 
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reading for each minute during that period. The amperage was converted to kW using 

the voltage levels measured at the units. The average instantaneous readings were then 

converted to kWh by summing each participating unit‘s KW consumption over the 

four 15 minute interval readings within that hour. We discarded data on weekends and 

holidays, as curtailment days are only called on normal weekdays. In total, we had 

over 3.9 million observations at the 15-minute-unit level. The mean KW consumption 

was 0.26KW with a standard deviation of 0.85, while the maximum KW value was 

7.66. 

Temperature Data 

Daily average temperatures were obtained from the NOAA data web 

site.
10

While we do not know the location of each sample unit, PG&E mapped each 

unit to the nearest weather station and we use this to match each sample unit with 

weather data.  

Figure2 is a plot of the density of the average daily temperature data used in 

the analysis with vertical lines representing the average daily temperature at which 

curtailment events were called. Due to the experimental nature of this program in 

2007, many curtailment days were called for average heat days when peak load 

reductions were unlikely needed. Calling curtailment events on days with mild 

temperature is important because it ensures that our out-of-sample predictions will 

have strong statistical overlap with the in-sample days. In addition, it allows program 

administrators to obtain data on the performance of the technologies over the whole 

period of the cooling season and get a good performance of the technologies on 

learning days. 

                                                 
10http://www.ncdc.noaa.gov/ 
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Marginal Cost of Generating Electricity 

In order to monetize the net savings from the SmartAC program, we obtained data 

on the marginal cost of generating 1MWh of electricity from California ISO website.
11

 

We use the locational marginal pricing (LMP) at Stockton, CA. We believe that the 

conditions existing in 2007 in the California ISO (CAISO) means that the price data 

we use are indicative of both the relative scarcity and abundance of the product and 

the sensitivity of the demand to variations in price. The CAISO market uses balancing 

energy market in allocating energy to match load less than 10 minutes ahead 

forecasting scenarios. This market has two important features, namely an hourly, paid-

as-bid market that is conducted at the intertie points with neighboring control areas, 

and a five-minute, single price auction market for internal generators. Prices for the 

balancing energy market are settled at a market determined price that is set by the 

most expensive energy dispatched by the system in any given interval using a uniform 

price auction. The LMP reflects the energy value at a specific location at a specific 

time, fluctuating with time of day, and can surge significantly with extreme 

temperature and other unpredictable events. The LMP data we use is hourly. During 

peak load hours on curtailment days, the mean price is $100/MWh, with a maximum 

of $230/MWh and a minimum of $60/MWh. During off-peak times, the mean LMP 

value is $58/MWh. 

Results 

DR programs have historically played significant roles in lowering the costs of 

meeting peak demand reduction and reducing environmental impacts. DR resources 

                                                 
11http://www.ferc.gov/market-oversight/mkt-electric/california/caiso-archives.asp  
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offset the need for building additional peaking generation units and supply some low 

carbon flexible capacity utilities need to ensure real-time balance and reliability of the 

system. Given that the overall demand is an important determinant of use of fossil 

fuels, DR resources support the integration of increasing levels of nonrenewable 

resources. 

Baseline model  

While our primary interest is changes in consumption patterns induced by 

curtailment days, we first examine the baseline model estimation for indications that it 

captures demand well. It terms of model fit, R-squared averages 0.76 with a 90% 

confidence interval of [0.53, 0.97], which is an improvement over papers using 

temperature regressions or single breakpoint models (Herter 2007, Reed et al. 2009, 

Newsham et al 2011). In addition, the average participants R-squared show that the 

model is able to account for over 94% of the variation in cooling load.  

The breakpoints resulting from the optimization showed substantial heterogeneity.
12

 

Figures 3a and 3b are density plots of the estimated first and second breakpoints, 

respectively, for participating AC units. The mean value of the first breakpoint is 71°F 

with a 90% confidence interval of [66, 82], which seems like reasonable temperatures 

for AC units to be switched on. The distribution of the second breakpoint appears 

bimodal, with peaks at 80°F and 88°F.The two figures illustrate how different units 

have different breakpoints because of the differences in the buildings mass, outside 

temperature and user preferences. This indicates the importance of modeling this 

heterogeneity, which may be lost with a more traditional panel estimator. 

                                                 
12 For some of the units (less than 3%), the second breakpoint was not used in estimating the baseline 

model. However, all the units had the first breakpoint in the baseline model.  
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In addition, the coefficient estimates on the breakpoint parameters were highly 

statistically significant. 88.4% were significant at the 0.1% level, and the remaining 

were significant at either 5% or 10% level. In contrast, when the models are estimated 

with uniform base temperature values of 65°F and 72°F for the first and second 

breakpoints, respectively, slightly less than 65% of the coefficient estimates were 

significant at the 10% level. Thus, our grid search method and 15-minute fixed effects 

substantially improves model fit.  

Changes in consumption on curtailment days 

In Figure 4, we plot a single unit‘s load profile for a typical curtailment day and 

non curtailment on the same axes. The dark, solid lines represent actual load profile 

while the red, dashed lines are for predicted load on a typical curtailment day. The 

Figure shows a trough in between two peaks. The two peaks represent precooling and 

snapback loads, while the trough represents load reduction during peak period. Next, 

we quantify these figures.  Table 1 presents the results of our analysis of estimated 

change in consumption before, during and after a curtailment event on a curtailment 

day. Results are presented for each of the 13 curtailment days as well as an overall 

mean. The values in parenthesis represent standard errors computed by dividing the 

standard deviation obtained from a t-test of the difference in means between predicted 

and observed load with the square root of the number of observations. All values are 

significant at the 1% level except for the amount of precooling on July 17, which is 

negative and not significant. Therefore, the value for July 17 might just be random 

noise. 
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The first two columns give the date and average daily temperature of each 

curtailment day. During the curtailment event, the results indicate that the average 

sample AC unit reduced load between 0.020 kWh/h to 0.754KWh/h, with an average 

reduction of 0.410 kWh across all curtailment days. (We normalize kWh reductions by 

per hour because the length of curtailment varies between four and six hours). These 

estimates are consistent with prior studies that have estimated the load impact of 

demand response programs and found values ranging from 0KWh/h to 0.75KWh/h 

(KEMA 2007, 2008, Herter et al. 2007).  

Table 1 also displays average changes is consumption for the three hours before 

and three hours after an event. Our results suggest that program participants do 

increase AC usage both before and after an event.
13

Precooling occurred in 11 of the 13 

curtailment days. Precooling over the period ranged from 0.040 kWh/h to 0.320 

kWh/h with an average value of 0.127 kWh/h. The amount of snapback ranges from 

0.009 kWh/h to 0.240 kWh/h with mean of 0.115KWh/h. On a per hour basis, pre-

cooling equates to 31% of the reduction during the curtailment period, and snapback 

equates to 28%. 

Taken together, these figures imply that participating residents are consuming 

between 25-35% more in the hours immediately before and after a curtailment event 

than they would ordinarily have consumed. These results quantify behavior taken by 

households to maintain comfort during curtailment days.  

                                                 
13 An alternative version of the model was estimated in which hours of the day fixed effect and 

curtailment day variable were interacted. The positive sign on the interaction term pre-curtailment hours 

and curtailment day variable indicates precooling while a positive sign between post-curtailment hours 

with curtailment day variables indicate significant snapback event respectively. A test of joint 

significance applied to the results from the curtailment period and the surrounding hours indicate that 

the SmartAC impacts are statistically significant and in the expected direction across the curtailment 

period, pre-curtailment hours, and post-curtailment hours respectively.  
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Learning over time 

Table 1 indicates that households behave strategically to pre-cool their homes 

before curtailment. We wanted to further investigate if the amount of pre-cooling 

increased over time, suggesting that customers were learning how to best pre-cool 

their homes to cope with curtailment. If there is a pattern of learning, then the later 

days in the summer will be more indicative of the amount of pre-cooling to expect as 

this program and others like it mature.  

First, a comparison of the amount of precooling on the curtailment days that occur 

early in the summer reveals that that pre-cooling is increasing over time. Second, 

customers precool their homes more in the late, hotter summer days than curtailment 

days with lower temperature. This last fact implies that there exists a positive 

correlation between the amount of precooling and temperature. This make sense 

because one would more pre-cooling will be needed to maintain comfort levels. This 

last fact presents challenges in trying to identify the evidence of learning from 

temperature effects. 

To help us decipher whether the larger precooling amount in later, hotter summer 

days are due to learning by customers, and not a reflection of those days having higher 

temperatures, we undertake additional analysis. First, we look at amount of precooling 

in late hot summers days that are non-curtailment but occurring after two consecutive 

curtailment days. And then compare this to the amount of precooling occurring in non-

curtailment days following consecutive curtailment days in July. Second, we also look 

at the load shape a day before curtailment and a day after curtailment. However, given 

the limited number of curtailment days in our sample, these two approaches could not 
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conclusively reveal additional information about whether or not households learn to 

precool their homes over the course of the program
14

. 

The direction and size of precooling and rebound we find are in line with figures 

reported elsewhere from experiments about using building thermal mass to reduce 

peak cooling load (Xu 2006, Xu et al 2004
15

). However, unlike Jessoe and Rapson 

(2014) who found that households learn to conserve energy beyond the conservation 

periods during peak hours under demand response programs with price incentives and 

behavioral intervention; our results show that whatever learning (if it does occur) that 

occurs under a direct load control program without price incentives is in the opposite 

direction: households learn to erase gains made during peak periods through 

precooling of their homes given comfort constraints. The two conflicting results 

provide an insight into how consumers‘ behavior responds to non-monetary 

intervention such as technology and a monetary intervention. 

Heterogeneity by technology and load 

We are also interested in how curtailment affects units with different installed 

technologies (PCT vs. switch) and units with different loads. Table 2 shows the 

average changes in consumption averaged across all curtailment days splitting the 

sample various ways. Panel A splits the sample by choice of technology. The results 

                                                 
14

 In addition, we examined whether conditional on temperature, the curtailment days that 

occur on dates later in the summer have positive coefficients which could indicate some evidence of 

learning. We estimated a regression similar to equation 1, but using all days (both curtailment and non-

curtailment days) and including variables to account for curtailment event and number of prior 

curtailment days in the summer experienced by households. The results of such regressions are 

presented in the online appendix in Table 7. We see a positive coefficient for the interaction terms of 

hours prior to curtailment period and the number of consecutive prior curtailment events experienced. 

This is just an additional indication that learning could be occurring and should be explored additionally 

if one has additional data. 
 
15 Xu 2006, precooling could shift about 20-50% of peak load to non-peak load using building thermal 

mass. 
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show the same general pattern of decreases in consumption during the event and 

increases in consumption before and after the event for both groups. However, the 

changes for the PCT group are larger in every stage – more reductions during the 

event and more pre-cooling and snapback. One possible explanation for the 

heterogeneous change in consumption between the PCT units relative to those with 

adaptive switches could be related to how the two technologies effect load reduction 

during curtailment days. Another reason could be that the larger changes in 

consumption by thermostat compared to the adaptive switches is a reflection of the 

higher variation in thermostat load compared to switches. The algorithms for the two 

technologies are such that load reduction by units with adaptive switches is predictable 

and more evenly distributed over the curtailment period compared to units with PCTs 

(Agnew et al. 2008).   

Also, within PCT group, the two different strategies for achieving load reduction 

results in different outcomes during the curtailment events, but do not seem to affect 

the amount of precooling and snapback. On the average, PCT units exposed to the 

steep temperature declines reduce about 13% more load given that all other conditions 

are controlled for. 

Panel B partitions units into quartiles based on load size. Similar to Panel A, we 

see the same pattern across all four quartiles. However, another pattern emerges that as 

load grows so does the magnitude of consumption change. This finding is consistent 

with intuition because units with a larger load are likely to be used more and thus have 

larger decreases during curtailment. Further, larger units are likely to pre-cool more if 

occupants want to maintain the same comfort level during the curtailment event. 
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Falsification test 

In order to alleviate concerns that the estimated changes in consumption during 

event days were a spurious result, we conducted a falsification test with proxy days 

treated as curtailment days. To implement this, we sought a match for each curtailment 

day that had the same average temperature, was within two days of the curtailment 

day, and was not a curtailment day itself. Matches meeting these criteria were found 

for eight of 13 curtailment days. Our definition of proxy days uses only non-holiday 

weekdays, and accounts for daily maximum and minimum temperature. We also 

attempted to define proxy days using humidity; however it was difficult matching on 

several covariates. We then re-estimated our baseline model excluding both the true 

curtailment days and the proxy days, and then calculated the difference between actual 

and expected consumption for the proxy days. The results, shown in Table 3, suggest 

no evidence of systematic increases or decreases in consumption during any of the 

three periods (before, during, and after the event). Magnitudes in all three columns 

tend to be smaller than the numbers in Table 1 and flip sign from day to day.  

In addition, we relaxed the criteria for selecting the proxy days and used all non-

curtailment days as proxy. Doing this allows us to relax the temperature control and 

possibly account for humidity. We performed a Monte Carlo exercise, first excluding 

each non-curtailment day and then estimate the model and predicting demand for that 

proxy day. We did this for each non-curtailment day in the sample (including 

weekends and public holidays) and plotted the average observed load and predicted 

load. The results are presented in Figure 7. These results validate our methodology and 

results.  
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Calculating peak load savings and net savings 

We now examine the complete effect of the SmartAC program and the mitigating 

effect that pre-cooling and snapback have on total benefits. Table 4 reports the results. 

Columns A and B present the peak load reduction benefits of the program in terms of 

kWh savings and monetary savings per unit. Columns D and E present net benefits of 

the program, additionally accounting for pre-cooling and snapback.
16

 

As expected and as foreshadowed in earlier results, on average, units reduced 

consumption by a total of 23.218 kWh during the summer‘s peak events. Monetizing 

these reductions indicates that PG&E saved each participant nearly $41. However, 

after accounting for precooling and snapback, kWh savings are reduced by 41% and 

monetary savings are reduced by 42%.
17

These results make clear the importance of 

accounting for behavioral responses to DLC programs when determining program 

benefits. 

Column G presents the cost of conservation, which is calculated as the marginal 

cost of generating the extra electricity needed to meet the increased off-peak demand 

due to conservation during peak times. The values indicate that reductions during peak 

times cost the utilities an additional $21.07/MWh on average, with values ranging 

from $5.40/MWh to $43.41/MWh. Of course, this is cheaper than the cost of 

generation during peak times, so the net benefit is still positive. But it is important to 

know that the cost is not zero. These estimates are similar though smaller to those of 

                                                 
16The values in column A were obtained by averaging hourly savings during the curtailment period for 

all units. Those in column B were obtained by first multiplying the hourly cost of generating 1MWh 

with the change in consumption at that hour, and thereafter computing the average value. In the next 

column, C, we add the precooling and snapback values to the change in consumption during the 

curtailment period. Finally, the values in column D were obtained by summing the product the change 

in consumption in each hour with the marginal cost of generating 1MWh during each hour. 
17The discrepancy between percentage reductions is due to the higher generation costs during peak 

times. 
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Holladay et al. (2013), who estimate conservations costs ranging from $43.70/MWh to 

$61.70/MWh. 

Despite the large reductions in net benefits from pre-cooling and snapback, the 

program still offers substantial benefits. Projecting the net savings onto the entire 

8,193 customers enrolled in the program leads to an estimated $194,000 in utility bill 

savings. Further, the hotter days in the latter part of the summer yield the largest 

monetary savings, due both to larger kWh reductions and higher marginal prices. This 

result suggests that per-unit savings are likely to be larger for summers in which 

curtailment occurs mostly on very hot days. 

Estimates of Environmental Impacts 

We use the load reduction estimates from the program to estimate the overall 

environmental impacts of the programs. We make simplifying assumptions that 

increased consumption increases in the period before and after curtailment occurs 

when natural gas is at the margin and the consumption reductions during the 

curtailment period occur when coal is the margin. While these assumptions may be 

very simplistic, they ensure that whatever environmental impact we attribute to the 

program are lower bounds. In addition, it does reflect what is obtainable since natural 

gas is the non-base load source in the Western Interconnection area.  We use the 

hourly marginal emissions intensities from Graff-Zivin, Kotchen and Mansur (2012) 

to multiply the changes in consumption to estimate the environmental impacts.  

The result from the analysis is presented in columns C and F of Table 4. In 

Column C, we report the values of reduced emission due to load curtailment 

attributable to the program. Column C reports estimates of emissions reduction due to 

avoided or displaced generation from coal of about 0.78 metric tons of CO2e per unit 
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during the curtailment period. Finally, in Column F, we report net environmental 

effects by aggregating across the periods: precooling, curtailment and snapback 

periods. The program results in a net reduction of pollution even after accounting for 

increased emissions due to behavioral response by households of 0.42 metric tons of 

CO2e per unit. Given the high intra-day volatility in the marginal fuel, the emissions 

reductions we attribute to the program are lower abound. 

Policy Discussions 

Faruqui and Sergici (2009) and Newsham et al (2010) provide reviews of 

several studies on evaluation of DR programs and how these results vary. These 

papers provide reviews of programs using technology-based standards compared to 

programs with price incentives and information feedback. A third type of program 

considers the customer behavior other than pricing incentives like goal setting, 

commitment, social approval, consumption feedback, etc  (Allcott and Rogers 2014, 

Jessoe and Rapson 2014).  

Program with Price Incentives 

Programs with price incentives achieve peak load reduction by encouraging 

either the elimination of on-peak energy consumption activities or shifting of such 

activities to other periods through economic incentives. The economic incentives are 

usually in the form differential pricing in residential electricity rate structure based on 

time of delivery of electricity. That is, utilities encourage behavioral modifications by 

charging higher prices during periods of high system-wide demand and lower prices in 

other periods. Alternatively, utilities could compensate households for every kWh 

reduced during periods of high system-wide demand. These programs come in various 
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forms. While programs with price incentives have been effective at reducing peak 

load, their relative effectiveness depends largely on how the price incentives are 

structured. Generally, CPP programs seems to be very effective at reducing peak 

loads, whereas TOU less so (Newsham et al 2010). Two main reasons have been 

proffered to account for the higher on-peak load reduction of CPP programs compared 

to TOU programs: price and frequency of occurrence. The intuition is that in the 

absence of enabling technologies, households are more apt to respond to a CPP 

program given the small number of events that are called over each summer. However, 

under the TOU pricing, households have to change their behavior daily, which could 

be cumbersome. In addition, CPP programs have been shown to reduce energy during 

peak periods on non-event days, implying that behaviors formed on event days can be 

transferred to non-event days (Newsham et al 2010, Faruqui and Sergici 2008).  

PTR programs are less effective at reducing peak load than CPP programs 

even though they are similar (e.g., Newsham et al 2010). However, unlike CPP 

programs, PTR programs are designed to provide rebates on bills for reduction in peak 

load. This result is in line with evidence from Psychology which found that people 

respond more to ―sticks‖ than ―carrots‖ (Kahneman and Tversky 1984). This also 

suggests that behavior-based programs might make price-based policies more effective 

by making people more aware of potential savings  

Behavior Based Programs 

A basic tenet of behavior change is providing consumers with regular feedback 

on their energy consumption to take action and achieve greater levels of energy 

savings over and above what traditional price based incentive programs can 

accomplish. Behavior based programs do not use monetary benefits to encourage load 
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reduction. The literature on behavior change is rich and most are rooted in social 

sciences (Jessoe and Rapson 2014, Alcott and Rogers 2014, Allcott and Mullainathan 

2010).  

Allcott and Rogers use large data sets from a series of programs by OPOWER 

to study how providing households‘ feedback information on their energy 

consumptions induces conservation behavior. They find that such behavioral programs 

result in about 1.1 to 2.8% reduction in energy consumption relative to baselines. 

Jessoe and Rapson 2014 use a field experiment to study the additional impact of high-

frequency information about households‘ residential electricity usage on the price 

elasticity of demand in addition to household‘s response to price incentives. They find 

that households that were not provided information reduce peak demand by about 2-

6% in response to price incentives alone. Additionally, they find that households that 

were provided with the high frequency information on price are more likely to reduce 

peak load by 8-22% over and above the amount due to price incentives alone. 

Technology Only Programs 

Technology only programs are designed to reduce peak load through the use of 

equipment to modify the operation of appliances during peak period (Newsham 2010, 

CAISO 2013, Faruqui and Wood 2008). DLC programs are designed to reduce peak 

use on a small number of event days without time-varying price incentives or behavior 

interventions. From a review of literature on program evaluation on DR programs, 

DLC based programs are the most efficient (Newsham et al 2010, Faruiqui and Wood 

2008). A review of peer reviewed literature shows that DLC programs reduce 

approximately 0.25KWh/h to 1.4KWh/h per household during curtailment periods.  
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Our findings indicate technology only programs result in larger load reductions 

during the curtailment periods. This is because technology only programs provide 

fewer margins for adjustment (Newsham et al 2010). This result is expected from an 

automated system because technology provides opportunity for participating 

households to choose their preferred mode of response once during the program 

lifetime and not be bothered to remember when curtailment events are due. However, 

if we account for precooling and rebound, the net savings are comparable to load 

reduction from other programs with price incentives.  

Although, we find that the result of customers‘ behavioral response and the 

interaction of technology under a non-monetary intervention results in the diminution 

of conservation gains, the fact that customers may learn to precool their homes at 

higher temperatures could also provide policy benefits. First, the fact that households 

precool their homes under a DLC only program is an indication that residential 

households may be averse to relinquishing complete control of their air conditioners to 

utilities during summer peak times. Perhaps giving consumers back some type of 

control during curtailment hours could be one way of improving the performance as it 

could provide additional avenues for adjustment. Second, the evidence of precooling 

suggests that utilities should bundle some sort of time-varying price incentive into 

DLC program to make them more efficient.  

Taken together, our results suggests a hybrid policy program that incorporate 

some form of automation and time-varying price structure with behavioral aspects will 

perform better and reduce the most amount of peak load while still maintaining 

consumer comfort. 
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Conclusion 

 

Deregulation has greatly impacted the ability for the electricity industry in the 

US to make profit. Specifically, additional generation capacity is no longer guaranteed 

a rate of return. Because of the costliness of new capacity and the growing pressure 

peak demand places on the system, there has been increasing implementation of 

demand response programs as away to curb peak load. DR can also be applied for 

energy conservation in general. Recent literature has quantified the benefits of DR by 

measuring the amount of load reduced during peak periods, and the impacts are 

substantial. However, little work has been done to quantify the impact of behavioral 

responses to such programs. This paper seeks to contribute to that gap in the literature 

by examining the strategic response of participants in one such DLC demand response 

program and how that response may undermine its effectiveness. 

Our results suggest that program participants increase consumption before and 

after event hours relative to the counterfactual. These results are intuitive, but are also 

of critical importance as DR policies move forward and the need to understand net 

benefits and forecast demand grows. For example, the SmartAC program, now in its 

seventh year, has over 100,000 enrolled customers. To be clear, the results still support 

DR and DLC programs as an effective way to curb peak demand; but, the true 

conservation cost is not zero. 
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Figures and Tables 

 

 

 

 

 

Figure 1: Density of Load Distribution with Quartiles 
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Notes: Point B on the horizontal axis represents the first breakpoint, the point at which cooling 

starts. Point C, represents the point at which air conditioner runs at 100% duty circle. 
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Figure 2: Density of Average Daily Temperature Values and Curtailment Days 
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Figure 3-a: Distribution of Estimated First Breakpoint Parameter 

 
 

Figure 3-b: Distribution of Estimated Second Breakpoint Parameter 

 
Notes: Figure 3a is a kernel density estimate of the first breakpoint for all the participating AC units, while 

Figure 3b is the kernel density estimates for the second breakpoint temperature for all participating units.  

Both densities were estimated with the epanechnikov kernel and optimal smoothing constant of 2.0
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Figure 4: Aggregate Precooling over Time 
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Table 1: Average Precooling, Load Impact Response & Rebound during Curtailment 

Days by all Units 

 

Date  
Average Daily 

Temperature (
o
F) 

Average Change in Consumption (KWh/h) 

Before Event During Event After Event 

12-Jul 71 0.000 -0.331 0.045 

  

(0.000) (0.004) (0.011) 

17-Jul 73 -0.090 -0.020 0.050 

  

(0.300) (0.006) (0.013) 

23-Jul 81 0.320 -0.720 0.090 

  

(0.002) (0.013) (0.021) 

26-Jul 74 0.040 -0.120 0.109 

  

(0.001) (0.001) (0.015) 

27-Jul 76 0.029 -0.140 0.119 

  

(0.005) (0.018) (0.017) 

1-Aug 77 0.110 -0.615 0.177 

  

(0.052) (0.012) (0.020) 

9-Aug 75 0.060 -0.217 0.009 

  

(0.003) (0.013) (0.002) 

10-Aug 78 0.099 -0.320 0.240 

  

(0.004) (0.001) (0.016) 

21-Aug 84 0.221 -0.564 0.101 

  

(0.001) (0.030) (0.020) 

22-Aug 83 0.159 -0.487 0.180 

  

(0.001) (0.001) (0.021) 

28-Aug 84 0.173 -0.553 0.120 

  

(0.038) (0.001) (0.022) 

30-Aug 87 0.310 -0.515 0.129 

  

(0.000) (0.001) (0.023) 

31-Aug 88 0.230 -0.754 0.133 

  

(0.000) (0.034) (0.022) 

Mean   0.127 -0.410 0.115 
Notes: The values in columns 3,4, and 5 were computed by averaging the difference between the 

predicted mean hourly demand and observed demand on curtailment days. The baseline model was 

estimated using hourly observations on non-curtailment days alone. Impacts are calculated for each 15-

minute interval. The curtailment day loads are estimates is the same for each 15-minute interval in the 

hour. The impacts are calculated separately for each observed 15-minute average. The average 

precooling and rebound values were computed by averaging the differences between the observed and 

predicted cooling loads in the three hours prior to and after the curtailment event respectively. Standard 

errors are in parenthesis. The standard errors were computed by dividing the standard deviation obtained 

from a t-test of the difference in means between predicted and observed loads with the number of 

observations. 
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Table 2: Heterogeneity in Response to SmartAC Program 

 
  Average Peak 

Load on non-

curtailment days 

Average Change in Consumption (KWh) 

  Before Event 

During 

Event 

After 

Event 

          

Panel A: Technology         

PCT Group 2.41 0.190 -0.370  0.273 

 
 

(0.001) (0.001) (0.001) 

Switch Group 1.83 0.090 -0.310 0.140 

 
 

(0.000) (0.001) (0.001) 

Panel B: Classification by Load 

Size 
        

1st Quartile 0.68 0.069 -0.150 0.090 

 
 

(0.032) (0.005) (0.029) 

2nd Quartile 1.83 0.114 -0.261  0.073 

 
 

(0.001) (0.005) (0.002) 

3rd Quartile 2.56 0.150 -0.470 0.119 

 
 

(0.003) (0.006) (0.005) 

4th Quartile 2.67 0.318 -0.570 0.191 

 
 

(0.020) (0.007) (0.001) 

Notes: Panel A reports the load impact response by technology type and panel B reports the load impact response by 

load size in KWh. The reported values are mean values averaged over time and specific class. Standard errors are in 

parenthesis . 

 

 

  



 

45 
 

 

 

 

 

 

Table 3: Average Precooling, Load Response and Rebound on Proxy days 

 
Date 

Change in Consumption (Kwh/h) 

Before Event During Event After Event 

11-Jul 0.06 -0.01 0.00 

18-Jul 0.01 -0.01 0.00 

19-Jul -0.03 -0.03 0.07 

25-Jul -0.06 -0.01 -0.05 

31-Jul -0.04 0.00 -0.03 

2-Aug 0.07 0.00 -0.02 

27-Aug 0.00 -0.01 0.00 

29-Aug 0.04 0.11 0.00 
Notes: Proxy event days are defined as days with similar temperature profile as the 

curtailment days; and also fall within a few days of the curtailment days (1 or 2 days before 

or after) the curtailment days that is not a weekend, public holiday, past curtailment day. 

Model results are calculated for all the curtailment days, however, diagnostics are calculated 

only for the set of proxy event days. 
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Table 6: Net Savings with and without Precooling and Rebound 

Date 

Per Unit Event Savings   Per Unit Net Savings Conservation 

Cost 

($/MWh) KWh $ 

lbs of 

CO2e   KWh $ lbs of CO2e 

(A) (B) (C )   (D) (E) (F) (G) 

12-Jul 1.156 0.724 0.031   1.036 0.339 -0.053 7.24 

17-Jul 0.140 0.730 0.133   0.290 0.154 0.109 -2.65 

23-Jul 2.884 2.866 1.379   1.654 1.343 0.832 17.14 

26-Jul 0.600 3.219 0.237   0.150 0.812 0.033 23.3+2 

27-Jul 0.564 2.919 0.281   0.114 0.547 0.072 35.14 

1-Aug 2.476 3.053 1.065   1.636 1.908 0.667 30.65 

9-Aug 0.864 1.604 0.388   0.635 1.564 0.279 11.85 

10-Aug 1.283 2.731 0.589   0.263 1.143 0.106 49.62 

21-Aug 2.795 4.692 1.283   1.835 3.771 0.816 53.83 

22-Aug 2.398 3.855 0.855   1.378 1.952 0.360 24.17 

28-Aug 2.224 3.855 1.247   1.354 2456 0.698 58.23 

30-Aug 2.084 4.747 0.923   0.764 2.676 0.323 61.11 

31-Aug 3.750 5.986 1.709   2.670 4.957 1.200 46.00 

Sum 23.218 41.040 10.12   13.798 23.622 5.442   
Notes: Columns A and B report the savings over the curtailment period in KWh and Dollar values respectively. 

Column B is computed by multiplying KWh savings by the number of hours and the total KW signed up to the 

program as at August 31 2007 (number of units multiplied by the tonnage per unit) as well as Net Marginal Price at 

that particular hour in $/MWh. Columns D and E report the savings accounting for the precooling and rebound 

effects in KWh and dollars respectively. Column D was computed by subtracting the amount of precooling and 

snapback from total reduction during the curtailment period. Column E was computed the same way as Column B, 

however the net reduction was used. Columns C and F were computed by multiplying hourly change in consumption 

with hourly emission factors as reported in literature. Column G is the marginal cost of generation for the changes in 

off-peak consumption. 
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Online Appendix 

for 

The Mitigating Effect of Strategic Behavior on the Net Benefits of a Direct Load 

Control Program 

Corey Lang and Edson Okwelum 

 
(Not for publication) 

 

This appendix provides results that supplement, but are not critical to the analysis in 

the main paper. 

Figures A1-A and A1-B represents plots of precooling over time and 

temperature respectively. The vertical lines are the average precooling in both graphs. 

Both figures imply that precooling increases over time and higher temperatures 

Figure A2 presents a plot of precooling as function of temperature and date on 

which curtailment event was called. The vertical line represents daily average 

temperature while the horizontal axis represents the date on which a particular 

curtailment corresponding to that average temperature was called. The size of the balls 

reflects the amount of precooling in KWh/h. The figure reflects the relationship 

between amount of precooling, average daily temperature and possible effect of 

learning by participating households. 

Figure A3 is a density plot of change in consumption from a Monte Carlo 

exercise in which we use each non-curtailment day as a proxy event day. We then 

estimate our model without that day, predict the consumption for that proxy event day 

and compute the change in consumption between the observed and predicted loads. 

We repeat for these for all non curtailment days and plot the density in A3. 
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Figure A4-1 &2 plots both the observed load and estimated load on the same 

axes for a single participating unit on a typical curtailment day. The dashed red lines 

represent the estimated load profile while the continuous blue line is the observed load 

profile for a single unit. The vertical red lines are the points at which the curtailment 

event started and stopped respectively. 

Figure A5 is a density plot of load with the dashed vertical lines representing 

the quartile positions. 

Figure A6 is a plot of deviation (the difference between predicted and observed 

loads) one day before and one day after curtailment event. 

Figure A7 is a plot of (the difference between predicted and observed loads) 

 Table 1-A is the hourly change in consumption on all curtailment days studied. 

The values were computed by subtracting the 15 minute observed load from the 15 

minute estimated load. While the baseline model was estimated using hourly 

observations, the change in consumption was however calculated for each 15-minute 

interval. The estimated cooling load is the same for each 15-minute interval within 

each hour. All colored values are significant except on July 12. 

Typical Curtailment Event Initiation and Process 

Typical process for a control event involves the following steps: 

 The evaluators decide what day and time period should be used for the 

curtailment event based on the weather forecast, and the mix of curtailment 

and non-curtailment days that were already experienced.  

 If the evaluators call the curtailment event, they  alternate the two smart 

thermostat 



 

49 
 

subgroups within the special monitoring group that received the population 

treatment and the alternative treatment. If the event is called by PG&E -- i.e., 

the curtailment applies to all SmartAC participants and not just those in the 

special monitoring group -- then the entire special monitoring group received 

the population treatment. 

 The day prior to the curtailment event, the evaluators submit these instructions 

to the PG&E SmartAC Program staff who then relay them to Cannon 

Technologies which manages the Yukon system that allows the curtailment 

events to be initiated. 

 Third party technology solution provider writes a computer program that will 

implement the control instructions requested by the evaluators.  These 

programs are tested. 

 PG&E‘s Transmission and Operations staff receive the evaluator instructions 

and initiate the curtailment events.  

Sampling Design and Stratification 

Table 2-A shows the sample design. Sampling for the Special Monitoring Group was 

stratified into 8 strata on the basis of device type, tons of air conditioning per 

household and the presence or absence of multiple AC units, as well as other 

demographic factors.  

Description of Curtailment Events Involving the SmartAC Monitoring Group 

(SMG) 

During the period June 07-October 07, PG&E initiated 13 curtailment events 

affecting Program participants from the SMG. Of these 13 events, all the program 
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participants were exposed to two of the curtailment events compared to the 13 that the 

SMG was exposed to: one in July 2007 and another in September 2007. All these 

curtailment events were initiated by PG&E. Households with smart thermostats were 

further divided into two subgroups-A & B based on the type of curtailment day and 

type of treatment received on that date. On the basis of the type treatment, three ―Day 

Types‖ are recognized: Day Type 0, Day Type 1 & Day Type 2. Day type 0 is used to 

describe curtailment day in which all the smart thermostats received the same type of 

treatment. On such days, PG&E set back the thermostat one degree every other hour. 

We refer to this as the ―population treatment‖. ―Day Type 1‖ refers to curtailment days 

when subgroup A received the population treatment and subgroup B received the 

setback treatment. The setback treatment involved setting back the thermostat one 

degree every hour for four hours. Day Type = 2 refers to a day when subgroup B 

received the population treatment and subgroup A received the setback treatment.
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Figure A1-A: Aggregate precooling over Time 

 

Notes:  Vertical axis is the average precooling on curtailment days for all participating units 

obtained by averaging the difference between the observed 15 minute load demand and 

predicted 15 minute load estimate. The horizontal axis plots the specific curtailment day. 

 

Figure A1-B: Aggregate Precooling across Daily Average Temperature 

 
Notes:  This figure also plots average precooling on the vertical axis; however, the horizontal axis 

denotes average daily temperature on curtailment days. 
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Figure A2: Aggregate precooling with respect to time and temperature 
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Notes: The size of the bubbles represents the size of the average precooling on a specific 

date and average temperature value on that curtailment day. 
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Figure A3: Monte Carlo Estimate of Precooling using Non-Curtailment Days 
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Figure 3A: Monte Carlo Estimate of Precooling using Non-Curtailment Days
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Figure A4-1: Curtailment Day Observed Load vs. Estimated Load 

 

Figure A4-2: Curtailment day Observed Vs. Estimated Load-
Individual 
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Figure A5: Density of Load Distribution with Quartiles 
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Figure A6: Deviation of Predicted from Observed Load 
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Figure A7: Deviation of Predicted Load from Observed Load 

0
.5

1

O
b
s
e

rv
e
d

 M
in

u
s
  
P

re
d

ic
te

d
 (

K
W

h
)

0 4 8 12 16 20 24
hour

Day Before Curtailment 1-Day After Curtailment

2-Days After Curtailment



 

58 
 

Table 7-A Hourly Changes in Consumption on Curtailment Days 
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Table2-A:  Sample Design for EM&V Special Monitoring Group 

Stratum 

Type of 

Device 

Total Tons 

From All 

Units 

Multiple AC 

Units on Site 

(1=Yes) 

Program 

Participants as 

of 06/11/2007 

Design 

Sample 

Size 

1 PCT <4 0 483 93 

2 PCT <4 1 6 3 

3 PCT >=4 0 148 37 

4 PCT >=4 1 34 17 

5 Switch <4 0 1,404 77 

6 Switch <4 1 21 5 

7 Switch >=4 0 637 54 

8 Switch >=4 1 123 17 

Total       2,856 303 

Notes: Source-EMA,2008 
     

. 
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Table3-A: Average Precooling, Load Impact Response & Rebound During  

Curtailment Days by all Units 

Date  
Average Daily 

Temperature (
o
F) 

Average Change in Consumption (KWh/h) 

Before 

Event 
During Event 

After  

Event 

12-Jul 71 0.04 -0.02 0.02 

17-Jul 73 -0.04 -0.07 0.06 

23-Jul 81 0.32 -0.58 0.07 

26-Jul 74 0.04 -0.13 0.11 

27-Jul 76 0.03 -0.15 0.12 

1-Aug 77 0.11 -0.58 0.17 

9-Aug 75 0.06 -0.21 0.01 

10-Aug 78 0.10 -0.32 0.24 

21-Aug 84 0.22 -0.56 0.10 

22-Aug 83 0.16 -0.37 0.18 

28-Aug 84 0.14 -0.55 0.25 

30-Aug 87 0.31 -0.51 0.11 

31-Aug 88 0.22 -0.75 0.13 

Mean   0.13 -0.41 0.12 
Notes: The values in columns 3,4, and 5 were computed by averaging the difference between 

the predicted mean hourly demand and observed demand on curtailment days. The baseline 

model was estimated using hourly observations on non-curtailment days alone. Impacts are 

calculated for each 15-minute interval. The curtailment day loads are estimates is the same for 

each 15-minute interval in the hour. The impacts are calculated separately for each observed 

15-minute average. The average precooling and rebound values were computed by averaging 

the differences between the observed and predicted cooling loads in the three hours prior to and 

after the curtailment event respectively. 
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Table 4-A: Net Environmental Impacts of SmartAC Program (SO2) 

Date  

Average Emission (Reductions)/Increases (metric tons of SO2e) 

Before Event During Event After Event Net Effect 

12-Jul 0.00  -1.39 0.18  -1.21 

17-Jul (0.60) -0.11 0.21  -0.50 

23-Jul 1.91  -5.14 0.38  -2.85 

26-Jul 0.22  -0.61 0.49  0.10  

27-Jul 0.16  -0.72 0.54  -0.01 

1-Aug 0.60  -3.17 0.76  -1.80 

9-Aug 0.33  -1.07 0.04  -0.70 

10-Aug 0.55  -1.64 1.08  -0.01 

21-Aug 1.20  -3.64 0.55  -1.89 

22-Aug 0.88  -3.12 0.99  -1.26 

28-Aug 0.82  -3.61 0.66  -2.13 

30-Aug 1.49  -2.73 0.71  -0.52 

31-Aug 1.11  -4.92 0.71  -3.10 

Mean 0.67  -2.45 0.56  -1.22 
Notes: The values in columns 3,4, and 5 were computed by multiplying the hourly changes in 

consumption with hourly marginal emissions intensities per KWh in the Western Interconnection using  

SO2 lbs/MWh values in Kochen and Mansur 2012. The values in the last column is the sum of values in 

columns 3,4, and 5 respectively. There were 8,843 cooling units enrolled in the program. The average ton 

per unit was 3.3 and these were then converted to KW by multiplying with a factor  3.517 
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Table 5-A: Effect Sequence of Curtailment Days 

 Variables Estimates   

CUMMS+3Hrs before Event 0.009***   

  (0.0001)   

CUMMS+2Hrs before Event 0.019***   

  (0.0004)   

CUMMS+1Hr before Event 0.026***   

  (0.0001)   

CUMMS*Curtailment Period -0.014***   

  (0.0005)   

CUMMS+1Hr After Event 0.107***   

  (0.0005)   

CUMMS+2Hrs After Event 0.013***   

  (0.0006)   

CUMMS+3Hrs After Event 0.009***   

  (0.0005)   

15-Minute Fes Yes   

      
Notes: *,**,***-Stars indicate significance effect at 0.10,0.05 and 0.01 levels 

respectively. The dependent variable is the average 15-minute interval cooling 

demand (kW) with the same explanatory variables as those used in the main 

specification. However, the regressions were estimated using GLS estimator and 

Huber-White robust standard error.  The estimates presented here from an 

aggregate model. 
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Estimates of External Accident Costs  

By 

Edson Okwelum, Jim Opaluch and Corey Lang 
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University of Rhode Island 
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Abstract  

A long held view is that fuel economy standards, designed to reduce emissions from 

vehicles have led to changes in fleet weight distribution leading to increased accident 

fatalities.  It is sometimes argued that estimates of the cost of a heavier fleet on accident 

costs could be biased by selection on moral hazard where drivers of heavier vehicles get 

into deadlier accidents. However, previous empirical research has not accounted for the 

effect of selection on moral hazard in estimates of accident costs. This paper provides 

empirical estimates of the effect of changes in fleet weight distribution on vehicle safety 

due to regulatory constraints. We propose a two-step simulated maximum likelihood 

estimation strategy to identify and account for selection on moral hazard and unobserved 

heterogeneity. We find significance evidence of selection on moral hazard effects 

resulting in downward bias in estimates of the external costs of accident. 

 

 

Keywords: Moral Hazard, CAFE, Externality, Selection, SML estimation 
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Introduction 

In a bid to promote efficiency improvements and reduce competitive impacts 

across the vehicle fleet, the corporate average fuel economy standards (CAFE) set less 

stringent targets for larger/heavier vehicles. Two of the most important design 

parameters that help determine vehicle‘s fuel economy and CO2 emissions are weight 

and performance. Between the late 1970s and 1988, dramatic improvements in fuel 

economy were accompanied by declines in vehicle weight.  And in the two decades 

between mid-1980s and mid 2000s, fuel economy rose while average fleet weight 

increased to pre-CAFE levels due to technology innovations. Since 2005 however, 

improvement in automotive technology has improved fuel economy and performance 

while keeping weight constant and reducing emissions (EPA 2013).  The result is a 

heterogeneous fleet with conflicting implications for safety. 

In motor crashes, the larger weights of the heavier vehicles offer more 

protection to its occupants while imposing greater risks to occupants of the lighter 

vehicles. Therefore the social costs of increasing vehicle weight include safety gains 

by occupants of the heavier vehicle, the safety losses imposed on the struck vehicle, 

pedestrians, bicyclists, motorcyclists, etc. However, some of the increased risks for 

occupants who switch to lighter vehicles would be offset by the decreased risk for 

individuals already in those vehicles (NRC 1992). If the fleet is made up of 

predominantly lighter vehicles, then a greater percentage of crashes will be between 

lighter vehicles, resulting in lower fatality rates than if the crashes were between a 

heavy vehicle and lighter one. In addition, a lighter fleet will result in lower fatalities 

in collision between vehicles and pedestrians, bicyclists, motorcyclists, etc. In 
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contrast, if the fleet is predominantly heavy, then we would have higher fatality and 

injury rates. In addition, given that it is now less costly for drivers of heavier vehicles 

to be in accidents could induce them to change their risk profile and thus increase the 

number of accidents. This problem is best formulated as a classic prisoner‘s dilemma 

game where each individual reduces risk by increasing weight of her vehicle, but 

doing so reduces safety to others. The Nash equilibrium will be vehicles that are 

predominantly light and possibly reduce risk to occupants of other vehicles and 

lowering of gas mileage.  

This paper examines the safety effects of changing fleet weight distribution by 

estimating how much injury risks would change if consumers purchased increasingly 

heavier, larger, and less efficient vehicles rather than lighter vehicles given regulatory 

constraints. The paper estimates both the risk of dying given a crash and the crash 

frequencies of different vehicles in the fleet. We use a unique data set that combines 

data from fatality analysis reporting system (FARS) and NASS
18

 General Estimates 

Systems. The estimation strategy used corrects for selection bias due to moral hazard 

problems. The two equations are estimated simultaneously using simulated maximum 

likelihood without the need for exclusion restrictions (Green 2003, 2007). This 

approach allows us to obtain estimates that are causal. 

 While there are several works looking at the effect of vehicle weight and size 

on traffic costs, past empirical estimates have ignored the issue of selection on moral 

hazard. Jacobsen 2013 finds that increasing the weight of a vehicle by 1000 pounds 

increases the number of fatalities in other vehicles by 45% while reducing own 

                                                 
18 National Automotive Sampling System 
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fatalities by 54%. Jacobsen adjusts for sample selection bias that may exist due to the 

lack of reliable data on non-fatal crashes by linking driver riskiness to increased 

fatalities from single vehicle crashes.  Anderson and Auffhammer 2013 find a 40-

50%
19

 increase of risk on others of increasing own weight by 1000 pounds. They make 

no specific assumption about selection bias, arguing that their unique data set and 

multiple identification approach preclude selectivity. Though they include several 

driver, vehicle and environmental risk factors. 

Evans (2001) estimates both the protective and aggressive effects of increasing 

weight by 1000 pounds of 40% and 42% respectively. He uses differences in the 

number of occupants in the struck and striking vehicles to identify the effect of weight. 

This strategy helps avoid a host of selection issues, since it allows weight to vary 

holding all other attributes of the vehicle fixed. Kahane (2003) also finds estimates in 

the order of -30% to 70% for the protective effect of increasing vehicle weight and 

cautions that his estimates for the heavier vehicles may be biased due to driver 

selection. 

However, an important potential weakness in these approaches is the existence 

of Peltzman-type moral hazard problems and endogeneity of vehicle choice. In the 

presence of Peltzman-type moral hazard problems, drivers in heavier vehicles will find 

it advantageous to change their behavior in ways that have opposite effect (Pederson 

2003, Peltzman 197, Risa 1992, 1994). The change in their risk behavior results in 

                                                 
19 Anderson and Auffhammer notes that these are lower bounds, given that heavier vehicles are 

involved in more collisions. 
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their being involved in more fatal crashes
20

. Given these, it is more likely that 

estimates of the causal effect of weight in literature are biased. In contrast, it is also 

possible that safety conscious drivers may buy heavier vehicles and drive more 

cautiously. Which of these effects dominates is an empirical question. There are two 

challenges with correcting for selection on moral hazard issues. The first issue is 

whether the incentive effect occurs at all. The second issue is whether the effect is 

large enough to completely offset the reduction in the probability of injury such that 

the number of injuries increases as the vehicle fleet becomes heavier and safer. Also 

from a public policy perspective if increasing the weight of a vehicle increases the 

probability of its being involved in collisions, then we might be interested in more 

than the impact of heavier vehicles conditional on a crash occurring.  

We make three main contributions in this paper. First, we provide empirical 

evidence of effect of selection bias due to moral hazard in estimates of the effects of 

heavier vehicles on traffic injury rates. Combining results from the theoretical 

framework and empirical estimates, we develop simple qualitative tests to show 

evidence of selection bias due to drivers of heavier vehicles involvement in more 

fatal/serious injury accidents. We find that increasing the weight of any vehicle 

increases the probability of it being the heavier vehicle in a collision and the 

probability of it being involved in a fatal accident. The external costs translate to about 

38 cents/gallon of gasoline. These values though larger, are comparable to values 

obtained by Jacobsen (2013) and Anderson and Auffhammer (2013).  The second 

contribution of the paper is methodological. It features an application of bivariate 

                                                 
20 White (2004) and Anderson (2008) estimate that light trucks are 13% to 45% more likely to 

experience multivehicle collisions than passenger cars. 
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random effects estimator in a count model (Riphahn et al 2003; Terza 2010; Green 

2012).The third contribution relates to the use of the underlying estimates of the rates 

of traffic injury in policy simulations.   

The paper is related to several lines of literature. First is the large volume of 

literature on impact of CAFE standards on traffic safety (NRC 1992, 2002). Much of 

the debate has centered on the relationship between weight, fuel economy, vehicle 

choice and safety (Li 2009; Crandall and Graham 1989; Noland 2004; 2005; Parry 

2006; Small and Van Dender 2006; Khazzoom 2000).  Another is the literature on 

individual choice of activity on self protection, averting behavior and moral hazard in 

traffic safety (Pedersen 2003; Blomquist 2004; Bolmquist, Miller and Levy 1996; 

Avery, Heyman and Zeckhauser 2001; Ashenfelter and Greenstone 2002; Chestnut 

2001; Li 2012 ;). The third area is the literature on the protective and aggressive 

effects of vehicle weight on occupant safety (NRC 2002; Peltzman 1975; White 2004; 

Gayer 2004; Evans 2001; Anderson 2008; Hultkrantz and Lindberg 2011; Jacobsen 

2013; Anderson and Auffhammer 2013). This paper is most closely related to the 

work of Jacobsen 2013, and Anderson and Auffhammer 2013. However, this work is 

different from theirs in several respects. Unlike Jacobsen we use data from both fatal 

and nonfatal accidents
21

. Our paper is also different from the two papers because we 

account for selection bias arising from moral hazard through the correlation of 

unobservables in the two dimensions of vehicle safety. 

The rest of the paper is organized as follows. The next section describes the 

theoretical framework. Section III presents the data, while section IV describes the 

                                                 
21 Anderson and Auffhammer also use data on both fatal and nonfatal accidents, however, they do not 

account for selection on moral hazard. 
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specification. Section V presents the results. Section VI performs policy experiments, 

while section VII concludes. 

Theoretical Background  

The theoretical framework is an extension of the standard law and economics 

of the choice of care model that accounts for a policy variable (Liao and White 2004; 

Shavell 1979, 1982; Cummins et al 2001). Road transport is generally recognized to 

be characterized by several externalities –accident, air pollution, congestion and other 

externalities (Parry et al 2004, Elvik 1994, Newberry 1988). The severity of an 

accident is influenced by speed and rate by traffic density. The effects of these two 

factors tend to work in opposite directions, as increased traffic levels are often 

associated with a reduction in average speed. The external effects arise anywhere the 

risk faced by one driver depends on the actions of other drivers. The externality arises 

from the fact that even a careful driver could be injured in an accident that is caused 

by another driver who was careless. On the other hand, the actions of the careful driver 

will lead to reduction of risks imposed on others. Defining externality as above makes 

it easy to express accident externality as a function of the dimension of behavioral 

choice that is faced by the agent. Generally, when externalities are present, 

equilibrium behavior is inefficient and the overall level of actions taken by society to 

prevent accidents will be inadequate.   

We assume that accidents are bilateral, drivers maximize expected utility with 

initial wealth wi, are risk averse with respect to effort, and dislike effort or care (ei). 

The accident probability is denoted by  and it is a function of the vehicle miles 



 

71 
 

travelled- vmt and care level of each driver. Hence we write the probability of accident 

for driver i as 

 vmteiii ,   

 with the probability of accident falling with care ( 0,0 22'
 ee  ). There are 

two states of the world-the loss state with probability   and the no-loss state with 

probability 1 . The utility function is written as 

 iii ewu ,  

The utility is twice differentiable. These priori assumptions about the functions are 

quite common with models of traffic safety. First it is assumed that utility is increasing 

and strictly concave function in wealth and that the drivers‘ marginal utility is strictly 

decreasing in her effort to be careful. Where uw>0, ue<0, eeu <0 and uww < 0
22

. The 

accident losses are assumed to be non-stochastic and consist of economic losses 

represented by l, (medical bills, lost earnings, general damages). There are other losses 

such as pain and suffering that are not fully covered and are represented by g. 

Insurance is available at actuarially fair premiums and drivers are assumed to be fully 

insured. Hence the premium is given as  

lii 


  

The accident cost l is a function of several parameters which are differentiated 

among drivers such as severity of the accident, i , accident environment, size of 

family, etc. The severity in turn depends on several vehicle attributes such as weight 

                                                 
22 There are no restrictions on ueu 
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of both involved vehicles, (mi,mj).  Therefore we write  

  ,0,0,0,0),,(),,(, 2

2

2

2
















j

i

j

i

i

i

i

i

mmmmjijjiiji mmmmwith   

Increasing own vehicle weight reduces injuries in this struck vehicle, but at the same 

time increases probability of injuries in other vehicles. Given the above assumptions, 

driver i maximizes the expected utility given below: 

        )1(.)((,,1 imiiiiii mplgwvmtewvmteEU    

with respect to weight of car, m
23

, where pm is the price per unit weight of car ,m.  

The first order condition with respect to m gives the optimal choice of weight for each 

driver.  
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The sum in brackets is the marginal benefit of additional unit of expenditure on 

weight. The last term is the marginal cost of incurring an additional expenditure on 

weight. The above FOC shows that an increase in weight will result in lower injury 

risk reflected in the lower losses. A risk adverse driver who maximizes utility will 

choose the optimal vehicle weight (or other attribute) such that the marginal benefit of 

having that extra weight just equals the increased cost of weight. This benefit could be 

in the form of extra protection from an accident and the cost includes things like 

additional expenditure on gasoline.  If individual drivers choose m to maximize utility, 

EU (m, e, w, l),  the sufficient condition for optimality is  

                                                 
23

 Another physical factor affecting injury likelihood is vehicle size, specifically the distance from the 

front of a vehicle to its occupant compartment. The longer this is, the lower the forces on the occupants, 

provided vehicle designers take advantage of the extra length. In theory the lighter weights of smaller 

cars could be offset by increasing the sizes of their front ends, keeping weight down by using materials 

like aluminum, plastic, or titanium. But this typically doesn‘t occur because such materials cost so 

much.  
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Differentiating equation 2 with respect to effort leads to clear conclusions about how a 

risk adverse driver‘s effort changes with the optimal weight of a vehicle and 

probability of accident. The results are intuitive behavioral responses. For example, an 

increase in weight reduces the marginal effect of the driver‘s effort on the cost of an 

accident, i.e. the safer the car, the lower the marginal benefit of effort and thus the 

lower the driver‘s optimal effort level leading to higher accident rates. This is an 

example of the rebound effect discussed in literature (Sorrel 2007). In effect, an 

increase in weight could lead to an increase in accident frequency given that the higher 

weight offers more protection. Anderson and Auffhammer (2013) argues that other 

than the behavioral response, the physical features of heavier vehicles could also 

induce them to be involved in more collisions. 

General results from partial equilibrium suggest that the behavior represented 

by the above FOC is inefficient. To fix ideas, compare this to a social optimum case in 

which there are two types of drivers i and j. The first order condition leads to a 

situation in which the driver i chooses the level of policy variable that is higher than 

the social optimum such that her injury risk decreases and that of the second car 

increases. The degree of concavity of u (w) and the convexity of the loss functions 

ensures existence of interior solutions. The FOC for this is shown below: 

 
)4(0(.)(.)

int































































    
yExternalitNegative

i

j

i

j

m

benefiternal

i

i

i

i

i

ji

m
l

m
p

m
l

mm

EUEU 





 

 



 

74 
 

 The first part of equation four is similar to the benefit part of equation 2. 

Equation 4 is the standard outcome with negative externality and the solution is Pareto 

optimal because the maximization of any social welfare function that is based on the 

utility function of individual parties is Pareto optimal (Silberberg 1990). The second 

part of the equation above is the negative externality that results from an increase in 

mass of one vehicle relative to the other vehicle. The external cost component includes 

all costs not taken into account by the driver himself. For example, loss of life and 

health inflict pain and suffering on victims‘ relatives; these are not taken into account 

by the driver (Jansson 1994). 

 If the risk is not fully internalized, the market will produce too large of the last 

part of equation in brackets. For each choice of mj , there is a socially optimal choice 

mi*(mj) and vice versa. The overall social optimum will occur where the equations 

cross each other and we will have a Nash equilibrium such that mi>m*i and mj>m*j . 

Without regulation of the fleet, the optimal action of i vehicle is to impose more risk 

on j and j‘s best action is to take more averting behavior. The Nash equilibrium could 

lead to too much risky behavior by one driver and subsequently more precautions 

being taken by other drivers at the social optimum. Whether or not this produces less 

risk than the social optimum is an econometric question. Also, rather than being 

symmetric, the nature of the resulting externality is asymmetric. Generally, the 

situation is such that we have one person (mi) imposing the risks and another taking 

averting behavior (mj). The asymmetric nature of the equilibrium is significant in that, 

we can regulate the actions of mi alone to restore the social optimum (Avery et al 

2001).  
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 To obtain a tractable form for the estimation equation, we make the following 

additional assumptions and simplifications. We can represent the external costs part of 

the accident as  

αFij ,             (5) 

 where α is the cost per unit of accident (statistical value of life or statistical value of 

injury), and Fij is the number of fatalities or serious injuries in the struck vehicle in a 

crash with vehicle j. Fij is attributable to several causal factors which we will discuss 

later. We will also make assumptions about the general form of Fij, the distribution of 

fatality or injury states. If X denote the causal factors determining Fij, then we have  

  )(xfXFij             (6) 

where f(x) is some regression function of the causal factors. 

 Data 

The paper uses several datasets for the analysis. The main datasets are census 

of all fatal accidents (FARS) and the National Automotive Sampling System General 

Estimates  

System (NASS-GES) covering the period 2008 through 2012.The paper also uses data 

on the number of registered vehicles in each state by type and model from Polk NVPP 

as well as number of miles driven by each vehicle class from the Federal Highway 

Performance Monitoring System. We also include information on state level 

demographic attributes, weather variables and other macroeconomic variables for the 

analysis. 
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Accident Data 

The accident data are from several sources. FARS and NASS GES provide 

data on vehicles involved in crashes. Vehicles involved in crashes are grouped into 

three different classes based on severity of injury: fatal crashes, injury crashes, and 

property damage only (PDO) crashes.  Approximately 10 million passenger vehicles 

per year were involved in police reported motor vehicle crashes between 2008 and 

2012. This average figure reflects a crash involvement rate of over nineteen passenger 

vehicles per minute for the years covered in this paper. Since the GES observations are 

from a sampling survey, they therefore have a sampling weight. The combined data 

for this study contained 150,633 fatal involvements and 263,749 unweighted GES 

accidents, when weighted, results in an estimated 27,191,919 crash involvements.  

A closer look at the data from FARS and GES reveals that light duty trucks 

(SUVs, Pickup Trucks and Minivans) crash involvement rate in fatal accidents was 

1.82 (0.250
24

 ) while for passenger cars was 1.41(0.18). Involvement rate of passenger 

vehicles in injury accidents over the sample period was 112 (9.981) while for light 

duty trucks were 102 (9.718). Looking only at accidents classified as PDO, passenger 

car rates over the same period was 255 (7.705) and the values for light duty trucks was 

254 (14.35). It is also worth noting that over the same period, the number of registered 

SUVs and trucks increased by over 70%. 

NASS GES contains detailed information on a representative sample of 

thousands of property damage/no injuries, serious injury, and fatal crashes. Field 

                                                 
24 The involvement rate values reported are rates per 100 million vmt. The values in parentheses are 
the standard errors. 
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research teams located at Primary Sampling Units (PSU's) across the country study 

about 50,000 crashes a year involving passenger cars, light trucks, vans, and utility 

vehicles. The NASS GES relies on a select sample of police accident reports (PARs) 

from 400 police jurisdictions within 60 geographic areas (PSUs). Data from two-

vehicle crashes in which occupants were either killed or seriously injured were 

extracted from the dataset. The dataset was further restricted to vehicles with model 

years later than 1979. Using the NASS vehicle body type classification, all vehicles in 

the dataset were grouped into four classes- passenger cars, vans, SUVs and pickup 

trucks. There were 417,510 observations satisfying the above criteria of which 86, 567 

observations were single-vehicle crashes and 265,633
25

 observations were two-vehicle 

crashes. The remaining 74,310 observations are crashes in which multiple vehicles 

were involved and were subsequently dropped. Since each two-vehicle crash contains 

two vehicles- the ―own vehicle‖ and the ―other vehicle‖, care was taken not to double 

count observations by assigning a group identification number based on accident case 

number, year of accident and vehicle number in the NASS GES data. The model 

estimation was based on only those observations for which all the independent 

variables were not missing. We also dropped accidents in which school buses, 

emergency and police cars were involved. 

Table 1 presents summary statistics of the accident data. Columns 1,2 and 3 

report statistics for the entire two vehicle collision dataset. The mean vehicle weight is 

3,388
26

 pounds with average age of 2000. The number of fatalities per accident is 

0.02612 with standard error of 6.5, while the number of serious injuries per accident is 

                                                 
25 That comes to about 11,538 accidents after data cleaning 
26 The ratio of ―other‖ vehicle weight to ―own‖ vehicle weight is 1.01 



 

78 
 

0.746 with standard error of 36.7. In our sample, alcohol is involved in 6.1% of all two 

vehicle crashes. In all two-vehicle crashes, 92% of the drivers had some form of 

restraint such as seat belt. 

Vehicle Miles Driven and Car Registration Data 

Vehicle registration data are compiled by R. L. Polk & Company in the 

National Vehicle Population Profile (NVPP). State level data on vehicle miles 

travelled by vehicle class were obtained from the highway statistics series of the 

Office of Highway Policy information from the department of Transportation. The 

data are broken down by state, vehicle type (passenger car, vans, SUV, pickups and 

other pickup types), and type of road (rural or urban).  Since the data contain separate 

information on SUVs, vans, pickups and passenger cars at the state levels, I am able to 

test whether crash frequencies for the different injury severity levels vary across 

vehicle class types. The data cover the period 2008 to 2012 for all states in the US. 

Closely related to the vehicle miles travelled data is the number of registered vehicles 

by vehicle type at the state level and the public road length by state in miles. These 

were also obtained from highway statistics series of the Department of Transportation. 

Demographic Characteristics 

Additional information on state level demographic characteristics like per 

capita alcohol consumption, unemployment rate, population data, and investment on 

road covering the period 2008 to 2012 were also obtained from several sources. The 

per capital alcohol consumption by state was obtained from surveillance report on 

1977–2012 apparent per capita alcohol consumption in the United States published 

annually by National Institute on Alcohol Abuse  and Alcoholism (NIAAA). The data 
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are based on alcoholic beverages sales data. The population data and unemployment 

rate were obtained from the statistical abstracts of the US published by the US Census 

Bureau.  

Econometric Model 

The number of fatally or seriously injured occupants, Fij, in the struck vehicle 

is a count variable and nonnegative. Therefore we are inclined to use count models for 

our estimation. However, we are faced with two main challenges. First crash severity, 

a function of the weight of the two vehicles and their relative velocities at the point of 

impact is not observed. It reflects the influence of the mass of both vehicles and the 

behavior of both drivers
27

. And there are several interrelated human factors, which are 

not easily quantifiable, but are however related to vehicle weight and crash severity. In 

effect, unobserved factors related to weight and crash severity may be correlated with 

the error terms thereby introducing endogeneity. Second, from the derived external 

cost of accident section 2, one obtains that drivers of heavier vehicles are induced to 

drive more dangerously given that it is now less costly for drivers to be in an accident. 

Drivers will expend fewer resources to avoid being in an accident, and thus the 

number of accidents will increase. This is the well known moral hazard effect 

discussed by Peltzman (1975). Selection on moral hazard implies that drivers of 

heavier vehicles are more likely to be involved in more fatal accidents in which 

occupants of other vehicle are killed or seriously injured. In effect, drivers of heavier 

vehicles could be induced to drive more dangerously because of several factors that 

                                                 
27 Several approaches have been used to control for crash severity. See Toy and Hammit for the various 

authors researchers have used to control for crash severity.  
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are not clear
28

. If drivers of heavier vehicles in our sample are on average more likely 

to be involved in more severe crashes, then selection bias would be a problem.  

To account for unobserved driver effects, while also correcting for possible 

selection on moral hazard, we use a two-step procedure similar to that developed by 

Terza Nelsusan (1994). In the first stage, we estimate the probability of being involved 

in an accident. These estimates are then plugged into the second stage negative 

binomial regression estimates of the injury severity equation.  

The selection model is  

    )7(|1 , awwAccP iiiits  
 

 20122003,,,' YEARYEARXlvmtw ists   

where Ф is a standard normal distribution function. But we do not require it to be 

normal. Accist is number of crashes in state s by vehicle type i at time t
29

, vmt is the 

vehicle miles travelled, lts
30

 is the traffic density at time t in state s, Xits represents all 

other covariates such as weight of the vehicles, per capita alcohol consumption, share 

of population using seat belts, several variables representing population distribution, 

rural and urban speed restrictions, measures for weather variables (number of days 

with snowfall greater than 1and 5 inch, number of days with temperature lower than 

0
o
F, number of days with precipitation greater than 5 inches), control for census 

division, and investment in road network.  

                                                 
28 It is also possible that safety conscious drivers could pick heavier vehicles because they are safer, in 

part explaining the reduction in fatality or injury rates of such vehicles. 
29 It can also represent 1 if the vehicle was involved in a fatal crash and 0 otherwise, which is the well 

known Probit selection model. We tried both specifications and the results are similar. 
30 The traffic density is defined as the ratio of VMT over length of public road. 
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We specify the number of fatalities or serious injuries in each vehicle as a 

function of the driver characteristics, the characteristics of the two vehicles, the 

environment in which the accident took place, and other covariates of interest. The 

model is: 

      )7(1,0~,exp,, '

21 bXmmF iiiiij  

 

where Xi =   

 iOtherssNoOccupantSPDLAirbagrestrainmm ,,,,,, 1121  

The dependent (Fij) variable is the number of occupant injuries or fatalities in the 

struck vehicle. m1, m2 denote the curb weight of the struck and striking vehicles 

respectively, Restraint is a dummy indicating whether the driver of the struck vehicle 

properly used a seat belt and Airbag is also a dummy indicating whether a driver-side 

air bag was deployed, SPDL denotes the speed limit on the accident location.  Others 

include all other independent variables like location of accident (rural or urban road), 

dummies indicating if the driver is a male and greater than 65 years, dummy for 

gender of the driver, dummy if the driver is less than 21, dummies for if alcohol and 

drug was involved. A series of three indicator variables is used to capture the impact 

of crash configuration on the injury risk, year and state effects. εi, the unobserved 

heterogeneity, is normally distributed with mean zero and standard deviation ζ; and in 

our framework this includes distance from a hospital, mental state of the driver that 

day, did the driver surfer heart condition, etc. Given the presence of the unobserved 

heterogeneity in equation 7b, Green (1998, 2008) and Cameron and Trivedi (1990, 
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1998, 2005) show that the right hand side of equation 7b is Negative Binomial (NB) 

distributed. 

 Writing the models in this form allows us to operationalize the selection 

problem through the correlation of the ε and μ error terms. The unobservables, ε and μ 

are assumed jointly normally distributed, i.e. 

    )7(,,,0,0~, 22 cNii    

 Where 2

 and 
2

  are the variances of the ε and μ respectively, ρ is the 

correlation between the error terms. Conditional on selection, the dependent variable is 

unlikely to be either Poisson or NB distributed which would allow estimation through 

usual methods. Drawing on the results of Terza (1995, 1998) and Green 2008, the 

likelihood function for the full model is equivalent to the joint density function for the 

observed data. The full set of parameters (ζε ζμ β, γ and ρ) can be estimated through a 

single step simultaneously using full information maximum likelihood (FIML) or 

simulated maximum likelihood (SML) procedures without the need for exclusion 

restrictions (Ripham et al 2003, Green 2008). We proceed by forming the log-

likelihood from the joint density of the selection model (6a) and injury severity (6b) as

  )(| AccfAccFP ij
. Following Green (1997, 2008), the log-likelihood function is 

estimated with the use of a SML. 

Results 

Model Performance 

As a way of evaluating the preference of the selection model over the simple 

Poisson or NB specifications, we first estimated both models and then conduct 
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hypothesis tests based on the estimated correlation parameter, ρ, as well as a 

likelihood ratio test. Tables 2 and 4 present the regression estimates for the models 

without selection and with selection respectively. The results suggest that there 

appears to be selection effects in the estimates, as shown by different coefficients in 

the conditional model. A Wald test for the existence of selection effect against a null 

hypothesis that the correlation coefficient is zero, i.e. H0: ρ=0 is rejected. The Wald 

test produces a test statistic of (−100.024)2 = 50.012 (with a p value of 0.000), which 

is larger than the critical value of 1.96 for a standard normal, leading to the rejection 

of the null hypothesis. A likelihood ratio test was computed as the difference between 

the log-likelihood for the full model with selection and log-likelihood for the model 

without selection effect (when ρ equals zero). The result is  

     446.331)801.803,4(802.26088.898,42 LR  

and the hypothesis is also rejected. 

This value leads us to reject the simple Poisson or NB model while accepting 

the bivariate model that allows significant correlations across the two dimensions of 

the vehicle safety. The test statistics confirm the high statistical significance of the 

structural parameters ζε,, ζμ and ρ. The negative sign on the correlation coefficient 

indicates that the latent factors which decrease the severity of injury in two vehicle 

crashes increase the probability of being involved in an accident, a situation that is 

consistent with the selection bias. The model with correlated counts is deemed the 

most appropriate one to use in this situation and is the basis for the policy simulations 

in a later section. 
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Further, we also investigated the fit for the data generating process for the two 

count variables. Figures 1A and 1B show that the NB model is a better fit for the data 

generating processes. Figure 1A represents the mean-variance relationship for the 

accident frequency model while Figure 1B is the variance relationship for the severity 

model. The Poisson and Negative Binomial (NB) models both do a good job of 

predicting fatal accidents at low mean values. However, the Poisson model does not 

do a good job at mean values above 0.2 compared to the NB model.  Figure 2 is plot of 

predicted probability of being involved in a fatal accident at different weight classes. 

The figure suggests that as the weight increases, the probability of being involved in a 

fatal accident increases.  The following sections discuss the results from the first stage 

and the second stages as well as policy simulations. 

Selection Model 

Table 3 reports the first-stage regression results, i.e. regressing the whether or 

not a vehicle was involved in an accident in a state or not against the weight of the 

vehicle, vehicle miles travelled and other covariates. The linear probability estimates 

and the Probit estimates indicate that vehicles which are heavier by an average of 1000 

pounds are 0.1-0.15 more likely to be involved in more fatal or serious injury 

accidents given their exposure, age, and driver attributes, etc. The coefficient of 

vehicle miles travelled and the share of light trucks are significant and positive 

suggesting that increasing the distance travelled increases the probability of being 

involved in an accident. The positive sign on the weight coefficients are in line with 

prior estimates of heavier vehicles being involved in more crashes elsewhere 

(Anderson 2008, White 2004, and Gayer 2004). 
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Fatalities in Two-Vehicle Crashes 

Table 4
31

 presents results of the second stage regression estimates of bivariate 

model for number of fatalities in struck vehicle against covariates of interest and other 

confounding attributes.  The key explanatory variables are the curb weights of the 

struck (m1) and striking (m2) vehicles. The two weight variables are in 1000 units so 

that their coefficients measure the factor change in expected number of fatalities in the 

struck vehicle when the weight of struck or striking vehicle changes by 1000 pounds 

in line with earlier studies. The coefficients on the struck and striking vehicles have 

the predicted signs. Other covariates include speed limit at the point where the 

accident occurred, age of the driver, number of occupants in the struck vehicle, 

dummies to indicate whether or not the driver was wearing seat belt, dummies to 

indicate the role drug or alcohol played in the accident. It also includes state by year 

fixed effects and model year fixed effects. 

Columns 2 and 3 report the second stage results along with the model without 

selection for comparison in the first column. Our preferred model is column three, 

estimated through simulated maximum likelihood method. The results in Column 2, 

were obtained using a control function method and are in line with those obtained 

through the preferred method. Column 3 results indicate that increasing the weight of 

the striking vehicle by 1000 pounds increases the expected number of fatalities by a 

statistically significant factor of 1.643 (t=7.1). This is equivalent to an increase of 

64.3% over our mean number of fatalities.  Increasing the weight of the struck vehicle 

                                                 
31 Table 2 presents the results of the Negative Binomial regression estimates of the number of fatalities 

in the struck vehicle against covariates of interest. The values for the marginal effects are similar and 

consistent to those obtained by Anderson and Auffhammer (2013). The results indicate that increasing 

the weight of the striking vehicle increases the expected number of fatalities by about 40-45%. 
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reduces the expected number of fatalities in the struck vehicle by a mere 21.8%. These 

results, though similar to those obtained by Anderson and Auffhammer (2013) and 

Jacobsen (2013), with the results from the control function and SML approaches being 

larger. The first column results are similar to those obtained by Anderson and 

Auffhammer (2013) and Jacobsen (2013).  The coefficient on curb weight of striking 

vehicle implies that a 1000 pound increases in its weight, increases the expected 

number of fatalities in the struck vehicle by a statistically significant factor of 1.42 

with t value of 5.25. Across all the specifications, increasing the weight of the striking 

vehicle by 1000 pounds increases the expected number of fatalities in the struck 

vehicle by about 50-64%, while increasing the curb weight of the struck vehicle by the 

same amount results in a decrease in the expected number of fatalities by about 21-

26%. 

Serious Injury in Two-Vehicle collisions 

Table 4 reports the results from second stage regression estimates as well as 

the regression without selection for comparison. The results reported are for only SML 

approach. The dependent variable in this case is the number of seriously injured 

occupants in the struck vehicle. Similarly we conduct Wald and likelihood ratio tests 

for the presence of selection effects and we reject the null hypothesis null hypothesis 

that ρ equals zero. Based on these tests, there does appear to be selection problem and 

the coefficients do change somewhat in the conditional model. 

The predicted sign for the struck vehicles are negative again since increasing 

the weight of the struck vehicle will reduce the incidence of serious injuries in the 

vehicle. Similarly, the sign of weight for the striking vehicle is positive. Increasing the 
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weight of the striking by a 1000 pound will lead to an increase in the expected number 

of seriously injured occupants by a statistically significant factor of 1.23. This is 

equivalent to a 23% increase in the expected number of serious injuries in the struck 

vehicle. While increasing the weight of the struck vehicle will decrease the expected 

number of occupant injuries by 0.84 with a t-value of 8.28. This is equivalent to a 

decrease in the expected number of seriously injured occupants by about 18%. 

Alternative Specifications  

Table 5 presents the results of alternative specification in which we replace the 

weight of the two vehicles with a new explanatory variable that depicts difference in 

weights. The difference in weights is defined as ratio of weight of the struck vehicle to 

that of the striking vehicle. The coefficient of the ratio of weights is more difficult to 

interpret. The coefficient is negative and significant at the 1% level. The coefficient of 

mass ratio is -1. 460 with a t value of 7.87.  

Moral Hazard and Falsification Tests 

We will discuss the moral hazard issues and falsification (Keuzenkamp and 

Magnus 1995; Buck and Lady 2005) together because the issue of identification of the 

parameters is strongly linked to the assemblage of data and the hypothesis to be tested: 

existence or absence of moral hazard. We employ a largely qualitative procedure to 

test for existence of moral hazard presented by the econometric model. The emphasis 

here is placed less on the quantitative measure, but rather on the sign partials of the 

risk factor (weight) in the two equations. This approach allows the hypothesis to be 

falsified regardless of identification. The approach to estimation of the model 

parameters provide us with a unique opportunity to in-principle test for behavioral 
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adaptation does take place. The intuition behind the test is that if weight has opposite 

signed partials in the two equations (probability of accident and probability of injury 

given and accident), it is reasonable to infer that behavioral adaptation will take place. 

Since weight reduces the probability of occupant injuries, then if behavioral adaptation 

occurs, then the accident frequency will increase. Therefore, the differently signed 

partial effects of weight of the struck vehicle in the two stages of the estimation 

procedure (probability of accident and probability of occupant injury given that an 

accident has occurred) is a manifestation of moral hazard effects. 

This reasoning is in line with Fridstrom 1999 and Peltzman 1975, who 

hypothesized that whenever an accident risk factor has differently signed partial 

effects in the accident frequency and occupant injury severity equations, that risk 

factor is subject to risk compensation. These two tests provide weak support for our 

selection on moral hazard hypothesis. 

 Next we discuss results of the falsification tests. If drivers of heavier vehicles 

dot not involve in more fatal accidents, then one should not see any additional effect 

of increased weight on injuries and fatalities on motorcyclists, bicyclist and pedestrian. 

If we do find a statistically significant coefficient, then this is an indication that drivers 

do indulge in Peltzman type behavioral response, by exposing non occupants of 

vehicles to higher risk. To do this, we estimate another model for crashes between a 

vehicle and pedestrian, bicyclist and compare the coefficients. The results for the 

model are reported in Table 7. The coefficient of increasing the weight of vehicle is 

highly significant with a t-value of 10.23 
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Policy Simulations 

The conceptual framework and econometric specification is able to predict 

qualitatively and quantitatively how the weight of a vehicle affects the fatalities and 

injuries in two vehicle crashes. Using the estimates from the model, one can simulate 

the responsiveness to a policy change that results in the change in weight distribution 

of the fleet. That is we can estimate the net effects of the safety gains to occupants of 

the heavier vehicle and safety losses that the increased weight imposes on the 

occupants of the struck vehicle. The model allows us to simulate how individual risks 

changes if they switch from driving a heavier vehicle to a lighter vehicle. For example, 

if a policy creates the incentives for households to switch to a heavier vehicle then 

weighted average risk of the heavier drivers will change because their probability of 

being involved in accidents would change to that of the heavier drivers. The intuition 

being that factors such age and number of people in a household can interact with 

vehicle choices. 

Expected Externality Cost 

The econometric results suggest that the expected accident cost is affected by 

both the probability of being the heavier vehicle in a collision and the expected weight 

difference in a two vehicle collision. Increasing the weight of vehicle increases both of 

these. To explore the causal effect of weight on fatalities and serious injuries as well 

as their distribution, we randomly draw a vehicle with weight mi and estimate the 

marginal effect of adding 1000 pounds of weight to the striking vehicle. Then estimate 

the probability of it being the heavier /lighter vehicle. From equation 4, we see that the 

net costs are proportional to  
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 and is a function of the weight of the two vehicles. However, the results show that the 

net costs depend on whether the vehicle is the heavier or lighter one in a two vehicle 

collision. The probability of being the heavier or lighter vehicle is computed as the 

proportion of all the vehicles in the sample that are heavier or lighter than the 

randomly selected vehicle. The net cost is estimated as the expected cost of the vehicle 

being the lighter one in a collision and of it being the heavier vehicle (Hultkrantz and 

Lindberg 2011). The external cost is defined as:  
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Using the actual weight data from accident reports, we compute the estimated 

change in fatalities and serious injuries given the change in the weight distribution of 

the US light duty vehicle fleet.  The data on US fleet was obtained from sales data 

from Good Car & Bad Car tracking of sales data and the distribution of fleet weight 

from EPA‘s Light-Duty automotive technology fuel economy trends from 1975 to 

2013. The marginal effect values are estimated through iteration using the actual 

values for each observation in the sample. The first iteration uses the first observation; 

the second iteration used the second observation, etc. The average of all the iterations 

was then taken. We performed this twice, first using the vehicle as the lighter vehicle 

and then again as the heavier vehicle. The values of the marginal causal effect of the 

striking vehicle are 0.0011 and 0.0015 respectively. Using the procedure disclosed 

earlier, we estimate the probability of accident if the vehicle was the lighter vehicle at 

0.001564 and 0.0702 if the vehicle was the heavier vehicle. Using a statistical value of 
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life of $5.5Million in 2008 dollars (DOT 2013
32

), we obtain accident net costs of 

increasing the fleet by 500
33

 pounds of $40.26 billion related to fatalities and $10.13 

billion related injuries (statistical value of serious injury used is $577,500
34

). The total 

externalities due to serious injury and death are $50.38 billion. These results are 

presented in Table 8. 

External Costs due to Gasoline 

We have estimated that the expected external cost of accident imposed on 

lighter vehicles is about $44.6 billion. The heavier vehicles also consume more fuel 

due to their larger weights.  If we take the 2008 model year vehicle, a 500 pound 

increase in fleet weight is about 10.35%. Klier (2010) finds that the elasticity of fuel 

economy with respect to weight is about 0.67, translating to 6.93% lower fuel 

economy estimates in these vehicles. And given the long run fuel economy estimates 

for VMT of about -0.25, the effect on heavier vehicles is about 6.45% increases in 

gasoline consumption. We also assume 2008 model year fuel economy of 23.9, annual 

VMT of 15,000 miles, the annual fuel consumption of 628 gallons, average 2008 

gasoline price of $2.5, a social cost of carbon of $20/ton, annual emissions per gallon 

of gasoline of 8,887gCO2/gallon. The additional costs due to increased gasoline 

consumption and emissions are $1.14 billion and $0.1 billion respectively for the 

whole US fleet. 

 

 

                                                 
32 http://www.dot.gov/sites/dot.gov/files/docs/VSL%20Guidance_2013.pdf 
33 From data on US fleet trend, there has been a 500 pound increase US fleet over the same period to 

2005. 
34 The statistical value of serious injury is obtained by multiplying the Fraction of VSL for a serious 

injury (0.105) 
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Policy Approaches to External Accident Costs 

Several policy approaches have been implemented to reduce the accident costs. 

One approach is to tax drivers based on odometer readings, or through some other 

technological systems that are attached to vehicles. An optimal policy would involve 

per mile fees that differ on the basis of driver risk and vehicle attributes. Some other 

policies could also be gasoline tax, etc. 

Vehicle miles traveled (VMT) fees 

A VMT or per mile fee charges drivers based on the distance they drive. 

Unlike the gasoline tax, the vmt fee is a true usage based fee because a driver is 

charged on actual use of the roadway. VMT fees generate more and stable revenue 

than a gasoline tax because under a gasoline tax, more fuel efficient vehicles will 

consume less gas for every distance covered than less fuel efficient vehicles.  Under 

VMT fees, technology improvements might not affect the distribution of fleet weight 

or improve fleet fuel economy because it charges all vehicles the same flat rate. The 

fees could be uniform or differentiated based on vehicle class. A uniform vmt charge 

scheme is not efficient because it tends to levy too low a charge on vehicles with high 

external costs ( leads in low welfare gains) and levy too high a charge on vehicles with 

low external costs (high welfare gains). One way to overcome this is to design a 

differentiated vmt fee. 

Under a differentiated mileage charge, a per-mile charge based on vehicle type is 

levied on each vehicle class. The resulting effects of charge in mileage is a function of 

own price-effect and cross-price effect from increases in other vehicle classes. The 

potential welfare gains from a differential mileage charge is lower than a gasoline tax 

because some of the reduced demand from one vehicle class will be offset from the 
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increased demand from another class (Parry 2003). Preliminary evidence from mileage 

fee initiatives in the United States and other countries recommend several ways to 

gather mileage data and charge fees. Significant privacy-related concerns from the 

public and cost challenges have been raised in applying mileage fees to passenger 

vehicles. Other challenges include how drives can contest charges, substantial start-up 

and administrative costs.  

Gasoline Tax 

The government can also impose a per unit tax on the amount of gasoline consumed 

by drivers. The intuition is that increased price will reduce the amount of driving 

which in turn leads to aggregate reduction in external costs. How external costs 

changes with improvements in fuel economy due to improved technology is not well 

understood.  For example, downweighting could improve fuel economy but may make 

occupants less safe; although drivers might internalize this risk when making purchase 

decisions.   

Cost of administration of a gasoline tax is very low compared to mileage based charge 

or fee. However, the costs associated with a gasoline tax are higher than an 

equivalently scaled mileage tax because of the larger substitutions effect from the 

gasoline tax. These costs are represented by reductions in consumer surplus under the 

aggregate demand curve for gasoline. Also, under the gasoline tax system, the per-

mile charge differs across vehicles in proportion to their mpg ratings. Because of the 

positive correlation between gasoline per mile (from weight mpg relationship) and 

external costs of accidents, we expect gasoline tax reduce more external costs than an 

equivalently scaled uniform vmt fee system (Parry 2003).  
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Weight Based Tax through a “Pay at the Pump” Tax 

Since the externality costs vary based on the weight/type of the vehicle, one way to 

internalize the externality is through a differentiated weight based tax. The tax could 

be levied ex ante or ex post as a liability. One approach for implementing the weight 

based tax ex ante could be through increased premium on liability insurance. Since 

several states require drivers to obtain liability insurance, it would be easy to increase 

the existing premiums to account for weight difference. Because insurance already 

charge higher premiums for riskier drivers, it would be possible to charge heavier 

vehicles more because they are more likely to be involved in more accidents and 

impose more risks on others. This weight based premium could be implemented in 

such a way that it interacts with factors such as driving record through a multiplicative 

factor as opposed to a fixed dollar increase related to weight. Charging heavier 

vehicles higher premiums based on their weight could encourage drivers of such 

vehicles to adjust their risk levels. The downside to the weight based tax is that some 

states allow drivers to carry no insurance at all and others to only carry up to $10,000 

coverage (with most common coverage amount being $25,000). Given the existence of 

such limited liability insurance contracts, there are few incentives for insurance 

companies to set higher insurance premiums for heavier vehicles. Another issue is the 

large percentage of uninsured drivers in some states
35

. 

In place of gasoline taxes, or fixed mileage charges, drivers could be charged a ―Pay at 

the Pump‖ tax that accounts for both the weight of the vehicle and fuel consumption. 

The ―Pay at the Pump‖ tax (Khazoom1997) involves bundling the additional insurance 

                                                 
35 As much as 30% of uninsured drivers exist in some states (White 2004) 
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premium with gasoline purchases. ―Pay at the Pump‖ levies a surcharge that reflects 

the externality per mile for each driver. Adding the surcharge will increase the 

gasoline price, which in turn may lead to some reduction in travel demand based on 

elasticity of driving to gasoline price changes. The ―Pay at the Pump‖ policy ensures 

that the VMT will equal the optimal level and remove the distortions in resource 

allocation. Because the marginal cost facing the driver incorporates the full marginal 

exposure to risk. The ―Pay at the Pump‖ surcharge that internalizes the total 

externality amounts to 34 c/gallons ($46.13 Billion/137.5 billion gallons of gasoline). 

The advantages of the ―Pay at the Pump‖ tax are that it ultimately reduces the 

externality cost by removing uninsured motorists from the road. In addition, in the 

short term it provides incentives for drivers to switch to more efficient vehicles 

because the resulting increase in gasoline price due to the surcharge induces driver to 

switch to more fuel efficient vehicles will pay less than her marginal exposure risks. 

The converse is true for a low fuel efficient vehicle. Over time, the increase gasoline 

price (arising from surcharge) induces a demand for newer, lighter, more efficient 

vehicles by owners of heavier less efficient vehicles. 

Conclusion 

Following the introduction of weight indexed fuel efficiency standards which 

have resulted in an increase in the weight of the vehicle fleet; this study examines the 

effect on societal safety of consumers demand for heavier vehicles. We present 

empirical estimates of the effect of vehicle heavier fleet on accident costs that 

adequately accounts for selection bias due to moral hazard issues. We capture 

unobserved driver behavior as correlated outcomes between the two dimensions of 
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vehicle safety. We find that increasing the weight of heavier vehicles increases the 

expected of occupant fatalities by 50-64% while decreasing expected number of 

fatalities by 21-26%. Based on our estimates, we find that not accounting for selection 

bias due to moral hazard problems results in estimates of the effect of weight 

externality that are downwardly biased by as much as 14%.  

We first develop a theoretical framework model of individual driver choice for 

vehicle weight and risk aversion behavior that leads to Nash equilibrium with a 

predominantly heavier fleet. Then we employ data on fatal and non-fatal injuries to 

estimate the external costs of additional weight in two vehicle crashes. Though 

difficult to estimate empirically, we apply an estimator with a lognormally distributed 

random effect for bivariate count processes to account for selection bias due to moral 

hazard. In addition, we use two different testing schemes to confirm the existence of 

selection bias due to moral hazard problems. 

First, we find that increasing the weight of a vehicle will increase the 

probability being involved in an accident. This is because, increasing the weight of a 

vehicle will increase the probability of it being the heavier vehicle in an accident, 

offering better protection, so the driver will reduce care level
36

. We also find that 

factors which reduce the probability of having severe injuries in two vehicle crashes 

induce them to be involved in more collisions weakly confirming the presence of 

Peltzman type behavioral responses. When we apply the 2008 statistical values of life 

values to our estimates, we find that the external costs in 2008 dollars are $51.84 

billion. These results are obtained under the assumption of certain risk behavior by 

                                                 
36 Also, the increased probability of heavier vehicles being involved in accidents could be 

explained by their physical characteristics and the potential response of drivers of heavier vehicles.  



 

97 
 

drivers and the results could vary under different assumptions about the risk attitudes 

of drivers. These costs are borne by the society in the form of medical bills, lost 

earnings, social security payments, etc.  

These values have serious policy implications. In theory, an efficient fleet 

could be achieved through a carefully calibrated tax based on careful cost-benefit 

analysis. However, such a tax policy may pose practical problems of implementation 

in terms of public acceptance and monitoring. Given that the societal costs of traffic 

accidents vary by weight, we also find that implementing a weight based tax such as a 

―Pay as You Pump‖ surcharge of the 38c/gallon could fully internalize the costs. A 

policy such as the proposed one will also lead to the adoption of more fuel efficient 

vehicles over time and reduction in the weight of the fleet.  
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 Figures and Tables 

 

 

Figure 1-A: Mean-Variance Relationship for Number of Fatal Crashes in Months 

by State 

 
 

 

Figure 1-B: Mean Variance Relation for Number of Fatalities in Struck Vehicle 

 
Notes: Figure 1A and 1B above are plots of variance against mean for two different models with exactly 

the same covariates. The figure was plotted by first creating 20 groups based on Poisson and negative 

binomial model and then computing the mean and variance for each group, and then finally plotting the 

mean-variance relationship. 
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Figure 2: Predicted and Observed probabilities of Fatal Accidents 
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Figure 3: Predicted probability of Fatality in Struck Vehicle against Striking 

Vehicle Weight 
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Table 1: Summary Statistics for Two Vehicle Collision 
 

  Full Sample
a
 Regression Sample

b
 

  
Sample 

Size 
Mean 

Std. 

Dev. 
Sample Size Mean Std. Dev. 

  (1) (2) (3) (4) (5) (6) 

              

Number of Fatalities 265,633  0.18% 6.5         248,572  0.26 6.5 

Number of Seriously 

Injured Occupants 
265,633  5.36% 36.8         248,572  7.64% 36.7 

Age 252,127  39.17 15.99         248,572  39.20 18.93 

Sex 261,174  0.44 0.50         248,572  0.46 0.49 

Alcohol Involved 265,633  6.01% 0.36         248,572  10.97% 0.31 

Restraint Used 265,633  92.06% 1.55         248,572  93.27% 3.10 

Number of Occupants 258,759  1.41 0.67         248,572  1.47 0.87 

Model Year 265,633  2002 5.72         248,572  2000 5.12 

Weight (lbs) 262,110  3388 551         248,572  3473 630.29 

Light Trucks Share 258,130 29.9% 36.53        248,572 30.6% 36.9 

              

Notes: aThe full sample contains observations that have information on the injury outcome of drivers‘ 

involved in crashes between 2008 and 2012 and the vehicle was manufactured on or after 1980.                                                                                                                                                                                                                                                                           
b The regression sample contains observations from the full sample that does not have a missing value for 

any of the independent variables. 
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Table 2: Regression Estimates of Number Occupant Fatalities- No Selection 
 

Dependent Variables = Number of Fatalities in Struck vehicle  

  NBREG NBREG OLS 

Weight of Struck Vehicle  -0.307*** -0.337*** -0.001*** 

  (0.085) (0.070) (0.000) 

  [-0.0009] [-0.0009 ]   

        

Weight of Striking Vehicle 0.336*** 0.338*** 0.001*** 

  (0.047) (0.065) (0.000) 

  [0.0010] [0.0011]   

        

Effect of 1000 Pounds increase in striking 

vehicle weight 40% 42% 40% 

Driver Attributes Yes Yes Yes 

Year Dummies Yes Yes Yes 

county Dummies Yes Yes Yes 

Model Year Dummies No Yes Yes 

Observations 248,572 248,572 248,572 

Notes: Heteroskedasticity-Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The stars 

indicate the level of significance. Marginal Effects (evaluated at the representative values of the explanatory 

variables) for the negative binomial model are provided in brackets. We only report for the key independent 

variables: the weight of the vehicles involved in the crash. The weight effects of the striking vehicle are computed 

on the basis of a 1000 pound increase in weight over all observations in the model. 
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Table 3: First-Stage Regression Results 
 

Dependent Variables = P(Accident=1) 

 

OLS Probit 

Natural Log of Total Vehicle Miles Travelled 
a
 0.0011*** 0.0158*** 

  (0.0001) (0.0772) 

Percentage of Share of Light Duty Truck VMT 0.0206* 0.1719*** 

  (0.0103) (0.0087) 

Weight of Involved Cars per 1000 Pounds 0.0010** 0.0232** 

 
(0.0004) (0.0099) 

Includes State Dummies Yes Yes 

Includes Year Dummies Ys Yes 

Year by State  Dummies Yes Yes 

Other Demographic Controls Yes Yes 

log likelihood 

 

-4,147 

# Observations  333,763 333,763 

Notes: Heteroskedasticity-Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

The stars indicate the level of significance. The dependent variable is an indicator variable equal to 

one if the vehicle was involved in an accident in which there was serious injury or fatality.   

a. The value reported is the difference between the coefficient of natural log of 100 Million vehicle 

miles travelled per state and that of traffic density.  
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Table 4: Second Stage Regression Results 
 

Dependent Variables = Number of Fatalities in Struck Vehicle 

  No-Selection CF SML 

Weight of Struck Vehicle -0.307*** -0.276*** -0.246*** 

  (0.085) (0.081) (0.089) 

  [-0.0009] [-0.0008] [-0.006] 

        

Weight of Striking Vehicle 0.336*** 0.460*** 0.497*** 

  (0.064) (0.074) (0.070) 

  [0.0011] [0.0015] [0.0017] 

ρ   -0.344 -0.395 

    (0.010) (0.011) 

Effect of 1000 Pounds increase in striking 

vehicle weight 42%  57.9% 64.37%  

 Effect of 1000 Pounds increase in struck 

vehicle weight -26.4%  -23.9%  -21.8%  

#Observations 240,105 240,103 240,013 
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The stars indicate the level 

of significance. Estimates are for two-vehicle collisions from 2008 to 2012. The results displayed are 

estimated after accounting for selection. The key explanatory variable is the weight of the vehicle. 

Column CF uses the control function methodology to correct for the selection while the SML column is 

the preferred model and is described in the paper. 
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Table 5: Second Stage Regression Estimates for Serious Injury Model 
 

Dependent Variable = Number of Seriously Injured Occupants in Struck Vehicle 

 

No Selection Selection 

Weight of Struck Vehicle -0.171*** -0.165*** 

  (0.016) (0.0192) 

 

[-0.096] [0.028] 

Weight of Striking Vehicle 0.163*** 0.202*** 

  (0.012) (0.0513) 

 

[0.012] [0.0317] 

ρ 0 0.5622 

    (0.0190) 

Effect of 1000 Pounds increase in striking vehicle weight 19% 23% 

 Effect of 1000 Pounds increase in Struck vehicle weight 17% 
 

# Observations 248,857 248,003 
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The stars indicate the level 

of significance. The marginal effect of a 1000 pound increase in weight of striking vehicle are in brackets.  

Estimates are for two-vehicle collisions from 2003 to 2012.  
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Table 6: Alternative Specification 
 

Dependent Variable = Number of Fatalities in Struck Vehicle 

  (7) 

    

Mass Ratio Struck Vehicle to Striking Vehicle -1.460*** 

  (0.187) 

    

Driver Attributes Yes 

Weather Attributes Yes 

Air Bags  Yes 

Dummy for Alcohol Use Yes 

Year Dummies Yes 

City Dummies Yes 

Model Year Dummies Yes 

    

#Observations 247,222 
 Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Table 8 Falsification Test 
 

Dependent Variable = Number of 

Pedestrian/Motorcyclists/Bicyclists Fatalities 

Weight of Vehicle 0.170*** 

 

(0.0165) 

 
 

 
 

Driver Attributes Yes 

Weather Attributes Yes 

Air Bags  Yes 

Dummy for Alcohol Use Yes 

Year Dummies Yes 

City Dummies Yes 

Model Year Dummies Yes 

#Observations 10,910 
 Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1. Stars indicate level of significance 
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Table 8: Accident-Related Externalities 
 

  
Total External 

Costs/Benefits (Billions) 

External Costs per 

($/gallon) 

Traffic Related External Costs     

Fatalities Only 40.26 0.29 

Serious Injury Only 10.13 0.07 

Fatalities + Serious Injuries 50.38 0.37 

Gasoline Related Externalities   

 
Fuel Savings 1.36  

 Reduced Emissions 0.10  

 Fuel Savings + Reduced Emissions 1.46  

 
Total Externalities 51.84  0.38 
Notes: The externality cost of traffic accident is estimated under the assumptions that increasing the 

mass of a vehicle increases the probability to be the heavier vehicle in a collision and the expected mass 

difference given a collision with a lighter vehicle. The expected externality is computed as the sum of 

the expected cost given a collision with a heavier vehicle and expected cost give a collision with a lighter 

vehicle. The externality computation uses the Department of Transport's guidance on statistical value of 

life (VSL) value of $5.5 Million and statistical injury of $577,500 (2005) updated to 2008 dollar values.  
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Abstract  

If consumers are heterogeneous in their preference for vehicle attributes and rates of time preference, 

they will sort into different vehicles based on fuel economy. Bento et al(2012) suggests that estimates 

of MWTP for future fuel costs can be distorted if individuals choose vehicles according to idiosyncratic 

tastes and rates of time preferences. This paper describes how sorting resulting from individual 

unobserved heterogeneity and time preference biases estimates of MWTP for future gasoline costs and 

implement estimation strategies that correct such bias.  

Using data from consumer expenditure survey, we recover MWTP estimates that do not show any 

evidence of consumer undervaluation of MWTP for future gasoline costs for the average consumer. We 

recover each consumer‘s valuation of fuel economy as well as the distribution of estimates of value of 

fuel economy in the population using a model that integrates vehicle choice with driving intensity. 

Given consumer‘s expectations of future gasoline price and tastes, they first choose a vehicle and then 

conditional on vehicle stock; dynamically adjust their driving habits in response to gasoline prices. We 

use an estimation strategy that accounts for both the likely correlations in error terms between the 

discrete and continuous margins as well as cross-equation restrictions imposed by the integrated 

behavioral model. 

We find that consumers are heterogeneous in the valuation of fuel economy and uncover three segments 

based on their valuation of fuel economy. One group, those with environmentally driven preference 

pays significantly more than $1 per dollar gas savings and uses their vehicles frugally (about 18%). A 

second group (68%) only looks it as a purely financial decision and rationally values fuel economy. 

This group roughly pays $1 per dollar gas savings.  A third group, which one can consider to be 

myopic, are willing to pay less than $1 per dollar savings.  

Our results suggest that gasoline taxes would be a more efficient instrument to increase fleet wide fuel 

economy. 
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Introduction 

In the last few decades, the U.S. government has introduced several taxes and 

subsidies on the purchase of new vehicles that depend on the performance of vehicle 

fuel economy. The main driver for taxation of fuel economy is to correct externalities 

that result from fuel consumption. Cost-benefits analyses of these regulations require 

precise estimates of the consumer marginal willingness to pay (MWTP) for reduced 

discounted future fuel costs (Parry et al 2007). While the literature on how consumer 

value fuel economy is well established (Dreyfus and Viscusi 1995, Hausman 1979 

Busse et al 2013, Alcott and Wozny 2013), a review of the literature on consumer 

valuation of fuel economy is inconclusive (Greene 2010). Some of the studies find that 

consumers overvalue fuel economy while others find undervaluation of fuel economy.  

Several reasons have been given for the apparent undervaluation of fuel 

economy. (Helfand and Wolverton 2009).
37

 The consumer heterogeneity argument 

posits that if consumers have heterogeneous preferences, they will sort into different 

groups (Deleire et al 2013, Bayer et al 2011). In a differentiated product market such 

as automobiles, we expect that consumers with similar preferences for certain 

attributes will make similar choices if they have similar preferences and face similar 

constraints. In terms of fuel economy, consumers with high MWTP for discounted 

future gasoline costs will sort into fuel efficient vehicles while those with low MWTP 

will sort into inefficient vehicles. This sorting bias has implications for the ability of 

econometric models to recover the value of fuel economy and other attributes. 

                                                 
37 One hypothesis is that consumers‘ decision on vehicle type is based solely on financial 

considerations. However, consumers might have other fundamental values for fuel economy, including 

concern for the environment. 
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However, the sorting process also reveals information about consumer heterogeneity 

that can be used to evaluate how consumers value fuel economy.   

In this paper, we contribute to the literature on Energy Paradox
38

 by providing 

empirical evidence that unobserved consumer heterogeneity could result in different 

consumers sorting into different vehicle types. This implies that the coefficient on fuel 

economy also reflects values on other attributes that are associated with fuel economy. 

Unlike existing literature in this topic, this paper accounts for sorting bias due to 

unobserved heterogeneity by using an ―equilibrium sorting‖
39

 model that uses a 

mixture of distributions to characterize unobserved and observed heterogeneity among 

households (Train and Winston 2007). The ―equilibrium sorting‖ model uses the 

properties of market equilibria, as well as information on the behavior of economic 

agents, to infer structural parameters that characterize agent heterogeneity. We pair the 

random coefficient discrete choice model with a supply side model in which firms 

compete in Bertrand Nash fashion with differentiated products; where price depends 

on both the elasticity of demand and costs of production. With the random utility 

model, we allow annual vehicle miles travelled, time preferences and expectations of 

gasoline prices to vary across consumers. We treat the discounted operating costs and 

vehicle costs as random variables. This allows us to obtain a distribution of 

households‘ preferences for fuel economy across the population.  

                                                 
38 Energy Paradox is defined as the disconnect between net present value estimates of energy 

conserving cost savings and what consumers actually pay on energy conservation (Metcalf and Hasset 

1999, Jaffe et al 2001). 
39 The paper uses a straight forward extension of the framework used by Bayer and Timmins (2003) to 

examine sorting in consumer choice of vehicle type. 
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Recent works on how consumers value fuel economy tend to use monthly 

within vehicle variation over time in gasoline prices to identify consumer tradeoffs 

between fuel costs and vehicle costs. The question is that in the presence of sorting 

bias due to observed and unobserved consumer heterogeneity, whether this is an 

accurate way to identify tradeoffs between vehicle costs and fuel economy. 

Additionally, firms respond to gasoline prices in the short term by adjusting vehicle 

costs to match sales. A key aspect of this is that prices are negotiated by dealers, and 

will depend upon inventories. For example, if gas guzzlers are not selling, dealers will 

offer price discounts. When demand is high for vehicles with high mileage, discounts 

are lower, and dealers could charge a premium over the retail price.  For example, 

MacManus (2005) finds that the shift to higher fuel efficiency vehicles brought about 

by rising gasoline prices were obscured by price cuts disproportionately aimed at gas 

guzzlers. Panel data and individual fixed effects provide potential solutions when very 

large data sets spanning long period are available. Chintanuga (2001) has shown that it 

is important to control for both price endogeneity and heterogeneity to avoid potential 

biases in demand side parameter estimates. 

Therefore, we identify consumers weighting of discounted gasoline costs by 

using the combination of functional form assumptions supported with information on 

vehicle demand and elasticity extracted from observed vehicle transaction prices. We 

use data on household vehicle holdings from the automobile extract of the consumer 

expenditure survey covering the period 2002-2005. This dataset contains information 

on the vehicle purchases and driving habits of a random sample of US households.  

We have actual data on the number of miles travelled by each household and vehicle 
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type
40

. The individual household data allows us to match vehicles with the household 

demographic characteristics of those who own them and estimate how different 

segments of the population value fuel economy. We exploit the unique attributes of 

the CEX dataset (it contains information on vehicle miles travelled, when consumers 

trade-in older vehicles and expenditure on fuel costs) to estimate a richer random 

coefficient model in which we are able to identify heterogeneity in the weighting of 

discounted future gasoline costs by different consumers. In addition, we also account 

for volatility in gasoline price by allowing households to continually update their 

expectations of gasoline price. In future time periods, households dynamically adjust 

their driving habits in response to gasoline price. 

The consumer heterogeneity we find is substantial and significant. The 

heterogeneity arises from huge differences in the amount of miles travelled by 

consumers and heterogeneity in expectation of gasoline prices and time preferences. 

We find that a substantial portion (61%)  of upper the 95% of households in our 

sample correctly value fuel economy as they are willing to pay $0.99 to reduce obtain 

a $1.00 discounted future gasoline costs over the lifetime of the vehicle.  Another 

group, those with environmentally driven preference pays significantly more than $1 

per dollar gas savings and uses their vehicles frugally (about 28% of the upper 95% 

overvalue fuel economy as they are willing to pay an average of $1.57). The lower 5% 

of our sample are willing to pay only $0.50 for a $1 reduction in future fuel costs. 

These results are in contrast to those reported elsewhere by Alcott and Wozny (2009) 

                                                 
40 This is important because consumers will most likely adjust their mileage driven of different vehicles 

based on gasoline prices. At high prices, consumers are more likely to put more miles on the Prius than 

a Suburban. 
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but support results from the simulation study by Bento et al 2012 who find that not 

accounting for sorting bias and consumer heterogeneity could lead to a conclusion that 

consumers undervalue fuel economy. In that light, our results might not necessarily 

imply that consumers overvalue/undervalue fuel economy, but can be interpreted as 

being heterogeneous in their valuation of fuel economy. 

How consumers weigh temporal effects of future fuel costs have important 

policy implications. This is because the nature of the temporal weighting helps in 

determining if market failure exists and also helps indicate whether policy 

prescriptions that affect initial vehicle costs such as gas guzzlers tax will reduce fuel 

consumption at lower costs than gasoline tax.  In addition, results from such 

―equilibrium sorting‖ models can be used to develop theoretically consistent 

predictions for the welfare implications of future policy changes on fuel economy and 

gasoline taxes.   

In the last few decades, the literature on how to estimate consumer‘s quality-

adjusted prices of automobiles have grown.  Most of the literature in this area has 

mostly involved the relationship between fuel economy and fuel price and price-

vehicle safety tradeoffs. However, the fuel economy–price tradeoff has received the 

most attention (Hausman 1979, Mannering and Winston 1985, Zauberman 2003, 

Greene 2010). And it is this part of the literature that this paper contributes. Estimates 

of how much consumers are willing to pay to reduce fuel costs vary greatly (Greene 



 

119 

 

2010). Of the 25 studies reviewed by Greene, about half find that consumers 

undervalue fuel economy while just five report values suggesting overvaluation.
41

  

Recent studies, however, appear to agree that households either fully value or 

modestly undervalue energy costs when making car purchase decisions. Alcott and 

Wozny (forthcoming) and Busse et al 2013, report implied discount rates closer to 

borrowing rates and conclude that these are evidence of lack of consumer myopia. 

Alcott (2013) finds slight undervaluation in fuel economy. Sallee et al (2009) use 

micro data on used vehicle prices, odometer readings and gasoline prices to estimate 

the relationship between fuel costs and vehicle prices. In the same vein, Sawhill 

(2008) using ARIMA models of fuel price expectations, does not find any evidence 

that consumer‘s underweight future operating costs. Using simulated data, Bento et al. 

(2012) show that consumer heterogeneity can result in sorting leading to downward 

bias in estimates of the WTP for fuel economy savings.  

This work is closely related to the work of Bento et al (2012), Sawhill (2008), 

Alcott and Wozny (2009) Bayer et al (2011).  However, this paper extends the 

literature in several respects. Our work is different from Sawhill‘s in several 

respects
42

. The main difference between this work and these papers is on the 

identification strategy; explicitly accounting for heterogeneity and sorting; and 

including information about the supply side. First, we use individual household data 

why Sawhill used aggregate data. In addition, while we both control for price 

endogeneity (Sawhill uses BLP‘s contraction mapping method and does not include 

information about pricing behavior).  Unlike Bento et al (2012), this work is an 

                                                 
41 From $0.01 (Berry et al 1995) to $1.00 (Dreyfus and Viscusi 1995). 
42 Both papers use random coefficient logit models. 
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empirical study rather than a simulation and such provides empirical evidence of the 

effect of consumer heterogeneity in estimates of the consumer trade-off of fuel 

economy and vehicle costs.  

This paper is structured as follows. Section two discusses the equilibrium model 

composed of a demand side and supply side model. Section three, present the data 

used for the analysis. Section Four discusses the identification and estimation strategy 

as well as the challenges in estimating the specification. This is followed by the results 

and discussion and finally, we conclude in section six. 

Methodology and Conceptual Framework 

The model is consistent with a structural model of equilibrium of a 

heterogeneous product competition.  The approach is based on earlier models by 

Goldberg (1995) and Amil Petrin (2002), but with significant differences. The method 

aggregates individual preferences into market level demand system, and combines 

assumptions on cost functions and pricing behavior to generate equilibrium prices and 

quantities. The estimation strategy is divided into two different steps. In the first step, 

the paper estimates household-level demand functions and then aggregates these 

individual functions to construct estimated firm demand curves. In the second step, we 

use the estimated demand curves to solve firms‘ first order conditions under the 

assumptions of Bertrand –Nash competition. The demand side of the model is based 

on a random utility function of consumer vehicle choice following Berry, Levinsohn 

and Pakes (1995; henceforth, BLP). The demand specification is paired with a supply 

side.  
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Consumer Preferences for fuel economy 

This paper treats the demand for a new vehicle as an intertemporal choice 

problem in which consumers‘ trade-off future fuel savings and vehicle price. Each 

household derives utility from both vehicle ownership and utilization. We derive and 

estimate a model of automobile demand that accounts for households‘ vehicle 

quantity, vehicle type (make, model and vintage) and the continuous choice of 

utilization.  

Household i maximize utility ijtU from choosing vehicle j or not (the outside good) in 

each choice occasions t=1,….T. The household‘s joint utility from quantity and 

vehicle type j is additive and can be expressed with a random indirect utility given by: 

)1(ijijtijt VU   

)2('

iijiijtitjiijt xGpV    

where αi, βi and γi are individual specific taste parameters. pj is transaction price for 

vehicle j. We allow preferences over price to vary with income so that αi represents 

the individual specific marginal utility of income. Specifying vehicle price this way 

(with income) ensures that the indirect utility function from which we obtain the 

demand for discrete alternatives satisfy Roy‘s Identity. This implies that within any 

household vehicle ownership level, the marginal rate of substitution between gasoline 

costs and vehicle costs is income independent (Mannering and Winston 1985). xj , is 

the vector of observed vehicle attributes interacted with demographic variables 

(includes product intercept term).  A random variable (ζ νi ) is included to account for 

correlation in unobserved utility over the choice alternatives (Brownstone and Train 
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1999).
43

 By specifying the xij appropriately, you can construct any pattern of 

covariance across alternatives. Gijt is the expected future fuel cost over the vehicle 

lifetime is represented by: 
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where T is the vehicle expected lifetime for model  j, r is household specific discount 

rate, gt+s is the expected gasoline price at time t+s, mij,t+s is the annual vehicle miles 

travelled in year t+s by vehicle j for individual i. mpgj  is the fuel consumption rate in 

miles per gallon. In this model, heterogeneity derives from different consumers having 

discount rates and annual miles travelled. The model therefore explicitly accounts for 

consumer heterogeneity in their valuation of fuel economy.   𝜀𝑖𝑗 = 𝜂𝜉𝑗 + 𝜖𝑖𝑗 . 
'  is a 

vector of parameters associated controls (Kim and Petrin 2010), ϵij
 
is iid extreme 

value.  𝜉 is the average utility of consumers from unobserved attributes of  product j 

independent and idiosyncratic utility an individual obtains from the vehicle (however 

it could be correlated with the unobserved product attributes) and it is iid extreme.   

 The terms in 𝜂𝜉𝑗  represent unobserved utility component that induces 

correlation as well as substitution in vehicle to overcome the independent of irrelevant 

alternative problem (IIA) (Train 2003). The implication of the expectation term is that 

when consumers‘ tradeoff of future fuel savings against vehicle prices, they consider 

how fuel efficient the vehicle is, the number of miles to drive, what the price of 

gasoline will be in the future and other vehicle characteristics such as horsepower, 

environmental factors, etc.  

                                                 
43 The coefficient ζ, is the standard deviation of the random coefficient reflecting the degree of 

correlation among the choice alternatives and νi is the iid standard normal deviate. 
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 The specification of the expectation term allows mileage to vary with customer 

and gasoline prices. Conventionally testing for whether consumers undervalue fuel 

economy is a test of the null hypothesis of α=γ
44

 (Alcott and Wozny 2009, Anderson 

et al 2013; Bento et al 2012). A major assumption that these papers and others have 

made is that gasoline prices follow a random walk model, that is consumers‘ future 

gasoline prices expectation at time t+s,(gt+s) is equivalent to the current gasoline price. 

This assumption allows the expectation term to be reduced to  

   )4(
*

111
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r 



 

While most authors assume that consumers‘ expectations of future gasoline 

prices follow a random walk model, some authors have used different assumptions 

about future expectations of gasoline price. Alcott and Wozny 2009 assume that future 

expected gasoline prices is a function of the future price of crude in the commodity 

futures market and a factor to account for refining costs, taxes and distribution costs. 

However, oil price futures have been known to be very poor predictors of future price 

changes in crude markets (Hamilton 2009, 1983; Menzie and Coibion 2013). Sawhill 

(2008) and Khan (1986) both fit ARIMA models to retail gasoline prices to obtain 

consumers expectations of future gasoline price.  

Vehicle price is affected by omitted variable bias for several reasons (Train 

2003) and as such the 𝜉𝑗  term does not have a zero mean. For example, the 

econometrician may have information on fuel efficiency, weight, length, horsepower, 

color, etc, but may not have information on other attributes such as prestige, style, 

                                                 
44 Alcot and Wozny (2009) assume that consumers all consumers are homogeneous in their ability to 

trade-off future fuel savings for current vehicle prices. The model specified in 2 allows some 

heterogeneity in consumers‘ ability to tradeoff vehicle price for future fuel costs at different rates. 
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comfort, etc. These attributes affect price. The existence of the unobserved attributes 

implies that vehicles sort into groups or market segments, and that models within each 

segment compete more closely with one another than with models belonging to other 

market segments. This causes the price, to be correlated with the unobserved 

attributes, 𝜉𝑗 . One method to overcome this endogeneity is to move 𝜉𝑗  into the 

component of the utility that is observed by introducing an alternative specific 

constant for each product j (Petrin and Train 2006, Train 2009, BLP 1995). However, 

due to the difficulty of estimating the contraction required for the BLP approach and 

the fact that some vehicle models could have zero shares because the model is not 

offered for sale in some periods; this research will adopt the control function approach 

to deal with potential endogeneity of vehicle price(Kim and Petrin 2010, Klein and 

Vella 2010).
45

 

The probability that household i choose alternative j on choice occasion t, 

conditional on the model structural parameters is given by 
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Averaging Pij over the N consumers in the sample (Train and Winston 2007), 

we can obtain the market share for each product. We then express the market share for 

each product as: 

 6/ NPS
i

ijj   

Conditional on the household choosing alternative j, the utilization/demand for 

vehicle miles travelled is obtained from equation 2 by applying Roy‘s Identity. If we 
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represent household i actual utilization of vehicle j at period t as Mijt, and 𝑀 𝑖𝑗𝑡  as the 

observed utilization (because of measurement error and the fact that preferences are 

not actually observed), then the utilization equation is 𝑀 𝑖𝑗𝑡 = 𝑀𝑖𝑗𝑡 + 𝜗𝑖𝑗𝑡 , where 𝜗𝑖𝑗𝑡  

is the error term. The same variables are used in estimating both the choice and 

utilization equations. 

Supply Model and Equilibrium Prices 

This section develops the supply side of the model in which vehicle 

manufacturers set prices to maximize profits, given price of its competitors.  Vehicles 

are differentiated, that is two very similar vehicles from different manufacturers will 

be priced differently. The supply side is similar to the supply side model of BLP 

(1995) and Train (2003). The intuition behind the supply side model is that given the 

aggregated demand curves and market shares, one can solve for the product specific 

marginal costs by solving the equilibrium first order conditions. This approach allows 

us to solve for new equilibrium prices given counterfactuals and assumptions about 

consumer behavior. We assume that firms,  f,= 1,…..F, compete in a Bertrand Nash 

fashion under a differentiated product.  The manufacturer sets prices pj= (p1j,……pTj), let 

𝜉 = (𝜉 1, ….. 𝜉 J)’ denote vector of unobserved product attributes. In the short term, 

firms only change prices. Firm f‘s profit function is given by: 

  )7(.)(),(,,
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
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where pj is as defined earlier, N is the number of US households, Sj  is the predicted 

market share obtained by summing individual consumers weighted sum of vehicle 

selection probabilities, mc is the unit variable cost of product j.  Similarly as in 
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equation 2, X contains the consumer expectations about future fuel costs and Z 

represents exogenous demand shifters. 

  Following the procedure developed by Villas-Boas (2007)
46

, we solve equation 

7 for the first order conditions with respect to price. From the first order conditions in 

a Bertrand Game, automobile prices depend on the marginal costs of a product. The 

marginal cost in turn depends on both observed product attributes and unobserved 

product attributes, input prices (rent, wages, and other cost shifters). Some of the cost 

shifters could be observed by the econometrician. 

)8(),( , jjjj cXWmc    

 where W(.) is a parameter function. 
j  is a random error, normal, and depends on 

both observed and unobserved attributes. Solving for the first order conditions, one 

obtains equations that satisfy the price-cost mark-ups 𝑝𝑗 − 𝑚𝑐𝑗 47 and market share for 

each product that satisfies the function given below. The vector of mark-ups only 

depends on the parameters of the demand equations and equilibrium price vector.  
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where  is a J x J matrix whose terms are given by: 
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We can easily use 11 for counterfactual policy simulation to solve for new equilibrium 

price vectors. 

                                                 
46 Also Villas-Boas and Winer 1999 
47 The Bertrand Model without product differentiation implies price equals marginal cost. Because we 

are assuming product differentiation, this is not the case here. 
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Data 

Data 

The data sets used for the analysis were obtained from several sources. The 

primary data used for this analysis is the automobile extract from the Consumer 

Expenditure Survey. The Consumer Expenditure Survey (CEX), a rotating panel of 

US household purchasing pattern over 5 quarters conducted by the Bureau of Labor 

Statistics, is a stratified random sample. Every quarter, 25% of the households in the 

sample are replaced with new households. I make use of data from 2002-2005. Each 

quarter about 4500-5000 distinct individuals are interviewed on their expenditure; 

75% of those interviewed are re-interviewed and a new set of households replaces the 

other 25%.  The automobile extract provides detailed information on all cars owned by 

households at the beginning of the survey year, on any cars purchased between the 

households first and last year as well as on any disposal of vehicles by the households. 

Table 1 provides information on demographics
48

 of the estimation sample, and it is 

consistent with U.S population‘s socioeconomic data. Since the CEX are weighted 

random sample of representative U.S. households, we expect the data to be 

representative of aggregate vehicle purchase pattern of all U.S.
49

 This table also shows 

significant variations in household characteristics across the vehicle classes. For 

example, larger households especially with more kids prefer SUVs and larger vehicles. 

Wealthier households (as measured by total yearly expenditures) also possess larger 

                                                 
48 Among the wide range of household demographic information the survey contains includes size of 

household, age of household members, sex, employment status, type of residence, whether or not the 

household is located in a rural or urban area, education level, household income 
49 However, Goldberg (1998) suggests that the CEX underestimate the total sales of new vehicles due to 

the existence of fleet sales. 
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vehicles. Also, households with more workers or income earners and those with male 

heads are inclined to have SUVs. 

Each year about 400 households in the CEX sample buy new vehicles (that is 

about 10% of sampled households purchase new vehicles) from approximately 200 

different make and models. Therefore some models only appear infrequently in our 

estimation sample while others may not appear at all. We exclude a small number of 

households due to missing information on key variables such as date of purchase and 

other attributes. We are then left with 1,506 households who purchased new vehicles 

between 2002 and 2005.  

The information on automobiles includes the make, model, vintage and 

purchase price of each car, financing, disposal of old vehicles, and a large set of 

vehicle characteristics. Most importantly, the CEX includes the mileage of each car 

owned by the household during each quarter. I will supplement these datasets with 

data on vehicle characteristics from EPA fuel economy test data and Automotive 

News Market Data Book. The former provides information on fuel economy measured 

in miles per gallon
50

. While the latter includes information on size, performance, and 

standard options of various models. Data on annual observations of certain 

microeconomic and macroeconomic variables also included as well as gasoline prices. 

Summary statics of the attributes of the estimation model is provided in Table 2. Each 

consumer‘s choice set consists of 198 makes and models of new vehicles. 

Information on gasoline prices (incl. state and local taxes) is taken from the 

U.S. Energy Information Administration (EIA).  EIA collects weekly retail gasoline 

                                                 
50 The mpg values are combined EPA mpg values: a weighted average of City and Highway MPG 

values that is calculated by weighting the City value by 55% and the Highway value by 45%. 
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prices for all formulations (conventional, oxygenated and reformulated gasoline 

prices), which are recorded by State. We match individual households in the 

automobile purchase dataset to state-level gasoline prices based on the respondents 

state of origin. A big advantage of focusing on the 2002-2005 period is that it includes 

the sharp decline of gas prices at the end of 2002-beginning 2003 so that there is 

ample variation in the data to identify the consumer responses to lower gasoline prices 

as well as higher gas prices in late 2005. 

Finally, we also collect information on interest rates on new and old car loans 

from the Federal Reserve and Consumer Price Index for all goods from the Bureau of 

Labor Statistics.  

Discounted Future Gasoline Price Expectations 

 Gasoline prices are generally difficult to predict. When consumers make 

vehicle purchase decisions, how they form expectations for future gasoline prices is 

not well known. The most common assumption past works have made is that 

consumers treat the gasoline price process as a random walk, with any price shock 

considered permanent  with subsequent adjustments in demand (Biesebroeck and 

leuven 2010) . However if the price shocks decay rapidly, then estimated elasticity 

will be biased because price shock will have less of an effect on demand and measured 

price elasticities will be lower.  

Consistent with prior literature, we will make the assumption that current 

gasoline prices are best predictors of the expected future gasoline prices, i.e. gasoline 

prices are follow a random walk process with time trend. Support for the random walk 

hypothesis comes from Anderson et al (2012) who concluded that the random walk 
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process is a good reflection of consumer expectations of future gasoline prices. 

Additional support is provided by the result of a dickey fuller test in which we fail to 

reject the null hypothesis that average monthly gasoline prices exhibits a unit root. 

Figure 1 is a time series plot of the natural log of the real price of gasoline prices 

between January 1994 to December 2012.  

A look at this figure casts some doubt about the propriety of using a random 

walk model to represent consumer expectations of future gasoline prices. It looks more 

like a random walk with trend or ARIMA model. As a robustness check, we specify an 

alternative model of consumer expectation of future gasoline prices that follows an 

ARIMA process. Monthly data on real gasoline prices from 1994-2005 indicates an 

ARIMA (1, 1, 1) in the log of real gasoline prices. To construct the expectations series 

for each year with the ARIMA model, we use only lagged data to generate sets of 

forecasts that use information from the customers to update their most recent forecasts.  

Figure 1b is a plot of the forecasts from the model using this procedure superimposed 

over forecast that just uses one period ahead. 

 Another important assumption we make in constructing consumer expectations 

of future gasoline costs is related to consumer demand for annual vehicle mileage 

conditional on buying a new vehicle. We assume that consumer demand for annual 

vehicle miles travelled is heterogeneous and varies with gasoline price. While the 

short run elasticity of vehicle usage with respect to gasoline is low -0.15 (Hughes et al 

2008, Gillingham 2011); in the long run, the average elasticity values hover around -

0.7. That is a 10 percent rise in gasoline prices will reduce driving by about 7 percent 

through people switching to cars with better mileage and driving less. Most of the 
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existing literature recognizes that consumers show significant variation in their 

demand for annual mileage and we incorporate the consumers‘ heterogeneity for fuel 

mileage by using customer specific mileage reported in consumer expenditure survey.  

Incorporating Heterogeneity and Sorting 

The wide variation in estimates of consumers‘ valuation of fuel economy 

suggests that heterogeneity is still an issue. Take for example, the role of unobserved 

individual heterogeneity. One such heterogeneity is consumer driving habits. Green 

drivers may buy more fuel efficient vehicles and use them sparingly (i.e there is 

positive correlation in vehicle choice draws across drivers), then estimates of the 

consumer MWTP for fuel economy will be unnecessarily too high. It is also possible 

that the correlation will be in the opposite direction. That is, heavy rivers will sort into 

more fuel efficient vehicles in order to reduce cost per mile of driving.  

A second problem arises if there is unobserved heterogeneity in individuals 

expectations of gasoline prices. That is expectations might vary over consumers and 

time. For example, consumers might expect gasoline prices to rise (especially if 

purchase decisions are myopic), and choose to purchase more fuel efficient vehicles 

thus lowering cost per mile of driving. When prices are high and rising, it might be 

perfectly rational to expect future prices will be higher compared to expectations that 

are formed when prices are low and stable. If we use average expectations of the 

consumer to estimate consumer demand for fuel economy instead, that estimate will 

be biased.  

A third problem arises when individual drivers have heterogeneous rates of 

time preferences. In particular, consumers who put less value in future costs (have 
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present biased preferences) will underweight gasoline costs relative capital costs. This 

is because gasoline costs occur in the future. Therefore, consumers that exhibit present 

bias preferences will sort into less fuel efficient vehicles, biasing downward estimates 

of consumer valuation of fuel economy. Although panel data and individual fixed-

effects offer one solution to preference based sorting, other researchers have also used 

other methods. Our estimation approach allows us to account for the individual 

unobserved heterogeneity. We adopt the general form of heterogeneity-random 

parameter representation. However, we re-parameterize the 

 𝛼𝑖𝑡 ,𝑘 = 𝛼𝑘 + 𝑧′ 𝑖𝜃𝑘 + 𝜎𝑣𝑖  

𝛾𝑖𝑡 ,𝑘 = 𝛾𝑘 + 𝑧′ 𝑖𝜃𝑘 + 𝜎𝑣𝑖   

mean estimates of the random parameters (vehicle capital costs and gasoline prices) to 

establish heterogeneity (Hensher and Green 2003). Where 𝑧′ 𝑖𝜃𝑘 + 𝜎𝑣𝑖  is the mean of 

the distribution, zi is a vector of consumer specific attributes, 𝑘 = 1,… . . , 𝐾 is 

simulated to find the values that maximize the simulated log likelihood (Green 2012). 

The time-invariant error terms reflects habit-persistence. The presence of a standard 

deviation of the two parameters accommodates the presence of preference 

heterogeneity in the sampled population.  

Estimation and Identification Strategy 

 Econometric Model and Estimation Strategy 

Our estimation approach is driven by several factors. First, is that the durable 

goods nature of automobiles implies that we have to account for both consumers‘ taste 

for fuel efficiency and intensity of utilization in estimating elasticity. Therefore, 
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households make a two-step decision. They first choose the number and type of 

vehicles to own based on driving habits and expectations of future gasoline prices. 

And in the second step, conditional on their vehicle bundles, they choose utilization 

intensity which determines fuel consumption. The second decision influences 

decisions about vehicle type choice in the first step.  For example, a driver whose 

demand for mileage is greater than the average driver should have a larger elastic 

demand for fuel efficient vehicles and lower elasticity in the demand for gasoline 

price. Part of this stems from the fact that the MWTP for fuel economy is an 

increasing function of gasoline price (Van Biesebroeck and Leuven 2010). 

Second, the error term of the different dimension of vehicle choice and 

utilization are correlated. This correlation could be in either direction. For example, if 

the unobserved taste parameter which induces some households to choose fuel 

efficient vehicles also induces them to drive less, then the error terms will be 

positively correlated.  We can also imagine a situation in which the unobserved taste 

parameters induce heavy drivers to increase utilization, resulting in the error terms 

being negatively correlated.  

Third, about 31% of the households in our sample have two vehicles and 14% 

owning multiple vehicles. This lends to ―portfolio effects‖ as a possible interpretation 

for households owning more than one vehicle. That is the mix of vehicles owned by 

households satisfies different functions. We follow Dube(2004) and Hendel(1999) in 

accounting for households ownership of portfolio of vehicles in a mixed logit with 

repeated choice occasions framework. On each choice occasion, households make 

discrete decision of vehicle type and amount of utilization conditional on type. 
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Because we do not observe each choice occasion in our data set, we are unable to 

precisely characterize the actual situations in which households consume each 

alternative. However, we do observe the mile driven by each vehicle type, and this 

allows us to model the distribution of consumption occasions and make inference 

about the context in which they are consumed. One can relate different choice 

occasions as representing different activities undertaken by the household that requires 

driving such as school runs, shopping, weekend family gateways, etc. Intuitively, 

household vehicle portfolio and annual mileage indicates heterogeneity in tastes for 

various choice occasions. We explain the vehicle quantity of each household in terms 

of demographic attributes (number of people in the household that work), vehicle 

attributes, fuel costs, travel costs, etc. Intuitively, we expect households to switch from 

a gas guzzler to a more fuel efficient vehicle if gasoline prices rise and vice-versa.  

Identification 

Our identification strategy is based on the fact that firms set prices on the basis 

of demand for their products and that of the competitors. The prices (transaction 

prices) are the result of negotiations with customers, and auto dealers will provide a 

higher discount on cars that are selling slowly. The observed prices contain 

information about price elasticities, which if correctly extracted can be used to 

estimate the demand parameters. Therefore, we need to look at pricing behavior that 

can arise in markets and show how the specification of this behavior can be combined 

with the demand estimation to identify consumer demand for fuel economy. The 

intuition is that auto firms also respond to fuel price changes in the short run by 

adjusting relative prices to match sales. And in the medium run, firms can tweak small 
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design changes in months to improve fuel economy by orders of 0.1 to .2 mpg (Busse 

et al 2013, Sallee and Slemrod 2010). An exogenous change in fuel prices thus 

triggers endogenous changes in consumers‘ decision environment. 

Given that we have a model for consumer expectations of future fuel costs, 

intuitively we can estimate the logit demand model and test the null hypothesis that 

the marginal utility of saving a dollar on the cost of a vehicle is equal to the marginal 

utility of saving a dollar on the discounted expected operating costs over the vehicle 

life span: 
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We assume that 𝜉 and μ are jointly normal; the conditional distribution of 𝜉𝑗  given μj is 

also normal. The unobserved component of the demand equation, 𝜉𝑗 , now enters the 

pricing equation through the elasticity. As such we can rewrite the pricing equation as 

(Kim and Petrin 2010): 

  )8(, jjjj xXp    
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where xj is a vector of all of the observed exogenous variables that affect marginal cost 

and the elasticity, X j(·) is a parametric function of these variables, and uj is the 

unobserved deviations of price around this function (Train 2010, Kim and Petrin 

2010). We can estimate the pricing equation and retain the residuals. This is done by 

constructing estimates of the expected price for each model conditional on all 

exogenous factors
51

.  

 Estimation proceeds in two steps. In the first step, we recover μ*, (the residuals 

from the pricing equation) by inverting the pricing function. The product specific 

unobserved factor, ξ, enters the reduced form pricing equation as an argument. The μ* 

incorporates information about the 𝜇𝑗  and unobserved component of the elasticity 

based mark-up (Train 2002). In the second step, having specified the pricing function, 

we then estimate conditional choice model treating the controls as additional 

regressors. What is left is the standard errors. We need to correct them using the 

approach in Newey and McFadden (1994). 

Because we have very few observations on the same nameplate over time and 

moreover, vehicle attributes change, new models are added, some models are 

discontinued, we cannot condition on a full set of fixed effects. Rather, we place 

restrictions across the vehicles. The only restriction we place is that the parameters of 

the pricing function are the same across all products and years.  

Results 

Parameter Estimates of Demand Model 

                                                 
51 We assume that 𝜇 𝑎𝑛𝑑𝑥 are not correlated.  
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Point estimates and standard errors from the specifications are presented in Tables 

4 and 5. Table 6 translates these results to elasticity estimates. The two variables of 

interest are capital cost of vehicle (α) and discounted annual operating costs (γ)
52

. 

Given that there is no specific direction in existing literature for other variables to 

include; we include weight, horsepower, size (wheelbase and track width), drive train, 

dummies if vehicle is an SUV, minivan, full sized van or pickup truck, and indicators 

that reflect make of a given vehicle. The indicators capture extent of household 

preference for a particular make of vehicle. We also control for engine size, but the 

values are not reported because they are not of any particular interests for our 

purposes. The demographic variables enter through interactions with vehicle 

attributes. The parameters vector has a multivariate normal distribution. We divide the 

coefficient on price by the income of consumer to allow the elasticity to vary with 

income. This way, households with high income are less sensitive to prices than those 

with low income. 

Column 1 of Table 4 reports the logit specification without accounting for 

heterogeneity or including information from firms pricing behavior. All other 

coefficients are statistically significant. The coefficient on price is negative as 

expected, but that on operating cost is positive which is counter intuitive. In Column 2, 

we report random coefficient logit model with heterogeneity but do not include 

information on firms pricing behavior nor account for price endogeneity. The 

                                                 
52 Fuel economy enters the consumers‘ utility function as annual operating costs. This is 

determined as real price of gasoline per gallon divided by mpg of fuel, multiplied by the average annual 

vehicle miles. This formulation accounts for the wide variations in the price of gasoline in different 

locations and in annual miles travelled by different households. Importantly, it implies an inverse 

relationship between increasing fuel economy and utility since fuel economy has an inverse relationship 

with fuel consumption, while fuel expenditure have a linear relationship with consumption. 
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coefficient of discounted annual operating costs switches signs. In addition, price and 

all other variables have the right signs and are statistically significant. The values are 

in line with estimates elsewhere
53

 (Train and Winston 2003, Petrin 2002, Kim and 

Petrin 2010, Sawhill 2008, and BLP 1994). 

Column 3 of Table 4 is our preferred model. In addition to accounting for 

consumer heterogeneity and price endogeneity, this model also includes information in 

firms pricing behavior. We expect the price elasticity to be higher than the result from 

the random coefficient logit model (Train 2012, Kim and Petrin 2010). Correcting for 

endogeneity and sorting improves the elasticity of both the capital cost and gasoline 

costs significantly. The mean price coefficient is 3.581 and significant. The standard 

deviation of a normally distributed price coefficient is 0.54.
54

 We recover mean price 

coefficient with respect to discounted operating costs of 6.78
55

 with a t-value of 14.74. 

We also find standard deviation of the normally distributed coefficient of discounted 

yearly operating costs of 2.085 which implies that 95% of the drivers have mean 

coefficients ranging from 2.69 to 10.87. 

We also report ratios of the coefficients of the two variables of interest:
𝛾

𝛼
, with 

a value of 1.88. A Wald test of the null hypothesis that the coefficients on price and 

discounted operating costs are equal is rejected at 5% level (W=26.48<χ
2
<3.65). We 

find that 95% of the consumers in our sample have 
𝛾

𝛼
 values ranging from 0.99 to 1.88 

This large spread signifies heterogeneity in consumer response to fuel economy. In 

                                                 
53 The coefficient on vehicle cost. 
54 This implies that 95% of the price coefficient over all models varies between 2.6 to 4.56. 
55 Estimates of operating costs we report are not comparable to those reported elsewhere since they 

represent different measures of fuel efficiency. 
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this vein, we uncover three segments of discounted operating costs: 28% of the 

consumers significantly overvalue fuel economy while 61% less so or are rational.  

That is 61% of consumers in our sample make vehicle purchase decisions based on 

financial considerations only. The rest, 11%, seems to underweight future gasoline 

costs when making decisions. We profile the segments in terms of their average 

demographic characteristics. On average, rational households are lager and tend to 

have above average income, have higher number of school age children, men older 

than 45 years. 

These are in line with the predictions from Bento et al (2012) and the effect of 

sorting and heterogeneity on parameter coefficient estimates (Bayer et al 2011). These 

results reinforce their arguments that ignoring consumer heterogeneity leads to 

undervaluation of energy savings by consumers. This is because consumer 

heterogeneity results in sorting which results in downwards bias effect. These results 

are in contrast to Alcott and Wozny (2009) who finds that report that consumers 

undervalue fuel economy. 

Cost Side Parameter Estimates 

 Table 5 reports the results of the regression of log of marginal costs on the 

vehicle characteristics. All the regressors enter with significant coefficients and have 

the expected signs. That is, it costs more to improve the fuel efficiency of a vehicle, 

build a bigger car, add additional luxury and comfort, power and acceleration, as well 

as increase weight. Next, we turn to the main question of this research by looking at 

the implications of the estimates of accounting for pricing behavior of firms in 

consumer valuation of fuel economy. 
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Do Consumers Undervalue Fuel Economy 

Table 6 presents estimates of several ratios of  
𝛾

𝛼
 computed over a range of discount 

rates and vehicle lifetime values. These values can be interpreted as the consumer 

willingness to pay for reduced future discounted costs. Expressing the results in this 

form makes it easy and the interpretation is intuitive. However, these ratios can be 

easily translated into a form that allows the values to be comparable to results reported 

elsewhere. We achieve this by dividing the ratio 
𝛾

𝛼
 by  

1

1+𝑟
 𝑇

𝑠=0 . Using data from 

NHTSA vehicle survivability and travel mileage schedules (NHTSA 2006), we 

assume the average vehicle has a useful life (T) of 15 years. To check sensitivity, we 

try different values for T 10, 15, 20 and 25. Also, we assume discount rates ranging 

from 5-9%. Most published work have used discount rates or either 6 or 7%. The 

values in Column 3 are comparable to those reported by Alcott and Wozny (2009) 

who used a discount rate of 6% for their base model.  

 In Figure 3, we plot the distribution of WTP to reduce future operating costs of 

vehicles by households in our sample over different vehicle life times and interest 

rates. The last two columns of Table 6 report our results. We estimate that for every 

$1dollar saved in the future, consumers take no more than $0.99 into account. We find 

evidence of small overvaluation and not one instance of undervaluation. These results 

are in stark contrast to results reported by Helfand and Wolverton 2010; Greene 2010; 

Alcott and Wozny 2009. We find that accounting for heterogeneity and sorting by 

consumers, tends to remove any significant evidence of consumer undervaluation of 

future fuel savings. The last two rows present lower 5% and upper 95% distribution of 

consumer valuation of fuel economy. Though the lower 5% consumers only place 



 

141 

 

values of $0.51 of a dollar savings, it does not signify energy paradox by this 

population in the strict sense. This is because, there is a huge spread in the amount of 

annual mileage by consumers across the population and this leads to huge valuation in 

fuel economy. For example, if they drive a few standard deviations outside the mean, 

they might choose the appropriate vehicle. The major take away from this is that 

different drivers sort into different vehicles based on their taste and demographic 

attributes. Those consumers who place higher values on fuel economy will sort into 

more fuel efficient vehicles and those that place less value of future fuel savings sort 

into large vehicles. Any demand estimation strategy that does not account for 

heterogeneity in driving habits and taste preferences will probably arrive at the wrong 

conclusion. 

Conclusions 

How consumers value fuel economy is one of the most researched questions in 

to the automobile and energy sectors. The estimates are highly variable with some 

papers concluding that consumers grossly undervalue fuel economy, while others have 

reached the exact opposite situation. The high variability of the estimates signifies that 

probably, heterogeneity in consumer might play a role in reconciling the different 

results obtained. Despite the fact that individual unobservable heterogeneity and 

sorting have been found in consumer vehicle choice and driving behavior, their effect 

on estimates of consumer fuel economy valuation has not been presented empirically. 

This paper presents such empirical evidence of the effect of individual unobserved 

heterogeneity and sorting in the estimates of fuel economy valuation by consumers.  

We demonstrate that sorting and unobserved heterogeneity has the potential to bias 
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estimates of consumers‘ ability to optimally tradeoff capital and operating costs when 

making durable choice decisions.  

To restate our findings, we find no evidence to support the argument that 

consumers systematically underweight the cost of future events in real market settings. 

However, we find significant evidence that different consumers sort into different 

groups such that rational consumers accurately tradeoff future operating costs and 

vehicle prices. Conservatively, about 61% of the population is accurately do not 

underweighting or overweighting operating costs when purchasing new vehicles. This 

research has several limitations which provide a useful roadmap for future studies. 

First, we do not include used vehicles in our model. There is no evidence that 

consumers value new vehicles and old vehicles in a similar version or that different 

consumers drive their vehicles over their useful life as developed in this paper. In fact, 

evidence from textbook market exists that forward and myopic consumers place 

different values on the resale price of durable goods. Ideally, the model could be 

extended to allow for dynamic vehicle replacement as well creating a fully dynamic 

framework. Second, the model developed in this paper makes strong assumptions 

about the functional form of the distribution of consumers in the population for ease of 

estimation. By restricting consumer taste parameters for price and operating costs to 

be normally distributed, we are necessarily ruling out more flexible distributions of 

consumer behavior which may be present in the population. 
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Figure 1: Plot of Natural Log Real Gasoline Price 
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Figure 2: Plot of Natural log of Real Gasoline Price and Forecasts 
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Figure 3: Distribution of Willingness to Pay to Reduce Operating Costs 
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Table 1:  Description of Sample Households who Bought New Vehicles 

Socioeconomic Characteristics   

Variable  Sample Value 

Average Household Income $68,908 

Average Age 50 

Average Household Size 2.61 

Percentage Male 57 

Percentage with Child 1-6 15 

Percentage who live in large MSAs 57 

Large MSAs are described as being within MSAs with a population greater than 1 Million people. 

 

 

Table 2:  Summary Statistics of Sample Vehicle Characteristics  

Automobile Characteristics     

Variable  Mean Value Standard Deviation 

Annual Vehicle Miles Travelled (Miles) 11,861 17930 

Real Gasoline Price ($/gallon) 1.75 0.51 

Vehicle Price $22,716 $10,006 

Length (Inches)  192.1 16.5 

Wheelbase (Inches) 112.9  11.4 

HP (Pounds) 194 52 

Curb Weight (Pound) 3479 695 

 Mpg 20.16 1.45 
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Table 3: ARIMA (1,1,1) Model Annual US Retail Gas Price Data 1994-2005 

Variable Estimate Standard Error 

Log of Real Gasoline Price 

      Constant 0.5208 0.126 

ARMA 

     AR1 0.8593 0.0691 

   MA1 0.4671 0.1182 

Variance of Residuals (σ^2) 0.0102 0.0074 
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Table 4: Parameter Estimates of Consumer Demand for Fuel Economy 

 

No 

Correction 

Random 

Coefficient-RC 

RC with 

Correction 

Demand Side Parameters (1) (2) (3) 

Mean(β's)       

Constant  -10.600 -7.079 -8.093 

  (0.360) (0.918) (1.009) 

Vehicle Cost/Income ($'000)-α -0.76 -2.13 -3.58 

  (0.121) (0.029) (0.023) 

Operating Costs/Income-ϒ 0.165 -4.412 -6.78 

  (0.080) (0.289) (0.460) 

Vehicle Size (Wheelbase * Length) 3.46 2.63 2.89 

  (1.830) (0.023) (0.031) 

HP/Curb Weight (tons) -0.516 0.6 0.608 

  (0.020) (0.042) (0.063) 

Curb Weight (tons) 0.213 0.341 0.361 

  (-0.019) (0.003) (0.001) 

Std. Deviations (σβ’s)       

Vehicle Cost ($'000)   0.54 1.08 

    (0.460) (0.349) 

HP/Curb Weight (tons)   4.05 5.866 

    (0.020) (2.022) 

Operating costs   2.066 2.085 

  
(0.001) (0.295) 

ϒ/α -0.22 2.08 1.84 

# Observations 1,470 1,470 1,470 
Notes: Standard errors in parentheses. 
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Table 5: Cost Side Parameter Estimates 

Variables  Parameter Estimates Standard Error 

Constant 1.025 (0.194) 

ln HP/Curb Weight (tons) 0.477 (0.003) 

ln Curb Weight (tons) 1.03 (1.230) 

In(MPG) 0.423 (0.029) 

In(Size) -0.048 (0.063) 
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Table 6: Robustness of Consumer Valuation of Fuel Economy 

    Ratio ϒ/α=1.88 

    (1) (2) (3) 

  

 

T=10 T=15 T=25 

Discount Rate=6%   1.540 1.170 0.890 

Discount Rate=7%   1.620 1.250 0.980 

Discount Rate=8%   1.770 1.460 1.150 

Discount Rate=9%   1.690 1.330 1.060 

          

Upper 95% 0.8-1.88 

Lower 5% 0.51 
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CONCLUSION 

Policy makers have employed various policy instruments in an attempt to 

achieve at least two policy goals. One goal is to reduce peak demand, obviating the 

need for a large excess generating capacity which is rarely used.  A second policy goal 

is to reduce overall electricity consumption, thereby conserving fossil fuels and 

reducing pollution. However, behavioral response interacts with these policies in a 

complex manner sometimes resulting in unintended consequences. Therefore an 

understanding of behavioral response is essential in designing effective energy 

conservation policies. 

This dissertation provides answers to several questions related to unanticipated 

ways in which consumer behavior has affected the outcomes of energy policies. First, 

I provide evidence from a field experiment on a demand response program that 

investments in energy efficiency results in significant reduction of anticipated energy 

consumption while at the same time reducing resultant emissions. Such reductions 

offer utilities avenues for managing summer peak load without the necessity to build 

costly peaking power plants. However, due to strategic behavior and income 

substitution effects, households utilize these savings in different ways. I provide 

evidence of direct rebound and precooling effects that an in the order of 41% of saved 

energy, monetary and environmental benefits. While the DR program was designed to 

create a flatter load shape for the utility to help reduce operating needs and complexity 

during peak periods, the benefits of this program are in part offset by behavioral 

response by consumers through precooling and rebound. That is the program results in 

reducing peak load and emissions reduction, but not as much as one would predict 
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because of behavioral response. This implies that behavioral response needs to be 

taken into account if we are to have realistic forecasts of potential project outcomes.  It 

also implies that policies might be more effective if they are designed to create 

incentives for behavioral response that are consistent with the goals of the policy, so 

that behavioral response reinforces the program. This is really the notion of incentive 

compatibility. 

Second, due to the changes in consumers‘ consumption patterns that occur as 

result of strategic behavior, utilities incur additional production costs which are then 

passed through to consumers. The rebound and precooling results in an increase in 

energy supply services, with a corresponding increase in effective prices, the size of 

which depends on the underlying cost structure. Therefore utilities in response to 

increased load during off-peak periods call more expensive generation units to meet 

increased load. This results in an increase in the cost of conservation which may have 

negative effect on the overall social welfare. 

Third, one of the key barriers to achieving energy efficiency is the so-called 

―energy paradox,‖ the idea that consumers undervalue cost savings from investments 

in energy efficiency. The undervaluation of future fuel costs in the automobile market 

is a great example for demonstrating such market failure. However, it has always been 

challenging to accurately quantify the degree of the undervaluation, if it exists. 

Consumer heterogeneity and sorting are important factors that must be considered in 

order when quantifying the level of consumer undervaluation of investments in energy 

efficiency. If consumers tend to undervalue long-term cost savings associated with 
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efficient equipment, then this will reduce the effectiveness of some policies relative to 

others (e.g., carbon tax versus gas guzzler tax). I find that accounting for sorting bias 

and consumer heterogeneity explains a large fraction of the purported myopia found in 

literature and conclude that myopic behavior may be a less significant problem; and 

also that it may be confined to a subset of the population. 

Fourth, CAFE standards are designed to improve gas mileage. However, 

CAFE as structured is less stringent for larger vehicles therefore may be behind the 

explosion in the demand for light duty trucks (SUVs, Minivans, Pickup-trucks, etc).  

This explosion in the light truck share of the automobile fleet has introduced 

―prisoner's dilemma‖ situation where drivers buy heavy vehicles for better self-

protection in collisions and increasing risks to occupants of other drivers. These 

externalities have serious policy implications. In theory, an efficient fleet could be 

achieved through a carefully calibrated tax based on careful cost-benefit analysis. 

However, such a tax policy may pose practical problems of implementation in terms 

of public acceptance and monitoring. A policy such as the proposed one will also lead 

to the adoption of more fuel efficient vehicles over time and reduction in the weight of 

the fleet.  

Finally, estimates of emissions reduction impacts of energy conservation 

programs show that they result in reducing emissions but as one might expect because 

behavioral response will at least in part offset potential emission reductions from 

efficiency-based policies. This suggests we can improve the performance policies by 

integrating incentive-based programs such as carbon taxes or other tools policies that 
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increase energy prices. This dissertation reviews these policies, and concludes that 

while these policies do contribute to their major objectives, the benefits are at least in 

part offset by unintended consequences due to behavioral response by consumers. The 

main take away from this dissertation is that an understanding of behavioral response 

is essential in designing effective policies. 
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