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ABSTRACT

We present an alternative model theory for rewriting logic in the calculus of in-

ductive constructions. Making use of the Coq theorem proving environment, we

create a formal specification of rewriting logic, and gain an interactive logical and

semantic framework for rewriting logic, which is a logic well suited to the specifi-

cation and validation of concurrent computations and proofs. We then show how

we can use Coq and this specification as a formal proof environment for working

with rewriting logic theories. Finally, we present tactics to automate portions of

the proof generation and validation process.
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CHAPTER 1

Introduction

1.1 Overview

This work develops the theory of rewriting logic by creating a constructive se-

mantic model in the calculus of inductive constructions as well as a constructive

proof-theoretic deduction system based on the proof theory originally defined by

Meseguer [1]. These two semantics are proven equivalent to demonstrate that

rewriting logic is both sound and complete.

A sound logic is one for which every sentence which can be derived in the proof

theory is also satisfiable in the model theory. This is the same as saying that if

a sentence is derivable, it must be true, which is a fairly essential property for a

logic. Being able to derive a false sentence would certainly limit any confidence in

the logic.

A complete logic is one for which every sentence satisfiable in the model theory

corresponds to a deductive proof that can be constructed in the proof theory. In

other words a logic is complete if every true sentence is also derivable.

Additionally, it is shown how these semantics can be used as a theorem proving

environment for working with rewriting logic theories making use of the Coq [2]

theorem proving environment.

The impetus for this work is the goal of creating secure, reliable and robust soft-

ware and systems, specifically specifying and validating concurrent systems. As

computers continue to become more complex as multi-core and distributed system

usage increases making the creation of efficient and useful software increasingly

1



difficult. At the same time, our reliance on software in critical systems including

infrastructure, avionics, and banking continues growing at a blistering pace. As

the costs for errors and failures are increasing in time with the difficulty of creat-

ing robust systems, adopting new development techniques becomes more appealing

and cost feasible.

This research is important in addressing the needs for more robust concurrent soft-

ware in that it seeks to advance the state-of-the art of rewriting logic, which is a

formal system suitable for this specification and validation. In brief, rewriting logic

expresses a system via a set of directed-rules which operate by modifying a term

which we can think of as the state of a system. Rewriting logic therefore functions

similarly to a state-transition machine, and it allows multiple simultaneous tran-
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sitions, allowing us to reason over specifications of concurrent systems. This new

model is interesting since it will allow for multiple interpretations of a specification

to accompany the more fixed proof-theoretic view as we discuss in subsection 3.2.2

and subsection 6.1.3. These interprations are useful for defining and visualizing

alternative notions of equality between differing concurrent computations allowing

us to analyze concurrent specifications with a model tailored to the goals of the

system.

1.2 Problem Discussion

1.2.1 Formalization of Rewriting Logic

We begin our journey into the formalization of concurrent and distributed software

by first creating a new formalization of rewriting logic in the calculus of inductive

constructions. Our goal is to create versions of a model theory and proof theory

that can be proven equivalent in a machine verifiable fashion verifying that the

new model theory captures the desired semantics from the existing proof theory.

We can call this a verified semantics.

As described in greater detail in Section 2.2, to formalize a logic we need to define

its syntax and semantics, where the semantics really consists of both a deductive

system, the proof theory, and a mathematical model, the model theory. We must

then detail the relationship between them, considering the properties of soundness

and completeness.

Our first step towards our verified semantics is to define the syntax of rewriting

logic, in Section 3.1, which we will then use as the basis for the later semantics.

Our goal with the specification of the syntax, and indeed the entire system, is

not currently for ease of use, therefore the syntax is in a very raw form. Prior to
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defining our syntax, we will use an alternative syntax for rewriting logic from the

rewriting logic language Maude [3] in our examples.

1.2.2 Theorem Proving in Rewriting Logic

In rewriting logic, we would like to provide specifications of potentially concur-

rent systems, and have the means to deduce information from the specification.

Many systems implementing deduction in rewriting logic exist, including ELAN

[4], CafeOBJ [5], and Maude. We describe a simple rewrite theory in the syntax

of Maude below specifying Peano numbers along with a non-deterministic choice

operation.

mod NAT-CHOICE is

sorts A .

op O : → A .

op S _ : A → A .

op ? _ _ : A A → A .

vars V1 V2 : A .

rl [left] : ? V1 V2 ⇒ V1 .

rl [right] : ? V1 V2 ⇒ V2 .

endm

In the above specification, we define a theory with the name NAT-CHOICE. This

specification contains a single sort, or type, “A”, used in defining the operations

and rules. Our treatment of rewriting logic is untyped, so we simulate this in our

Maude examples by using a single sort. NAT-CHOICE consists of three operations,

“O”, “S”, and “ of arities 0, 1 and 2 respectively. These arities are shown above via

the number of underscores following the operation declaration. The operations also

have type signatures which also represent the arity in the number of parameters.

The type signature for ? is of the form A A → A indicating that the ? operator

takes two elements, and returns one element.

4



We then define two rules over these operations, labeled “left” and “right”, which

reduce to either the left or right operands respectively. Maude supplies a rewrite

command which is used to perform deduction. Rewrite takes a theory and a

ground term and produces a new ground term derivable in the theory from the

initial ground term where a ground term is a term which contains no variables. In

the below example, this command should non-deterministically return either “O”

or “S(O)” as a result based on the proof theory (see Subsection 3.2.1) of rewriting

logic, as we see in the deduction trace below.

> rewrite in NAT−CHOICE: choose O S(O) .

rewrites: 1 in 0ms cpu (0ms real) ( rewrites/second)

result S: O

Here Maude has found that the ground term “O” is derivable in one rewrite step.

1.3 Contribution

The major contribution of this thesis is the introduction of an alternative model

theoretic semantics for rewriting logic in Subsection 3.2.2. We show in Section 3.3

that with this semantics, rewriting logic is sound and complete with respect to the

original proof theoretic semantics defined by the original author [1]. Additionally,

the constructive proof theoretic semantics defined in Subsection 3.2.1 allows for

machine verifiable deduction in rewriting logic explored further in Chapter 5.

1.4 Related Work

There exists a large existing body of work on rewriting logic and on the formaliza-

tion of concurrent systems. We will discuss a few of the relevant points below.
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1.4.1 Category Theoretic Model Theory

There is an existing model theory of rewriting logic [1] which models rewriting logic

specifications as a category which captures formally the notion that the models of

rewrite theories are systems, or entities that can be in a variety of states and

change state via transitions. A quick summary of the model is that the objects of

the category are terms from a term algebra over the signature of a specification

representing the states of the system. The rules of the specification are represented

as functors over the category and represent the transitions in the system. The

sentences of the model are pairs of terms and are said to be satisfied by a model

via the existence of a natural transformation between functors in the category. This

definition allows for relationships between models to be defined in terms of adjoint

functors but stresses less the relationships between computations in a model.

In contrast, our model emphasizes the relationship between computations, or

proofs, via a quotienting relationship defined in Subsection 3.2.2 which allows

for an alternative view on what it means for two concurrent computations to be

considered equal. We make use of this relationship in our Coq formalizations of

the quotienting relations to allow more explicit notions of when computations are

considered equal in a particular model. The new model also allows us to define

satisfiability via the generation of a proof object which corresponds nicely with the

theorem proving environment for rewriting logic gained in Coq. Additionally, we

find that the new model is conceptually simpler than the category theoretic model.

1.4.2 Full Maude and Rewriting Logic Tools

The Full Maude implementation of rewriting logic is a machine executable speci-

fication that has been used to experiment with extensions to the Maude language

6



[6]. This implementation was used to integrate object-oriented programming with

rewriting logic, to add parametrized modules, views and module expressions. These

are all purely syntactic constructs to make Maude, the programming language,

more appealing to work in, but do not change the underlying semantics of rewrit-

ing logic.

In a similar vein, the logical foundations of ELAN are formalized in rewriting logic

in [7], where the emphasis is on the notion of strategies for computing rewrites.

Strategies allow us to provide a search path by specifying which reductions occur

when. For instance, we can specify that rewriting should proceed in a left-most,

inner-most fashion such the top level term is never reduced until all of subterms can

no longer be reduced. These strategies are an implementation detail for executing

theories but do not change the theory behind the logic.

Another meta-level tool for working with rewrite theories is the Church-Rosser

Checker [8]. For Maude functional modules to function as executable specifications,

it is a requirement that they be Church-Rosser and terminating. This guarantees

that all chains of equational simplification lead to a canonical form modulo the

equational attributes. Maude itself makes no attempt to verify that a module meets

these requirements. In fact, Maude will generally accept functional modules that

don’t meet the above and attempt to execute them leading to generally undesired

behavior. The Church-Rosser tool provides a way for users to validate their theories

before attempting to run them in Maude.

The Coherence Checker [9] is similar to the Church-Rosser checker, but checks

that system modules are coherent with respect to their equational rules modulo

the equational attributes. To check coherence, the appropriate critical pairs be-

tween the rewrite rules and equations must be able to be filled in. This allows

7



intermingling of performing rewrites of rules and rewrites of equations without

losing completeness. The coherence checker only works when the theory is both

terminating and Church-Rosser. The Maude interpreter itself is again unable to

automatically check this property.

There is an effort to address the limitations in Maude by integrating all of these

separate tools into a unified environment called the Maude Formal Environment

[10]. Since many of these tools rely on the supplied theory having certain prop-

erties which can be checked by other tools, the integrated environment creates

a more trusted platform with which to run the validations. The Maude Formal

Environment creates an environment where the tool results and proofs are objects

that can be shared. This allows, for example, the coherence checker to access the

results from the Church-Rosser and termination checkers to be able to state that

a theory is confluent, without any qualifications.

My work seeks to encourage similar exploration of rewriting logic extensions and

tools, but to provide a different avenue for reasoning about rewriting logic. A po-

tential idea would be to specify Church-Rosser (or Coherence) as a type and then

provide tools to help prove that an equational specification inhabits this type.

In this way, my rewriting logic implementation could automatically reject incom-

plete or incorrect specifications in the type-checking phase instead of requiring an

external tool.

1.4.3 Coq Formalizations of Term Rewriting

There exists an ongoing project, CoLoR [11], for creating a Coq library on rewriting

with a focus on termination. The focus is in the form of the formalization of various

termination checking techniques. The goal is to formalize the techniques most

8



commonly used in automated termination provers, so that the termination proof

certificates that are generated by the automated termination tools can be verified

in Coq. The verification is done via the creation of a Coq file corresponding to

the termination problem used in the proof certificate as well a formalization of the

parameters in the certificate and an encoding of the expected termination result.

As rewriting logic is implicit in term rewriting, and termination is a necessary

property of the functional modules in Maude, reuse of some of the formalizations

may be possible. As CoLoR focuses on term rewriting, and not rewriting logic, it

contains no notion of a model theory and makes no attempt to define a logic from

term rewriting. The CoLoR library does contain some basic math and data struc-

ture theories in Coq which have already proven general enough to be used in other

Coq formalizations by outside groups. There is a wealth of basic libraries both

part of the basic Coq distribution, and in the form of user-contributed modules

that help to make Coq an attractive environment for this research.

1.4.4 Equational Logic in Type Theory

Rewriting logic and equational logic are closely linked, and many implementations

of rewriting logic emphasize the existence and use of an equational sublogic to

describe static portions of a theory. The models of equational logic are therefore

of particular interest for future extensions of our model of rewriting logic.

Previous formalizations of equational logic in Coq [12] followed the use of quotient

algebras [13, 14] as a model for equational logic. First we define a term algebra over

the signature of an equational theory, where the objects are the generated terms,

with variables, and the methods are the generator functions. Then a quotienting

relation can be defined where a pair of terms is considered equal if it is derivable

9



in the equational theory. This work defines a Coq implementation of the model of

equational logic, but provides only paper proofs of the validity and completeness

of the logic. Additionally, while the proof theory is defined in the paper, and

used in the construction of the term algebra for use in the model, a separate

implementation of the deductive semantics is not provided disallowing the potential

formalization of the machine verifiable proofs in Coq.

1.4.5 Coq Formalizations of Logic

Coq has also been used as a formalization mechanism for other logics including

the aforementioned equational logic, Linear Temporal Logic (LTL) [15, 16], and a

three-valued logic. From here, we can see other approaches to the formalizations

of logic in Coq.

In [15], LTL is axiomatized via a shallow embedding in Coq where program ex-

ecutions are represented by infinite co-inductive lists and temporal operators are

co-inductive or inductive types. This allows for expressing the temporal notions

of the logic without an explicit time parameter. Each operation in LTL is then a

separate Inductive or CoInductive Prop in Coq with trace and run operations for

exercising a particular theory.

Another approach is a deep embedding in Coq as seen in [16], where the syntax of

LTL is defined as an inductive structure, and then the semantics of LTL is defined

as satisfaction and entailment operations over the syntax. An axiomatization of

LTL is then demonstrated to be sound with respect to the semantics via a series

of theorems representing the axioms in Coq.

The approach used in this dissertation is similar to the second approach in that we

create a deep embedding of rewriting logic, but instead of an axiomatic semantics,

10



we construct a model based on universal algebra by which we validate the proof

theoretic semantics.

1.4.6 Coq Formalizations of Concurrency

The interest in having an interactive theorem proving environment to express con-

current systems has also been approached with the formalization of the π-calculus

in Coq.

One approach to formalizing π-calculus [17] emphasized its use for the specification

of systems, and was followed with a specification of an SMTP server originally

implemented in Java in Coq. Another approach [18] to formalizing π-calculus in

Coq, using coinductive structures, was more theoretically inclined and looked to

make Coq into a generic proof editor for π-calculus. This formalization involved a

higher-order abstract syntax based encoding of the π-calculus.

1.5 Structure of Thesis

The remainder of this work is structured as follows.

Chapter 2 presents the basics of term rewriting, formal logic, universal algebra and

the calculus of inductive constructions used and referenced throughout the rest of

this work.

Section 2.1 presents a short tutorial on term rewriting which is the model of com-

putation behind the construction of rewriting logic.

Section 2.2 contains an introduction to formal logic and the definition of logics

with propositional logic as the guiding example.

11



Section 2.3 presents a short tutorial on universal algebra up to the definition of term

and quotient algebras as used in the model theoretic semantics in Subsection 3.2.2.

Chapter 3 describes in detail the newly defined semantics for rewriting logic, both

proof theoretic and model theoretic, and proves that rewriting logic is both sound

and complete.

Chapter 4 presents the full Coq source for an example rewriting logic theory, and

shows the use of Coq as a theorem proving environment for rewriting logic.

Chapter 5 discusses the use of the formal semantics plus the Coq theorem proving

environment to construct a rewriting logic engine and tactics for automating proof

in rewriting logic theories.

Chapter 6 wraps up the main body of the thesis and presents directions for future

work.

12



CHAPTER 2

Background

We now introduce the four main concept areas used in this research which include

term rewriting, formal logic, universal algebra and the calculus of inductive con-

structions. Term rewriting is the foundation of rewriting logic, so we briefly look

at it in isolation to get a better view of our starting point. We then discuss for-

mal logic as rewriting logic to see what rewriting logic may add to term rewriting.

Universal algebra provides the mathematical objects used for a semantic model of

rewriting logic. Finally, the calculus of inductive constructions, as implemented in

the Coq theorem proving environment, is the vehicle with which all of this work is

formalized.

2.1 Term Rewriting

Term Rewriting [19, 20, 21] is a model of computation categorized by the repeated

replacement of terms from a set of directed rules. We construct a theory below in

the syntax of Maude.

fmod PEANO-MATH is

sorts A .

op O : → A .

op S : A → A .

op + _ _ : A A → A .

op * _ _ : A A → A .

vars V1 V2 : A .

eq + O V1 = V1 .

eq + (S V1) V2 = S (+ V1 V2) .

eq * O V1 = O .

eq * V1 O = O .

eq * V1 (S V2) = + V1 (* V1 V2) .

endfm

13



PEANO-MATH is a formalization of Peano arithmetic using a system of equations

which define the addition and multiplication operators. While equations represent

a bi-directional relationship, in term rewriting they are only applied in one direction

in an attempt to produce an answer, so the right-hand side of a rule should be a

reduction of some kind of the left-hand side. To trace through a rewriting of 2 +

3 below, we show the full term followed by the left-hand side of a matching rule

along with the substitution enabling that match. The term resulting from applying

the substitution to the right-hand side term of the rule follows. Replacement can

happen for both the top level term, as seen in the first step below, as well as in

inner terms, as seen in the second step.

+ (S S O) (S S S O)
MATCH + (S V1) V2 with V1 = S O, V2 = S S S O

= S (+ (S O) (S S S O))
MATCH + (S V1) V2 with V1 = O, V2 = S S S O

= S S (+ O (S S S O))
MATCH + O V1 with V1 = S S S O

= S S S S S O

The application of a rewrite is also known as a reduction as the usual intent is to

produce a term that is in some way smaller than the original term. By smaller, we

mean a shorter length string, occurring sooner according to an alphabetical sorting,

or we can mean smaller according to some other ordering relationship. Any well

defined, well ordered relationship can give us a valid meaning of smaller in this

context. The ability to produce smaller terms leads to the values of rewriting logic

which are normal forms, or terms that cannot be reduced any further. S S S S S

O as generated in our example above is an example of a normal form.

14



2.1.1 Syntax and Semantics

To define a term rewriting system, we require a few syntactic components. First

we need a signature, Σ, defining the set of allowable function symbols along with

their arities. We also require a countably infinite set of variables, X, distinct from

the function symbols. The set of terms, TΣ(X), in a theory can then be inductively

defined as follows:

• if x ∈ X then x ∈ TΣ(X)

• if f ∈ Σ is a n-ary function symbol and s1, ..., sn ∈ TΣ(X), then f(s1, ..., sn) ∈

TΣ(X).

The rewrite rules of a theory are pairs of terms, l → r with l, r ∈ TΣ(X), repre-

senting equalities, and where the set of variables in the right-hand side of the rule

are a subset of the set of variables in the left-hand side of the rule. We do not allow

the introduction of variables in a rewrite. Additionally, l must not be a variable.

In addition to terms as defined above, we also have ground terms, which are terms

without variables. Generally, equations are composed of terms which may contain

variables, but we reason, or rewrite, over ground terms.

2.1.2 Properties of Term Rewriting Theories

There are a variety of useful properties on rewriting systems that make them more

useful, especially in a computation sense.

Termination: A theory is said to be terminating if for all inputs, we eventually

reach an expression which doesn’t match any of the rules. Such an expression
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is said to be a normal form and is considered a minimal term in the theory.

In the below term, S S S S S O as generated in our example above is in a

normal form because it cannot be reduced any further.

S S O + S S S O → S S S S S O

Confluence: If the order of application of rewrite operations leads to terms that

are always joinable, then the theory is said to be confluent. A pair of terms is

said to be joinable if they are syntactically equivalent, or can be made so via

additional rewrites. Confluent systems therefore have unique normal forms.

(EQ1) a = b

(EQ2) a = c

Here we have a trivial example of a non-confluent rewriting system, since

starting from a, we can reach b or c. To make the above system confluent,

we need to add the implied equation, b = c. This is known as the completion

of term rewriting systems. The equation is implied since a is equal to b and

a is equal to c, therefore b must be equal to c, or the earlier equalities are

untrue.

A system that is both terminating and confluent has a unique normal form for

each term which can be produced by rewriting each term as far as possible. It is

for these systems that term rewriting is a decision procedure for equational logic

as equality between two terms can be determined by rewriting each term to its

normal form, and then doing a straight syntactic comparison.
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2.2 Formal Logic

A logic is a tool to reason about phenomena. Specifically, it is a language designed

to deduce the truth of a sentence from a core set of axioms. Before discussing

rewriting logic, it may be illustrative to talk about equational logic, which is closely

related, to help define what we mean by a formal logic. Formally, a logic is a

combination of a well defined syntax plus an accompanying semantics.

A semantics may be a set of rules for deductive proofs over sentences in the logic,

also known as the proof theory. The proof theory is a purely syntactic construc-

tion where we can decide the truthfulness of a sentence based solely on its form.

Alternatively we can build mathematical models to decide truth in a logic which

is know as model theory.

In the rest of this section, we will formalize a portion of equational logic as a

means of introducing formal logic and as the basis with which to discuss later the

concepts of logic as they are applied to rewriting logic.

In equational logic, a theory is a set of equations defining relationships amongst

terms. We can define the terms of equational logic as we did with term rewriting

previously defining terms over a signature with variables to get the set TΣ(X). An

equation is then a pair of terms l, r ∈ TΣ(X) which are considered equal, while

an equational theory is a set of equations. The PEANO-MATH example given in

Section 2.1 can be considered an equational theory where all of the lines starting

with eq represent the set of equations.

To determine whether or not a pair of terms is equal in a given theory, we can

construct a derivation using the follow rules:
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Reflexivity for each t ∈ TΣ(X),

t = t

Congruence For each f ∈ Σn, n ∈ N

t1 = t′1 ... tn = t′n
f(t1, ..., tn) = f(t′1, ..., t

′
n)

Replacement For each equation e : t(x) = t′(x) in an equational theory E , where

x is set of variables in t, and given proofs relating the set w to their respective

elements in the set w′ where w and w′ have the same number of elements as

x,

w = w′

t(w/x) = t′(w′/x)

t(w/x) represents binding the elements in w to the variables in x.

Transitivity

t1 = t2 t2 = t3
t1 = t3

Symmetry

t1 = t2
t2 = t1

Reflexivity states that a term is always equal to itself. Transitivity states that if the

pair of terms t1 and t2 are equal, and the pair of terms t2 and t3 are equal, then t1

must be equal to t3. Equations are symmetric as might be expected. Congruence

says that if the subterms of two terms are equal, then the composite terms are

equal. Replacement deals with binding terms to variables and maintaining equality.

These same concepts are used in defining rewriting logic in subsection 3.2.1 and

are detailed further there. Taken together, these rules of equational reasoning

constitute a proof theory for equational logic that allow for deduction to determine
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equality between terms. We can envision the example of addition presented in the

previous section to also be derivation in equational logic as it is also the repeated

application of equations.

We can also look at universal algebra as a model for equational theories. We can

define the set of terms in a theory as a term algebra by using the constructors of

the terms as generators. We can then define a quotient term algebra by taking the

rules of deduction above, along with the equations as the theory, as a partitioning

operator to divide the term algebra into sets of equivalent terms. The quotient

algebra generated is said to model a pair of terms t1, t2 in a theory E if the two

terms fall in the same partition of the model.

It has been shown in [22] that equational logic is both sound and complete allowing

us to freely talk about the proof theory or model theory and have the results be

relevant for the other.

Equational reasoning as formulated above is difficult to use in an automated theo-

rem prover due to equality being a symmetric relationship. Because any equation

in the theory can be used in both directions, the process of determining equality is

generally non-terminating in a mechanized process. To get around this problem,

theorem provers generally eliminate the symmetry rule and treat the equations as

a set of directed rules. This leads to term rewriting being a mechanization of equa-

tional logic which is sound, but no longer complete. Any derivation found must

still be in the model, but the model now contains equalities that our mechanization

cannot find.
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2.3 Universal Algebra

Universal algebra is the study of algebras, their properties and relationships [23,

24]. The notion of an algebra as a mathematical object is of particular interest to

us since algebras have proven to be useful as models in formal semantics. Here we

define the basics of universal algebra up to a definition of quotient term algebras

which we will later use as the models of rewriting logic. A more comprehensive

introduction to universal algebra can be found in [25].

An algebra is defined to be a set together with operations of particular arities over

the set. Operations of arity 0 are also called constants. Additionally, the functions

are often constrained by a set of equational properties. For example, we can define

a semigroup as an algebraic structure consisting of a set together with a binary

operation which is associative. We can see from this definition that there are many

concrete examples of a semigroup such as the set of natural numbers with the plus

operation, or the set of Boolean values with the logical or operation. In these cases,

the sets of natural number and booleans, respectively, are known as the carrier

sets of the concrete algebras.

This form of algebra is known as an unsorted algebra since there is only a single

carrier set. There are extensions to many-sorted, order-sorted, and more versions

which allow for multiple carriers sets which may have defined relationships to

each other. Operations must then be given explicit sorting information instead of

requiring only arities. For the sake of this text, we will concern ourselves only with

the unsorted variant of algebras.

Signatures are a means of symbolic representation of algebras. A signature, Σ, is

a set of operation names with arity.
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Given an algebraic signature, we can construct a term algebra, TΣ, which provides

a concrete model of the abstract declaration. We generate the carrier set of the

algebra recursively over the operations as follows:

• for each constant symbol σ in Σ, the string σ ∈ TΣ

• for each symbol σ in Σ, where σ has arity n, and for each list s = s1 . . . sn ∈

TΣ of length n, the string σ(s) ∈ TΣ .

Given an algebraic signature, Σ, and a variable set X of pairwise, disjoint values

such that ∀x ∈ X, x /∈ Σ, we can define the term algebra TΣ(X) of terms with

variables.

We can define various congruence relations on an algebra, which are equivalence

relationships that are compatible with all of the operations of the algebra. A

quotient algebra is then defined as an algebra, along with a congruence relationship

that partitions the elements of the algebra into equivalence classes.

2.4 Calculus of Inductive Constructions

For this, we turn to an existent Interactive Theorem Proving Environment, Coq.

Coq is a proof assistant whose language implementation, Gallina, is based on the

Calculus of Inductive Constructions [26, 27]. It provides a constructive logic with

higher-order type theory for formalizations, and a rich environment for constructing

and automating proofs [28].

The type theory [29] underlying Coq [2, 30] includes dependent types, an extension

of type theory where types can range over values. This enables the formulation of

complex types such that type checking can reduce the need for theorem proving.
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Below is a formalism in Coq of a polymorphic list type parametrized over its length.

The head operation is only defined for lists of size greater than 0, which means

that if a call to head compiles, we have statically guaranteed to never receive an

empty list and proven that the error condition of calling head on an empty list

never happens.

In our example Coq code, we will make use of pretty-printed symbols including→

in place of ”->”,⇒ in place of ”=>” and ∀ in place of ”forall”. In our source files,

the text value is used instead.

Module dlist.
Inductive list : Type → nat → Type :=
| nil : forall A, list A O

| cons: forall A n, A → list A n → list A (S n).

Definition head’ A n (ls : list A n) :=
match ls in (list n) return (match n with O ⇒ unit | S _ ⇒ A end) with
| nil _ ⇒ tt

| cons A n val rest ⇒ val

end .

Definition head A n (ls : list A (S n)) : A :=
head’ A (S n) ls.

Example test_head :
head nat 0 (cons nat 0 5 (nil nat)) = 5.

Proof. reflexivity. Qed.

The above code first defines a new inductive, dependent type “list” which has the

type “Type → nat → Type”. This definition is very similar to a polymorphic list

definition in any modern, functional language. In the Coq syntax, the first “Type”

parameter is the type this list will be parametrized over. The next parameter, nat,

is then used to embed the length of the list in its type. The base constructor for

the empty list, “nil : forall A, list A 0” says that for any “A” that is a “Type”,

“nil” constructs a 0 length list that has type ”list A 0”. To construct other lists,
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the “cons” constructor must be used. The type of “cons”, “forall A n, A → list A

n → list A (S n)”, can be read as follows:

For any natural number “n” and type “A”, we can take an element of “A” and an

list of elements in A of size “n” and construct a new list in A of size “S n”.

We then define two new functions to operate on our lists, “head” and “head’”. The

function “head’” accepts a list of any size and returns either the first element, or

the unit value in the case of an empty list to signify an error. This is almost exactly

how head would be defined in a modern, functional language such as OCaml or

Haskell.

“Head”, on the other hand, makes use of the size embedded in the type of lists

and only accepts lists with size greater than zero, as indicated by the type of its

second parameter “ls : list A (S n)”. What this says is that when calling “head” in

a program, for it to successfully type check, it must be given a non-empty list as a

parameter. Since “head’” only returns an error for empty lists, “head” will never

return an error. Both of these functions require the type the list is parametrized

over and the size of the list as parameters.

The auxiliary function is necessary because in Coq, the “match” operator must

return a value for every possible case. In “head”, we would not have a return value

for the empty list case, and therefore could not use “match” to deconstruct the

list.

The return specification in “head’” is used to indicate that the function has multiple

possible return types, either “unit” in the empty list case, or “A” otherwise. Coq

cannot infer the desire to have multiple return types from the function necessitating

this extra specification.

23



The code is the exercised in the “Example test head” which calls the head function

on our new list type. The size and type elements are explicitly passed to head and

the constructors cons and nil.

The above example is written far more explicitly than is usual in Coq for illustrative

purposes. An alternative implementation would be as follows:

Section newlist.
Variable A : Type.

Inductive list : nat → Type :=
| nil : list O

| cons: forall n, A → list n → list (S n).

Definition head’ n (ls : list n) :=
match ls in (list n) return (match n with O ⇒ unit | S _ ⇒ A end) with
| nil ⇒ tt

| cons _ val _ ⇒ val

end .

Definition head _ (ls : ilist (S n)) : A :=
head’ _ ls.

End newlist.

Implicit Arguments head [A n].
Implicit Arguments cons [A n].
Implicit Arguments nil [A].

Example test_head :
head (cons 5 nil) = 5.

Proof. reflexivity. Qed.

First, we use a section to declare A which makes it available to use implicitly in

the later declarations in the section. The type of “list” therefore changes to “nat

→ Type” instead of “Type→ nat→ Type”. After defining our new type, we then

make it easier to use with “Implicit Arguments” commands which instructs Coq to

infer the type parameters when possible. This allows us to rewrite the sample code
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as “head (cons 5 nil)” without the type information cluttering the code. In both

versions of the code, “head nil” will fail to type check providing us our statically

verified check against this error.

Another nice feature of Coq is its support for a small kernel proof language which

allows proofs found in Coq to be independently verified by an external tool. The

benefit of this is that the user doesn’t need to trust the search procedures for

finding a proof, because any proof found can be verified independently from the

search procedure used to construct it. This allows for the development of more

complex and domain specific search patterns to help automate proving in Coq

without introducing the worry of bugs in the search procedures themselves.
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CHAPTER 3

Rewriting Logic

Using the previously defined formalisms, we are now ready to define the syntax,

proof theory and model theory of rewriting logic. Our goal is to construct and

reason about sentences of the form R ` t → t′, where R is a rewrite theory and

t, t′ are a pair of terms. We read this sentence as “R entails t becoming t′” to

emphasize that rewriting logic is a logic of change, or becoming.

Since rewriting logic is based on term rewriting, we are able to borrow portions

of the CoLoR implementation of term rewriting for the definition of terms and

some basic utilities. We then build from this base to define our proof theoretic and

model theoretic semantics of rewriting logic.

3.1 Syntax

We define the syntax of rewriting logic theories, R, as the pair R= (Σ,R) where Σ

is the theory signature, and R is a rewriting relation composed of a list of pairs of

terms (l, r) where l, r ∈ TΣ(X), and the pairs (l, r) ∈ R are the rewrite rules. A

signature, Σ, is the set of allowable function symbols along with their appropriate

arities.

We can define the set of terms over the signature, TΣ, as the set of all terms

constructable from combining the symbols in Σ. If we assume the existence of

a countably infinite set X of variables, we can construct the set of terms with

variables, TΣ(X), as in term rewriting or equational logic.

• if x ∈ X then x ∈ TΣ(X)
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• if f ∈ Σ is a n-ary function symbol and s1, ..., sn ∈ TΣ(X), then f(s1, ..., sn) ∈

TΣ(X).

To represent rewriting logic syntax in Coq, we use the termSignature datatype

from the CoLoR term rewriting library to describe what terms look like. The

Coq Record type is a composite type similar to a struct in C, using semi-colons

to separate the elements and defining a helper function, mkTermSignature, for

constructing termSignature instances. Each element is defined with a name and a

type, separated by a colon. The element name is also used as an accessor function

to retrieve its value from a record instance.

Record termSignature : Type := mkTermSignature {
symbol : Set ;
arity : symbol → nat ;
beq term symb : symbol → symbol → bool ;
beq term symb ok : ∀ x y, beq term symb x y = true ↔ x = y
}.

A termSignature is made of up four elements starting with symbol, a Coq Set,

which represents the set of function symbols in our signature. The arity is a function

from symbol to nat, and represents the arities for each function symbol in the

signature. Then beq term symb holds a boolean equality function for comparing

symbols while beq term symb ok is a proof that beq term symb returns true if and

only if the symbols are considered equal in Coq, which means they are syntactically

equal. The later two functions are included in the term signature for convenience

and not necessity, as external function definitions would be suitable.

Instead of using strings to represent the function symbols, as is more typical for

term rewriting, we make use of the Coq type checker with the definition of symbol
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as a Set. It is expected that the type used for symbol contains a number of 0-

arity constructors representing the allowable terms in Σ. This can be seen in the

definition of symbols in Chapter 4 where it is used to construct the termSig term

signature as part of the rewriting logic theory of Peano numbers.

This formalization allows for easier proofs over the signatures in later developments

by having the Coq type system enforce that only symbols from the allowable set are

being used to construct terms. Using arbitrary strings would remove the compile

time type checking and introduce an avenue for errors.

Implicit Arguments mkTermSignature [symbol beq term symb] .
Arguments arity [t ] .

As a further nod to convenience, we can declare certain arguments to be implicit

parameters such as the type of symbol in the arity function. This type information

will be inferable from the other arguments to arity and therefore we make it so that

it does not need to be explicitly mentioned. In the above, we’ve also declared that

symbol and beq term symb do not need to be manually specified when constructing

a term signature. The type of symbol can be inferred from the type signature for

the arity function, and the type of beq term symb can be inferred from the type of

beq term symb ok. We will continue to create implicit arguments as appropriate

throughout the code, but will only mention it if the usage is at all ambiguous or

unclear.

Notation variable := nat (only parsing).

Before we define terms, we must first define the notion of a variable so that we

can define the terms in TΣ(X). For our purposes, the set of nats meets all of

our variable requirements, being a countably infinite set of distinct members. To
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keep variables visually distinct, while still retaining all of the benefits of using nats

including existing proofs, we define our variable type as a notational representa-

tion for nats. Internally to Coq, variable is interchangeable with nat, so for our

development we can use variable as our type.

Variable Sig : termSignature .

Inductive term : Type :=
| Var : variable → term
| Fun : ∀ f : (symbol Sig), vector term (arity f ) → term.

Notation terms := (vector term) .

We define term to be an inductive data type with two constructors, Var and Fun.

Coq uses a vertical bar to separate constructors in an inductive data type, and

here we preface the constructors with this syntax as a stylistic choice. Terms

are parameterized over a termSignature, which we accomplish above with the

Variable Sig Coq command, so all of the constructors defined for this type also

implicitly take a termSignature as their first argument.

A rewriting logic term is either a variable, for which we define the constructor

Var which takes a variable as a parameter, or a term is a function symbol. To

define function symbols, we define the constructor Fun which takes two additional

arguments, f, which is any element in set of symbols in our signature Sig, and a

vector of terms whose length is defined by the arity of the symbol f in the signature

Sig.

Record rewrite rule : Type := mkRule { lhs : term; rhs : term } .

Definition rwl theory := list rewrite rule .

We can now directly represent rewrite rules as a pair of terms in a signature. Again
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making use of the Coq record type, a rewrite rule is a pair of terms we label lhs

and rhs and whose accessor functions are lhs and rhs respectively.

Finally, we can define the two-tuple (Σ,R), the formal signature of a rewriting

logic theory. Since the term signature is still being added to all of our definitions,

a rewriting logic theory, rwl theory, is a list of rewrite rules, implicitly over the

termSignature Σ.

3.2 Semantics

3.2.1 Proof Theory

The rules of deduction for rewriting logic are a relationship between a rewriting

theory R, and a pair of terms t, t′ ∈ TΣ(X), showing how one term can become

another, expressed as R ` t → t′. We say that t can become t′ if and only if a

proof can be obtained via finite application of the rules of deduction below:

Reflexivity for each t ∈ TΣ(X),

t→ t

Congruence For each f ∈ Σn, n ∈ N

t1 → t′1 ... tn → t′n
f(t1, ..., tn)→ f(t′1, ..., t

′
n)

Replacement For each rewrite rule r : t(x) → t′(x) in R, where x is set of

variables in t, and given proofs relating the set w to their respective elements

in the set w′ where w and w′ have the same number of elements as x,
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w → w′

t(w/x)→ t′(w′/x)

t(w/x) represents binding the elements in w to the variables in x.

Transitivity

t1 → t2 t2 → t3
t1 → t3

Reflexivity states any term in TΣ(X) can be be derived from itself. Congruence

provides for rewriting below the top level term by stating that any term constructed

from a function symbol with the appropriate number of subterms can become a

new term with the same function symbol where each of the subterms is potentially

rewritten. This also provides our first ability to model concurrency since we can

simultaneously rewrite all of the subterms involved in the action. Transitivity is

the composition of rewrites which states if we can rewrite some term t1 into another

term t2, and additionally if we can rewrite t2 to a term t3, then we can rewrite t1

to t3.

Actual replacement, along with the handling of variables, is dealt with in the

replacement rule. Here, x represents the set of variables in the term t(x), and w

represents a collection of terms in TΣ(X). t(w/x) then represents the term t(x)

with the variables bound to the terms in w. We then say if the terms in w can

be rewritten to the set of terms w′, and the term t(w/x) matches the left-hand

side of a rule r ∈ R, then we derive the term t′(w′/x) which is the right-hand side

of r with its variables replaced by the corresponding terms in w′. Replacement

provides an alternative form of concurrency since we can simultaneously rewrite a

term, and all of the terms in the current substitution.
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We transpose these rules into an inductive datatype in Coq parametrized by the

termSignature Σ as Sig, a rewrite theory and a pair of terms. Each potential

rule of deduction in rewriting logic is then a constructor of this property with

the necessary recursive properties over lists and substitutions embedded. The

constructors create proof objects in Coq, as evidenced by the type living in Prop.

Inductive proof theory : rwl theory Sig → term Sig → term Sig → Prop :=
| PF Refl : ∀ t1 RWT, RWT ` t1 → t1
| PF Congruence : ∀ RWT f tl tl2,

proof theory list (arity Sig f ) RWT tl tl2 →
(RWT ` Fun f tl → Fun f tl2 )

| PF Replacement : ∀ RWT inputTerm outputTerm rule Subs Subs’,
ruleIn rule RWT →
eq (applySubstitution Subs (lhs rule)) inputTerm →
eq (applySubstitution Subs’ (rhs rule)) outputTerm →
proof theory substitutions RWT Subs Subs’ →
RWT ` inputTerm → outputTerm

| PF Transitive : ∀ t1 t2 t3 RWT,
(RWT ` t1 → t2 )→ (RWT ` t2 → t3 )→ (RWT ` t1 →

t3 )

The first transition rule is PF Refl, representing reflexivity, and states that any

term in the rewrite theory is reachable from itself.

Next we have the congruence rule, PF Congruence, which states that if we have

a term comprised of a function symbol f , and its set of subterms tl, we can si-

multaneously reduce each of the subterms to create a new subterm list tl2 and

the resultant term f(tl2) is reachable from f(tl) in the rewrite theory. This is

accomplished via the proof theory list rules which maps the proof theory over all

the terms in a vector of terms.
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The third rule of deduction in rewriting logic is PF Replacement, representing re-

placement, which is the only rule to directly work with the rewrite rules in the the-

ory. The replacement rule requires us to find a rule in our rewrite theory such that

the current term of interest matches the left-hand side of the rule with an appro-

priate substitution. We can then prove the derivation of the right hand side of the

rule in the same substitution. Additionally, the rules in proof theory substitution

states the substitution need not be identical, but rather we use a new substitution

where the corresponding terms are derivable from their counterparts in the origi-

nal substitution. This allows for concurrent rewrites by simultaneously rewriting

a term and its substitution.

To complete the reducibility relationship, we need to introduce PF Transitivity,

the transitivity rule which allows for multi-step derivations. For any two terms

t, t′ ∈ R, if there is another term t′′ ∈ R such that R ` t → t′′ and R ` t′′ → t′,

then we can say that R ` t → t′. If R ` t → t′ without use of the transitive

relationship, then we can say there is a one-step concurrent rewrite from t to t’.

If there is only one use of the replacement rule, then we can say that there is a

sequential rewrite from t to t’.

These four rules map directly from our previous formalization of the proof theory.

However, to make this a valid data type in Coq, we must also formalize the notions

of proof theory list and proof theory substitutions which we took for granted

earlier. Since elements in proof theory contain these types, and these types con-

tain elements of proof theory, we create a mutually inductive datatype by using

the with keyword to continue out definition.

with proof theory list : ∀ n : nat, rwl theory Sig → vector (term Sig) n → vector
(term Sig) n → Prop :=
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| PF Nil : ∀ RWT, proof theory list 0 RWT Vnil Vnil
| PF Cons : ∀ RWT, ∀ m, ∀ (rest1 rest2 : vector (term Sig) m), ∀ t1 t2,

proof theory RWT t1 t2 →
proof theory list m RWT rest1 rest2 →
proof theory list (S m) RWT (Vcons t1 rest1 ) (Vcons t2 rest2 )

with proof theory substitutions : rwl theory Sig → substitution Sig → substitu-
tion Sig → Prop :=

| PF ReflSub : ∀ RWT st, proof theory substitutions RWT st st
| PF HeavyLeft : ∀ RWT entry sub sub’,

proof theory substitutions RWT sub sub’ →
proof theory substitutions RWT (entry :: sub) sub’

| PF ConsSubstitution : ∀ RWT id1 t1 t2 rest1 rest2,
proof theory RWT t1 t2 →
proof theory substitutions RWT rest1 rest2 →
proof theory substitutions RWT ((id1, t1) ::

rest1 ) ((id1, t2) :: rest2 )
where ”RWT ’—-’ t1 ’-¿’ t2” := (proof theory RWT t1 t2 ).

We formalize subterm lists as a Coq vector that limits the length based on the arity

of the function symbol. We say that our theory holds for a pair of lists if either the

lists are empty, or if the head of both lists represents a proveable relationship, and

the rest of the lists recursively hold. Similarly, we say that the theory holds for

two substitutions if the substitutions are both empty, or if the proof theory holds

for the term at the head of each substitution for matching variables, and the rest

of the substitutions recurively hold. For substitutions we also allow the left-hand

side substitution to contain more elements than the right-hand side which we saw

an example of in the definition of the choose operator earlier.

We now have a suitable representation of our deductive semantics for rewriting

logic in Coq to enable the use of Coq as a theorem proving environment as we

demonstrate in Chapter 4. There we work through constructing a rewriting logic
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theory in our defined syntax, and then using the proof theory above, we show the

manual derivation of some terms.

3.2.2 Model Theory

Our proof theory defines how to derive new terms with our rewriting logic theories,

but it does not address the question of truthfulness. For that, we need to define a

model such that we can evaluate when a derivation is true. We want to define a

model such that we can say that for a rewriting logic theory R= (Σ, Rules), and

terms t, t′ ∈ Σ, that we have a model MR which models the relationship t→ t′, or

MR |= t→ t′. Given the fact that rewriting logic is based on term rewriting, and

there are existing models for equational logic in term rewriting, we start there for

our model search.

From equational logic, we have as a model a quotient term algebra derived from

the equational theory specification. In brief, for a given theory, we can define a

term algebra where for each operation, there is a corresponding generator function,

and then have as a carrier set the set of all strings generated by the functions. We

can then define a quotienting relation over the set of terms by converting from the

derivation rules in the proof theory for equational logic presented in section 2.2

and the set of equations in the theory.

Since equality is a symmetric relation, this of course is not a valid model for

rewriting logic. For a theory R, and terms A,B ∈ R, we don’t want to have

R |= A → B implies R |= B → A, which is what the above quotienting relation

provides. However, it would be nice to have a similar style model.

The key in deriving a new quotient algebra is the realization that we are not

interested in comparing terms. What we really want to quotient over, are the
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relationships MR |= t → t′. Our quotienting relationship then answers the ques-

tion, not when are two terms equal, but rather when are two concurrent rewrites

equivalent. Instead of having terms as the elements of our carrier set, what we

really want are proof terms of the form MR |= t → t′. Rewriting with the rules

in a rewriting logic theory doesn’t define the quotienting relationship, but rather

defines the generation functions to create our carrier term algebra.

By viewing the derivation rules of rewriting logic as generating rules to generate a

term algebra of proof objects, we can define a term algebra of proof terms to act

as the carrier set for a new quotient algebra model of rewriting logic.

Identities for each t ∈ TΣ(X),

t : t→ t

Σ-structure For each f ∈ Σn, n ∈ N

α1 : t1 → t′1 ... αn : tn → t′n
f(α1, ..., αn) : f(t1, ..., tn)→ f(t′1, ..., t

′
n)

Replacement For each rewrite rule r : t(x) → t′(x) in R, where x is set of

variables in t, and for α, a set of proof objects relating the set w to their

respective elements in the set w′ with the same number of elements as x,

α : w → w′

r(α) : t(w/x)→ t′(w′/x)

where t(w/x) represents binding the elements in w to the variables in x.

Composition

α : t1 → t2 β : t2 → t3
α; β : t1 → t3
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These rules are directly converted from the proof theory where the derivation

rule now instead generate proof objects, and this set of proof objects forms the

term algebra for a given rewriting logic theory. We can then define a number

of quotienting relations providing distinct interpretations of the equivalence of a

concurrent rewrite.

On the most strict end, we can define as our quotienting relation syntactic equality.

Two rewrites are considered identical only when they have the exact same form.

On the most permissive side, we can define as our quotienting relation any two

proofs terms are considered equal if they map the same input to the same output.

In other words, we have behavioral equivalence where we consider the transition

to be a black box and equality is based solely on the start and end points.

In between, we can define a variety of other notions of equality, or partial notions

to be combined. For instance, we might decide that transitive is an associative

relationship and have equality based on that. To formalize these models in Coq,

we must first convert our proof theory to a set of generator functions to generate the

new term algebra. This can be accomplished most easily by creating a new models

inductive datatype living in the Coq type ”Type” instead of ”Prop” demonstrating

that it represents objects instead of proofs. Those objects are the generated proof

terms in rewriting logic.

Inductive models : rwl theory Sig → term Sig → term Sig → Type :=
| M Refl : ∀ t1 RWT, models RWT t1 t1
| M Congruence : ∀ RWT f tl tl2,

lmodels (arity Sig f ) RWT tl tl2 →
models RWT (Fun f tl) (Fun f tl2 )

| M Replacement : ∀ RWT inputTerm outputTerm rule Subs Subs’,
ruleIn rule RWT →
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eq (applySubstitution Subs (lhs rule)) inputTerm →
eq (applySubstitution Subs’ (rhs rule)) outputTerm →
subsModel RWT Subs Subs’ →
models RWT inputTerm outputTerm

| M Transitive : ∀ t1 t2 t3 RWT,
(models RWT t1 t2 ) →
(models RWT t2 t3 ) →
(models RWT t1 t3 )

We implement our term algebra generator functions in Coq as an inductive

datatype in Type to represent that these are objects representing derivations in-

stead of being Coq proofs. The four rules of generation map to the four constructors

of the models type.

with lmodels : ∀ n : nat, rwl theory Sig → vector (term Sig) n → vector (term
Sig) n → Type :=
| M Nil : ∀ RWT, lmodels 0 RWT Vnil Vnil
| M Cons : ∀ RWT, ∀ m, ∀ (rest1 rest2 : vector (term Sig) m), ∀ t1 t2,

models RWT t1 t2 →
lmodels m RWT rest1 rest2 →
lmodels (S m) RWT (Vcons t1 rest1 ) (Vcons t2 rest2 )

with subsModel : rwl theory Sig → substitution Sig → substitution Sig → Type

:=
| M ReflSub : ∀ RWT st, subsModel RWT st st
| M HeavyLeft : ∀ RWT entry sub sub’,

subsModel RWT sub sub’ →
subsModel RWT (entry :: sub) sub’

| M ConsSubstitution : ∀ RWT id1 t1 t2 rest1 rest2,
models RWT t1 t2 →
subsModel RWT rest1 rest2 →
subsModel RWT ((id1, t1) :: rest1 ) ((id1, t2)

:: rest2 ).

The term algebra requires substitutions and lists of terms just as the proof theory

did. We again implement these as a mutally inductive type in Coq where lmod-

els represents list of terms and subsModel represents substitutions in our term

38



algebra.

The elements generated from the types above form the term algebra carrier set for

our quotient algebra model of rewriting logic. We begin constructing the quotient

algebra by defining the algebraic signature. As we are defining a term algebra for

the unsorted rewriting logic, our algebraic signature requires only a single sort and

no methods.

Definition algSig : Signature := single sorted signature (False rect ) .

As parameters to our model, we require a rewriting logic theory signature, which

is decomposed into the term signature and set of rewrite rules. Since these com-

ponents can be deferred until we are constructing a model for a particular rewrite

theory, we specify them as variables in our model and use them as ts for the term

signature and rwt to represent an arbitrary theory in the logic over the signature.

The models generator above is defined to take the two input terms as separate

parameters. We need them to be a singular parameter for the subset construction

below, so we define a wrapper type of pairs of terms which generates exactly the

set of term pairs that models generates. It simply states that for all theories if

models generates a pair of terms with associated proof object, then generates

does as well.

Inductive generates {s : termSignature } (r : rwl theory s) : (prod (term s)
(term s)) → Type :=
| can gen : ∀ t t’ : term s, models s r t t’ → generates r (t, t’) .

We can now define the carrier set for our term algebra as the set of pairs of terms
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plus associated proof object generated by our generator functions, the constructors

of the model type. The type below should be read as the set of all pairs of terms

over the signature ts such that generates return that pair plus a proof object of

that pair in the given theory rwt.

model_carrier = {X : term ts ∗ term ts & generates rwt X}

Finally, we can define the quotient term algebra as the single-sorted algebra whose

elements are a triple containing t, t′, and pf t t′ where t and t′ are two terms

and pf t t′ is the generated proof object between these two terms which has been

generated from the rules of rewriting logic ported to generator functions, or con-

structors in Coq. We have as our default quotienting function eq, or syntactic

equality below. To represent other models in our model theory, we can subsitute

alternative quotienting relationships for eq when defining model quotienting. We

then combine the pieces into a full Coq representation of the algebra with rwlQuo-

tientAlgebra.

Instance model quotienting : Equiv model type := eq .

Instance rwlQuotientAlgebra : Algebra algSig model carrier .

Now that we’ve defined a generic model for rewriting logic, we can say what it

means for a sequent to be satisifed by a rewrite theory. In particular, the sequents

(sentences) of rewriting logic are pairs of terms, t1, t2 ∈ TΣ(X), indicating that a

concurrent rewriting relationship from t1 to t2 exists. For a theory R, a model MR

containing the pair t1, t2 along with a proof object representing the relationship

between t1 and t2 models the concurrent rewrite t1 → t2.

MR |= t1→ t2
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Sentences of this form are said to be satisifed in the model if the triple (t1, t2, proof)

exists in the carrier set, ie, a sentence is satisified if we can generate a proof object

rewriting t1 to t2. To represent this in Coq, we need to define three relationships.

One for each of models, lmodels and subsModel, since these three types are

intertwined. We can read the definition of mSat as for a given theory r, a pair

of terms t, t′ ∈ TΣ(X) is satisfied by all models of the theory if there exists an

object in the term algebra generated by models. We then read lmSat and subSat

similarly for lists of terms and substitutions respectively.

Section Satisfaction .
Variable s : termSignature .
Variable r : rwl theory s .

Definition mSat (t t’ : term s) : Prop :=
∃ x : models s r t t’, True .

Definition lmSat {n} (lt lt’ : vector (term s) n) : Prop :=
∃ x : lmodels s r lt lt’, True .

Definition subSat ( sub sub’ : substitution s) : Prop :=
∃ x : subsModel s r sub sub’, True .

End Satisfaction .

Currently we’ve shown a notion of syntactic equality between terms, and proof

objects between terms, and therefore all elements in the model are not considered

equal unless they contain syntactically equivalent proof objects. This is a very

strict notion for comparing concurrent rewrites. To get at a deeper meaning of

when two concurrent rewites are equal, we can look at other model instances in

our family of quotient term algebra models by changing the model quotienting

relationship. This does not change the generator functions, so anything satisfiable

in one model, will be satisfied by all models.
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3.3 Soundness and Completeness

3.3.1 Soundness

Given our notion of satisfaction, we can now define soundness for rewriting logic.

Theorem 3.3.1. For a rewrite theory R, and all models M(R),

R ` [t(x̄)]→ [t′(x̄′)]

implies

M(R) |= [t(x̄)]→ [t′(x̄′)]

.

Or in the language of Coq.

Theorem rwl sound : ∀ (Sig : termSignature)
(rwt : rwl theory Sig)
(t t’ : term Sig),

proof theory Sig rwt t t’ → mSat Sig rwt t t’ .

For any given quotient algebra Q, we have to show that for each proof term

p : [t(x̄)]→ [t′(x̄)]

there exists a corresponding proof object in our algebra. In this case, we’re saying

that our generator can produce such a proof object, as all models have the same

collection of proof objects, and the only difference is equality amongst the objects.
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We can proceed by induction over the structure of the proof term, and show how

a corresponding proof object can be generated in the model.

When creating this proof in Coq, we have to generate mutual induction prin-

ciples so that proofs over proof theory are also aware of proof theory list and

proof theory substitutions as these are all distinct objects in Coq. By default, the

generated induction principles are unaware that these are mutually inductive, and

thus generate proof obligations that cannot be satisified. As this is a common need,

Coq provides the Scheme command which can generate proper mutual induction

principles when given a list of the relevant inductive types.

Scheme proof theory mut := Minimality for proof theory Sort Prop

with proof theory list mut := Minimality for proof theory list Sort Prop

with proof theory substitutions mut :=
Minimality for proof theory substitutions Sort Prop .

With our new mutually inductive propositions in hand, we can begin our proof

over the structure of the proofs in the proof theory and show how for every proof,

there is a corresponding object generated by the model. Given that the structure

of the proof theory and the structure of the model generator are identical, our

proof comes done to showing that for each proof, there is an equivalent model

generator to create such proof objects. We will show the entire proof script below,

but only annotate a few cases for illustrative purposes.

Proof .
intro Sig .
apply (proof theory mut Sig
(fun rwt ⇒ fun t ⇒ fun t’ ⇒

mSat Sig rwt t t’ )
(fun n ⇒ fun rwt ⇒ fun t ⇒ fun t’ ⇒

lmSat Sig rwt t t’ )
(fun rwt ⇒ fun sub ⇒ fun sub’ ⇒
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subSat Sig rwt sub sub’ )
) ; unfold mSat .

The proof begins by application of induction over the structure of our proof the-

ory. Since our proof theory is mutually recursive with the vector and substitution

version, we must apply our previously defined mutual induction principles and

manually specify the property we are looking for in each of the three cases. We use

the three satisfiability properties defined along with our model theory to specify

we need model objects, lists of model objects, and substitutions containing model

objects.

Then we proceed to the first case which is reflexivity, where every proof object can

generate itself. The corresponding goal for reflexivity is:

forall (t1 : term Sig) (RWT : rwl_theory Sig),
exists _ : models Sig RWT t1 t1, True

which says that for all rewriting logic theories RWT over a signature Sig, we should

have in our model an object for all syntactically valid terms, t1, to themselves. This

can be shown with the existence of the M Refl proof object generated by the model.

To construct this proof in Coq, we first introduce the theory RWT and the term

t1 as variables, then post the existence of M Refl with RWT and t1 as inputs.

This is the general form all of the soundness proofs will take.

Case ”Reflexivity” .
intros t1 RWT . ∃ (M Refl Sig t1 RWT ) . tauto .

Next we show the proof obligation for the congruence case.

forall (RWT : rwl_theory Sig) (f : symbol Sig)
(tl tl2 : vector (term Sig) (arity Sig f)),

proof_theory_list Sig (arity Sig f) RWT tl tl2 →
lmSat Sig RWT tl tl2 →
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exists _ : models Sig RWT (Fun f tl) (Fun f tl2), True

As usual, our proof is over all theories RWT, but instead of the singular term in

the reflexivity case, we must now show that for all function symbols f, and pairs of

vectors of terms tl and tl2 who have length equal to the arity of f, that if we can

provide pairwise proofs from the term in tl to the terms in tl2, and have a model

object corresponding to those proofs, then we have a model object relating f tl

and f tl2.

Case ”Congruence” .
intros RWT f tl tl2 H0 H1 .
unfold lmSat in H1 .
destruct H1 .
∃ (M Congruence Sig RWT f tl tl2 x ) .
auto .

The congruence proof derivation requires the use of proof theory list in its induc-

tive step to show that each subterm of the top level term has a corresponding

proof object. Under the assumption that soundness holds for each subterm, we

show that the model can generate a congruence proof object for any top level term

created with these subterms.

We assume, for now, that soundness holds for lists of models and introduce as a

hypothesis H1, the model object relating tl and tl2 which ends up in our hypothesis

as x. We can now show that congruence is sound by positing the M Congruence

object with RWT, f, tl, tl2 and the model object x. This assumption is a proof

obligation that we will discharge later.

The replacement case proceeds similarly to the congruence case, but relies on

proof theory substitutions for its inductive steps.
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Case ”Replacement”.
intros RWT inputTerm outputTerm rule Subs Subs’ rIn lhsEq rhsEq subRed
subSatObj .
unfold subSat in subSatObj .
destruct subSatObj .
∃ (M Replacement Sig RWT inputTerm outputTerm rule Subs Subs’ rIn lhsEq

rhsEq x ) .
auto .

For replacement, we assume some theory RWT, a pair of terms inputTerm and

outputTerm, a rule rule, and a pair of substitutions Subs and Subs’. We also

assume a proof that rule is in RWT, and proofs that inputTerm and outputTerm

can be constructed from the rule with the substitutions Subs and Subs’ respectively.

Finally, we assume that the model is sound in substitutions, though that generates

a proof obligation to the solved later.

The last case in basic model is transitivity. Here we have to show that given a

model object relating two terms t1 and t2, and another model object relating t2

to a third term t3, there exists a model object relating t1 to t3. We can construct

such an object via the M Transitive generator completing the soundness proof for

the basic proof terms.

Case ”Transitivity” .
intros t1 t2 t3 RWT r12 e12 r23 e23 .
destruct e12 . destruct e23 .
∃ (M Transitive Sig t1 t2 t3 RWT x x0 ) .
auto .

After proving all of the primary cases from the proof theory, we must also show

that the relationship holds when dealing with our mutually inductive list of proof

objects, which amounts to the same style of proof as above, and makes use of the

fact the proof theory is also being proven sound.
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There are two cases, the nil, or empty list, and the cons list which contains at

least one element. We can construct proof objects with the M Nil and M Cons

generators respectively with the assumption that in the cons case, the pairwise

elements have proof objects. We have proven this to be true above by showing

soundness in the single term cases.

Case ”List Nil” .
intros . ∃ (M Nil Sig RWT ) . auto .
Case ”List Cons” .
intros .
destruct H0 .
unfold lmSat in H2 ; destruct H2 .
∃ (M Cons Sig RWT m rest1 rest2 t1 t2 x x0 ) ; auto .

Finally, we need to repeat the exercise for our substitutions. These proofs would

generally be less explicit when done in a purely textual setting, but this level of

detail is required for the computer verification.

Case ”Substitution Reflexive” .
intros . unfold subSat . ∃ (M ReflSub Sig RWT st) . auto .
Case ”Substitution HeavyLeft” .
intros . unfold subSat in *. destruct H0 .
∃ (M HeavyLeft Sig RWT entry sub sub’ x ) . auto .

Case ”Substutition Cons” .
intros . unfold subSat .
destruct H0 .
unfold subSat in H2 . destruct H2 .
∃ (M ConsSubstitution Sig RWT id1 t1 t2 rest1 rest2 x x0 ).
auto .

Qed.

3.3.2 Completeness

Theorem 3.3.2. (Completeness). For a rewrite theory R, and all models M(R),

M(R) |= [t(x̄)]→ [t′(x̄′)]
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implies

R ` [t(x̄)]→ [t′(x̄′)]

The proof of completeness mirrors the proof of soundness in Coq. Since

M(R) |= [t(x̄)]→ [t′(x̄′)]

We have that there is a proof object in our term algebra representing exactly the

derivation we are seeking in our proof theory. To demonstrate this in Coq, we

proceed by induction over the structure of the model generated proof objects. We

again require a new mutual induction principle much like with the proof theory

above.

Scheme models mut := Minimality for models Sort Prop

with lmodels mut := Minimality for lmodels Sort Prop

with subsModel mut := Minimality for subsModel Sort Prop .

Theorem rwl complete :
∀ (Sig : termSignature) (rwt : rwl theory Sig) (t t’ : term Sig),

mSat Sig rwt t t’ →
proof theory Sig rwt t t’ .

intro Sig .
unfold mSat . destruct 1 .
apply (models mut Sig

(fun rwt ⇒ fun t ⇒ fun t’ ⇒
proof theory Sig rwt t t’ )

(fun n ⇒ fun rwt ⇒ fun t ⇒ fun t’ ⇒
proof theory list Sig rwt t t’ )

(fun rwt ⇒ fun sub ⇒ fun sub’ ⇒
proof theory substitutions Sig rwt sub sub’ )

) .

The basic cases in our model generator mirror those in our proof theory, and we

discharge the proof application in a similar fashion. Now, instead of showing the
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existence of objects in our model, we instead show that for each object in our

model, we can create a proof derivation in our proof theory. We can do this by

directly applying the proof theory constructors to our generated proof obligations.

Every proof case is therefore relatively straightforward.

Case ”Identity” .
intros t1 RWT . apply PF Refl .

The Σ-structure and Replacement cases again require using our mutual induction

principles to operate over lists and substitutions respectively.

Case ”Sigma-structure” .
intros . apply PF Congruence ; assumption .
Case ”Replacement” .
intros RWT inputTerm outputTerm rule Subs Subs’ rIn lhsEq rhsEq subsMod
subsReach .
apply (PF Replacement rule Subs Subs’ ) ; assumption .

Case ”Transitivity” .
intros t1 t2 t3 RWT H1 H2 H3 . apply PF Transitive ; assumption .

We must then create explicit proofs for our lists of proof objects and substitu-

tions to satisfy the mechanical verification. None of these cases has a particularly

interesting proof required.

Case ”List Nil” .
intros . apply PF Nil .
Case ”List Cons” .
intros . apply PF Cons ; assumption .
Case ”Substitution Reflexive” .
intros . apply PF ReflSub ; assumption .
Case ”Substitution HeavyLeft” .
intros . apply PF HeavyLeft ; assumption .
Case ”Substitution Cons” .
intros . apply PF ConsSubstitution ; assumption .
assumption .
Qed.
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3.3.3 Sound and Complete

Finally we can construct a proof object showing that with our model, rewriting

logic is sound and complete.

R ` [t(x̄)]→ [t′(x̄)] ⇔ M(R) |= [t(x̄)]→ [t′(x̄)]

This proof simply applies the two proofs constructed above.

Theorem rwl sound and complete :
∀ (Sig : termSignature) (rwt : rwl theory Sig) (t t’ : term Sig),
proof theory Sig rwt t t’ ↔
mSat Sig rwt t t’ .

split .
apply rwl sound .
apply rwl complete .
Qed .
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CHAPTER 4

Example

Our embedded proof theory allows us to now use Coq as a generic theorem proving

environment for rewriting logic. We begin by defining a simple rewriting logic the-

ory that allows us to demonstrate that rewriting logic can model non-determinism.

The theory is peano numbers along with a non-determinism choose operation that

can become either of its inputs. For comparison, the equivalent Maude code would

be:

mod natPlus is

sorts S .

op O : → S .

op S : S → S .

op choose _ _ : S S → S .

vars V1 V2 : S .

rl choose V1 V2 ⇒ V1 .

rl choose V1 V2 ⇒ V2 .

endm

rewrite in natPlus : choose O S(O) .

> result S: O

We define a single sort S to mimic the unsorted nature of our implementation.

We then define two operations, O and S, which represent zero and successor and

are arity 0 and 1 repectively. We also define a third operation, choose, of arity 2.

Using these function symbols, we define the rules of this theory which state that

we can choose either of the two operands when rewriting.

To implement a similar theory in Coq, we first define the set of symbols in our

theory, along with a function mapping each symbol to its desired arity.
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Inductive symbols : Set :=
| plus : symbols
| choose : symbols
| succ : symbols
| zero : symbols .

Fixpoint arity (s : symbols) : nat :=
match s with

| plus ⇒ 2
| choose ⇒ 2
| succ ⇒ 1
| zero ⇒ 0
end .

To complete the theory signature, we also need an equivalence operation which can

distinguish the symbols, and a proof that this operation matches the Coq notion

of Leibnitz equality where elements are the same only when the are syntactically

equivalent.

Fixpoint beq symb (s1 s2 : symbols) : bool :=
match s1, s2 with

| plus, plus ⇒ true
| choose, choose ⇒ true
| succ, succ ⇒ true
| zero, zero ⇒ true
| , ⇒ false
end .

Lemma beq symb ok : ∀ f g : symbols, beq symb f g = true ↔ f = g .
Proof.
Qed .

With the pieces in place, we can now create our term signature termSig, and then

start constructing the rewriting rules to construct the theory signature. We can

define utility functions tS and tchoose for generating terms below, as well variables

such as v1 and v2. This is by no means as clean or straight forward as working in

a language like Maude, but no effort has yet gone into syntactic sugar.
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Definition termSig := mkTermSignature arity beq symb beq symb ok .

Definition T := term termSig .

Definition tO := @Fun termSig zero Vnil .
Fixpoint tS t := @Fun termSig succ (Vcons t Vnil) .
Fixpoint tchoose (t1 t2 : T) : term termSig :=

@Fun termSig choose (Vcons t1 (Vcons t2 Vnil)) .
Fixpoint tplus (t1 t2 : T) : term termSig :=

@Fun termSig plus (Vcons t1 (Vcons t2 Vnil)) .

Definition v1 := Var termSig 1 . Definition v2 := Var termSig 2 .
Definition tone := tS tO .
Definition ttwo := tS tone .
Definition tthree := tS ttwo .

Finally we can use the terms to construct the rules of our theory. The term

constructors O and S are not included in the below rules because they are purely

constructors and therefore implicit based on the model defined earlier. Their rules

are inherently O → O and S V1 → S V1. The final rewriting logic theory is then

just a list of rewrite rules as all of the rest of components of the tuple are captured

in the types.

We actually define two separate theories below, rwt nat, and rwt nat plus, where

the second theory includes the choose operations of the first along with rules defin-

ing an addition operation. The addition operation makes for some more interesting

examples later, while the shorter rwt nat theory is faster when used with automa-

tion.

Definition rl choose left := @mkRule termSig (tchoose v1 v2) v1 .
Definition rl choose right := @mkRule termSig (tchoose v1 v2) v2 .
Definition rl plus O := @mkRule termSig (tplus v1 tO) v1 .
Definition rl O plus := @mkRule termSig (tplus tO v1) v1 .
Definition rl plus S S := @mkRule termSig (tplus (tS v1) (tS v2)) (tS (tS (tplus
v1 v2))) .

Notation ”r ’:::’ sub” := (cons r sub) (at level 80, right associativity) .

Definition rwt nat := rl choose left ::: rl choose right ::: nil .
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Definition rwt nat plus : (rwl theory termSig) := rl plus O ::: rl O plus :::

rl plus S S ::: rl choose left ::: rl choose right ::: nil .

We can now show that the terms O ? 1→ 1 and O ? 1→ O are valid in the theory

by creating proof derivations from the rules of the proof theory. In both cases,

the proof is by replacement using the appropriate choose right or choose left rule,

and then creating a substitution which matches the actual terms.

The proof is far more verbose than its equivalent pen and paper version since we

must also prove all of the components of the replacement rule such as the fact

that the chosen rule is actually in the theory, and we provide an exact substitution

context and then prove that the desired terms can be constructed from the given

terms and the substitution. Finally, we must prove that the substitutions used to

match the RHS and LHS of terms are provable in the rewrite theory. In this case,

they are the same substition, so that portion of the proof is trivial.

Example right choose : proof theory termSig rwt nat (tchoose tO tone) tone .
Proof.
simpl .
eapply PF Replacement .
instantiate (1 := rl choose right) . simpl ; auto 6 .
instantiate (1 := (cons (1, tO) (cons (2, tone) nil))) . simpl . auto .
instantiate (1 := (cons (1, tO) (cons (2, tone) nil))) . simpl . auto .
repeat constructor .

Qed .

Example left choose : proof theory termSig rwt nat (tchoose tO tone) tO .

Proof Omitted

Qed .

We can also simultaneously rewrite within a substitution while rewriting a term

with the same replacement rule by proving a different substition for the right-
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hand side of the rule, then providing a proof that the two substitutions maintain

a provable relationship. This is done inline example below, but can also be done

externally as the proof object created in Coq can be used directly in later proofs.

Example inner choose: proof theory termSig rwt nat (tchoose (tchoose tO tone)
tO) tone .
Proof .
simpl .
eapply PF Replacement .
instantiate (1 := rl choose left) . simpl ; auto 6 .
instantiate (1 := (cons (1, (tchoose tO tone)) (cons (2, tO) nil))) ; simpl

; auto .
instantiate (1 := (cons (1, tone) (cons (2, tO) nil))) ; simpl ; auto .
eapply PF ConsSubstitution .
apply right choose .
repeat constructor .

Qed.

More examples of rewriting are given in the automation chapter, Chapter 5, as

the above just starts to scratch the surface of what having an interactive theorem

proving environement for rewriting logic in Coq can provide.
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CHAPTER 5

Theorem Proving in Rewriting Logic

Now we can expand on the use of Coq as an interactive proof environment for

working with rewriting logic theories by creating tactics to automate portions of

the proofs done in chapter 4.

5.1 Tactics

Our goal in interative proofs in rewriting logic is primarily to be able to solve

queries of the form:

exists t’, RWT |- t -> t’

That is, given a theory and an initial term, what other possible terms can we reach

from it? Ideally, we’d also like to be able to write queries such as

RWT |- t -> t’

where both t and t’ are given, and a proof is automatically found if possible. In

Chapter 4, we defined a simple rewriting logic theory and stepped through a simple

proof session in the example of right choose. Our strategy for the first goal will

mimic a simple rewrite engine in its approach. We will attempt to rewrite the

given term with each rule, and failing that, attempt to rewrite each subterm with

56



the given rule set. The process will then repeat from the top level until no new

term is found, or a pre-determined number of steps has been run. Since rewriting

logic deals with non-terminating theories, a step counter is introduced for practical

purposes.

The Coq tactic language includes a matching operator which provides for a back-

tracking proof search. A statement like

match goal with

| [ |- _ ] => reflexivity

| [ |- _ ] => auto

end

will first try to match the current goal against the wild card pattern, which always

succeeds, and then execute the reflexivity tactic. If that tactic fails to completely

solve the goal, it then tries to match the goal against the next pattern, which in

this case is again the wildcard pattern, and this time tries the auto tactic, which

always succeeds, even if it doesn’t make progress. This form of search will feature

heavily in the implementation of our tactics.

Our first set of tactics are all designed to manipulate the proof state with new

hypotheses that will then be used to attempt to find a proof in rewriting logic.

From the given theory, and the initial ground term, we would like to be able to

select a single rewrite rule to operate on in. We would also like to generate the

substitution necessary to make that rule match our term if possible, and fail early

if not. These tactics do not modify the current proof goal, rather they establish

useful hypotheses for solving it later.

Ltac pose rule n theory n := idtac ;
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match eval hnf in theory with

| nil ⇒ fail

| cons ?r ?rest ⇒
match n with

| O ⇒ pose r
| S ?n’ ⇒ pose rule n rest n’
end

end .

Fixpoint generateSubstitution {Sig} (t1 : term Sig) (t2 : term Sig) : substitution
Sig :=
match termMatch t1 t2 with

| None ⇒ nil
| Some sub ⇒ sub

end .

Ltac genSubAsHyp :=
match goal with

| [ H : (?r : rewrite rule ) ` proof theory ?t1 ] ⇒
let r’ := eval unfold H in H in

pose (generateSubstitution t1 (lhs r’ )) as sub
end ; simpl in * .

Ltac pickRHSasHyp :=
match goal with

| [ H : (?r : rewrite rule ),
Y : (?sub : substitution ) ` proof theory ?t1 ] ⇒

let r’ := eval unfold H in H in

let sub’ := eval unfold Y in Y in

pose (applySubstitution sub’ (rhs r’ )) as rhs’ ; simpl in rhs’
end .

Our first tactic, pose rule n, allows us to enrich the hypothesis environment with

a specific rule from the theory. It takes a theory and position as parameters,

and then poses the corresponding rule from the theory as a hypothesis, or fails

if no such rule exists. Then we have genSubAsHyp, which attempts to create a

substitution to allow the left-hand side of a rule to match the initial term in the

proof. This tactic will succeed only when such a substitution can be found, and

makes use of a termMatch implementation via generateSubstitution. The source

for termMatch can be found in appendix A. This tactic gets the rewrite rule to use
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from the hypothesis environment and expects pose rule n to be called first.

In addition to the rule and substitution, we also pre-pick the term we are looking

for with pickRHSasHyp by applying the substitution to the right-hand side of the

rule. Another approach would be to have the term we are looking for be filled

in automatically during the proving process. Replacement generates a number of

proof oblibations which are

• a rule to use

• a proof that the rule being used is in the theory

• a substitution that allows the left-hand side of the rule to match the input

term, and a proof of this

• a substitution that allows the right-hand side of the rule to match the result-

ing term, and a proof of this

• and a proof that the RHS substitution can be proven from the LHS substi-

tution

Each of the above obligations has a number of existential variables, which are

unknowns that must be discovered or provided during the proof process. The term

we are looking for is one such existential, and here we have chosen to provide it.

Ltac instantiateRule :=
match goal with

| [ H : ( : rewrite rule ?sig) ` ] ⇒
let r’ := eval unfold H in H in

instantiate (1 := r’ )
end .

Ltac useRule := instantiateRule ; simpl ; tauto .

59



Ltac proveSubstitution := match goal with

| [ H : ( : substitution ) ` applySubstitution ?t1 = ?t2 ] ⇒
let s’ := eval unfold H in H in

instantiate (1 := s’ ) ; simpl ; reflexivity
end .

Ltac equalSubs := repeat constructor .

Ltac instantiateRHS :=
match goal with

| [ H : (?r : term ) ` proof theory ] ⇒
let r’ := eval unfold H in H in

instantiate (1 := r’ )
end .

Our next set of tactics use the hypotheses generated from the previous tactics to

solve some of the proof obligations generated when finding a new term using the

replacement rule from our proof theory.

Given that the environment has been enriched with appropriate hypotheses for a

rule and a substitution, useRule converts the hypothesis to a form that can be

instantiated for the existential variable representing the rule to use. The proof is

then a syntactic simple comparison of the rule with each element of the theory

which can be handled by the Coq tactic tauto. Similarly, proveSubstitution instan-

tiates the substitution from the hypothesis into the proof goal, and then simplifies

the applySubstitution to show equality with the term of interest.

For these tactics, we take the simplifying approach of always using the same sub-

stitution on both the left-hand side and right-hand side portions of the rule, so the

proof the substitution compatability can be discharged with the equalSubs tactic.

Ltac one step rewrite := repeat match goal with

| [ ` proof theory ?rwt ?t1 ?t2 ] ⇒ eapply PF Replacement
| [ H : (?r : rewrite rule ) ` ruleIn ] ⇒ useRule
| [ ` applySubstitution ?t1 = ?t2 ] ⇒ proveSubstitution
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| [ ` proof theory substitutions ?sub ] ⇒ equalSubs

| [ ` proof theory ] ⇒ eapply PF Congruence
| [ ` proof theory list ] ⇒ constructor

| [ ` proof theory ?t ?t ] ⇒ apply PF Refl
end .

Given a proof goal like “proof theory signature theory t t”’, we can solve it for

some inputs with the tactic one step rewrite. Since reflexivity is always an option,

this tactic should never fail always providing at least a proof of the existence of

the same term via reflexivity. Prior to that, it attemps to rewrite at the top level

via replacement using the rule and substitution found in the environment.

Ltac try rules’ theory solver :=
match eval hnf in theory with

| nil ⇒ idtac

| cons ?r ?rest ⇒
try(solve[pose r ; genSubAsHyp ; pickRHS ; solver ])

—— try rules’ rest solver
end .

Ltac OneStepRewrite :=
match goal with

| [ ` proof theory ?rwt ] ⇒
try rules’ rwt one step rewrite

end .

OneStepRewrite, along with try rules’, set up the hypothesis environment for

one step rewrite choosing each rule in order, and posing a suitable substitution

for that rule if one exists. Since Coq tactic backtracking only works withing a

match, we need try rules’ to be a recursive tactic that attempts to fully solve the

goal with each rule, otherwise the proof automation can get stuck with a partially

solved goal which is no longer actually solvable.

Lemma autoChoose : ∃ t, proof theory termSig rwt nat (tchoose tO tone) t .
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Proof .
eapply ex intro .
OneStepRewrite .

Qed.

These tactics let use restate our example from Chapter 4 as the lemma autoChoose

above. Now, instead of supplying tone or tO as the term we are looking for, we

allow the tactics to find a suitable term, along with a proof, automatically.

Print autoChoose .

autoChoose =

ex_intro

(fun t : term termSig ⇒ proof_theory termSig rwt_nat (tchoose tO tone) t)

(Fun zero Vnil)

(let r := rl_choose_left in

let sub := generateSubstitution (tchoose tO tone) (lhs rl_choose_left) in

let rhs’ :=

applySubstitution

((2, Fun succ (Vcons (Fun zero Vnil) Vnil))

:: (1, Fun zero Vnil) :: nil) (rhs rl_choose_left) in

PF_Replacement termSig rwt_nat

(Fun choose (Vcons (Fun zero Vnil) (Vcons tone Vnil)))

(Fun zero Vnil) rl_choose_left

((2, Fun succ (Vcons (Fun zero Vnil) Vnil)) :: (1, Fun zero Vnil) :: nil)

((2, Fun succ (Vcons (Fun zero Vnil) Vnil)) :: (1, Fun zero Vnil) :: nil)

(or_introl eq_refl) eq_refl eq_refl

(PF_ReflSub termSig rwt_nat

((2, Fun succ (Vcons (Fun zero Vnil) Vnil))

:: (1, Fun zero Vnil) :: nil)))

: exists t : term termSig,

proof_theory termSig rwt_nat (tchoose tO tone) t

The tactic has found the term “Fun zero Vnil” to be reachable from our original

term, and has generated a proof in our proof theory using the replacement rule.

The result also includes the specific rule from the theory that was used, the two

substitutions, and all of the intermediary Coq proof objects used to generate the

final rewriting logic proof.
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Ltac rewrite n n :=
match n with

| 0 ⇒ eapply PF Refl
| S ?n’ ⇒ eapply PF Transitive ; [OneStepRewrite | rewrite n n’ ]
end ; eapply PF Refl .

We can now wrap up our tactic to run through multiple steps as in rewrite n. These

tactics now roughly correspond to a simple rewrite engine, but generate actual

Coq proofs corresponding to proofs in our proof theory for rewriting logic. Thus

Coq now serves both an interactive theorem proving environment for rewriting

logic, and also as an automated rewriting engine for our proof theory. While

these tactics have the same limitations of the proof engine in that they choose

a specific strategy for directing the rewriting, the interactive environment allows

us to manually specify portions of the proof as necessary, while still using the

automation for other portions, to provide a more comprehensive environment for

evaluating rewriting logic theories.
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CHAPTER 6

Conclusions and Future Work

The original, category theoretical model for rewriting logic was designed in part

to answer the question, ”When are two concurrent computations equivalent?” For

this, we must be able to make a distinction between different proof theoretic deriva-

tions when we would like for them to be considered the same computation.

6.1 Future Work

From the verified foundations, we will focus on a few areas of exploration.

6.1.1 Equational Sublogic

One common theme in the definition and implementations of rewriting logic is the

use of equational sublogics for defining static parts of a theory, while the rewriting

rules can be considered the dynamic parts.

From a theoretical perspective, equational logic was an earlier model for term

rewriting, where theories were considered to be replacing equals with equals, in-

stead of defining transitions between states. From an implementation perspective,

the handling of equations and rewrite rules can both be implemented as a term re-

placement operation, with the only difference being when such a term replacement

is a valid operation.

For an example specification that we’d prefer to be an equational specification

rather a rewriting logic specification we turn back to the formalization of Peano

nats in Maude.
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Example in Maude:

fmod Nat .

sort ANY .

op O : → ANY .

op S : ANY → ANY .

op + : ANY ANY → ANY .

vars N M : ANY .

eq O + N = N .

eq N + O = N .

eq S(N) + S(M) = S(S(N + M)) .

endfm

The specification of addition is both terminating and normalizing. Any time we

see an addition term, we’d generally like to reduce it as far as possible as the inter-

mediary terms are rarely, if ever, interesting. Our current definition of rewriting

logic does not allow this, and therefore in a theory like this, we will often have to

deal with many uninteresting terms and states. If we define an equational sublogic

and require certain properties for the equational theories, we can fully reduce such

terms and deal only with rewriting logic terms using normalized vales from the

equational theory.

To enable the desired automation, we require that the equational theory be ter-

minating and confluent. This is a property that is required, but not checked, in

all existing rewriting logic implementations with an equational sublogic. A further

requirement is that the equational rules and the rewriting rules should be coher-

ent, which means that rewriting via the equations or the rewrite rules is not order

dependent and will lead to the same outcomes. This allows for a more efficient

implementation by first normalizing terms via the equational rules before applying

the rewriting rules to shrink set of terms.

The equational sublogic is accounted for in other models of rewriting logic by

defining the logic not over terms, but rather over equivalence classes of terms
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where the equivalence class is defined via the equational theory. We can allow

for a similar formalization by replacing the Equiv model relationship in our term

algebra (Subsection 3.2.2) with a formalization of equality via an equational theory.

Without further change to our model, this should allow for the specification of

rewriting modulo equations.

We can then go further and attempt to formalize the requirements that an equa-

tional theory be both terminating and confluent by requiring that proofs of these

properties be supplied along with the equational theory. Additionally, we can re-

quire a proof of coherence between the equational theory and the rewriting logic

theory to move towards a verified implementation of rewriting modulo equations.

Since these properties are currently implicit in other systems, making them explicit

can help to reduce errors that can be encountered in rewriting logic theories where

the proper verifications weren’t made. The Formal Maude Environment project

[10], is attempting to accomplish a similar goal by integrating the sufficient com-

pleteness checker, coherence checker, and some of other Maude based tools we

discussed in Section 1.4 into a single, unified platform.

6.1.2 Verified Extracted Implementation

Along the vein of tools for working with rewriting logic theories, we can use the

rewriting logic specification to create a verified implementation of rewriting logic.

We could start by defining a rewrite function whose return type is t’ : term Sig

| derives Sig rwl t t’ . This return type expresses that it returns a term derivable

from the original term in the given rewrite theory and provides a proof of the

derivation in our semantics.

When the implementation of this function type checks in Coq, we have a proof
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that this function only generates provably derivable terms according to the seman-

tics of rewriting logic. We can then extract the function from Coq into another

programming language, such as Ocaml, where all of the proof terms are stripped

out leaving behind just an implementation of rewriting logic that has been proven

correct.

6.1.3 Quotient Relationships

In Subsection 3.2.2 we discussed the quotienting relation as the means behind

semantics of the logic. However, we only provided one quotient relationship im-

plementation. The definition of additional quotient relations, such as a behavioral

equivalence where any two proof terms are considered equal if they have the same

initial and final terms are a natural follow on to this initial research.

Definition behavioral eq (t1 t2 : model type ts rwt) :=
match t1,t2 with

| existT (X1, Y1) pf, existT (X2, Y2) pf2 ⇒
eq X1 X2 ∧ eq Y1 Y2

end .

We can define a property, behavioral eq, which is supposed to be an equality re-

lationship over elements of a model. To allow this to function as an equality

relationship in Coq, we first need to prove that this relation is reflexive, symmet-

ric and transitive. Afterwards, we can define a quotient algebra with behavioral

equivalence as the quotienting relationship instead of syntactic equality.

6.2 Conclusion

We have now defined a new semantics for rewriting logic, and have shown how

by formalizing this semantics in Coq, we are able to create a theorem proving
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environment for working within rewriting logic. Additionally, by defining both a

model theoretic semantics and a proof theoretic semantics within Coq, we were

able to create a machine verifiable proof that rewriting logic is both sound and

complete. From here, we have a platform for a variety of work both in and on

rewriting logic, and have outlined some of the potential next steps.
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APPENDIX

Additional Source Code

A.1 Utilities

Require Export List .
Require Export ListSet .
Require Export String .
Require Import Signature .
Require Import substitution .
Set Implicit Arguments .

Open Scope string_scope .

Definition lst1 := cons "1a" (cons "2a" (cons "3a" nil)) .
Definition lst2 := cons "1b" (cons "2b" (cons "3b" nil)) .

Eval simpl in list_prod lst1 lst2 .

Definition flat_prod (A : Type) (item : A ∗ A) :=
match item with

| (v1, v2) ⇒ cons v1 (cons v2 nil)
end .

Definition flat_prod2 (A : Type) (item : A ∗ (list A)) :=
match item with

| (v1, v2) ⇒ cons v1 v2

end .

Check flat_prod .
Check flat_prod2 .

Fixpoint testloop (A : Type) ( lst : list (A ∗ A) ) : list (list A) :=
match lst with

| nil ⇒ nil

| cons h rst ⇒
cons (flat_prod h) (testloop rst)

end .

Fixpoint prod_list (A : Type) ( lst : list (A ∗ list A) ) : list (list A) :=
match lst with

| nil ⇒ nil

| cons h rst ⇒
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cons (flat_prod2 h) (prod_list rst)
end .

Eval simpl in testloop (list_prod lst1 lst2) .

Fixpoint nil_list (A : Type) (n : nat) : list (list A) :=
match n with

| 0 ⇒ nil

| S n’ ⇒ cons nil (nil_list A n’)
end .

Eval simpl in nil_list string 3 .
Check nil_list string 3 .
Definition lst_lst := nil_list string 3 .
(*Eval simpl in list_prod lst2 (cons nil nil) .*)

Definition prep (A : Type) (lst : list A) (p : list (list A)) :=
list_prod lst p .

Check prep .
Eval simpl in prep lst2 (cons nil nil) .

Eval simpl in let tmp := prep lst2 (cons nil nil) in
prod_list tmp .

Definition i1 := prod_list (prep lst2 (cons nil nil)) .

(* Below returns the desired [ [1a, 2a], [1a, 2b] ... [1c, 3b], [1c, 3c] ] *)

Eval simpl in prod_list (list_prod lst1 i1) .

(*

Error: The term "flat_prod" has type "forall A : Type, A * A → list A"

while it is expected to have type "?31 → ?32".

*)

(*

Eval simpl in map flat_prod (list_prod lst1 lst2) .

*)

(* combos:

list functions takes a list of lists representing the possible transitions

for each element in a term list. It then combines all possible permutations

into a single list of lists, where each sublist represents one possible

transition path for the original term list

ie [ [1a, 2a, 3a] [1b, 2b] [1c, 2c, 3c] ]

⇒
[ [1a, 1b, 1c], [1a, 1b, 2c], ..., [3a, 2b, 3c] ]
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*)

Fixpoint combos (A : Type) (lsts : list (list A)) : list (list A) :=
match lsts with

| nil ⇒ nil

(* below is currently necessary because list_prod

of lst nil =⇒nil instead of returning a list of lists *)

| cons h nil ⇒ prod_list (prep h (cons nil nil))
| cons h rst ⇒
let tails := combos rst in

prod_list (list_prod h tails)
end .

Eval simpl in combos (cons lst1 (cons lst2 nil)) .

(****************************************************************)

(* Convert a list of vals to a list of lists of those vals.

Essentially a powerset of combinations of those values /

positions.

ex. [1, 2, 3] ⇒ [[1], [2], [3], [1, 2], [2, 3], [1, 3], [1,2,3], []]

*)

Fixpoint list_to_powerset (A : Type) (lst : list A) :
list (list A) :=

match lst with

| nil ⇒ nil

| cons h rst ⇒ nil

end .

(****************************************************************)

(* listToTriples breaks a list of elements into a list of triples

representing all possible split points in the list and the

items before and after the split point

ex listToTriple [1, 2, 3] ⇒
[ ([], 1, [2, 3]), ([1], 2, [3]), ([1, 2], 3, []) ]

*)

Fixpoint listToTriples A (lst : list A) :=
let fix aux F R :=

match R with

| nil ⇒ nil

| cons H R’
⇒ cons (F, H, R’) (aux (app F (cons H nil)) R’)
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end

in aux nil lst.

Eval simpl in listToTriples (cons 1 (cons 2 (cons 3 nil))) .

(****************************************************************)

(* Convert a list of options to an option containing a list.

Any ’None’ in the original list results in a None

being returned.

If the original list is all "Some’s", then a Some lst

is returned

Note: option_map2 could be rewritten to be

extractOptionList (map fnc lst)

*)

Fixpoint extractOptionList (A : Type) (lst : list (option A)) : option (list A) :=
let fix loop lst accum :=

match lst with

| nil ⇒ Some (rev accum)
| cons h rest ⇒

match h with

| Some val ⇒ loop rest (cons val accum)
| None ⇒ None

end

end

in loop lst nil .

Fixpoint toList A n (v : vector A n) : list A :=
match v with

| Vnil ⇒ nil

| Vcons h _ rest ⇒ cons h (toList rest)
end .

(*

Fixpoint extractOptionVector (A : Type) (n : nat) (v : vector (option A) n)

: option (vector A _)

:=

let lst := extractOptionList (to_list v) in

match lst with

| None ⇒ None

| Some l’ ⇒ Some (of_list l’)

end .

Check extractOptionVector .
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let fix loop lst accum :=

match lst with

| Vnil ⇒ Some (rev accum)

| Vcons h _ rest ⇒
match h with

| Some val ⇒ loop rest (cons val accum)

| None ⇒ None

end

end

in loop v nil .

*)

(****************************************************************)

(*

Fixpoint map_maybe (A : Type) (B : Type)

(fnc : A → option B) (lst : list A) :

option (list B) :=

let fix loop lst accum :=

match lst with

| nil ⇒ Some accum

| cons g rest ⇒
let tmp := fnc g in

match tmp with

| Some val ⇒ loop rest (cons val accum)

| None ⇒ None

end

end

in loop lst nil .

*)

(****************************************************************)

(* begin hide *)

Section Utils .
Variable sgn : termSignature .

(* The empty_substitution is frequently used so we define it

* here for convenience.

*)

Definition empty_substitution : substitution sgn := nil .
(* end hide *)

(* begin hide *)

(*
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We also define some utility functions for working on and with

substitutions that will be used later. The update function merely prepends

a new mapping pair to the head of the substitution without checking to see whether or

not the variable is already bound. In situtation where it may be already bound

and thus be incorrect, XXXX is responsible for ensuring the variable isn’t

already bound.

TODO - what’s XXXX? ie, what’s reponsible ?

*)

Notation variable := nat (only parsing).

Definition update (sigma : substitution sgn) (X : variable) (t : term sgn) : substitution sgn :=
cons (X, t) sigma .

(*

Next we define a function to apply a substitution to a term.

Currently, we don’t allow this function to fail. If some variable are

unbound in the substitution, they remain as variables in the resultant term.

In a similar vein, extra bound variable in a substitution are simply ignored.

TODO: should applySubstitution be able to fail and disallow unbound vars?

TODO: are we only allowing rewriting of ground terms?

*)

Fixpoint lookup (st : substitution sgn) (i : variable) : option (term sgn) :=
match st with

| nil ⇒ None

| cons (id, t’) rest ⇒ if beq_nat id i then Some t’ else lookup rest i

end .

Require Import VecUtil .

Fixpoint applySubstitution (st : substitution sgn) (t : term sgn) : term sgn :=
match t with

| Var x ⇒ match lookup st x with

| None ⇒ t

| Some t’ ⇒ t’
end

| Fun f tls ⇒ Fun sgn f (Vmap _ _ (applySubstitution st) _ tls)
end.

End Utils .
(* end hide *)

A.2 Tactic Utilities

Require Import Signature .
Require Import ProofTheory .
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Require Import substitution .
Require Import rwlNatPlus .

Section rewriteUtilities .

(*

If a variable occurs multiple times, it could be bound differently, and the

result applySubstitution will fail.

-- NOTE: this isn’t actually true. The checkSub call will cause termMatch to

fail is a variable is bound twice to a non-identical value, so there might

be multiple bindings for a var, but they should be identical.

-- NOTE: If T1 contains a variable, term match fails.

*)

(* begin hide *)

Fixpoint checkSingle {Sig} n (t : term Sig) (s : substitution Sig) : bool :=
match s with

| nil ⇒ true

| cons (n’, t’) rest ⇒ if beq_nat n n’ then ·beq_term Sig t t’ else checkSingle n t rest

end .

Fixpoint checkSub {Sig} (s1 s2: substitution Sig) : bool :=
match s1 with

| nil ⇒ true

| cons (n, t) rest ⇒ if checkSingle n t s2 then checkSub rest s2 else false

end .
(* end hide *)

Fixpoint termMatch {Sig} (T1 : term Sig) (T2 : term Sig) : option (substitution Sig) :=
match (T1, T2) with
| (Fun F P1, Var V1) ⇒ Some (cons (V1, T1) nil)
| (Fun F P1, Fun F’ P2) ⇒ if negb (beq_term_symb Sig F F’) then None else

let fix aux {Sig n m} (L1 : vector (term Sig) n) (L2 : vector (term Sig) m) iSub :=
match (L1, L2) with
| (Vnil, Vnil) ⇒ Some iSub

| (Vcons t _ r, Vnil) ⇒ None (* mismatched param list lens *)

| (Vnil, Vcons t _ r) ⇒ None (* mismatched param list lens *)

| (Vcons t _ r, Vcons t’ _ r’) ⇒ let innerMatch := termMatch t t’
in match innerMatch with

| None ⇒ None

| Some sub ⇒ if checkSub sub iSub

then aux r r’ (app sub iSub)
else None

end

end

in aux P1 P2 nil

| (Var V1, _) ⇒ None
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end .

End rewriteUtilities .

A.3 Equivalence Proof

(* begin hide *)

Require Import SfLib .
Require Import Signature .
Require Import ProofTheory .
Require Import Model .

(*

To prove the congruence case below, we need to have

reachbility Sig RWT t1 t2 → models Sig RWT t1 t2 in the hypothesis

for the M_Cons case, but it’s not there. How do we get it there?

Using lemma?

-- Answer was mutual induction.

*)

Check proof_theory_ind .

(* end hide *)

Theorem rwl_sound : forall (Sig : termSignature)
(rwt : rwl_theory Sig)
(t t’ : term Sig),

proof_theory Sig rwt t t’ → mSat Sig rwt t t’ .
Proof .
intro Sig .
(* Proof by induction over the structure of the proof_theory proof *)

apply (proof_theory_mut Sig

(fun rwt ⇒ fun t ⇒ fun t’ ⇒
mSat Sig rwt t t’)

(fun n ⇒ fun rwt ⇒ fun t ⇒ fun t’ ⇒
lmSat Sig rwt t t’)

(fun rwt ⇒ fun sub ⇒ fun sub’ ⇒
subSat Sig rwt sub sub’)

) ; unfold mSat .
Case "Reflexivity" .
intros t1 RWT . exists (M_Refl Sig t1 RWT) . tauto .
Case "Congruence" .
intros RWT f tl tl2 H0 H1 .
unfold lmSat in H1 .
destruct H1 .
exists (M_Congruence Sig RWT f tl tl2 x) .
auto .
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Case "Weak" .
intros rule RWT t t’ pf H .
destruct H .
exists (M_Weak Sig rule RWT t t’ x) .
auto .

Case "Replacement".
intros RWT inputTerm outputTerm rule Subs Subs’ rIn lhsEq rhsEq subRed subSatObj .
unfold subSat in subSatObj .
destruct subSatObj .
exists (M_Replacement Sig RWT inputTerm outputTerm rule Subs Subs’ rIn lhsEq rhsEq x) .
auto .

Case "Transitivity" .
intros t1 t2 t3 RWT r12 e12 r23 e23 .
destruct e12 . destruct e23 .
exists (M_Transitive Sig t1 t2 t3 RWT x x0) .
auto .

Case "List Nil" .
intros . exists (M_Nil Sig RWT) . auto .
Case "List Cons" .
intros .
destruct H0 .
unfold lmSat in H2 ; destruct H2 .
exists (M_Cons Sig RWT m rest1 rest2 t1 t2 x x0) ; auto .

Case "Substitution Reflexive" .
intros . unfold subSat . exists (M_ReflSub Sig RWT st) . auto .
Case "Substitution HeavyLeft" .
intros . unfold subSat in ∗. destruct H0 .
exists (M_HeavyLeft Sig RWT entry sub sub’ x) . auto .

Case "Substutition Cons" .
intros . unfold subSat .
destruct H0 .
unfold subSat in H2 . destruct H2 .
exists (M_ConsSubstitution Sig RWT id1 t1 t2 rest1 rest2 x x0 ).
auto .

Qed.

Scheme models_mut := Minimality for models Sort Prop

with lmodels_mut := Minimality for lmodels Sort Prop

with subsModel_mut := Minimality for subsModel Sort Prop .

Theorem rwl_complete :
forall (Sig : termSignature) (rwt : rwl_theory Sig) (t t’ : term Sig),
mSat Sig rwt t t’ →
proof_theory Sig rwt t t’ .

intro Sig .
unfold mSat . destruct 1 .
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(* Proof by induction over the structure of the generators proof *)

apply (models_mut Sig

(fun rwt ⇒ fun t ⇒ fun t’ ⇒
proof_theory Sig rwt t t’)

(fun n ⇒ fun rwt ⇒ fun t ⇒ fun t’ ⇒
proof_theory_list Sig _ rwt t t’)

(fun rwt ⇒ fun sub ⇒ fun sub’ ⇒
proof_theory_substitutions Sig rwt sub sub’)

) .
Case "Identity" .
intros t1 RWT . apply PF_Refl .
Case "Sigma-structure" .
intros . apply PF_Congruence ; assumption .
Case "Weak" .
intros . apply PF_Weak ; assumption .
Case "Replacement" .
intros RWT inputTerm outputTerm rule Subs Subs’ rIn

lhsEq rhsEq subsMod subsReach .
apply (PF_Replacement _ _ _ _ rule Subs Subs’) ; assumption .

Case "Transitivity" .
intros t1 t2 t3 RWT H1 H2 H3 . apply PF_Transitive ; assumption .
Case "List Nil" .
intros . apply PF_Nil .
Case "List Cons" .
intros . apply PF_Cons ; assumption .
Case "Substitution Reflexive" .
intros . apply PF_ReflSub ; assumption .
Case "Substitution HeavyLeft" .
intros . apply PF_HeavyLeft ; assumption .
Case "Substitution Cons" .
intros . apply PF_ConsSubstitution ; assumption .
assumption .
Qed.

Theorem rwl_sound_and_complete :
forall (Sig : termSignature) (rwt : rwl_theory Sig) (t t’ : term Sig),
proof_theory Sig rwt t t’ ↔
mSat Sig rwt t t’ .

split .
apply rwl_sound .
apply rwl_complete .
Qed .
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