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ABSTRACT
We report on a substellar-companion search utilizing interferometric fringe-tracking astrometry

acquired with Fine Guidance Sensor 3 on the Hubble Space Telescope. Our targets were Proxima
Centauri and BarnardÏs star. We obtain absolute parallax values of for Proximanabs\ 0A.7687^ 0A.0003
Cen and for BarnardÏs star. Once low-amplitude instrumental systematic errorsnabs\ 0A.5454^ 0A.0003
are identiÐed and removed, our companion detection sensitivity is less than or equal to one Jupiter mass
for periods longer than 60 days for Proxima Cen. Between the astrometry and the recent radial velocity
results of et al., we exclude all companions with for the range of periods 1Ku� rster M [ 0.8MJupday \ P\ 1000 days. For BarnardÏs star, our companion detection sensitivity is less than or equal to
one Jupiter mass for periods longer than 150 days. Our null results for BarnardÏs star are consistent with
those reported by Gatewood in 1995.
Key words : astrometry È stars : distances È stars : individual (Proxima Centauri, BarnardÏs star) È

stars : late-type

1. INTRODUCTION

Currently accepted theories predict that planetary
systems are a natural by-product of the formation of stars
(Lissauer 1993). Black (1995) reviews the importance of
searches for extrasolar planets to theories of solar system
formation and discusses the lack of results to mid-1995.
These searches have recently succeeded (e.g., Marcy et al.
1997 ; Cochran et al. 1997). Radial velocity methods have
been used for these detections. However, the derived planet-
ary (or brown dwarf ) masses are lower limits because of the
unknown orbital inclination. These detections include
planets with minimum masses ranging from half a Jupiter
mass (51 Peg, Mayor & Queloz 1995) to more than 7 times
the mass of Jupiter (70 Vir, Marcy & Butler 1996). All of
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these objects orbit stars of solar spectral type, although they
may tend toward being unusually metal-rich (Gonzalez
1996, 1998). Recently, Delfosse et al. (1998) and Marcy et al.
(1998) detected a planetary-mass companion to the M4
dwarf star Gl 876. Direct imaging has yielded two relatively
high mass objects, the brown dwarf Gl 229B(20È50)MJup(Nakajima et al. 1995) and, from Rebolo et al. (1998),
G196-3B Both orbit M stars.[(15È40)MJup].The relative position information provided by astrometry
resolves the mass uncertainty associated with radial velocity
detections. An astrometric search recently evidenced a long-
period Jupiter-mass companion to an M2 star, Lalande
21185 (Gatewood 1996). Past examples of the successful
application of astrometry to the discovery of stellar-mass
unseen companions include those of Harrington (1977) and
Lippincott (1977).

Black & Scargle (1982) were the Ðrst to point out that
Jupiter-like planets orbiting M stars might have short
periods. They argued that scaling down the preplanetary
nebula thought to accompany the formation of stars would
result in a gas giant forming relatively close to a low-mass
star. Such an object would have a period far shorter than
that of Jupiter around the Sun. This was the motivation for
our Hubble Space Telescope (HST ) planet-search program.
The intervening years have changed this picture to include
the formation of gas giant planet cores well away from the
parent star, even for M stars (Boss 1995), with subsequent
inward orbital migration (Lin, Bodenheimer, & Richardson
1996).

We present astrometry of Proxima Cen and BarnardÏs
star, including results of our astrometric searches for brown
dwarf and planetary-mass companions. Those interested
can trace the history of data acquisition and analysis over
the past 6 years through a series of progress reports
(Benedict et al. 1994a, 1994b, 1995, 1997, 1999).

Given the null result of an astrometric companion search
carried out by Gatewood (1995) for BarnardÏs star, the 34
observation sets of this Ðeld nonetheless have signiÐcant
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TABLE 1

PROXIMA CENTAURI (\ a CENTAURI C\
GJ 551 \ V645 CEN \ HIP 70890)

Parameter Value Reference

V . . . . . . . . . . . . . . . . . . . . 11.09^ 0.03 1
B[V . . . . . . . . . . . . . . . . 1.90^ 0.04 1
M

V
. . . . . . . . . . . . . . . . . . 15.60^ 0.1 2

Sp.T. . . . . . . . . . . . . . . . . M5 Ve 3
MProx . . . . . . . . . . . . . . . . 0.11^ 0.01 M

_
4

L Prox . . . . . . . . . . . . . . . . . 0.001 L
_

5
RProx . . . . . . . . . . . . . . . . 0.14 R

_
6

REFERENCES.È(1) Leggett 1992 ; (2) from n, this paper ;
(3) Gliese & Jahreiss 1991 ; (4) Henry et al. 1999 ; (5)
Liebert & Probst 1987 ; (6) Burrows et al. 1993.

value. Any systematics introduced by HST and/or Fine
Guidance Sensor 3 (FGS 3) should be present in the data for
both BarnardÏs star and Proxima Cen. In this sense,
BarnardÏs star is a control in the experiment to detect low-
mass companions orbiting Proxima Cen.

Past direct detection observations include those of Van
Buren et al. (1998), who observed BarnardÏs star at 10 km
and established companion upper limits of for(70È80)MJupseparations 4 AU \ a \ 18 AU. A possible companion to
Proxima Cen detected by the HST Faint Object Spectro-
graph (FOS) used in a coronagraphic mode (Schultz et al.
1998) is not conÐrmed by our astrometric data, as was
pointed out in that paper. Such a companion must possess
an exceptionally low mass-to-luminosity ratio. A sub-
sequent study using HST Wide Field Planetary Camera 2
(Golimowski & Schroeder 1998) also failed to conÐrm this
companion or to Ðnd any as bright with separations 0.26
AU\ a \ 1.11 AU (0A.2 \ a \ 0A.85).

In ° 2, we brieÑy review the astrometer, FGS 3, and
discuss the data sets. We outline our calibration procedures
(° 3) and present, in ° 4, the astrometric modeling of the
reference frames. In ° 5, we derive parallaxes and proper
motions for Proxima Cen and BarnardÏs star. In ° 6, we
explore the astrometric residuals for periodic phenomena
indicative of companions. In ° 7, we discuss the astrometric
results, Ðrst the di†erences between HST and Hipparcos
and then our mass detection limits that rule out at the 0.1%
level brown dwarf companions (M ¹ 0.013 to theseM

_
)

two stars (see Oppenheimer, Kulkarni, & Stau†er 1999 for a
discussion of the mass limits deÐning brown dwarfs).

Tables 1 and 2 provide aliases and physical parameters
for our two science targets. The masses are based on the
parallax results of this paper (° 5). From those distances we

TABLE 2

BARNARDÏS STAR (\ GJ 699\ G140-24 \
LHS 57 \ HIP 87937)

Parameter Value Reference

V . . . . . . . . . . . . . . . . . . . . 9.55^ 0.03 1
B[V . . . . . . . . . . . . . . . . 1.73^ 0.04 1
M

V
. . . . . . . . . . . . . . . . . . 13.3^ 0.1 2

Sp.T. . . . . . . . . . . . . . . . . M4 Ve 3
MBarn . . . . . . . . . . . . . . . 0.16^ 0.01 M

_
4

L Barn . . . . . . . . . . . . . . . . 0.0046 L
_

5
RBarn . . . . . . . . . . . . . . . . 0.19 R

_
6

REFERENCES.È(1) Leggett 1992 ; (2) from n, this paper ;
(3) Kirkpatrick & McCarthy 1994 ; (4) Henry et al. 1999 ;
(5) Henry & McCarthy 1993 ; (6) Burrows et al. 1993.

obtain the V -band absolute magnitudes, in Tables 1M
Vand 2, and then obtain masses from the recent lower main-

sequence mass-luminosity relationship of Henry et al.
(1999). Radii are from the models of Burrows et al. (1993),
conÐrmed by the CM Draconis results of Metcalfe et al.
(1996).

We time-tag our data with a modiÐed Julian Date,
MJD\ JD [ 2,444,000, and abbreviate milliseconds of arc,
mas, throughout.

2. THE ASTROMETER AND THE DATA

Our goal, small-Ðeld astrometry to a precision of 1 mas,
has been achieved, but not without signiÐcant challenges.
Our observations were obtained with Fine Guidance
Sensor 3, a two-axis, white-light interferometer aboard
HST . Bradley et al. (1991) provide an overview of the FGS
3 instrument, and Benedict et al. (1994a) describe the
astrometric capabilities of FGS 3 and typical data acquisi-
tion strategies.

The coverage for both targets su†ers from extended gaps,
due to HST pointing constraints (described in Benedict et
al. 1993) and other scheduling difficulties. For Proxima Cen,
the data now include 152 shorter exposures secured over 4
years (1992 March to 1997 October) and 15 longer expo-
sures (1995 July to 1996 July). Each orbit contains from two
to four exposures. The longest exposure times pertain only
to Proxima Cen observations obtained within continuous
viewing zone (CVZ) orbits. These specially scheduled orbits
permit D90 minutes on Ðeld, during which Proxima Cen is
not occulted by Earth. (See Benedict et al. 1998b, Appendix,
Table A1, for times of observation and exposure times for
all Proxima Cen astrometry.) A total of 59 orbits have
astrometric value. However, data acquired prior to MJD
8,988 are of overall lower quality. During this era we had no
on-orbit instrumental astrometric calibration and no inde-
pendent scale assessment (° 3.1), had no assessment of the
time-varying component of our astrometric calibrations
(° 3.2), and employed only rudimentary (constant rate)
intraorbit drift correction (° 3.3).

BarnardÏs star was monitored for 3 years (1993 February
to 1996 April) and observed three times during each of 35
orbits. Thirty-four of these orbits have astrometric value.
Exposures range between 24 and 123 s in duration. (See
Benedict et al. 1998b, Appendix, Table A2, for times of
observation and exposure times for all astrometry of
BarnardÏs star.)

3. DATA REDUCTION AND CALIBRATION PROCEDURES

Our data reduction and calibration procedures have
evolved since the preliminary description given in Benedict
et al. (1994a). To remove systematics from an astrometric
reference frame (see Benedict et al. 1998a for a more detailed
discussion) we centroid raw data, removing intraobserva-
tion jitter ; apply an optical Ðeld angle distortion (OFAD)
calibration (Whipple et al. 1995 ; McArthur et al. 1997) ;
apply time-dependent corrections to the OFAD (McArthur
et al. 1997) ; and correct for drift during each observation set
(intraorbit drift). In addition, we apply a lateral color cor-
rection (depending on star color index) during the orbit-to-
orbit astrometric modeling.

3.1. T he OFAD
Until recently, no calibration star Ðeld with cataloged

1 mas precision astrometry, our desired performance goal,
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existed. We used FGS 3 to calibrate itself with multiple
observations of a distant star Ðeld (M35). A distant Ðeld was
required so that, during the 2 day duration of data acquisi-
tion, star positions would not change. We obtained these
data in early 1993 and reduced them with overlapping-plate
techniques to solve for distortion coefficients and star posi-
tions simultaneously. An astrometric catalog of 27 stars
with 1 mas positions covering an area of 1600A ] 700A now
exists.

The OFAD comprises the aberration of the optical tele-
scope assembly along with the optics of the FGS. The
largest component of the design distortion, which consists
of several arcseconds, is an e†ect that mimics a change in
plate scale. The magnitude of nonlinear, low-frequency dis-
tortions is on the order of over the FGS Ðeld of view.0A.5
The OFAD is the most signiÐcant source of systematic
error in fringe-tracking astrometry done with the FGS. We
have adopted a prelaunch functional form originally devel-
oped by Perkin-Elmer Corporation, the builders of the
FGS. It can be described (and modeled to the level of 1 mas)
by the two-dimensional Ðfth-order polynomial

X@ \ a00 ] a10 X ] a01 Y ] a20X2 ] a02 Y 2
] a11XY ] a30X(X2] Y 2)] a21X(X2[ Y 2)
] a12 Y (Y 2[ X2)] a03 Y (Y 2] X2)
] a50X(X2] Y 2)2] a41 Y (Y 2] X2)2
] a32X(X4[ Y 4)] a23 Y (Y 4[ X4)
] a14X(X2[ Y 2)2] a05 Y (Y 2[ X2)2 , (1)

Y @ \ b00 ] b10 X ] b01 Y ] b20X2 ] b02 Y 2
] b11XY ] b30X(X2] Y 2)] b21X(X2[ Y 2)
] b12 Y (Y 2[ X2)] b03 Y (Y 2] X2)
] b50X(X2] Y 2)2] b41 Y (Y 2] X2)2
] b32X(X4[ Y 4)] b23 Y (Y 4[ X4)
] b14X(X2[ Y 2)2] b05 Y (Y 2[ X2)2 , (2)

where X and Y deÐne the observed position within the FGS
Ðeld of regard, X@ and Y @ are the corrected position, and the
numerical values of the coefficients and are deter-a

ij
b
ijmined by calibration. The calibration observations required

19 orbits and produced over 570 star position observations.
We then employed GaussFit (Je†erys, Fitzpatrick, &
McArthur 1987), a least-squares and robust estimation
package, to simultaneously estimate the terms in the OFAD
equations and the star positions within M35.

3.2. Maintaining the OFAD
The FGS 3 graphite-epoxy optical bench was expected to

outgas for a period of time after the launch of HST . This
outgassing was predicted to change the relative positions of
optical components on the bench. The result of whatever
changes were taking place was a change in scale. The
amount of scale change was far too large to be due to true
magniÐcation changes in the HST optical assembly. To
track these scalelike changes, we revisit the M35 calibration
Ðeld periodically, the ongoing LTSTAB (Long-Term
STABility) series. LTSTABs will be required as long as it is
desirable to do 1 mas precision astrometry with FGS 3. The
result of this series is to model and remove the slowly
varying component of the OFAD, so that uncorrected dis-

tortions remain below 2 mas for the center of the FGS 3
Ðeld of regard. The LTSTAB series is also the diagnostic for
deciding whether a new OFAD is required.

3.3. Intraorbit Drift Corrections
A major improvement implemented since the earlier

report (Benedict et al. 1994a) is the application of inter-
observation (intraorbit) drift corrections. Over the span of
an orbit, the positions reported by FGS 1 and FGS 2 for the
guide stars change. Benedict et al. (1998a) show an obser-
vation set with drift exceeding 30 mas over a span of 36
minutes. The X and Y drift rates are generally dissimilar
and usually not constant. The solution to this problem is
simple and e†ective, but it imposes additional overhead,
reducing the time available within an orbit to observe the
science target. An observation set must contain visits to one
or more astrometric reference stars, multiple times during
each observation sequence. Presuming no motion intrinsic
to these stars over a span of 40 minutes, one determines drift
and corrects the reference frame and target star for a drift
that is generally quadratic with time. As a result, we mini-
mize the error budget contribution from drift to typically
less than 1 mas.

3.4. L ateral Color Calibration
Since this calibration had not previously been applied to

our data, we describe it in some detail. Because each FGS
contains refractive elements (Bradley et al. 1991), it is pos-
sible that the position measured for a star could depend on
its intrinsic color. Changes in position would depend on
star color, but the direction of shift is expected to be con-
stant relative to the FGS axes. This lateral color shift would
be unimportant, as long as target and reference stars had
similar color. However, this is certainly not the case for the
very red stars Proxima Cen and BarnardÏs star, hence our
interest. Prelaunch ground testing (Abramowicz-Reed 1994)
indicated for FGS 3 a lateral color e†ect predominantly in
the X-direction, with magnitude of approximately 1 mas
per unit change in B[V color index.

An on-orbit test was designed and conducted in 1991
December. Because of excessive spacecraft jitter (from a
combination of the original solar arrays and insufficient
damping in the telescope pointing control system) and
insufficient knowledge of the OFAD, the results were incon-
clusive. We repeated the test in 1994 December. Analyses of
these data have yielded a lateral color calibration.

3.4.1. T he L ateral Color Field and Data

Photometric and positional data are presented in Table 3
for the four stars in our chosen lateral color test Ðeld. We
obtained position (POS) mode data during three consecu-
tive orbits on MJD 9,708 (1994 December 22), placing the
four-star asterism near each end and in the middle of FGS

TABLE 3

LATERAL COLOR CALIBRATION STARS

R.A. Decl.
ID V B[V (deg) (deg)

1 . . . . . . 10.55 1.92 89.8712 22.5804
2 . . . . . . 10.42 0.18 89.8640 22.5777
6 . . . . . . 14.25 0.81 89.8861 22.5775
9 . . . . . . 14.03 1.51 89.8734 22.5629

NOTE.ÈCoordinates for equinox J2000.0.
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FIG. 1.ÈHistograms of lateral color calibration observation residuals
to the model (eq. [4]).

3. We observed these additional positions to explore lateral
color variations within FGS 3. At each position HST was
rotated ]60¡ and [120¡ from nominal roll. These large
rolls were permitted because on this date the Ðeld (on the
ecliptic) was at the anti-Sun direction. Of the nine data sets,
one was so badly a†ected by spacecraft motion as to be
unusable.

3.4.2. T he L ateral Color Model and Results

Unfortunately, most of the originally proposed reference
stars proved too faint and were not observed. The test
resulted in enough observations for a single overlapping-
plate reduction. The eight usable data sets were modeled by

X@\ X ] ctx(B[V ) , Y @ \ Y ] cty(B[V ) , (3)

m \ X@ cos R[ Y @ sin R] c ,

g \ X@ sin R] Y cos R] f , (4)

solving for R, spacecraft roll ; c and f, o†sets in X and Y ;
and global lateral color terms, ctx and cty, using the
overlapping-plate techniques described in Benedict et al.
(1994a). Again using GaussFit, we Ðnd

ctx \ [0.9^ 0.2 mas , cty \ [0.2^ 0.3 mas .

Figure 1 presents histograms of the residuals obtained by
applying the model (eqs. [1]È[3]) to the lateral color data.
To demonstrate that there were no large remaining un-
modeled systematic e†ects in these data, we inspected the
X and Y residuals plotted against X and Y position within
FGS 3.

4. THE BARNARDÏS STAR AND PROXIMA CENTAURI

ASTROMETRIC REFERENCE FRAMES

Figure 2 shows the distribution in FGS 3 ““ pickle ÏÏ coor-
dinates of the 34 sets of reference-star measurements for the
BarnardÏs star reference frame. Figure 3 contains the corre-
sponding distribution for the Proxima Cen reference frame.
The circular patterns are imposed by the requirement that
HST roll to keep its solar panels fully illuminated through-
out the year.

4.1. T he Model
From these data we determine the scale and rotation

relative to the constraint plate for each observation set
within a single orbit. Since for Proxima Cen these obser-
vation sets span over 5 years (and over 3 years for BarnardÏs
star), we also include the e†ects of reference-star parallax
and proper motion.

Our present model,

m \ aX ] bY ] c[ P
x
n [ k

x
t , (5)

g \ dX ] eY ] f [ P
y
n [ k

y
t , (6)

di†ers slightly from that used previously on the Proxima
Cen reference frame (Benedict et al. 1994a). X and Y are

FIG. 2.ÈBarnardÏs star reference-star observations in FGS 3 pickle
coordinates. The symbol shape identiÐes each star (listed in Table 4).
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FIG. 3.ÈProxima Cen reference-star observations in FGS 3 pickle
coordinates. The symbol shape identiÐes each star (listed in Table 5).

now corrected for lateral color (eq. [3]). The orientation of
each data set is obtained from ground-based astrometry.
Uncertainties in the Ðeld orientations are and for0¡.03 0¡.09
Proxima Cen and BarnardÏs star, respectively. We obtain
the parallax factors, and from a JPL Earth-orbitP

x
P

y
,

predictor (DE200, Standish 1990). Finally, we constrain
& k \ 0 and & n \ 0 for the entire reference frame.

Below we discuss the results of this modeling for the
Proxima Cen and BarnardÏs star reference frames in
parallel.

4.2. Scale Stability
As in Benedict et al. (1994a), we form a scalelike param-

eter, S, where

S \ (ae[ bd)1@2 (7)

and a, b, d, and e are the coefficients determined in equa-
tions (5) and (6). S for both the BarnardÏs star and Proxima
Cen reference frames is plotted against time in days in
Figure 4. Error bars are the internal error, derived fromp

S
,

and Since both sets have an arbitrary scalep
a
, p

b
, p

d
, p

e
.

zero point, a shift has been applied to bring about agree-S0,ment in the mean scale in the range MJD 9,000¹ t ¹ MJD
10,300.

The most obvious feature is coincident with our early
1993 OFAD determination, at which time we moved from a
predicted (from ground-based measurements at the manu-
facturing facility) to a measured OFAD. Servicing missions
(““ SM1 ÏÏ and ““ SM2,ÏÏ Fig. 4) have the potential to disrupt
the position of FGS 3 within HST and introduce new vola-
tiles. Neither SM1 nor SM2 seems to have an identiÐable
e†ect in Figure 4.

From the scatter proximate to each observation date, it is
obvious that the scale is indeterminate at the 5 ] 10~5
level. Each observation set is obtained with the primary
science target (Proxima Cen or BarnardÏs star) positioned
within 5A of the pickle center. Thus, the e†ect of this scale
indeterminacy on the calibrated positions is of order 0.3
mas.

FIG. 4.ÈComparison of scales derived from eq. (7) for Proxima Cen
and BarnardÏs star reference frames. Major events are labeled : ““ OFAD, ÏÏ
Ðrst full-up astrometric calibration of FGS 3; ““ SM1 ÏÏ and ““ SM2,ÏÏ
servicing missions.

Since a search for periodic astrometric phenomena is a
primary goal of this investigation, the quasi-periodic behav-
ior of S should be characterized with the same tools we will
use on Proxima Cen and BarnardÏs star. Our periodogram
tools are described in ° 6 and ° A1 in the Appendix. Figure 5
contains a periodogram characterizing the temporal behav-
ior of S. Note the large amount of low-frequency power for
800 day~1\ f \ 2000 day~1. If some uncorrected fraction
of this small variation is detectable in the measurements of
our primary science targets, we would expect to see it only
in Proxima Cen. Observations of BarnardÏs star are all
postÈMJD 8,988, the location of the major break in the scale
trend, pre- and post-OFAD.

FIG. 5.ÈPower spectrum of scales derived from eq. (7) for Proxima Cen
and BarnardÏs star reference frames. The horizontal lines are levels of
false-positive probability (eq. [A4]).
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TABLE 4

BARNARDÏS STAR REFERENCE FRAME

Star ID V B[V m pm g pg
2 . . . . . . 31 15.47 1.09 [146.5100 0.0009 34.1564 0.0012
3 . . . . . . 32 14.81 0.59 [142.1551 0.0009 [3.6702 0.0013
4 . . . . . . 33 14.64 1.01 [170.9684 0.0011 [52.0054 0.0016
5a . . . . . . 30 13.17 1.05 0.0000 0.0008 0.0000 0.0009
6 . . . . . . 34 14.09 1.35 [72.6553 0.0007 94.8155 0.0007
8 . . . . . . 36 11.55 0.32 [37.0964 0.0006 90.0358 0.0007

a (R.A.,Decl.) J2000.0.\ (269¡.4768708, ]4¡.6805700),

4.3. Reference-Frame Results
Tables 4 and 5 provide identiÐcations, magnitudes,

colors, and relative positions for all reference stars. The
relative positions within each frame have been rotated to
J2000.0 right ascension and declination, at epoch 1996.42
for the BarnardÏs star Ðeld, 1996.79 for the Proxima Cen
Ðeld. The Proxima Cen reference frame star magnitudes and
colors are from Benedict et al. (1994a), as is the position of
the star relative to which all positions are referenced, star
ID 15. The reference-star magnitudes and colors for
BarnardÏs star were obtained using the 0.8 m CCD prime-
focus camera (Claver 1992) at McDonald Observatory.
Positions are referenced to star ID 30, whose position is
from the Guide Star Selection System catalog (Lasker et al.
1990).

Having applied the model (eq. [4]), we form histograms
of the residuals (BarnardÏs star, Fig. 6 ; Proxima Cen, Fig. 7).
No observations have been removed as outliers, but the
overlap was carried out using the robust estimation tech-
nique described in Je†erys et al. (1987). From these histo-
grams we conclude that our per-observation precision is
0.8 mas in X and 1.1 mas in Y .

4.4. Assessing Reference-Frame Residuals
The OFAD calibration reduces as-built HST and FGS 3

distortions with magnitude D1A to below 2 mas (McArthur
et al. 1997) over much of the FGS 3 Ðeld of regard. From
the histograms (Figs. 6 and 7 below), we have obtained
correction at the D1 mas level in the region available at all
HST rolls (an inscribed circle centered on the pickle-shaped
FGS Ðeld of regard). To determine if there might be unmod-
eled, but eventually correctable, systematic e†ects at the 1
mas level, we plotted the BarnardÏs star and Proxima Cen
reference-frame X and Y residuals against a number of
spacecraft, instrumental, and astronomical parameters.

These included (X, Y )-position within the pickle, radial dis-
tance from the pickle center, reference-star V magnitude
and B[V color, and epoch of observation. We saw no
obvious trends other than an expected increase in positional
uncertainty with reference-star magnitude.

5. MODELING THE PARALLAX AND PROPER MOTION OF

BARNARDÏS STAR AND PROXIMA CENTAURI

Once we have determined plate constants from applying
equations (5) and (6) to the reference frames, we apply the
transformations to the Proxima Cen and BarnardÏs star
measurements and solve for relative parallax and proper
motion. At this step the lateral color correction is di†eren-
tial. The correction is based on the color di†erence between
the target and the average color of the reference frame. Our
relative parallax and proper-motion results are presented in
Table 7 below.

Every small-Ðeld astrometric technique requires the fol-
lowing step : a correction from relative to absolute parallax.
This correction is required because the reference-frame stars
have an intrinsic parallax. Ideally, all reference stars would
be more distant than the parallax precision of the desired
science target star, a situation rarely provided by nature. To
obtain science-target parallaxes precise at the level of 0.5
mas or better requires this correction. Faint (hence, in
general, distant) reference stars have smaller corrections.
CCD techniques (see, e.g., Monet et al. 1992) provide an
extremely faint reference frame (V D 18) but a relatively
small Ðeld of view. FGS 3 provides a large Ðeld of view and
access to moderately faint reference stars (V \ 16).

We adopt the corrections discussed and presented in the
Yale parallax catalog (van Altena, Lee, & Hoffleit 1995,
° 3.2, Fig. 2, hereafter YPC95). Entering YPC95, Figure 2,
with the Galactic latitude of BarnardÏs star, andl\ 13¡.99,
average magnitude for the reference frame, SVrefT \ 14.2,
we obtain a correction to absolute of 0A.0010.

TABLE 5

PROXIMA CENTAURI REFERENCE FRAME

Star ID V B[V m pm g pg
2 . . . . . . 13 15.10 0.72 [18.4819 0.0008 [74.9461 0.0014
3 . . . . . . 14 15.76 0.87 [3.8168 0.0017 [32.3059 0.0021
4a . . . . . . 15 14.36 0.66 0.0000 0.0005 0.0000 0.0008
5 . . . . . . 16 14.58 0.52 70.4847 0.0009 [113.6714 0.0017
6 . . . . . . 17 15.32 0.73 15.6880 0.0018 [3.8986 0.0022
7 . . . . . . 18 15.14 1.53 [3.6323 0.0007 27.5414 0.0011
9 . . . . . . 19 14.30 1.05 131.3827 0.0008 63.0020 0.0013

a (R.A.,Decl.) J2000.0.\ (217¡.435381, [62¡.691332),
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FIG. 6.ÈHistograms of X and Y residuals obtained from modeling the
BarnardÏs star reference frame with eqs. (5) and (9). Distributions are Ðtted
with Gaussians characterized by p as indicated.

As a test of the validity of this correction, we (D. C. and
D. W. C.) have obtained BV photometry of the BarnardÏs
star reference frame stars using the 0.8 m CCD prime-focus
camera (Claver 1992) at McDonald Observatory. Classi-
Ðcation spectra were obtained by one of us (J. L.) with the
WIYN Observatory14 multiobject spectrograph (MOS/
Hydra). These data were reduced and then classiÐed
(spectral type and luminosity class) on the MK system by
J. L. We Ðnd that the colors, magnitudes, and spectral types
yield a reference frame whose bulk distance properties agree
with the YPC95 prediction. Table 6 collects reference-star
identiÐcation numbers ; V magnitudes ; spectral types and
luminosity classes ; B[V color indexes ; absolute magni-
tudes, and intrinsic color indexes from theM

V
, (B[V )0color versus spectral type and luminosity class listed in

Lang (1992) ; and resulting color excesses, AdoptingE
B~V

.
we obtain the listed total V -bandR\ 3.1\A

V
/E

B~Vabsorptions, and, Ðnally, the distance moduli, m[ M,A
V
,

distances in parsecs, and parallaxes listed in the last two
columns. The average parallax of the reference frame is
SnT \ 1.2 mas. The di†erence, 0.2 mas, between this and the
YPC95 value, 1.0 mas, provides an estimate of the error in
the correction to absolute.

For Proxima Cen and we(l \ [1¡.93 SVrefT \ 14.5)
obtain a correction of ]1.0 mas.

Applying these corrections results in the absolute paral-
laxes listed in Table 7. The Ðnal formal uncertainties include
the estimated error in the correction to absolute, 0.2 mas,
root-sum-squared with the relative parallax errors. We also
list absolute parallax and proper motion from the Hip-
parcos Catalogue (see Perryman et al. 1997) and the
weighted, average parallax from YPC95.

5.1. T he Secular Acceleration of BarnardÏs Star
With a large proper motion and parallax (k \ 10A.368

yr~1, and large negative radial velocityn \ 0A.5454)
(RV\ [106.8 km s~1), BarnardÏs star is expected to evi-
dence a secular acceleration in the declination component
of the proper motion. This perspective e†ect is character-
ized by

k5 \ [2.05knRV] 10~6 (8)

and yields for BarnardÏs star yr~2. Gatewoodk5 \ 0A.0012

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
14 The WIYN Observatory is a joint facility of the University of

WisconsinÈMadison, Indiana University, Yale University, and the Nation-
al Optical Astronomy Observatories.

TABLE 6

BARNARDÏS STAR REFERENCE FRAME ABSOLUTE PARALLAX

Spectral Distance n
Star ID V Type B[V M

V
(B[V )0 E

B~V
A

V
m[ M (pc) (arcsec)

2 . . . . . . 31 15.47 K0 V 1.09 5.9 0.81 0.28 0.88 9.57 547 0.0018
3 . . . . . . 32 14.81 F0 III 0.59 1.2 0.3 0.29 0.90 13.61 3480 0.0003
4 . . . . . . 33 14.64 G9 V 1.01 5.7 0.77 0.24 0.74 8.94 437 0.0023
5 . . . . . . 30 13.17 G9 IV 1.05 3.1 0.85 0.20 0.63 10.07 773 0.0013
6 . . . . . . 34 14.09 G9 III 1.35 0.75 0.97 0.38 1.17 13.34 2714 0.0004
8 . . . . . . 36 11.55 A9 III 0.32 1.35 0.26 0.06 0.19 10.2 1005 0.0010
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FIG. 7.ÈHistograms of X and Y residuals obtained from modeling the
Proxima Cen reference frame with eqs. (5) and (6). Distributions are Ðtted
with Gaussians characterized by p as indicated.

(1995) detected and conÐrmed the magnitude of this e†ect
with 6 years of data. To determine if our data are sensitive
to this e†ect we modify equation (6) thusly :

g \ dX ] eY ] f [ P
y
n [ k

y
t [ k5

y
t2 , (9)

Ðnding yr~2, a 3 p detection from 3.3k5
y

\ 0A.0012 ^ 0A.0004
years of data.

Proxima Cen, with yr~1, andk \ 3A.851 n \ 0A.7687,
RV\ [21 km s~1, has a predicted yr~2,k5 \ 0A.00013
undetectable by HST .

6. ASTROMETRIC COMPANION DETECTION

Applying the proper-motion and parallax model (eqs. [5]
and [9] for BarnardÏs star, eqs. [5] and [6] for Proxima
Cen) yields residuals for BarnardÏs star and Proxima Cen.
We wish to test for the existence of periodic behavior in
these residuals, astrometric perturbations indicative of
planetary-mass companions.

6.1. Forming Normal Points and Associated Uncertainties
Every BarnardÏs star orbit contained at least three obser-

vations. Before subjecting the residuals to a period-Ðnding
procedure, we average the multiple observations obtained
at each epoch (the science-target observations collected
during a single orbit) to form normal points. This step
removes the high-frequency power for 1/f \ 0.014 days, the
typical time interval between intraorbit observations. Each
normal point has an associated uncertainty that is the stan-
dard deviation of the intraorbit observations. Resulting
normal points and uncertainties are shown in Figure 8.

For Proxima Cen, only those orbits acquired for
t [ MJD 9,924 contained multiple observations of the
science target. However, prior to that epoch the frequency
of observation was far higher. Consequently, we trade dense
temporal coverage at earlier epochs for more realistic
normal points and uncertainties by averaging over 3È10
days. This approach results in the 28 normal points plotted
in Figure 9.

TABLE 7

PARALLAX AND PROPER MOTION

Parameter Proxima Cen BarnardÏs Star

HST study duration . . . . . . . . . . . 5.6 yr 3.3 yr
Observation sets . . . . . . . . . . . . . . . . 59 34
Reference starsÏ SV T . . . . . . . . . . . 14.5 14.2
Reference starsÏ SB[V T . . . . . . . ]0.87 ]0.85
Relative parallax . . . . . . . . . . . . . . . 767.7^ 0.2 mas 544.2 ^ 0.2 mas

Correction to absolute . . . . . . 1.0^ 0.2 mas 1.2 ^ 0.2 mas
HST absolute parallax . . . . . . . . 768.7^ 0.3 mas 545.4 ^ 0.3 mas
Yale parallax cataloga . . . . . . . . . 769.8^ 6.1 mas 545.6 ^ 1.3 mas
Hipparcos parallax . . . . . . . . . . . . . 772.3^ 2.4 mas 549.3 ^ 1.6 mas
HST proper motion . . . . . . . . . . . 3851.7^ 0.1 mas yr~1 10370.0^ 0.3 mas yr~1

In P.A. . . . . . . . . . . . . . . . . . . . . . . . . 78¡.46^ 0¡.03 4¡.45^ 0¡.1
HST secular acceleration . . . . . . . . . 12 ^ 4 mas yr~2
Hipparcos proper motion . . . . . . 3852.9^ 2.3 mas yr~1 10368.6^ 2.1 mas yr~1

In P.A. . . . . . . . . . . . . . . . . . . . . . . . . 78¡.50^ 0¡.03 4¡.42^ 0¡.07

a Van Altena et al. 1995.
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FIG. 8.ÈResidual normal points in X and Y for BarnardÏs star, plotted
against time.

To summarize, BarnardÏs star and Proxima Cen (for
t [ MJD 9,924) normal points are always formed from data
acquired within one orbit. Proxima Cen normal points
prior to MJD 9,924 are formed from data acquired over
multiple orbits.

6.2. Searching for a Perturbation
The most obvious perturbation search is visual inspec-

tion of the residuals plotted against time. We look for trends
or obvious periodicities. The residuals for BarnardÏs star
(Fig. 8) appear random. The residuals for Proxima Cen (Fig.
9) do not. We do not have a seamless set of observations for
Proxima Cen. Data prior to MJD 8,988 had no OFAD, no
OFAD maintenance (LTSTABs), and only rudimentary

FIG. 9.ÈSame as Fig. 8, but for Proxima Cen

(constant rate) drift correction. If we remove those data
prior to MJD 8,988 and redo the entire analysis, the
residual-versus-time plot becomes far Ñatter. In addition, a
weighted Ðt of a parabola to all the data in Figure 9 yields
statistically insigniÐcant curvature.

We next search for more subtle variations. Since the HST
observations of Proxima Centauri and BarnardÏs star are
unevenly distributed in time, traditional Fourier transform
techniques, which assume regularly spaced data, are inap-
propriate for period searching. The usual tactic of clamping
the data to zero during large gaps in the sampling often
leads to excessive power on scales of the lengths of the gaps
(Press et al. 1992). Also, if we interpolated the data onto a
regularly spaced grid, information would be lost and the
sought signal e†ectively degraded.

Schuster (1905) introduced the periodogram as a simple
way of handling data sets with nonuniform sampling such
that each data point receives equal weight. This approach,
described in ° A1 of the Appendix, was used in a successful
search for photometric variability of Proxima Cen and
BarnardÏs star (Benedict et al. 1998b).

In Figures 10 and 11, normalized periodograms are pre-
sented for the positional data (the normal points in Figs. 8
and 9) for BarnardÏs star and Proxima Cen. Superposed on
each spectrum are horizontal lines of constant false-positive
rates computed using equation (A4). BarnardÏs star evi-
dences large power at a frequency equivalent to yr, and12Proxima Cen has a signiÐcant signature at the lowest fre-
quencies examined for perturbations.

Before further exploring the causes for the strong signa-
tures in the periodograms, we wish to see if these signatures
persist for an alternate spectral analysis technique. A Bayes-
ian technique developed by Bretthorst (1988) and Jaynes
(1987) uses probability theory to approach the problem of
signal detection (see Appendix, ° A2). This approach is most
beneÐcial where the signal-to-noise ratio is low. Figure 12
contains the resulting Bayesian spectral estimate for
BarnardÏs star. In this case the false-positive levels are esti-
mated using the Monte Carlo method discussed in ° A2.
Noting that the Bayesian and normalized periodogram

FIG. 10.ÈLomb-Scargle periodogram of the Fig. 8 normal points for
BarnardÏs star. The solid line is the sum of the X and Y power spectra.
Horizontal lines denote levels of false-positive probability from eq. (A4).
There is a signiÐcant signal at fD 182 day~1.
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FIG. 11.ÈSame as Fig. 10, but for the Proxima Cen normal points in
Fig. 9. Note the signiÐcant signal at fD 1800 day~1.

approaches produce similar results, we will use normalized
periodograms in the rest of this paper.

6.3. SigniÐcant Peaks in the Power Spectra
Most of the power in the BarnardÏs star periodogram

occurs at fD 0.5 yr~1. The BarnardÏs star Ðeld is unique in
one respect, motion across the pickle. It is our operational
constraint to place the science target always within a few
arcseconds of the pickle center. BarnardÏs star has a proper
motion in excess of 10A yr~1. This combination dragged the
reference frame over 30A across the pickle during our moni-
toring. Consequently, the reference-star positions were
shifted by 30A across the pickle, while the Sun constraint
rotated the Ðeld several times through 360¡. Thus, the plate
constants derived will likely have periodic OFAD deÐ-
ciencies buried in them, causing the strong signal in the
periodogram.

FIG. 12.ÈBayesian periodogram of the Fig. 9 normal points for
BarnardÏs star. The solid line is the sum of the X and Y power spectra.
Horizontal lines denote levels of false-positive probability from Monte
Carlo simulations described in ° A2 of the Appendix. This approach also
detects signiÐcant signal at fD 182 day~1.

Both parallax and spacecraft roll correlate with an inte-
gral fraction of 1 yr. Figure 13 shows x and y normal points
plotted against spacecraft roll (roll modulo 180¡). There is a
clear systematic e†ect in Y , linear with roll. In X the e†ect is
quadratic with roll. If we substitute the x and y residuals
(““ CorrNP ÏÏ) to these linear Ðts as our new normal points,
the resulting power spectra (Fig. 14) no longer contain sig-
niÐcant power at f D 0.5 yr~1. This empirical correction
renders our search insensitive to perturbations with yr12periods ( f D 0.006 day~1).

With a proper motion roughly one-third that of
BarnardÏs star, the Proxima Cen periodogram might also be
expected to have some signal at f D 0.006 day~1. However,
it does not. The most signiÐcant peak in the Proxima Cen
periodogram (Fig. 11) occurs at the lowest frequency we are
able to probe, f D 2000 day~1. The periodogram is detect-
ing the secular drift in the residuals seen in Figure 9. Com-
paring the periodograms for scale (Fig. 5) and the
astrometry residuals (Fig. 11), the peak in the astrometric

FIG. 13.ÈBarnardÏs star normal points plotted against HST roll,
modulo 180¡. There are obvious trends, linear in Y , quadratic in X. The
residuals (““ CorrNP ÏÏ) are adopted as the corrected normal points.
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FIG. 14.ÈLomb-Scargle periodogram of BarnardÏs star (CorrNP)
normal points corrected for systematic error depending on HST roll. The
solid line is the sum of the X and Y power spectra. Horizontal lines denote
levels of false-positive probability. The correction has e†ectively removed
the power at fD 182 day~1 seen in Fig. 10.

residuals periodogram has a frequency nearly identical to
the peak in the scale variation periodogram. The amplitude
of the secular trend periodogram is much less, indicating
possible incomplete correction of scalelike variations.

6.4. Detection L imits from Power Spectra
Monte Carlo simulations were used to determine angular

perturbation limits for companions that could hide in these
power spectra. For each signal period and amplitude, 2000
simulated data sets of a sinusoidal signal with additive
uncorrelated Gaussian noise were generated. The noise
variance and sampling pattern were chosen to match the
reference-star observations (° 4.3). The probability that a
spectral peak with amplitude could have arisen fromS

Anoise is given by the false-positive rate, We deÐne aPfp(SA
).

miss rate, as the fraction of trials for which thePmiss(SA
),

largest spectral peak either falls below a given spectral
amplitude or occurs at another frequency as a result ofS

Anoise Ñuctuations. The derived perturbation amplitudes are
those in which 95% of the simulations produced power in
excess of that corresponding to a 1% false-positive rate. The
detection amplitudes represent a limit on the smallest
underlying signal that could give rise to a given spectral
amplitude. We Ðnd that the detection amplitudes are e†ec-
tively insensitive to perturbation frequency. For BarnardÏs
star we obtain 1.25 mas, and for Proxima Cen 1.0 mas, for
perturbation frequencies f\ 1500 day~1.

7. DISCUSSION OF ASTROMETRIC RESULTS

7.1. T he Parallax and Proper Motions of Proxima Cen
and BarnardÏs Star

As shown in Table 7, we Ðnd parallaxes for Proxima Cen
and BarnardÏs star that di†er substantially from the values
found by Hipparcos. The YPC95 parallax values are
weighted averages of four and six independent determi-
nations for Proxima Cen and BarnardÏs star, respectively.
All values and associated errors are plotted in Figure 15,
showing good agreement between the HST and YPC95
parallaxes. The 3.6 and 3.9 mas di†erences between HST

FIG. 15.ÈAbsolute parallaxes for Proxima Cen and BarnardÏs star
determined by HST (left) and Hipparcos (center), compared with the
YPC95 (right). The horizontal dashed lines are the weighted averages of the
three independent determinations.

and Hipparcos parallaxes may be explained in part by
Hipparcos zonal errors (see, e.g., Narayanan & Gould 1999).

The proper-motion di†erences can, in part, be attributed
to the HST valuesÏ being relative to a local, not a global,
reference frame. That these proper-motion di†erences are at
the 1 mas level demonstrates agreement between the HST
and Hipparcos scales to within 1 part in 4000. Scale di†er-
ences cannot explain the parallax di†erences.

7.2. Companion Mass Detection L imits
The only conÐrmed planetary-mass companion found

thus far for an M star has a short period (Gl 876, PD 61
days ; Delfosse et al. 1998 ; Marcy et al. 1998). This may be
partly a selection e†ect, since M stars have been studied
extensively with high-precision radial velocity techniques
for only a few years. Nonetheless it is interesting that
Figures 14 and 11 show no signiÐcant power for frequencies
60 day~1\ f \ 12 day~1. Neither is there power at the
stellar rotation rates days,(PBarnrot D 130 PProxrot \ 83.5^ 0.5
days) inferred from the FGS photometry described in Bene-
dict et al. (1998b). This is an expected result, since the star-
spots, with 1%È2% contrast, would not be expected to
perturb the observed photocenters of Proxima Cen and
BarnardÏs star.

Our detection limits are expressed in angular measure-
ments. We require primary-star masses and distances to
translate to mass detection limits. We estimate the masses of
Proxima Cen and BarnardÏs star from the mass-luminosity
relationship of Henry et al. (1999). The masses are averages
of a mass estimate from derived from our parallaxM

Vvalues (Table 5 and V from Leggett 1992) and a B[V \
relationship (Henry et al. 1999), where B[V is alsof (M

V
)

from Leggett (1992). We adopt andMProx \ 0.11 M
_We wish to estimate the mass of a plan-MBarn \ 0.16 M

_
.

etary companion, from detectable values of a@, the semi-M
p
,

major axis of perturbation orbit in arcseconds. From

(M
*

] M
p
)P2\ a3 , (10)

aM
*

\ aM
p

, a@(arcsec)\ a(AU)n (11)

with P in years, a and a in AU, and in solar masses, weM
*derive the able to produce the angular perturbationsM

pdetectable at a 1% false-positive level (BarnardÏs star, 1.25
mas ; Proxima Cen, 1.0 mas). Our results for BarnardÏs star
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FIG. 16.ÈBarnardÏs star companion detection mass limits. The top axis
gives the size of the semimajor axis of a secondary. Monte Carlo1MJupsimulations indicate that a 1.25 mas amplitude perturbation would be
found in the data at a 1% false-positive level, with a 5% miss rate.

and Proxima Cen are shown in Figures 16 and 17. On the
latter we show detection limits from the Proxima Cen radial
velocity companion-search program of et al. (1999),Ku� rster
showing the complementarity of the two searches.

FIG. 17.ÈSame as Fig. 16, but for Proxima Cen. Monte Carlo simula-
tions indicate that a 1.0 mas amplitude perturbation would be found at a
1% false-positive level, with a 5% miss rate. The dashed line presents the
limits determined by the radial velocity program of et al. (1999).Ku� rster

While fairly extended in period coverage, our results are
less so when stated in orbit size, as shown on the top axes of
Figures 16 and 17. How far from the primaries our tech-
niques probe bears directly on comparison with searches
carried out by more direct techniques, particularly camera
observation of the neighborhoods of these stars. A Saturn-
mass companion with P\ 2000 days would orbit Proxima
Cen at a D 1.5 AU A halfÈJupiter-mass companion(D1A.2).
orbiting BarnardÏs star with P\ 1000 days would have
a D 1.1 AU There is satisfactory overlap for(D0A.58).
Proxima Cen with the camera observations of Golimowski
& Schroeder (1998), Leinert et al. (1997), and Schultz et al.
(1998). For BarnardÏs star there remains a gap, since Van
Buren et al. (1998) reach only inward to 4 AU.

8. CONCLUSIONS

1. FGS 3, a white-light interferometer on HST used in a
fringe-tracking (POS) mode, produces 1 mas precision
astrometry.

2. Attaining this precision requires multiple revisits to
reference stars during an orbit, in order to remove short-
timescale temporal positional drift.

3. Longer timescale instrumental changes are monitored
and removed through periodic revisits to our primary
astrometric calibration Ðeld, M35.

4. These techniques yield parallaxes for BarnardÏs star
and Proxima Cen with precision better than 0.4 mas. HST
parallaxes di†er from the Hipparcos determinations by 3.9
and 3.6 mas, respectively. The HST determination agrees
with the YPC95 value within the errors for BarnardÏs star.
The secular acceleration of BarnardÏs star was determined
at the 3 p level in 3.3 years of observation and agrees with
past determinations.

5. We have examined the BarnardÏs star and Proxima
Cen astrometric residuals for periodic perturbations due to
planetary-mass companions, using normalized periodo-
grams and Bayesian spectral analysis.

6. We Ðnd statistically signiÐcant power at yr for12BarnardÏs star. The BarnardÏs star residuals correlate with
spacecraft roll. We tentatively identify this systematic e†ect
with reference-frame motion of over 30A across the pickle
during our monitoring. Our empirical correction for this
systematic error renders us insensitive to companions with
periods PD 0.5 yr. The periodogram of the corrected data
contains no signiÐcant power at any inspected frequencies.

7. For Proxima Cen we Ðnd statistically signiÐcant
power at f D 2000 day~1. The source of this power can be
seen in the residuals plotted against time. Much of the
nonlinearity comes from lower quality data secured early
in our program. We point out the similarity of this signa-
ture to that found in a periodogram of scalelike variations
in FGS 3. Together they support the probable identiÐca-
tion of a systematic error and not a long-period, low-mass
companion.

8. After discarding the signals from systematic errors,
Monte Carlo simulations indicate that a 1 mas amplitude
perturbation with a frequency range 2000 day~1[ f[ 30
day~1 would be found in the Proxima Cen residuals at a
1% false-positive level, with a 5% miss rate. Corresponding
sensitivity for BarnardÏs star is 1.25 mas.

9. For Proxima Cen, assuming weMProx \ 0.11 M
_

,
detect no companions more massive than Jupiter with
orbital periods 50 days \ P\ 1000 days. For P[ 400
days, our detection limit is less than the mass of Saturn.
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These null results conÐrm the direct observations by
Leinert et al. (1997) and Golimowski & Schroeder (1998).
They weaken the interpretation of the FOS coronagraphic
observations of Schultz et al. (1998). Between the astro-
metry and the et al. (1999) radial velocity results, weKu� rster
exclude all companions with for the range ofM [ 0.8MJupperiods 1 day \ P\ 1000 days.

10. For BarnardÏs star, assuming weMBarn\ 0.16 M
_

,
detect no companions more than twice as massive as Jupiter
with orbital periods 50 days \ P\ 150 days. For P[ 150
days, our detection limit is less than the mass of Jupiter.
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APPENDIX

PERTURBATION SEARCH TECHNIQUES

The standard periodogram, when applied to nonuniformly sampled data, has some unfortunate statistical shortcomings,
including a sampling-dependent probability distribution for pure noise samples and nontranslational invariance. Both of
these problems are cured by a modiÐed version of the periodogram introduced by Scargle (1982). We used this modiÐed
periodogram to analyze the HST data and brieÑy review the method in the next section. We also used a technique called
Bayesian spectral analysis, which is based on probability theory (see Bretthorst 1988). This method provides a way of
estimating the periodogram, but is more robust for very noisy data sets.

A1. THE NORMALIZED PERIODOGRAM

Scargle (1982) introduced a new normalization for the periodogram that produces an exponential probability distribution
for random Gaussian noise, independent of the sampling pattern. He also included a time delay, deÐned below, which solves
the translational invariance problem mentioned above. With these modiÐcations, the ““ normalized ÏÏ periodogram is

P
N
(u)4

1
2
G[;

j
y
j
cos u(t

j
[ q)]2

;
j
cos2 u(t

j
[ q)

] [;
j
y
j
sin u(t

j
[ q)]2

;
j
sin2 u(t

j
[ q)

H
, (A1)

where the delay, q, is deÐned by

tan 2uq\ ;
j
sin 2ut

j
;

j
cos 2ut

j
. (A2)

With the inclusion of the time delay, the normalized periodogram becomes equivalent to least-squares Ðtting of the data to
sine waves.

The resulting exponential form of the probability distribution is convenient, since the false-alarm probability takes a
particularly simple form. For uncorrelated Gaussian noise, the probability that no peaks in the power spectrum havePfpamplitudes greater than isS

A
Pfp\ 1 [ (1[ e~SA)Neff , (A3)

where is the number of independent frequencies searched (Scargle 1982).Neff
A2. A BAYESIAN APPROACH

A Bayesian spectral analysis technique developed by Bretthorst (1988) and Jaynes (1987) starts with the hypothesis H that a
periodic signal exists in the a data set D. The goal of signal detection is to Ðnd the probability P(H oD, I) that the hypothesis is
correct given the data and any prior information I that might exist, e.g., noise statistics. BayesÏs theorem relates this
probability to other calculable probabilities as follows :

P(H oD, I) \ P(H o I)P(D oH, I)
P(D o I)

, (A4)

where P(H o I) is the prior probability of the hypothesis, e.g., if one hypothesis is more likely than another based on, say,
theoretical grounds ; P(D o I) is the prior probability of the data, which, for this analysis, is just a normalization constant ; and
P(D oH, I) is the direct probability of the data (also called the likelihood function) and is the probability that the data set could
be produced given the hypothesis and the prior information.

The hypothesis for the planet search is that a sinusoidal signal deÐned by exists in the data. Thef (t) \ B1 sin ut] B2 cos ut
probability that this hypothesis is true may be written as P(u, However, since only a detection isB1,B2 oD, I) 4P(H oD, I).
required, we really want only the probability that a signal with frequency u exists regardless of the amplitude and phase, i.e.,
P(u oD, I). Bretthorst and Jaynes refer to the unwanted parameters and as ““ nuisance ÏÏ parameters and demonstrateB1 B2
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that they can be eliminated from the calculation by a simple integration :

P(u oD, I)\
P P

P(u, B1, B2 oD, I)dB1 dB2 , (A5)

where P(u, is given by equation (10). They assume that and have Ñat probability distributionsB1,B2 oD, I)4 P(H oD, I) B1 B2and include this assumption in the prior, I. This method of reducing the dimensionality of the problem is of course very useful
for models that contain a large number of parameters.

Bretthorst and Jaynes show that, since the di†erence between the model and the data is ideally just the noise, the likelihood
function depends on the sum of the squares of the di†erence between the data and the model function f (t). By substituting the
model f (t) into the resulting likelihood function, expanding appropriate terms, and integrating over the nuisance parameters,
they show that the desired probability is related to the periodogram deÐned in equation (A1) by

P(u oD, I) P
C
1 [ 2C(u)

Ny6 2
D(2~N)@2

, (A6)

where is the mean of the data. In the derivation of this expression it is assumed that only the shape of the noise probabilityy6
distribution is known, and not noise variance. One of the advantages of this technique is that it provides an internal estimate
of the accuracy of its predictions, a feature that direct periodogram and Fourier transform methods lack.

Since we are not aware of a corresponding analytic form for false-positive rates for the Bayesian technique, Monte Carlo
simulations were employed to obtain those plotted in Figure 12. Numerical simulations were Ðrst used to look for frequency-
dependent false-positive variations of the Bayesian spectral estimate. This was done to ensure that the nonuniform spacing of
the data points could not interact with the noise to produce excessive power at any of the frequencies of interest. Groups of
artiÐcial data sets were created using the sampling times of the observations and contained only uncorrelated Gaussian noise.
The variance of the noise was chosen to be the estimated noise variance of each of the observations. Bayesian spectra were
computed for each artiÐcial data set over the range of frequencies of interest. Then the frequency and amplitude of the largest
peak were recorded for each spectrum. In order to estimate the distribution of the largest peaks as a function of frequency, the
frequencies of the peaks were collected into bins, where is the number of independent frequencies in the spectralNeff Neffregion of interest.

Figure 12 shows the results of this analysis for the sampling times of the Proxima Cen positional observations. Two
thousand artiÐcial data sets and spectra were created, and 40 bins were used. The Ðgure shows the spectral amplitude
corresponding to false-positive rates of 0.1%, 0.3%, and 1.0% over frequencies of 40~1 to 400~1 day~1. Since the variations in
the relative number of peaks with simulation are consistent with counting statistics, we conclude that the false-positive rates
are essentially frequency independent over range of frequencies of interest. Thus, the false-positive rates for the Bayesian
technique shown in Figure 12 were based on the probability distribution of peak amplitudes found over the entire spectral
range of interest.
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Note added in proof.ÈIn separate private communications, T. de Forveille (Grenoble) and W. Cochran (McDonald) report
that the rms scatter in two independent sets of BarnardÏs star radial velocities strongly excludes companions with Jupiter mass
or greater for periods shorter than a year.
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