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ABSTRACT 

Two different porous asphalt pavement systems (PAPS) were designed to 

enhance the removal of VOCs (dichloromethane and toluene) and heavy metals 

(cadmium, copper and lead) from roadway runoff. These two PAPS utilized granular 

activated carbon (GAC) additions to the conventional PAPS. One PAPS, the CPP 

system (carbon in porous pavement), had GAC added directly to the top porous 

asphalt mix, and the other PAPS, the CCA system (carbon in coarse aggregates), had 

GAC added to the sub-base filter course below the porous asphalt layer. The removal 

of selected VOCs and heavy metals through the CPP and the CCA systems was 

measured and compared to a conventional PAPS.  

The results show that the addition of GAC into the top porous asphalt layer and 

the sub-base filter course layer enhanced the overall porous asphalt pavement 

contaminants removal capability. The addition of GAC to the sub-base filter course 

layer resulted in higher removal efficiencies for all of the constituents tested in this 

study. The CPP system is capable of removing on average 83% of dichloromethane, 

95% of toluene, 71% of cadmium, 66% of copper, and 73% of lead. The CCA system 

resulted in the average removal of 99% of dichloromethane, 100% of toluene, 95% of 

cadmium, 76% of copper, and 75% of lead from a synthetic roadway runoff.  

The CCA system was able to control the effluent concentrations of all of the 

contaminants (dichloromethane, toluene, cadmium, copper and lead) to meet the US 

EPA MCLs (Maximum Contaminant Levels). Even though the same amount of GAC 

was added into the two systems some of the GAC in the CPP system could have been 

coated by the asphalt binder during the construction process which would reduce the 
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effective GAC surface area available for adsorption and thus reduce the effectiveness 

of contaminant removal. 
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PREFACE 

This dissertation described the design and testing of the porous asphalt pavement 

systems with an enhanced contaminant removal efficiency as compared to the 

conventional porous asphalt pavement system which are currently installed in the 

USA. It is an article which is going to be submitted to a peer-reviewed journal. The 

manuscript format is in use. 

Hui Chen and Leon T. Thiem, Using Activated Carbon to Enhance the VOCs and 

Heavy Metals Removal of a Porous Asphalt Pavement System. Environmental 

Engineering.  
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Using Activated Carbon to Enhance the VOCs and Heavy Metals Removal of a 

Porous Asphalt Pavement System 

Abstract 

Two different porous asphalt pavement systems (PAPS) were designed to 

enhance the removal of VOCs (dichloromethane and toluene) and heavy metals 

(cadmium, copper and lead) from roadway runoff. These two PAPS utilized granular 

activated carbon (GAC) additions to the conventional PAPS. One PAPS, the CPP 

system (carbon in porous pavement), had GAC added directly to the top porous 

asphalt mix, and the other PAPS, the CCA system (carbon in coarse aggregates), had 

GAC added to the sub-base filter course below the porous asphalt layer. The removal 

of selected VOCs and heavy metals through the CPP and the CCA systems was 

measured and compared to a conventional PAPS.  

The results show that the addition of GAC into the top porous asphalt layer and 

the sub-base filter course layer enhanced the overall porous asphalt pavement 

contaminants removal capability. The addition of GAC to the sub-base filter course 

layer resulted in higher removal efficiencies for all of the constituents tested in this 

study. The CPP system is capable of removing on average 83% of dichloromethane, 

95% of toluene, 71% of cadmium, 66% of copper, and 73% of lead. The CCA system 

resulted in the average removal of 99% of dichloromethane, 100% of toluene, 95% of 

cadmium, 76% of copper, and 75% of lead from a synthetic roadway runoff.  

The CCA system was able to control the effluent concentrations of all of the 

contaminants (dichloromethane, toluene, cadmium, copper and lead) to meet the US 

EPA MCLs. Even though the same amount of GAC was added into the two systems 
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some of the GAC in the CPP system could have been coated by the asphalt binder 

during the construction process which would reduce the effective GAC surface area 

available for adsorption and thus reduce the effectiveness of contaminant removal. 

Introduction 

Runoff from roadway and other impervious surfaces in urbanized areas has 

been recognized as a leading source of water quality impairments to national water 

resources (EPA 2004). Major contaminants carried by roadway runoff include volatile 

organic compounds (VOCs) and heavy metals. VOCs (dichloromethane and toluene) 

and heavy metals (cadmium, copper and lead) were found in roadway runoff at 

concentrations which could impair the quality of drinking-water. Many VOCs and 

heavy metals will not degrade before reaching the groundwater and they can persist in 

the groundwater for decades (Borchardt and Sperling, 1997, and Zogoraki, et al.). 

Volatile Organic Compounds 

The EPA’s National Urban Roadway Runoff Program (NURP) and National 

Pollutant Discharge Elimination System (NPDES) were two large scale national 

surveys of VOCs which provided information on VOCs occurrence in the roadway 

runoff in most regions of the United States. The most frequently detected VOCs in the 

NURP study were dichloromethane, naphthalene, and chloroform (Cole et al., 1984). 

Dichloromethane was detected in 10% of the samples with a maximum detected 

dichloromethane concentration of 14.5μg/L, and toluene was detected in 2% of the 

samples with the maximum concentration of 9μg/L (Cole et al., 1984). The most 

frequently detected VOCs for the NPDES studies were toluene, xylenes, chloroform, 

and trimethylbenzene (Delzer et al., 1996). The measured toluene concentration was in 
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the range of 0.2-6.6μg/L which was the concentration range found in 23% of the 

samples. Dichloromethane was found in 6% of the samples in this research with 

concentration in the range of 0.2-13μg/L (Delzer et al., 1996). Since dichloromethane 

and toluene were the most frequently detected VOCs in these studies, they were 

selected as the two major VOC pollutants of roadway runoff to be investigated in this 

study. Table 1 lists the concentrations of dichloromethane and toluene found in 

roadway runoff from several researchers and their maximum contaminant levels 

(MCL) set by the US EPA (EPA, 2012).  

Table 1. VOCs Concentration in Roadway Runoff and the Comparison of 
VOCs in Roadway Runoff to Drinking Water Standards 
 

VOC  Concentration in Previous Studies Locations  
MCL in μg/L 
(EPA, 2012)

Dichloromethane 

5-14.5μg/L (Cole, 1984) Nationwide (U.S.) 

5 0.2-13μg/L (Delzer et. al., 1996) Nationwide (U.S.) 

0.5μg/L (Asaf, et al., 2004) Ashdod, Israel 

Toluene 

9μg/L (Cole, 1984) Nationwide (U.S.) 

1000 
0.2-6.6μg/L (Delzer et. al., 1996) Nationwide (U.S.) 

0.05-0.17μg/L (Torres, 2010)  Omaha, Nebraska 

0.2-4 μg/L (Baldys, et al., 1997) Texas, U.S. 

 

VOCs have low concentration aquatic toxicities (Rowe and others, 1997) and 

primarily are a threat to drinking-water supplies. Makepeace and others found that 

dichloromethane is one of the compounds that could be a concern if roadway runoff 

entered drinking-water supplies (Makepeace, et al., 1995). The national assessment of 

VOCs in ground water aquifers found that dichloromethane and toluene were among 

the most frequently detected VOCs. The occurrence of dichloromethane was 3.6% and 
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9.9% for toluene with concentrations over 0.02μg/L from the samples collected from 

aquifers. The median concentrations of dichloromethane and toluene samples with 

measurable levels were 0.04μg/L and 0.032μg/L respectively. Dichloromethane was 

found at concentrations high enough to cause human-health concerns (Zogorski, et al., 

2006). For example, in drinking water tested in Zogorski's study, concentrations of 

dichloromethane were 5.01μg/L which was slightly higher than the MCL standard of 

5μg/L. (Zogorski, et al., 2006). 

Heavy Metals 

The heavy metals that are present in the roadway runoff are either dissolved or 

are bound to particulates. This distribution between the particulate-bound and 

dissolved phases was studied by many researchers. Morrison and others (Morrison et 

al., 1984) found that between 5% and 50% of cadmium, copper and lead were in the 

dissolved phase. Cadmium was most often found in the dissolved ionic forms and lead 

was most highly associated with particles. Washington State Department of 

Transportation (Herrera, 2007) reported both the total and dissolved concentrations of 

copper in roadway runoff and found that 29 percent of the total copper was in the 

dissolved form, which is generally the most toxic form of the metals (Herrera, 2007). 

Other studies found that in urban runoff, copper primarily was found in the dissolved 

form (Flores-Rodriguez et al., 1994 and Morrison et al., 1990) and lead can be either 

particle bound or dissolved depending on prevailing conditions (Lienden, et al., 2010). 

Heavy metals were often detected in more than 98 percent of the collected road way 

runoff samples. The typical concentrations of cadmium, copper, and lead found in 

dissolved and particulate phase from several researchers are presented in Table 2.  
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Table 2 Typical Concentrations of Copper, Lead, and Cadmium in Dissolved 
and Particles Phases 

Metal 
Concentration  

References 
Total, μg/L Dissolved, μg/L 

Cu 

4.6 to 72 3.1-18.1 Herrera, (2007) 
24 to 1,065 NM Herrera, (2007) 

<3-210 <3-33  Bannerman, et al. (1996)  
1.3-874.5 1.5-45.5  Werf, et al. (2007) 

1-45 1-21  Harrision, et al. (1997) 
<1-250 <1-110  Strecker, et al. (1997)  

0.0157, 0.041 0.0110, 0.0063 Muthukrishnan (2010) 

Pb 
24 to 61 3.2 Herrera, (2007) 
0.0307 NM Muthukrishnan (2010) 
60-112 NM McQueen (2010) 

Cd 

0.1-14 NM NURP (1984) 
0.9 to 2.8 NM Herrera, (2007) 

ND-40 NM Driscoll et al. (1990); Barrett et al. (1995) 
4-5 NM McQueen (2010) 

NM: not measured 
 

The heavy metals that are present in roadway runoff could impact the aquatic 

system. Table 3 shows the comparison of metals in roadway runoff to the USEPA 

Drinking Water Standards and Aquatic Life Criteria. The cadmium and lead present in 

the roadway runoff were all found to have concentrations exceeding the drinking 

water and aquatic life standards. Copper concentrations exceed both of the aquatic life 

criteria and the national secondary drinking water regulations. Washington State DOT 

also found that concentrations of dissolved copper measured at the edge of the 

pavement often exceed acute and chronic water quality standards for receiving waters 

in western Washington (Herrera, 2007). Cole reported that cadmium, copper, and lead 

are among the most detected pollutants in runoff and exceed freshwater ambient 24-

hour average criterion ("chronic" criterion) in 55%, 87% and 96% of the samples 

respectively. The highest detected values for these metals were 2 to 8 times higher 

than their related criteria (Cole, 1984). Consequently, these pollutants could cause 
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harm to aquatic life (Cole 1984). Some contaminants with lower concentration than 

the aquatic life criteria could still pose risks to some species. For example, Sandahl et 

al. has shown that even low concentrations (2-5μg/L) of dissolved Cu2+ can impair the 

olfactory system of juvenile coho salmon which is one of the species listed under the 

Endangered Species Act (ESA) (Sandahl et al., 2007). 

Table 3 Comparison of Metals in Roadway Runoff to Drinking Water 
Standards and Aquatic Life Criteria 

Metal 
CAS 

number 
Concentration Range (μg/L) 
(Summary from Table 2.1) 

Standard 
 (μg/L) 

Type of standard 

Cu 7440-50-8 
0.0157-1065 (Total) 

0.0110 -110 (Dissolved) 

1300 MCL 
1000 NSDWR 
13a CMC 
9a CCC 

Pb 7439-92-1 
0.0307 to 460 (Total)  

3.2 (Dissolved) 

15 MCL 
0 MCLG 
65 CMC 
2.5 CCC 

Cd 7440-43-9 0.1-40 (Total)  
5 MCL 
2 CMC 

0.25 CCC 
(μg/L, micrograms per liter; mg/L, milligrams per liter; CAS, Chemical Abstracts; 
MCL, maximum contaminant level; MCLG, maximum contaminant level goals; 
NSDWR, national secondary drinking water regulations; CMC, Aquatic Life Criteria-- 
acute 1hr; CCC, Aquatic Life Criteria-- chronic 96hr) 
a. The U.S. Environmental Protection Agency (EPA) has established hardness 
dependent water quality criteria for acute (1hr) and chronic (96hr) exposure to 
Cu2+dissolved. With an assumed hardness of 100 mg/L as CaCO3, the acute criteria is 
13μg/L, and chronic criteria is 9μg/L for freshwater (USEPA, 2008). 

 

Porous Asphalt Pavement System  

To protect the quality of receiving waters, regulations have been established to 

treat runoff prior to discharging or to reduce pollutants at the source (EU Directive, 

2011; Hanley et al., 2006; USEPA, 2011). Typically, roadway runoff is managed 

through best management practice (BMP) such as porous asphalt pavement system 



 

8 
 

(PAPS). PAPS is one of the most effective BMPs to control pollution from roadway 

runoff (Hansen, 2008, Ahiablame et al., 2013). The porous asphalt pavement systems 

(PAPS) constructed to date were designed mostly to carry light traffic load which is 

defined as a road which carries traffic volumes less than 2,000 vehicles per day and 

with gross vehicle weight rating (GVWR) not larger than 14,000lb. 

Many contaminants can be removed as the roadway runoff passes through the 

PAPS. Numerous studies have reported that the PAPS has a high removal efficiency 

for total suspended solids (TSS), metals, and oil and grease (Cahill et al.,2005; Jeff, 

2008; Roseen, 2009). PAPS had also been reported to be capable of removing 82% of 

the total organic carbon. In addition to the ability to protect receiving water quality by 

removing contaminants, PAPS is able to significantly reduce the quantity of 

contaminants in roadway runoff that would normally enter downstream water bodies 

(Ahiablame et al., 2012, Dreelin et al., 2006, Tota-Maharaj and Scholz, 2010). PAPS 

is typically able to allow for infiltration of 80% of the annual roadway runoff volume 

(Hansen, 2008).  

Currently, most stormwater BMPs for treating roadway runoff focus on 

removing suspended solids and their associated contaminant loads. However, even 

when a significant portion of the contaminant is in a particle bound form, dissolved 

contaminant including dissolved metals in highway runoff may still exceed ambient 

water quality standards, and these dissolved contaminants are more toxic to aquatic 

organisms (Barber et al. 2006). 
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Granular Activated Carbon 

One method to enhance the traditional PAPS would be through the addition of 

granular activated carbon (GAC). GAC is a good choice because of the fact that GAC 

is an effective sorbent to remove contaminants in roadway runoff (Liu, 2005; Al-

Anbari, et al., 2008; Grebel, et al., 2013). Adsorption onto GAC has been shown to 

effectively remove dissolved VOCs and heavy metals from aqueous solutions (Chen 

and Lin, 2001; Machida et al., 2005; Lienden, et al., 2010, adding references of using 

GAC to remove VOCs). 

 The adsorption process depends on the properties of the contaminants, the 

contact time, and the GAC's internal surface area. In Zeinali's study, GAC was 

effective in removing dichloromethane and toluene from water, and the experimental 

results fit the Langmuir and BET-Langmuir model. The adsorption processes were fast 

during the first 30 minutes, after that, they became very slow, and they reached 

equilibrium in their adsorption experiments at about 2 hours (Zeinali et al., 2011). 

Lienden studied GAC adsorption of copper and found that the Freundlich equation 

provided the best fit for copper GAC adsorption (Lienden, 2010). Trace metal 

adsorption by GAC was also studied by Abudaia. Under the same conditions, copper 

was found to have a higher adsorption than lead (Abudaia, et al., 2013).  

Objectives 

PAPS is capable of removing the particulate fraction of contaminants from 

roadway by filtration, but the capability of removing the dissolved contaminants has 

not been investigated. Based on the fact that adsorption has been recognized as an 

effective and economic method for heavy metal removal, and more specifically GAC 
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adsorption has been studied and is widely used in removing heavy metals for drinking 

water and wastewater treatment, there exists a high potential for success in treating 

roadway runoff by GAC adsorption (Fu and Wang, 2011). So in this study, enhanced 

PAPS with GAC added were created, which has the potential to control some of the 

total suspended solids (TSS) in roadway runoff, but also to be able to reduce the 

environmental load of dissolved compounds, including VOCs and heavy metals.  

The goal of study is to construct enhanced PAPS and test their removal 

efficiency for removing VOCs and heavy metals from roadway runoff. More 

specifically, the goal of designing these enhanced PAPS was to treat runoff with 

varying concentration of VOCs and heavy metals to achieve an effluent below the 

USEPA MCLs set for these contaminants. The enhanced PAPS can offer site planners 

and public works officials more opportunities to manage roadway runoff with higher 

contaminant removal efficiencies. 

Methodology 

A typical PAPS structure is shown in Figure 1. From the top to the bottom, the 

layers that comprise the PAPS are the porous asphalt pavement layer, the filter layer, 

the reservoir course, a nonwoven geotextile filter fabric, and native existing soil. 

These layers are described below: 

The porous asphalt pavement layer is placed on the top. This permeable asphalt 

pavement surface is 2 to 4 inches in thickness (EPA, 2009a) and is a standard hot mix 

asphalt layer with reduced sand or fines. It allows roadway runoff flow through the 

pavement, and at the same time, it traps some of the particles from the roadway runoff.  
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The layer right below the surface porous asphalt pavement layer is the filter 

layer. This layer of aggregates is typically 3 to 12 inches thick (UNHSC, and EPA, 

2009a) and consists of crushed stones typically 3/16 to 3/4 inch (EPA, 2009a). Besides 

storing water, this high infiltration rate layer provides a transition between the bedding 

and sub-base layers (EPA, 2009a).  

Then next layer is the reservoir course. The stone sizes for this layer are larger 

than the filter course, typically 3/4 to 2 ½ inch stone (EPA, 2009a). This reservoir 

course is typically between 12 and 36 inches in depth. The 40 percent voids ratio in 

the stones is capable of storing the roadway runoff before infiltrating into the sub 

native soil (Hansen, 2008). This reservoir course may not be required in pedestrian or 

residential driveway applications (EPA, 2009a).  

The nonwoven geotextile filter fabric is an optional layer and can be used to 

prevent the migration of the native soil into the aggregate layers above it (UNHSC, 

2009)   

At the bottom of the PAPS structure is the existing native soil. The infiltration 

capacity of the native soil determines how much water can exfiltrate from the 

aggregate into the surrounding soils. This native soil is generally not compacted. 

(EPA, 2009a) 
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Figure 1. Typical PAPS Structure and Their Thickness Requirements 

Sources: 1. EPA, 2009a. EPA Porous Asphalt Pavement Fact Sheet.  
               2. UNHSC, 2009. UNHSC Design Specifications for Porous Asphalt  
                   Pavement and Infiltration Beds.  
               3. Hansen, 2008. Porous Asphalt Pavements for Stormwater Management:  
                   Design, Construction and Maintenance Guide 

            

The layers where the contaminant removal mainly occurs are the top porous 

asphalt pavement layer and the filter course layer, and as a result the constructed 

PAPS contained only these two layers.  

Column Construction 

Three columns with different PAPS structures were set up in the lab (Figure 2). 

Each of the PAPS was dimensionally similar with a diameter of 6 inches. The control 

column (CC column), which holds a PAPS, had no GAC added; the CPP column is an 

enhanced PAPS that has GAC added into the top porous asphalt layer; and the CCA 

column is another enhanced PAPS that has GAC only added into the sub-base filter 

course layer. 
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       CC         CPP         CCA 
(Control Column) (Carbon in Porous Pavement) (Carbon in Course Aggregate)

 
Figure 2 Test Column Construction Details 

 
1. The CC Column Structure 

A photo of the CC column is in Figure 3. The mix aggregates, weight of 

4000g, for making the top porous asphalt pavement layer for the CC column consisted 

of coarse and fine aggregates are listed in Table 4. A 255g mass of asphalt binder 

mixed with styrene butadiene rubber (SBR) was added to the aggregates (6% of the 

total weight of the porous pavement), which includes 244g mass of asphalt binder and 

11g of SBR (67% solids) at 0.18% by dry weight of the porous asphalt pavement.  

Table 4 Porous Asphalt Mix for the CC Column    
Mixing Particle Size Weight 

(g) 
Weight 

Percentage (%) Sieve Size Diameter (mm) 
3/4'' 19 0 0 
1/2'' 12.5 400 9 
3/8'' 9.5 1000 23 
#4 4.75 2000 47 
#8 2.36 280 7 

#200  0.075 200 5 
#-200  0.075 120 3 

Asphalt Binder 244 6 
SBR (67% solids) 11 (dry weight,7g) 0.3 

Total 4255 100 
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The calculation process of the weight of the styrene butadiene rubber (SBR) is 

shown in the equations below: 

MAB = 6% MPAP = 6% ( MAB + MAG), when MAG = 4000g, MAB = 255g  

DMSBR = 3% (MAB + MSBR), when MAB = 255g, DMSBR = 67% MSBR, 

MSBR = 11g 

            Where: MAB, Mass of asphalt binder 

DMSBR, Dry weight of SBR 

MSBR, Mass of SBR 

MPAP, Mass of porous asphalt pavement (PAP) 

MAG, Mass of aggregates  

When making the sub-base filter course layer mix, aggregates sizes distribution 

were listed in Table 5. 

Table 5 Filter Course Mix for the CC Column    
Mixing Particle Size Weight 

(g) 
Weight 

Percentage (%) Sieve Size Diameter (mm) 

3/4'' 19 0 0 
1/2'' 12.5 3297 50 
3/8'' 9.5 3297 50 

Total 6594 100 
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         Top Porous Asphalt Pavement Layer 
 
 
 
          Sub-base Filter course Layer 

 
 
 
 

Figure 3 Photo of the CC Column 

2. The CPP Column Structure 

When making the CPP column, GAC was added into the top porous asphalt 

pavement layer (Table 6). The amount of the GAC used in this column is 182g which 

was calculated as the weight for the same total apparent volume of the fine particles 

(+200 and -200) of the standard asphalt mixture. This was to produce a PAPS which 

was structurally similar to one without GAC added. A review of the size gradations 

recommended by various highway authorities and the Franklin Institute Research 

Laboratories for composition of the aggregate in porous pavement indicates that a 

minimum of two percent passing the Number 200 sieve was required to provide 

stabilization of the filter course fraction. So 2% by weight of the fines that passed the 

Number 200 sieve were added back into the mixture. The CPP column had the same 

mix design for the sub-base filter coarse layer as for the CC column. 

 
 
 
 



 

16 
 

Table 6. Porous Asphalt Mix Gradation of the CPP Column   
Mixing Particle Size Weight 

(g) 
Weight 

Percentage (%) Sieve Size Diameter (mm)
3/4'' 19 0 0 
1/2'' 12.5 400 10 
3/8'' 9.5 1000 24 
#4 4.75 2000 48 
#8 2.36 280 7 

#200  0.075 0 0 
#-200  0.075 80 2 

GAC #12-#40 0.42-1.68 182 4 
Asphalt Binder 244 6 

SBR (67% solids) 11 (dry weight,7g) 0.3 
Total 4186 100 

 

3. The CCA Column Structure 

The top porous asphalt pavement layer of the CCA column is the same as the 

layer in the CC column. The only difference was that 182g of GAC were added into 

the sub-base filter course aggregates mix. 

Materials 

The VOCs used in this study were dichloromethane (BJ brand) having mass 

fraction of 99.995% purity and toluene (Fisher Scientific brand) having mass fraction 

of 99.9% purity. The dichloromethane and toluene were used as received. After the 

stock solution was prepared, the dichloromethane and toluene’s concentrations were 

tested using gas chromatography–mass spectrometry. 

 The trace metals used in this study were copper, cadmium, and lead.  

The GAC that was used was a coal-based granular activated carbon (Calgon 

Carbon Corporation, Filtrasorb 400) with a size range of 0.55-0.75 mm and an 

apparent density of 0.52g/ cm3. Prior to the start of the experiment, activated carbon 

was dried in an oven at 115°C for 6 hours to remove any adsorbed gases and moisture. 
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Synthetic Roadway Runoff 

For the VOCs removal, DI water containing only dichloromethane and only 

toluene was used for the influent. For the heavy metal removal, DI water containing 

three metals (cadmium, copper and lead) together was used as the influent. A 0.2N 

sodium hydroxide solution was added to the stock solution as necessary to adjust pH 

to 6.6.    

A pH slightly lower than 7 of the runoff will lead to an increase in the 

dissolved fraction and an increased mobility of the trace metals. Since a decrease in 

pH leads to more metals existing in a bioavailable free ionic form, the lower pH can 

cause an increase in toxicity (Hall and Anderson, 1998). Metal adsorption on GAC 

also depends on the pH of the water (Dabioch, et al., 2013). So in this study, the pH 

was kept constant for each experiment. The pH value of 6.6 was selected because it 

was the most often occurring pH value of the roadway runoff found in literature 

(USGS, 2009). 

Researchers found that the GAC adsorption of cadmium increased with the 

increased pH of the solution within a pH range of 5 to 8 (Disnati and Ali, 2014). 

Abudaia reported that adsorption of copper and lead was very low in strong acidic 

solutions and the adsorption capacity increased with increasing pH values and reached 

its maximum at pH 6.5 (Abudaia et al., 2013). The heavy metal removal study was run 

with a runoff pH of 6.6 which was a natural occurring pH value of roadway runoff and 

is close to the pH value of 6.5 where the GAC adsorption of copper and lead reached 

its maximum adsorption capacity.  
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Porous Asphalt Pavement Manufacture  

The process of the PAPS construction followed the procedure given in the 

University of New Hampshire Design Specifications for Porous Asphalt Pavement and 

Infiltration Beds (UNHSC, 2009) and the National Asphalt Pavement Association 

published Porous Asphalt Pavements for Stormwater Management: Design, 

Construction, and Maintenance Guide (Hansen, 2008).  

The procedure was as follows: all aggregates (except +/-200 fines) were 

soaked and washed by DI water and put in the oven for 12 hours at a constant 

temperature of 350°F and cooled; aggregates and asphalt binder PG 64-22 were put in 

the oven at 300 °F for 1 hour, then discharged into the mixer bucket to be mixed; the 

mixture went back into the oven at 300 °F for 1 hour for asphalt binder absorption. 

The SBR was added into the mixing bucket and mixed again; the cylindered mold was 

heated to 300 °F for 15 min. The asphalt mixture was added to the cylindrical mold in 

the Superpave Gyratory Compactor, and the compactor was set to a compacting 

pressure of 600KPa and compacted for 100 gyrations. The finished sample was 

unmolded and cooled. 

Air Void Content Test   

The air void content of the top porous asphalt layer is required to be within the 

range of 16.0-22.0% as described in the UNHSC Design Specifications for Porous 

Asphalt Pavement and Infiltration Beds (UNHSC, 2009). The theoretical maximum 

specific gravity, Gmm was tested using the AASHTO T209 standard. The Bulk 

Specific Gravity, Gmb was tested using the AASHRO T275 standard.  
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Saturated Hydraulic Conductivity Test 

Hydraulic conductivity tests of the top porous asphalt pavement layer were 

conducted following the methods described in EPA Method 9100. A layer of model 

clay was used to cover the sides of the pavement samples to prevent sidewall leakage. 

The thickness of the pavement sample was 10.2cm, and the test was conducted using a 

constant hydraulic gradient of 0.48 (4.9cm/10.2cm) which is in the recommend range 

of 0.2 to 0.5 to prevent turbulent flow from occurring. Prior to testing, samples were 

water soaked in the water for 2 hours. Water was allowed to flow through the porous 

asphalt pavement samples for three times, and hence, three hydraulic conductivity 

readings were measured. The average value of the three hydraulic conductivity 

readings was then reported.  

Experimental Apparatus 

 

Figure 4 Hydraulic Flow Diagram  
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Figure 4 is the hydraulic flow diagram for the experiments. The synthetic 

roadway runoff was pumped using a peristaltic pump with 8 tube capability to 

transport roadway runoff to the surface of the pavement inside the columns. Among 

the 8 tubes, 6 tubes discharged to the top of the surface of the PAPS inside the 

columns to distribute the lab synthetic roadway runoff. Containers under the columns 

collected the water which flowed out of the columns. This treated water was tested for 

contaminants. Water samples from the other 2 tubes were collected and analyzed for 

the influent water quality.  

The pump flow rate was set at 0.7ml/min for each tube (which was calculated 

based on the Kingston, RI area's 1 year 2 hours rainfall intensity of 0.58in/hr). For 

each experiment, the pump ran for 2 hours. For a period of 2 hours the water samples 

which flowed through the columns were collected and analyzed as effluent. Flow 

through the other 2 tubes were collected and analyzed as influent. There were at least 

48 hours between each experiment to mimic typical rainfall intervals. 

Contaminant Analysis 

The concentrations of toluene and dichloromethane were analyzed by Gas 

Chromatography – Mass Spectrometry (GCMS) using a Purge and Trap apparatus. 

EPA method 502.2 was followed. 

For the heavy metal analysis, after the samples were collected, they passed 

through a plastic syringe filter. Nitric acid was added as a preservative to make a 4% 

nitric acid solution. The heavy metal concentrations were measured by a PERKIN 

ELMER Optima 3100 XL Inductively Coupled Plasma instrument (ICP). 
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Removal Efficiencies  

The removal efficiency method typically used by investigators to determine the 

contaminants removal by a BMP device was utilized in data analysis (National 

Cooperative Highway Research Program, 2006; Horwatich and Bannerman, 2011). 

This method uses data from the influent and effluent to produce a single number that is 

designed to represent removal efficiency of the system for each experiment. For the 

BMP studies, the most common and typically most cost-effective method when 

collecting samples is flow-weighted composite sampling. This method uses flow data 

to collect larger sample amounts during high flows, allowing for a more accurate 

representation of an entire roadway runoff event. The generation of a flow weighted 

mean or event mean concentration is the most commonly used method when assessing 

BMPs. But in this research, each experiment lasted two hours, and the total influent to 

each column for the two hours of testing was 504ml. All of the influent and effluent 

water during the two-hour tests was collected. The differences between the mass of 

influent contaminants to the mass of effluent contaminants were calculated when 

discussing the GAC adsorption capability.  

Infiltration Rate Test 

The infiltration rate can influence the GAC contact time with runoff. Even 

though the total mass of GAC added to the CPP and the CCA systems was equal, the 

GAC was added to different locations with the PAPS. 

A saturated NaCl solution was run through each column and the effluent was 

collected with a plastic bowl under the columns. Prior to testing, the top porous 

asphalt layer of the CPP system and the sub-base filter course layer of the CCA system 
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were soaked in DI water for two hours to saturate them. Next, DI water was first run 

through the column with a flow rate of 4.2 ml/min for 20min. A saturated NaCl tracer 

solution ran through the columns. A conductivity meter was used to detect the NaCl 

tracer appearance in the effluent. 

QA/QC 

The QA/QC steps that were undertaken included: the use of non-contaminating 

materials, containers, and apparatus. All glassware was cleaned and put into the oven 

at over 110°C for 2 hours. All plastic ware for metals sampling were washed with 2% 

nitric acid with post DI water rinsing. Samples were preserved at 4°C. Samples were 

analyzed within 48 hours after the samples were collected. VOC filled containers were 

filled as close to the top as possible to minimize VOCs volatilization. Influent 

solutions were passed through pumps and tubes for 30 min prior to the beginning of 

the experiment. Syringe filters were rinsed with samples before they were collected. 

Each syringe filter was used only one time. Standards were used to calibrate the 

GCMS and ICP results.  

DI water with an adjusted pH of 6.6 was passed through the CC, CPP and 

CCA systems to test if there was any metal leaching from the systems. No cadmium, 

copper or lead leaching was observed. 

 Since the collection of effluent took two hours, some volatilization of VOCs 

might be occurred during the experiments, so a volatilization test was conducted to 

measure the possible amount of VOCs volatilized during each experiment. A beaker 

containing dichloromethane and toluene were left open for 2 hours. Samples were 

collected at the beginning and two hours later. The results were listed in Table 7. The 
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influent and effluent concentrations of dichloromethane and toluene from the 

experiments were then adjusted based on these volatile testing results.   

Table 7 Dichloromethane and Toluene Volatile Testing Results 

VOCs Volatile Time (hour)
VOCs Concentration (μg/L) 

Run 1 Run 2 Run 3 Run 4 

DCM 
0 218.9 41.8 8.36 5.21 
2 203.75 28.15 5.28 1.71 

Toluene 
0 108.95 42.7 9.09 2.59 
2 97.55 32 7.17 1.65 

 
 

Results and Discussion  

Contaminants Removal Efficiency 

In this study, the lab synthetic roadway runoff containing only 

dichloromethane and only toluene were prepared as lab synthetic roadway runoff for 

VOCs removal and tested separately. The lab synthetic roadway runoff containing 

cadmium, copper, and lead together with different concentrations were prepared and 

tested for heavy metals removal. The testing results showing the influent 

concentration, effluent concentration and removal efficiency of these compounds are 

presented below.  

1. Dichloromethane Removal Efficiency 

The synthetic roadway runoff containing 37μg/L to 241μg/L dichloromethane 

was passed through systems to conduct the tests. The maximum concentration of 

dichloromethane found in roadway runoff from previous studies listed in Table 1.1 

was 14.5μg/L, the influent dichloromethane concentrations were in the range of 2 to 

17 times the maximum concentration found in the previous studies. Four runs with 
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different dichloromethane concentrations were tested for each system. The results 

from these runs are summarized in Table 8. 

Table 8 Concentrations of Dichloromethane in the Influent (Before Flow Through the 
PAPS) and Effluent (After Flow Through the PAPS) and the Calculated 

Removal Efficiency 
 

Systems 
Dichloromethane 
Influent  (μg/L) 

Dichloromethane 
Effluent (μg/L) 

Removal 
Efficiency (%) 

CC  

37 11 71 
52 15 72 
135 32 76 
241 41 83 

CPP 

46 10 79 
52 11 79 
141 23 84 
234 23 90 

CCA 

48 ND 100 
52 ND 100 
135 ND 100 
240 12 95 

       ND: Not Detected, detection limit is 1.4μg/L 

When the influent concentrations went from 37μg/L to 241μg/L in the CC 

system, the effluent concentrations went from 11μg/L to 41μg/L. The effluent 

concentration increased when the influent concentration increased. The contaminant 

removal efficiencies ranged from 71% to 83%.  

For the CPP system, which has GAC embedded into the top porous asphalt 

layer, when the influent concentrations of dichloromethane were at 46μg/L and 

52μg/L, the contaminant removal efficiency was 79%, which is higher than the 

contaminant removal efficiency of the CC system of 72% under similar condition. 

When the influent concentrations increased to 141μg/L and 234μg/L, the effluent 

concentration was 23μg/L, and the contaminant removal efficiencies were 84% and 
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90%. A comparison with the CPP results to those of the CC system showed that the 

CPP system achieved lower effluent concentrations for the same influent 

concentration.  

For the CCA system which has GAC added into the sub-base filter course 

layer, even higher contaminant removal efficiencies were observed. When the influent 

dichloromethane concentrations were 48μg/L and 52μg/L, the removal efficiency of 

the CCA system reached 100%. The 100% dichloromethane removal also occurred 

when the influent concentration increased to 135μg/L. When the initial concentration 

went up to 240μg/L, the CCA system's dichloromethane removal efficiency was 95%. 

By comparison with the other two systems, the CCA system has the highest 

dichloromethane removal efficiency for all of the influents that were tested. 

Figures 5 shows the dichloromethane removal efficiency of the three systems. 

The removal efficiency of the CC system and the CPP system increased with an 

increase in the influent dichloromethane concentration.  

Figure 6 shows the influent vs. effluent of the three systems. The CCA system 

greatly improved the effluent water quality with non-detectable dichloromethane when 

the influent concentrations did not exceed 135μg/L. Curves were created to illustrate 

the removal behavior of the systems.  

The curve fitting equations for the CC and the CPP systems are similar to the 

Freundlich isotherm adsorption curve equation. The same curve fitting equations were 

created for the other contaminant influent vs. effluent figures. The Freundlich isotherm 

equation is defined as: 

ݔ
݉
ൌ ௘ܥ௙ܭ

ଵ/௡ 
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Where, x/m = weight of adsorbed substance per unit weight of active carbon 

            Ce = concentration in fluid, mg/L  

            Kf, n = specific constants 

The Freundlich adsorption isotherm equation is an equilibrium expression.  

The contacting time of the synthetic roadway runoff with the GAC particles in the 

PAPS systems in this study were not long enough to reach equilibrium. Even though 

the similar trends to Freundlich isotherm curves were observed, the constants Kf and n 

are not able to be determined. Further studies are needed to develop the adsorption 

isotherm equation constants. 

 

Figure 5 Dichloromethane Removal Efficiency  
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Figure 6 Dichloromethane Influent vs. Effluent Concentration  

 

2. Toluene Removal Efficiency 

The synthetic roadway runoff containing toluene with concentrations in the 

range of 22μg/L to 283μg/L was passed through each system to conduct the testing. 

The maximum concentration of toluene found in roadway runoff from previous studies 

listed in Table 1.1 was 9μg/L, thus the toluene concentrations that were tested were in 

the range of 2 to 31 times the maximum concentration found in the previous studies. 

Four runs with a different influent toluene concentration for each system were tested. 

The results from these tests are summarized in Table 9. 
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Table 9 Concentrations of Toluene in the Influent (Before Flow Through the PAPS) 
and Effluent (After Flow Through the PAPS) and the Removal Efficiency 

 

Systems 
Toluene 

Influent  (μg/L) 
Toluene 

Effluent (μg/L)
Removal 

 Efficiency (%) 

CC  

22 2 90 
24 2 90 
48 4 92 
173 31 82 

CPP 

24 1 96 
27 2 95 
37 2 95 
271 8 97 

CCA 

23 ND 100 
24 ND 100 
27 ND 100 
284 1 100 

     ND: Not Detected, detection limit is 0.6μg/L 

For the CC system, when the influent concentrations were 22μg/L and 24μg/L, 

the effluent concentration was 2μg/L with removal efficiency of 90%. When the 

influent concentration was 48μg/L and 173μg/L, the effluent concentration were 4μg/L 

and 31μg/L with removal efficiency of 92% and 82%, respectively.  

For the CPP system, which has GAC added into the top porous asphalt layer, 

the effluent concentrations were in the range of 1μg/L to 8μg/L with the influent 

toluene concentrations in the range of 24μg/L to 271μg/L.  

For the CCA system which has GAC added into the sub-base filter course 

layer, an even higher contaminant removal efficiency was observed. When the influent 

toluene concentration was in the range of 23μg/L to 284μg/L, the effluent 

concentrations did not exceed 1μg/L. Compared with the other two systems, the CCA 

system achieved the highest contaminant removal efficiency among the three systems. 
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Figure 7 and Figure 8 show the toluene removal efficiency of the three test 

systems and their influent vs. effluent concentrations. When the influent toluene 

concentration was lower than 48μg/L, all of these three systems have toluene removal 

concentrations no less than 90%. As the influent concentration increased to 173μg/L, 

the CC system removal efficiency decreased to 82%, but the removal efficiencies of 

the CPP and CCA systems kept increasing to 97% and 100%, respectively.   

 
Figure 7 Toluene removal efficiency 
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Figure 8 Toluene Influent vs. Effluent Concentration 

 

3. Cadmium Removal Efficiency 

Most of the literature reported total cadmium concentrations found in roadway 

runoff were lower than the detection limit of the ICP used in this study. Thus, the lab 

synthetic roadway runoff utilized in this study contained cadmium concentrations 

higher than the literature runoff concentrations. The lab synthetic roadway runoff used 

for the system influent contained dissolved cadmium in the concentration range of 

21μg/L to 88μg/L. The results of cadmium concentrations before and after flowing 

through the three PAPS are summarized in Table 10. 
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Table 10 Concentrations of Cadmium in the Influent (Before Flow Through the PAPS) 
and Effluent (After Flow Through the PAPS) and the Removal Efficiency 
 

Systems 
Cadmium 

Influent (μg/L) 
Cadmium 

Effluent (μg/L) 
Cadmium Removal 

Efficiency (%) 

CC  

21 13 40 
42 17 59 
44 21 53 
50 22 57 
74 27 64 
82 37 55 

CPP  

21 9 55 
43 11 74 
44 12 72 
50 13 75 
74 16 79 
79 22 73 
89 28 69 

CCA 

21 ND 88 
40 ND 94 
45 ND 94 
49 ND 95 
74 ND 97 
81 ND 97 
88 ND 97 

        ND: Not Detected, detection limit is 5μg/L, using 2.5μg/L as effluent  
                concentration when calculating the cadmium removal efficiency 

For the CC system, when the influent concentrations went from 21μg/L to 

82μg/L, the effluent concentrations went from 13μg/L to 37μg/L. The cadmium 

removal efficiencies were in the range of 40% to 65%.  

For the CPP system, which has GAC embedded into the top porous asphalt 

layer, when the influent concentrations went from 21μg/L to 89μg/L, the effluent 

concentrations went from 9μg/L to 28μg/L. The cadmium removal efficiencies were in 

the range from 55% to 79%.  

The removal of cadmium in the CCA system which has GAC added into the 

sub-base filter course layer was measured. When the influent cadmium concentrations 
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went from 21μg/L to 88μg/L, the effluent concentrations were all below the detection 

limit of 5μg/L.  

Figure 9 shows the cadmium removal efficiency of the three systems. The CPP 

and CCA systems all have higher cadmium removal efficiencies compared with the 

CC system. The CCA system achieved the highest cadmium removal efficiency for all 

influent cadmium concentrations. 

 
Figure 9 Cadmium Removal Efficiency  

Figures 10 shows the influent vs. effluent concentration for cadmium. For the 

CC and the CPP systems, the effluent concentration increased with an increasing 

influent cadmium concentration. The CCA system removed nearly all of the cadmium 

applied in the influent.  
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Figure 10 Cadmium Influent vs. Effluent  

 
 

4. Copper Removal Efficiency 
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dissolved copper in the concentration range of 35μg/L to 77μg/L. The results of the 

initial copper concentrations before and after flowing through the pavements are 

summarized in Table 11. 
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Table 11 Concentrations of Copper in the Influent (Before Flow Through the PAPS) 
and Effluent (After Flow Through the PAPS) and the Removal Efficiency 
 

Systems 
Copper 

Influent (μg/L) 
Copper 

Effluent (μg/L)
Copper Removal 
Efficiency (%) 

CC 

37 18 53 
40 20 50 
41 22 46 
63 24 62 
75 24 68 
77 29 62 

CPP 

35 15 59 
42 17 60 
45 17 63 
56 18 69 
61 19 70 
74 20 73 
75 22 71 

CCA 

35 9 74 
41 11 72 
45 11 74 
59 14 77 
67 15 78 
71 15 79 
75 17 78 

 

For the CC system, when the influent copper concentrations went from 37μg/L 

to 77μg/L, the effluent copper concentrations went from 18μg/L to 29μg/L. The 

copper removal efficiencies were in the range of 46% to 68%.  

For the CPP system, which has GAC embedded into the top porous asphalt 

layer, when the influent copper concentrations went from 35μg/L to 75μg/L, the 

effluent concentrations went from 15μg/L to 22μg/L. The removal efficiencies of 

copper were in the range from 59% to 73%.  

The CCA system contained GAC which was added into the sub-base filter 

course layer. When the influent concentration went from 35 to 75μg/L, the effluent 
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concentrations were increased from 9 to 17μg/L and the removal efficiencies of the 

CCA system were in the range of 72 to 79%.  

Figure 11 shows the copper removal efficiency of the three systems. The best 

fit lines were created and shown in the figure. The CPP and CCA systems all have 

higher copper removal efficiencies compared with the CC system. The CCA system 

achieved the highest copper removal efficiency for all conditions. 

 

 
Figure 11 Copper Removal Efficiency  

 

Figures 12 shows the influent vs. effluent concentration for copper removal 

through the systems. For the three systems, the effluent concentration increased with 

the increased influent copper concentration within the testing range. The CCA system 

had an effluent water quality of 9 to 17μg/L. 
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Figure 12 Copper Influent vs. Effluent  

 

5. Lead Removal Efficiency 

The lab synthetic roadway runoff used for the system influent contained 

dissolved lead in the concentration range of 23μg/L to 67μg/L. The results of the 

initial lead concentrations before and after flowing through the pavements are 

summarized in Table 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y = 0.5511x0.9331

R² = 0.9987

y = 0.4658x0.9151

R² = 0.999

y = 0.3683x0.8905

R² = 0.9996

0

5

10

15

20

25

30

35

0 20 40 60 80 100

C
o
p
p
e
r 
Ef
fl
u
e
n
t 
C
o
n
ce
n
tr
at
io
n
 (
μ
g/
L)

Copper Influent Concentration (μg/L)

Copper Effluent vs. Influent

CC
CPP
CCA



 

37 
 

Table 12 Concentrations of Lead in the Influent (Before Flow Through the PAPS) and 
Effluent (After Flow Through the PAPS) and the Removal Efficiency 
 

Systems 
Lead Influent 

(μg/L) 
Lead Effluent 

(μg/L) 
Lead Removal 
Efficiency (%) 

CC 

23 10 54 
26 11 56 
33 11 66 
50 13 75 
56 13 78 
67 19 72 

CPP 

26 8 68 
31 9 70 
33 10 69 
36 10 71 
49 11 77 
50 11 77 
65 13 81 

CCA 

24 8 65 
30 9 69 
33 9 72 
47 10 78 
52 10 80 
66 10 84 

In the CC system, the influent lead concentrations went from 23μg/L to 

67μg/L, and the effluent lead concentrations went from 10μg/L to 19μg/L. The lead 

removal efficiencies were in the range of 54% to 78%. 

For the CPP system which has GAC embedded into the top porous asphalt 

layer, when the influent lead concentrations went from 26μg/L to 65μg/L, the effluent 

concentrations went from 8μg/L to 13μg/L. The removal efficiencies of lead in the 

CPP system were in the range of 68% to 81%.  

For the CCA system, which has GAC added into the sub-base filter course 

layer, the influent concentrations range from 24μg/L to 66μg/L, the effluent 

concentrations went from 8μg/L to 10μg/L, and the removal efficiencies of the CCA 

system were in the range of 65% to 84%.   
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Figures 13 shows the lead removal efficiency of the three systems. The GAC 

increased the removal efficiency of the CPP system and CCA system compared with 

the CC system. At influent concentration around 20μg/L, the CCA system only 

achieved slightly higher removal efficiency as compared with the CPP system. The 

removal efficiency then became greater with the increased influent concentration.  

 
Figure 13 Lead Removal Efficiency  

 

Figures 14 shows the influent vs. effluent concentrations for all three systems. 

For the three systems, the effluent concentration increased with the increased influent 

copper concentration. The CCA system produced the best effluent water quality with 

an effluent lead concentration in the range of 8μg/L to 10μg/L. 
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Figure 14 Lead Influent vs. Effluent 
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Figure 15 The average VOCs Removal Efficiency by the CC, CPP and CCA Systems 

 

 

Figure 16 Impact of GAC Addition on VOCs Removal 
 [CPP System Percent Removal − CC System Percent Removal]  
 [CCA System Percent Removal − CC System Percent Removal] 
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Zeinali's study found that for the same conditions, GAC has a higher 

adsorption capability for dichloromethane than for toluene given a short contacting 

time (Zeinali, 2012). This coincides with the results found in this study, that the 

removal efficiency of the CCA system had a higher increase in removal for 

dichloromethane than for toluene.  

Figure 17 shows the average heavy metals removals of three systems and 

Figure 18 shows the differences in metals removal efficiency between the CPP and 

CCA systems over the CC system. For the CPP and CCA system, the differences 

between the metal removal efficiency compared to the CC system was plotted for 

cadmium, copper and lead. The same data were plotted for the CCA system. Cadmium 

showed the highest difference in removal efficiency from the GAC addition and lead 

showed the lowest increase.  

 
Figure 17 The Average Metals Removal Efficiency by the CC, CPP and CCA Systems 
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Figure 18 Impact of GAC Addition on Metals Removal 
 [CPP System Percent Removal − CC System Percent Removal]  

 [CCA System Percent Removal − CC System Percent Removal] 
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to 135μg/L which is higher than the highest dichloromethane influent concentration 

found from roadway runoff. 

The concentrations of toluene found from roadway runoff were lower than the 

MCL of 1mg/L, so the comparison of effluent toluene with its MCL is not necessary.  

The US EPA MCL for cadmium is set at 5μg/L. For the cadmium removal 

from the CCA system, when the influent concentration was set at the concentration of 

the highest total cadmium concentration reported from roadway runoff, 40 μg/L 

(Table 2), no cadmium was detected in the effluent from the CCA system.  

For copper, the US EPA MCL is 1,300μg/L. The copper concentrations found 

from the roadway runoff were all lower than its MCL. 

The US EPA MCL set for lead is 15μg/L. The reported total lead concentration 

was in the range of 0.03μg/L to 112μg/L (Table 2). Between 5% and 50% of lead in 

roadway runoff was found to be in the dissolved phase (Morrison et al., 1984). The 

maximum dissolved lead concentration would be half of their total concentration of 

56μg/L. For the CCA system, when the influent concentration was set at 66μg/L, the 

effluent concentration was 10μg/L which is lower than the MCL of 15μg/L.      

The best fit equations of the influent vs. effluent of dichloromethane and 

toluene for the PAPS systems were developed based on the data in Figure 6 and 8. 

These equations were used to predict the effluent dichloromethane and toluene 

concentrations from the CCA system when the highest field measured influent 

concentration was 14.5μg/L of dichloromethane and 9μg/L of toluene (Cole, 1984). 
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The results are shown in Table 13. The effluent metal concentrations were also 

predicted and compared to their MCLs in Table 13.  

Table 13 Predicted Field Effluent VOCs and Heavy Metals Concentrations as 
Compared to the EPA MCLs 
 

Contaminants 
Influent 
(μg/L) 

Effluent 
(μg/L ) 

EPA MCL 
(μg/L) 

Dichloromethane 14.5 0 5 
Toluene 9 0 1000 

Cadmium 40 0 5 
Copper 56* 13 1300 

Lead 20* 5.2 15 
               
     Note: *Half of the highest total concentrations reported in the literatures were used. 

The CCA system produced an effluent concentration which met the MCL for 

dichloromethane, toluene, cadmium, copper and lead.   

Porous Pavement Physical and Hydraulic Properties 

The results from the air void content and hydraulic conductivity of the 

pavement samples are shown in Table 14. The air void content was in the range of 

16% to 22% which met the requirements as advised by the University of New 

Hampshire Design Specifications (University of New Hampshire, 2009) 

Table 14 Hydraulic Conductivity and Air Void Content Testing Results of The 
Top Porous Asphalt Pavement Layer 

 Traditional 
PAPS 

CPP 
System Kanitpong, 2011 Mallick, 2000 

Gmm  2.481 2.279 NM NM NM NM 
Gmb  2.077 1.902 NM NM NM NM 
Air Void (%) 16.28% 16.54% 4% 8% 16.2 16.7
K (cm/s) 0.006 0.03 8.5 x10-7 1.2 x 10-4 0.09 0.03
Gmm: Maximum specific gravity of mixture;  
Gmb: Bulk specific gravity;  
K: Hydraulic conductivity 
NM: Not measured 

The porous asphalt pavement sample with the GAC added has a higher air void 

percentage and also a higher hydraulic conductivity. Very few studies could be found 
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to compare the porous asphalt pavement hydraulic conductivity. There were two 

studies which investigated the relationship between hydraulic conductivity and air 

void content, and researchers found the data followed two different simple power 

functions (Kanitpong et al., 2003; Kutay, 2006).  Both researchers suggested that air 

voids could explain a large component of the variation in hydraulic conductivity 

(Kanitpong, et al., 2003; Kutay, 2006). Because only one sample was tested in this 

study (Table 1.8), no air void vs. hydraulic conductivity function can be estimated. By 

comparing the results from the porous asphalt pavement samples of the CPP system to 

the CC system, air voids increased from 16.28% to 16.54% by the replacement of part 

of the fine particles in the porous asphalt pavement sample by GAC.  The hydraulic 

conductivity increased from 0.006cm/s to 0.03cm/s. The same trend of higher 

hydraulic conductivity with larger air void content occurred. The samples used in this 

study did not fit in any of the equations established from previous studies (Kanitpong 

et al., 2003; Kutay, 2006), since the previous studies were done for pavement with 

lower air voids (4%-5%), and their hydraulic conductivities are lower than 10-4 cm/s.  

The hydraulic conductivity depends on not only the air void content, but also 

on how the air spaces are connected. When the mixing design changes, the channel 

connections may change accordingly. In one study, 18 samples with different mixing 

designs were tested for both the permeability and air voids (Mallick et al., 2000).  The 

results showed that the air voids were between 13.9% and 19.2%, and the sample's 

permeability ranged from 0.02cm/s to 0.09cm/s. For samples having similar air voids 

16.2% and 16.7% to the air voids in this study (Table 1.8), the permeability values 

vary from 0.03cm/s to 0.09cm/s respectively (Mallick et al., 2000).  
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Infiltration Rate 

The time spent for the saturated NaCl solution flowing through the systems 

and their infiltration rates were in Table 15. The top asphalt layer in the CPP system 

has an infiltration rate of 4.9cm/min, and the sub-base filter course layer of the CCA 

system has an infiltration rate of 4.1cm/min. So for the same amount of GAC, the 

runoff took longer contacting time with GAC in the CCA system than in the CPP 

system.   

Table 15 Infiltration Rate of the top Porous Asphalt Layer of the CPP System and the 
sub-base Filter Course Layer of the CCA System 

Systems 
Average Infiltration Time

(min) 
Thickness 

(in) 
Infiltration Rate 

(cm/min) 
CPP top 

asphalt layer 
2.07 4 4.9 

CCA filter 
course layer 

6.23 10 4.1 

 

Discussion  

After adding GAC into the traditional PAPS, the CPP and CCA systems 

showed increased removal of VOCs and heavy as compared to the CC system. The 

increased VOCs and heavy metals removal by the two enhanced PAPS will depend on 

the surface area of the GAC, the GAC contact time and the pH of solutions (Zayat and 

Smith, 2013b). Since the pH was constant throughout the test, only the surface area of 

the GAC and the contacting time of the GAC remained to affect contaminants 

removal.  

The CC system and the CPP system had the same sub-base filter course layer 

configuration. In a comparison between these two systems, the only difference is the 

top asphalt pavement layer composition. The top porous asphalt layer of CPP system 

had a hydraulic conductivity of 0.03cm/s which is higher than the 0.006m/s measured 
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in the CC system, the top porous asphalt pavement layer without the addition of GAC 

(Table 15). The contact time of roadway runoff flow through the CPP system, which 

had a higher hydraulic conductivity, was shorter as compared to the contacting time of 

the CC system. Since the adsorption process depends on the surface area of the sorbent 

and the contact time, given a shorter contacting time, the CPP system would be 

expected to remove less contaminant if the limiting step was contact time. The testing 

results showed that the CPP system had a higher contaminant removal efficiency than 

the CC system. So it can be concluded that GAC added into the CPP system plays the 

role of enhancing removal of the contaminants. The GAC added to the CPP system 

was not completely covered by the asphalt binder during the construction process. 

Since enhanced removals were measured, the hypothesis would be that the GAC was 

not completely coated by the asphalt binder.  

For the CCA system, the GAC that was added into the sub-base filter course 

layer removed more contaminants than the CPP system. The reason is that the GAC 

added into the CCA system sub-base filter course was loose and not had been coated 

by asphalt binder which increased the size of the surface area of the GAC that was 

exposed for the same amount of the GAC added. In addition to this lager surface area, 

the infiltration rate of the sub-base filter course layer of the CCA system was 

4.1cm/min which is lower than the infiltration rate of the top asphalt pavement layer of 

the CPP system (4.9cm/min) (Table 16). The decreased infiltration rate resulted in an 

increase in contact time.  
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VOCs Removal Capacity of the CCA System 

The volume of roadway runoff containing dichloromethane or toluene applied 

to the three systems over a period of 2 hours was 504ml. Table 16 lists the difference 

between the total mass of dichloromethane and toluene contained in the influent and 

the effluent of the CCA system based on their measured concentrations. The mass 

differences between the influent and effluent indicated the amount of the VOCs 

removed from the roadway runoff by the systems. For the CCA system, the maximum 

difference of the total amount of VOCs of the influent and the effluent was 115μg for 

dichloromethane and 142μg for toluene. This means that 115μg of dichloromethane 

and 142μg of toluene were able to be sorbed by the CCA system. 

Table 16 The Mass of VOCs Removal From the CCA System 
Compounds Influent Mass (μg) Effluent Mass (μg) Mass Removed (μg) 

Dichloromethane 

24 0 24 
26 0 26 
73 0 73 
121 6 115 

Toluene 

11 0 11 
12 0 12 
14 0 14 
143 0.6 142 

The reported maximum dichloromethane and toluene concentrations in the 

roadway runoff that were found from previous studies were 14.5μg/L and 9μg/L 

respectively (Cole, 1984; and Delzer et. al., 1996). When the equilibrium 

concentrations were set at 14.5 μg/L of dichloromethane and 9 μg/L of toluene for 

aGAC adsorption, the calculated GAC removal capacity was 2mg/kg for 

dichloromethane and 5mg/kg for toluene (Zeinali, 2011). Thus the 182g of GAC 
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contained in the CCA system had a removal capacity of 360μg of dichloromethane 

and 910μg of toluene.  

Given a one inch rainfall (0.46L of roadway runoff added to each system), 

when the contaminant concentrations were 14.5μg/L of dichloromethane and 9 μg/L of 

toluene, the roadway runoff contained a mass of 7μg dichloromethane and 4μg of 

toluene. The average yearly rainfall in Rhode Island is 42 inches, the year loads of 

dichloromethane would be 280μg, and 174μg of toluene.  

In the CCA system, the contaminants were removed by the regular PAPS 

composition and the GAC particles working together. The regular PAPS system has 

the same structure as the CC system. So in this study, the amount of contaminants 

removed from the CC system was assumed to be the same as the contaminants 

removed by the regular PAPS part in the CCA system. Thus, given an influent 

dichloromethane concentration of 14.5μg/L, the traditional PAPS components 

removed 10.2μg/L (Table 13) and the GAC removed the remaining 4.3μg/L. So the 

GAC removed 30% of the total dichloromethane. For the toluene removal, when the 

influent toluene concentration was 9μg/L, the traditional PAPS components of the 

CCA system removed 7.6μg/L, and the GAC removed the remaining 1.4μg/L based on 

the same assumption. The GAC removed 16% of the total toluene influent. 

For dichloromethane removal, when the influent concentration is 14.5μg/L, the 

yearly load is 280μg for each system. The proportional loads for the GAC inside the 

CCA system is 84μg. Since the GAC of each system has a removal capacity of 360μg, 

based on this calculation, the GAC will last 4.5 years. 
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For toluene removal, when the influent concentration is 9μg/L, the yearly load 

is 174μg/L for each system. The proportional loads for the GAC inside the CCA 

system is 44.8μg/L. Since the GAC of the CCA system has removal capacity of 910μg 

of toluene, the GAC is able to last about 20 years 

These are estimates and environmental conditions could change the ultimate 

removal capacity of the system. 

Conclusions  

The addition of GAC into the top porous asphalt layer and the sub-base filter 

course layer are all able to enhance the porous asphalt pavement contaminants 

removal capability for VOCs and heavy metals. Adding GAC to the sub-base filter 

course layer resulted in higher removal efficiencies than adding the GAC directly to 

the top porous asphalt mix layer. With the influent contaminant set at the 

concentrations typically found in the roadway runoff, the effluent concentrations from 

the CCA system had non-detectable concentrations for dichloromethane, toluene, and 

cadmium. The CCA system lowered the effluent concentration of copper to 13μg/L 

and lead to 5μg/L which meet the EPA MCL for these metals.  

Further Studies 

This study proved that adding GAC into the PAPS could enhance the 

contaminants (VOCs and heavy metals) removal from roadway runoff. In order to 

better understand the contaminant removal process before applying these PAPS to 

serve the real stomwater management projects, further studies were suggested 

including perform longer time testing with constant inflow flowrate to create 

breakthrough curves to determine the ultimate capacity of the CCA system; expand 
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the number of contaminants studied both separate and combined for the removal tests; 

and utilize existing roadway runoff to better represent existing contaminant conditions. 
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