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Acoustic scattering from a thermally driven buoyant plume
J. Oeschgera)

Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

L. Goodman
Office of Naval Research, Ocean and Atmospheric Physics Division, 800 N. Quincy Street, Arlington,
Virginia 22217

~Received 6 February 1995; accepted for publication 15 September 1995!

An examination is made of the use of broad bandwidth high-frequency acoustic scattering to infer
remotely the spatial structure of the temperature field of a thermally driven buoyant plume.
Application of the far-field Born approximation results in a linear relationship between the transfer
function of the scattering process,G, the ratio of received to transmitted pressure, to the spatial
Fourier transform of the temperature field,f(K), whereK5ks2k i is the Bragg wave-number
vector. A series of experiments are devised to test this hypothesis. These experiments involve a
geometry of scattering in which pairs of sources and receivers are placed on opposite sides and
equidistant from the scattering volume, a buoyant plume generated by a small circular heating
element at the base of a water tank. It is shown that the far-field approximation assuming incident
plane waves breaks down when the scales of temperature variability of the plume are of order the
Fresnel radius. These results are discussed for both an unstable and turbulent plume. Conditions for
the recovery of the Bragg scattering condition are established. ©1996 Acoustical Society of
America.

PACS numbers: 43.30.Ft@JHM#

INTRODUCTION

Recently there has been considerable interest in applying
acoustics to determine fluctuating oceanic fluid parameters,
including changes in density, sound speed, and fluid velocity.
In particular, the issue of remotely sensing fluid variability
over volume reverberation due to biologics and particulates
has been of increasing importance to the oceanographic, ma-
rine biology, and acoustics communities. During the past two
decades there has been a limited amount ofin situmeasure-
ments indicating that acoustic scattering from ocean micro-
structure is observable above volume reverberation.1–4 Lim-
ited accompanying environmental data for thein situ
scattering experiments, however, restricted detailed knowl-
edge of the state of the scattering volume in these experi-
ments. Also, narrow bandwidth, monostatic acoustic systems
limited the amount of information on the functional depen-
dence of the scattering field. For an in-depth review of re-
search relevant to the issue of acoustic scattering from ocean
microstructure, see Goodman.5

In an attempt to describe the observed scattering
strengths Goodman5 developed an empirically based model
of ocean microstructure and, using weak scattering theory,
predicted observed scattering strengths in terms of turbu-
lence intensity levels and acoustic frequency. Predictions
showed parameter regimes of acoustic scattering from micro-
structure to be on the order of that expected by particulates in
the monostatic case. At near forward angles for the case of
bistatic scattering, however, predictions indicated observable
levels for scattering from microstructure above that from

biologics and particulates. To date there exists noin situ
bistatic scattering measurements to compare with these pre-
dictions.

Laboratory experiments on the scattering of sound from
temperature, density, and fluid velocity fluctuations have
been more widespread, but are still rather limited. Baerg and
Schwarz6 performed a set of experiments of bistatic atmo-
spheric acoustic scattering. Their work represents one of the
most comprehensive data sets on the angular dependence of
media variation on the scattering of sound from turbulence.
A complete angular survey of the relative differential scat-
tering cross section was made and compared with the theo-
retical predictions based on using a25/3 power law spec-
trum for the turbulent field as set forth by Lighthill,7

Kraichnan,8 and Batchelor.9,10 The experimental results
agreed with the theoretical calculations of the angular depen-
dence of the relative scattering strength, showing enhanced
scattering in the forward direction. Unfortunately, the system
was not calibrated and no measurements of the absolute scat-
tering strength were made.

In 1975, Brandt11 examined the issue of acoustic back-
scattering from density fluctuations produced by a saline jet.
The mean density and fluctuation of the jet profile, and the
size of the turbulent microscale along the jet centerline was
calculated by using the results of conductivity measure-
ments. The acoustic backscatter data was shown to correlate
with the measured turbulent parameters.

Korman and Beyer12 reported on a laboratory experi-
ment in which sound was scattered from a turbulent jet. Us-
ing the prescriptions of Kraichnan8 and Ishimaru,13 they
measured the scattered spectra for near forward angles to

a!
Present address: Naval Research Laboratory, Code 7120, 4555 Overlook
Ave. SW, Washington, DC 20375-5320.
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determine the functional dependence of the spectral broaden-
ing and Doppler shift. Their results overestimated the vari-
ance of the turbulent velocity by 25%, but their estimate of
the mean jet velocity along the jet axis agreed well with the
measured value.

Related laboratory experiments exist within the medical
research community.14–22Weak scattering theory is used to
describe the scattering associated with ultrasonic imaging
and tissue characterization. Tissue is well modeled as soft,
fluid-like variations in compressibility and density satisfying
the criterion for weak scattering theory. Unlike scattering
from ocean microstructure where the dominant scattering
mechanism is in most cases given by changes in compress-
ibility, scattering from tissue includes contributions from
density changes, as well as contributions from changes in
compressibility. The central and common feature for the
scattering process in both oceanic and medical applications
is the scattering wave vector or what the authors have termed
the Bragg wave vector. Although not the emphasis of most
reports in the medical field, the Bragg wave vector, the vari-
able at which the spatial Fourier transform of the scattering
field is calculated, remains to be more fully utilized in both
narrow and broad bandwidth applications.

For a discussion on the Bragg wave vector and the
Bragg scattering condition, see Goodmanet al.23 wherein
they reported on results from a bistatic acoustic scattering
experiment from a thermally produced laminar plume ac-
companied with a model based on far-field weak scattering
theory. The experiment consisted of transmitting a narrow
pulse, broad bandwidth signal,~240 kHz to 1.4 MHz! and
measuring the scattered signal produced by the plume. The
measurements were made from near forward to near back-
scatter scattering angles in a plane perpendicular to the
plume axis. The scattering field was modeled as a cylindri-
cally symmetric Gaussian with ane-folding value of 2.4 mm
and an amplitude of 3.7 °C. This model resulted in an ana-
lytic expression for the scattered pressure field or, alterna-
tively, the two-dimensional Fourier transform of the tem-
perature field,f, and allowed direct comparison between the
acoustic data and the predictions of weak scattering theory.
Owing to the cylindrical symmetry of the laminar plume, the
acoustic data could be inverted, providing an acoustic esti-
mation of the temperature profile through the plume, which
was then compared to the measured temperature profile. The
results confirmed the prediction of the Bragg scattering con-
dition, thus validating the usage of far-field weak scattering
theory for the case of scattering from a laminar plume.

In the laminar plume experiment, the source was held in
a fixed location while the receiver was moved to the various
angles around a 25-cm-radius perimeter. Therefore, the mag-
nitude and direction of the Bragg wave vector changed with
each new scattering angle. For scattering in a plane of sym-
metry, variability along the Bragg wave vector is indepen-
dent of direction. Consequently, for a fixed value of the
Bragg wave number,K, the magnitude of the Fourier trans-
form of the scattering field,ufu, is independent of the direc-
tion of the Bragg wave vector. Since the laminar plume is
nearly cylindrically symmetric,ufu is independent of direc-
tion. Data collected at different scattering angles from the

laminar plume can then be compared on the same Bragg
wave number axis. Broad bandwidth incident signals provide
a corresponding range of Bragg wave numbers. The resulting
domain off i measured at scattering angleu i can then be
directly compared tof j measured atu j whenever the mea-
surements have equivalent Bragg wave numbers. The Bragg
scattering condition can then be tested by comparing the
agreement between thef’s made at different scattering
angles. For the special case of the laminar plume, the data
confirmed the Bragg scattering condition.

When the condition of cylindrical symmetry is relaxed,
the Fourier transform of the scattering field depends on both
the magnitude and direction of the Bragg wave vector. How-
ever since the Bragg wave vector is given byK5ks2k i ,
whereks andk i are the scattered and incident wave vectors,
respectively, Bragg wave vectors will be coincident in direc-
tion whenever source–receiver pairs share a common bisec-
tor. By using two different transmit frequencies such that
K152k1 sin (u1/2)52k2 sin (u2/2)5K2 , scattering can re-
sult at exactly the same Bragg wave number. The Bragg
scattering condition predicts identicalufu’s for equal Bragg
wave numbers. By combining broad bandwidth trans-
missions/receptions with multiple simultaneous scattering
measurements in the same scattering direction a more fully
resolved Fourier transform of the scattering field can be ob-
tained. This type of experiment is termed the common scat-
tering direction experiment and will be discussed in a subse-
quent manuscript. This work will concentrate on the case of
scattering with Bragg wave vectors identical in magnitude,
but oppositely directed.

The far-field Born approximation predicts equal magni-
tudes for the Fourier transforms of the scattering field for this
case. It is shown that scattering from spatial variability of
order the Fresnel radius,zF5Ar 0l, results in wavefront cur-
vature effects being important. This, theoretically, invali-
dates the Bragg scattering condition and results in different
scattering transfer functions from oppositely directly Bragg
wave vectors of the same magnitude. This case is examined
in the laboratory. In the next section we will examine the
theoretical relationships expected for scattering from a thin
buoyant plume.

I. THEORY OF ACOUSTIC SCATTERING FROM A
THIN THERMALLY DRIVEN BUOYANT PLUME

Scattering occurs when sound travels into a region char-
acterized by a change in either density, compressibility, or
the fluid velocity. The equation of motion is given by24,25

S ¹22
1

c2
]2

]t2DP~r ,t !5L~r ,t !P~r ,t !, ~1!

whereP~r ,t! is the pressure at positionr and timet andL,
the scattering operator is given by

L~r ,t !5
1

c2
gk~r ,t !

]2

]t2
1“–„gr~r ,t !“…1

1

c2
]u

]t
–“

1
2

c2
u–“

]

]t
, ~2!
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where c051/Ak0r0 is the ambient sound speed,k0 is the
ambient compressibility, r0 is the ambient density,
gk5~k2k0!/k0 is the relative compressibility,gr5~r2r0!/r
is the relative density, andu is the fluctuation of the fluid
velocity.

For the thermally produced buoyant plume considered in
this work, the dominant scattering mechanism is variation of
the relative compressibility from temperature fluctuations
produced by a buoyant thermally driven plume.~This type of
scattering was examined by the authors in a previous
manuscript.23! As a result, only the first term in Eq.~2! is
significant5,23 andgk522aT, wherea5(1/c0)(dc/dT), T
the temperature difference from ambient.

If we define the Fourier transform for the pressure field
as

p~r ,v!5E P~r ,t !exp~ ivt !dt, ~3!

thenL5(22aT/c2)(]2/]t2) and Eq.~1! in frequency space
is given by

~¹21k2!p~r ,v!52k2gk~r !p~r ,v!, ~4!

wherek5v/c.
The Born approximation solution for the scattered pres-

sure field in Eq.~4! for the boundary-free case is given by

p522ak2E T~r 8!B~r 8!p0~r 8,v!g~r ur 8!dr 8, ~5!

where

g~r ur 8!5
exp~ iksur2r 8u!
4pur2r 8u

'
exp~ ikur2r 8u!

4pr
~6!

is the point source Green’s function. The weighting function
B~r 8! is the source/receiver beam pattern; the incident pres-
sure is given byp05P0 exp(ikr 8). The radial dependence of
the incident field is absorbed in the definition ofP0 . The
Born approximation is expected to be valid when26

aT* kL*!1, ~7!

whereL* is the characteristic value of the length scale of the
scattering field in the plane of the Bragg wave number vec-
tor, andT* the value of the temperature fluctuation of the
thermally driven buoyant plume.

In Fig. 1 the geometry of the scattering process is
shown. The scattering volume has linear dimensionsL*!r 0 ,
where r 0 is the distance from source and receiver to the
center of the scattering volume, taken as equidistant, the ex-
perimental case discussed in Sec. II. It is convenient to de-
fine the spatial coordinate system, as shown in Fig. 1, aligned
with the ‘‘x’’ axis along the Bragg wave vector defined by
K5ks2k i , wherek i , ks are the incident and scattered wave-
number vectors whose magnitude isk and whose directions
are, respectively, the incident center line direction of lines
SO and OR of Fig. 1. The magnitude ofK is given by uK u
52k sin~u/2! with its direction along the bisector of SOR,
again taken along the ‘‘x’’ axis. Defining G as the transfer
function of the scattering process and expanding the phase
term of Eq.~5! ur2r 8u to lowest order results in

G~K ![
p

p0
5

ak2

2pr 0
E T~x!B~x!exp@ iKx1 ikz#d3x,

~8!

where

z5z2/r 0 ~9!

is the Fresnel curvature term. It is straightforward to show
for the experimental results presented below that terms
higher order than this term make insignificant contributions
to the phase, i.e.,k times ~higher-order terms! !1. Also be-
cause of the thinness of the buoyant plume relative to the
beam pattern only the ‘‘z’’ dependence inB needs to be
considered. These two sets of assumptions—dropping the
higher-order phase terms and only considering thez depen-
dence ofB—are discussed in the Appendix. Note that when
kz!1 the phase correction terms in Eq.~8! can be ignored
and

G~K !5
ak2

2pr 0
E T~x!B~z!exp@ iKx#d3x[

ak2

2pr 0
f~K !,

~10!

wheref is the beam pattern weighted or filtered~in the ‘‘z’’
direction! Fourier transform of the temperature field at the
Bragg wave numberK. Equation~10! allows a straightfor-
ward inversion to obtain the temperature field from the scat-
tered acoustic pressure field, by inferring from the acoustic
measurements ofG

f~K !5
2pr 0G~K !

ak2
~11!

over all magnitudes and directions ofK and then inverse
transforming to obtainT~x!. Unfortunately because real
acoustic systems have finite bandwidth and because multidi-
rectional~including in different planes! measurements have
practical limitations, use of~11! is limited. Nonetheless Eq.
~11! is a clear prescription for inferring important aspects of

FIG. 1. Scattering geometry for experiment. source,S, and receiver,R, are
in x-y plane.

1453 1453J. Acoust. Soc. Am., Vol. 100, No. 3, September 1996 J. Oeschger and L. Goodman: Buoyant plumes



the temperature field of a fluid. Clever usage of Bragg scat-
tering geometry can also be made to enhance the ‘‘effective’’
bandwidth over whichf is being inferred. For the experi-
ments sited below the bandwidth of the system is between
250 and 750 kHz~10-dB power down points!. By perform-
ing a series of simultaneous multiple pair scattering angle
experiments such that the Bragg wave number lies in the
same direction, which is accomplished by having each
source/receiver transducer pair have a common bisector, the
‘‘ x’’ axis ~Fig. 2! but different scattering angles,u1, u2, u3,
etc., the effective spatial bandwidth inf can be expanded
from a factor of 3 to about a factor of 34 for the case of
u510° to u5180° as shown in Fig. 3. However if the phase
term, Eq.~9!, is significant in Eq.~8! the Fourier transformf
does not separate out of the integral of Eq.~8!. Nevertheless
it is straightforward to show that Eq.~8! can be rewritten in
terms of both the ‘‘x’’ and ‘‘ z’’ wave-number transform
variables onf as

G~K,t!5
ak2

2pr 0
E f~K,kz ,t!g~k,kz!dkz , ~12!

where

f~K,kz ,t!5E T~x,t!exp@ iKx1 ikzz#d
3x, ~13!

g is a filter function arising from wavefront curvature and
beam pattern amplitude weighting, namely,

g~k,kz!5E B~z!expF ikzz1
ikz2

r 0
Gdz. ~14!

Note in Eq.~12! we have suppressed the wave-number de-
pendencek and explicitly included time dependence in the
notation forG since in the experiments to be discussed the
time dependence is an important factor to be exploited.
Equations~12! and ~14! show that the beam pattern ampli-
tude weighting,B(z), and the phase effects of wavefront
curvature,ikz2/r 0 , both result in filtering of the temperature
field over some finite bandwidth in ‘‘kz’’ space. Equation
~10! assumes such filtering removes all wave numbers except
nearkz'0. For this case neglecting the phase termikz2/r 0 ,
and settingB(z)51, Eq. ~14! becomesg(k,kz)52pd(kz)
and Eq. ~10! follows from ~12!. Note that estimating
zb5r 0/ka for the vertical extent of the half-beamwidth in the
‘‘ z’’ direction, where ‘‘a’’ is a cylindrical transducer radius,
andzF 5 A2pr 0 /k the vertical extent of the Fresnel radius, in
the far field by definition27 (zF/zb)

2!1 and Eq.~14! can be
approximated by

g~k,kz!5A i

2
zF expF2 i

~kzzF!2

8p G . ~15!

Equations~12! and ~14! or Eq. ~12! with the ‘‘far-field’’
approximation~15! show that when wavefront curvature ef-
fects are important that in general

G~K,t!ÞG* ~2K,t! ~16!

but if wavefront curvature is unimportant, i.e.,kz!1, that

G~K,t!5G* ~2K,t!. ~17!

Conditions under which either Eqs.~16! or ~17! hold can be
examined in the laboratory by performing a scattering ex-
periment involving two pairs of sources/receivers oriented
such that their Bragg wave numbers are of the same magni-
tude but opposite direction. LetG1 andG2 refer to the trans-
fer functions obtained from the respective positive and nega-
tive Bragg wave vectors of such an experiment, whereG is
obtained from its definition in Eq.~8!. In general Eq.~16!
holds, however there are circumstances in which although
wavefront curvature effects are significant,G1 andG2 have a
simple relationship. Two types of assumptions on the nature
of the variability of the fluid field allow such relationships to
emerge. These are~1! the plume motion satisfies Taylor’s
hypothesis in the ‘‘z’’ direction; and~2! the plume tempera-
ture variability is statistically homogeneous and stationary.
The former will be applied to an unstable, nonturbulent
plume, while the latter to a turbulent plume. We will com-
plete this section by examining the consequences of these
assumptions and criteria of their application.

A. Application of Taylor’s hypothesis to plume
variability

For the case of using Taylor’s hypothesis it is assumed
that the temperature field of the buoyant plume satisfies

T~x,y,z,t!5T~x,y,z2z0!, ~18!

FIG. 2. Common Bragg wave-number direction geometry.

FIG. 3. Bragg wave-number bandwidthDK for 250 kHz, f,750 kHz,
DK52(2pD f /c) sin ~u/2!, whereD f5500 kHz.
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wherez05wt, w is the vertical advection velocity, andt is
the time associated with the repetition rate of the experiment.
This is valid when the variability of the fluid field is such
that28

t*@L* /w, ~19!

wheret* andL* are the characteristic time and length scale
of a plume eddy being advected in the vertical with speedw.
Use of Taylor’s hypothesis in Eq.~13!, is equivalent to per-
forming a set of simultaneous scattering experiments in a
series of planesz0 . The Fourier transform of~12! on z05wt
can be written

b5E G exp~ ikzz0!dz05
ak2

2pr 0
g~k,kz!f~K,kz!, ~20!

where in Eq.~13! we have used Taylor’s hypothesisT~x,t!
5T~x2wt! to obtain the relationship f(K,kz ,t)
5f(K,kz)exp[ikzwt].

From ~20! the inversion

f~K,kz!5
2pr 0b

ak2g~k,kz!
~21!

follows, and that

f6~K,kz!5
2pr 0b6

ak2g~k,kz!
, ~22!

whereb6 defined by Eq.~20! is the Fourier transform inz0
of G6 . From ~21! we see that Taylor’s hypothesis allows
calculation of the wave-number transform inK, kz space
rather than justK space since the advection in the vertical
brings past the vertical scattering plane information. Equa-
tion ~22! establishes a testable relationship betweenb6 ,
namely, that

b1~K,kz!

g~k,kz!
5

b2~2K,kz!

g~2k,kz!

and that sinceg(2k,kz)5g* (k,kz) that

ub1~K,kz!u5ub2~2K,kz!u. ~23!

In Fig. 4 the physics underlying the symmetry imposed by
the role of Taylor’s hypothesis in relatingb6 is illustrated.
Consider a scatterer~a fluid parcel of some temperature
anomaly! at time t1 located at (x0 ,2z0) lying along the
lower part of the convex wavefront emitted from source/
receiver pair 1. Taylor’s hypothesis implies that this same
scatterer will be located at (x0 ,z0) at some latter time,t2,

and thus will be located at exactly the mirror reversed posi-
tion of the oppositely directed wavefront from source/
receiver 2. Both wavefronts receive the same magnitude and
phase but time delayedt22t1. In reality the fluid will change
its properties~magnitude and orientation of its temperature
anomaly field! as it traverses from (x0 ,2z0) to (x0 ,z0) but
if ~18! is satisfied, this change is sufficiently small that it can
be neglected. Since the wavefront acts as a filter over scales
of order the Fresnel radiuszF 5 Ar 0l, the time scales of
variability should satisfy

t*@
zF
w
. ~24!

B. Application of homogeneity and stationarity to
plume variability

To form a wave-number spectrum it is necessary to as-
sume, at least locally, a random field satisfies homogeneity
and stationarity.10 From ~13! this condition can be written

^f~K,kz ,t!f* ~K,kz8 ,t!&5F~K,kz!d~kz2kz8!

for which from Eq. ~12! it follows that the wave-number
spectrum is given by

C[^G~K,t!G* ~K,t!&

5S ak2

2pr 0
D 2E dkz F~K,kz!ug~k,kz!u2. ~25!

ThusC(K)(ak2/2pr 0)
22 is the wave-number spectrum of

the temperature field filtered in thekz by ugu2. Note that~25!
predicts the same spectrum forC6 , sinceC(K)5C(2K).
The validity of Eq.~25! will be examined in laboratory ex-
periments.

II. EXPERIMENTAL SETUP

The principle objective of the experiment is to examine
the validity of Eq.~16! or Eq. ~17!. Equation~16! requires

FIG. 4. Opposing Bragg wavefronts for a monostatic case illustrating appli-
cation of Taylor’s hypothesis.

FIG. 5. Opposing Bragg wave-number vector geometry.
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that wavefront curvature effects be accounted for in order to
interpret the scattering results in terms of the temperature
field. Note that Eq.~17! predicts that for oppositely directed
incident wave fields with the same magnitude Bragg wave-
number vector, the geometry of which is shown in Fig. 5, the
same magnitude ofG results, i.e.,uG1u5uG2u. For the case of
an axisymmetric laminar plume experimental results have
been consistent with this relationship.23 This arose, however,
because of the cylindrical symmetry of the laminar plume,
i.e., f(2k,kz)5f(k,kz), the steady~unchanging in time!
nature of the variability field, and local uniformity in the
vertical direction. This experiment will examine whether the
Bragg scattering condition on the laminar plume can be ex-
tended to the cases of scattering from an unstable and turbu-
lent plume, where no such symmetry, in general occurs, and
which is intrinsically unsteady in time. Because of the three-
dimensional variation of the temperature field for the un-
stable and turbulent cases unlike the laminar plume case23 it
is not possible to do a direct comparison between the tem-
perature field~or its Fourier transform! observed acoustically
and that inferred from mechanical sensors~thermistors!,
since such sensors are point measurements and the acoustic
inversion@Eq. ~11!# involves a spatially integrated measure-
ment. Instead the point of view adopted here is, given the
previous positive results on the laminar plume case where a
direct comparison was in good agreement, to see whether the
data obtained is consistent with the constraint imposed by
Eq. ~17! and, if not, with the hypotheses presented at the end
of Sec. I.

In Fig. 6~a!–~c! the laser shadowgraph images are
shown for the three plume fluid stability regimes. The laser
shadowgraph is used during the experiments as a visual
monitor. The scattering experimental setup consists of a
Plexiglas tank filled with filtered fresh tap water. Inside the
tank is placed a ring assembly system consisting of two
plates. On the bottom plate is a 3/8-in.-diam, 50-W heating
element used to generate a buoyant plume. The top plate is a
50-cm i.d. ring, around which transducers can be placed in
10-deg increments. For this experiment, the transducers are
arranged as shown in Fig. 5. The scattering angles for source/
receiver pairsS1 ,R1 and S2 ,R2 are chosen as 30 deg to
produce the maximum signal with minimum sidelobe effects
and a spatial wave-number bandwidth sufficiently wide to
resolve the plume temperature variability. By varying the
input power to the heating element, three different parameter
regimes can be examined: laminar, unstable, and turbulent.

Three types of acoustic measurements are made in order
to calculateG, defined by Eq.~8!.

~1! To calculate the incident pressure field, a direct path
measurement is made between each source and receiver with
the receiver placed at the center of the scattering volume.

~2! A ‘‘plume on’’ measurement in which the scattered
signal from the plume is range gated and digitized.

~3! A ‘‘plume off’’ measurement which is used to sub-
tract from the scattered signal any stationary reverberation,
i.e., Ps(x,t)5Pon(x,t)2 P̄off(x), where P̄off(x)
5^Poff(x,t)&. The transmit signal consists of single-cycle
waveform with center frequency of 500 kHz, amplified by a
2-kW power amplifier. The transducers have a 10-dB down
point bandwidth of 500 kHz, i.e., 250 to 750 kHz. At time
t50 source 1 transmits the single-cycle signal, receiver 1 is
range gated at the plume and the received signal is digitized
at 5 MHz. The waveforms are stored in place onboard the
data acquisition system and off loaded after the completion
of the experiment. Since the scattering field is, in general,
time dependent, it is necessary to measure the scattering for
source/receiver pair 2 as near simultaneous as possible with
source receiver/pair 1. Typically, reverberation persists on
the order of milliseconds, while the time variability of the
plume is on the order of hundreds of milliseconds and
longer. So that a transmit time for source 2 att55 ms after
that of source 1 is sufficiently small to ensure that source/
receiver pair 2 interrogates the same scattering field as
source/receiver pair 1. The system repetition interval is cho-
sen as 15 ms. This cycle is repeated 1023 times for a total of
approximately 15 s of plume variability data. Results from
two cases will be presented below: Case A, the nonturbulent
but unstable plume Fig. 6~b!, and case B the turbulent plume
Fig. 6~c!.

III. EXPERIMENTAL RESULTS

A. Case A: Unstable nonturbulent plume

The terms channels 1 and 2 refer to scattering associated
with source/receiver pairsS1 ,R1 and S2 ,R2 , respectively,
corresponding to opposite Bragg wave-number directions
and thus6K. Contour plots of the raw magnitude of the
scattered signals, unnormalized pressure amplitude,uPu, for

FIG. 6. Laser shadowgraph images for~a! laminar plume,~b! unstable
plume, and~c! turbulent plume.
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channels 1 and 2 are displayed in Figs. 7 and 8. The left hand
ordinate represents the time series in units of seconds which
is formed from returns at the system repetition rate of 15 ms.
The right hand ordinate has been converted to a spatial co-
ordinate by use of a mean vertical plume velocity of 3 cm/s
inferred from laser shadowgraph tracking of features. The
abscissa is along the vector Bragg wave-number direction,
i.e., ‘‘x’’ axis in Fig. 1 in units of cm, defined in terms of
channel 1 source/receiver location. In Fig. 8 the ‘‘x’’ axis
coordinate used is the same as in Fig. 7 and so positive
values actually correspond to earlier arrivals.

Note that the two figures are qualitatively similar but
have a mirror image type of asymmetry. Both have approxi-
mately the same number of local maxima with a periodicity
of about 1.5 s corresponding to 5 cm. An anomalous feature
is noted in both figures at about 8 s. The strong steady peri-
odicity noted in these features is expected from the unstable
nonturbulent plume shown in Fig. 6~b! which does have
about the same vertical spatial scale as the acoustic measure-
ments.~However it should be noted that the aperture of the
laser was limited to 6 cm in the vertical.! There does appear
to be a phase lag between the maxima of channels 1 and 2 of

about 1 s orabout 3 cm. We attribute this phase lag to the
effect described in Fig. 4 where a feature which lies along
the slope of the wavefront from one of the channels will be
advected vertically and at some latter time lie along the same
sign slope of the wavefront of the other channel. It is inter-
esting to note that 3 cm does correspond to order of the
Fresnel radius at the center frequency 500 kHz.

It should be noted that Figs. 7 and 8 contain effects due
to differences in the individual transducer characteristics and
thus should be viewed as qualitative indicators of the scat-
tering. These effects are removed in the calculation ofG
versus time, which is displayed in Fig. 9~a!–~h! for the same
data set of Figs. 7 and 8. The range of Bragg wave numbers
presented correspond to the bandwidth of the system. Figure
9~a! is at frequency well below the response range of the
transducer and is an indicator of noise. At Bragg wave num-
bers less than 1116 rad/m~f5508 kHz! the mean value of
uGu of the two curves are different. However the variance of
fluctuations are of similar magnitude. At Bragg wave num-

FIG. 7. Contour plot of the magnitude of the scattered signal from an un-
stable plume for channel 1.

FIG. 8. Contour plot of the magnitude of the scattered signal from an un-
stable plume for channel 2.

FIG. 9. Time series ofuG6(K,t)u for frequencies of~a! 117 kHz, ~b! 234
kHz, ~c! 313 kHz, and~d! 430 kHz.G1 ,G2 is given by solid/dashed lines,
respectively. Time series ofuG6(K,t)u for frequencies of~e! 508 kHz, ~f!
625 kHz, ~g! 703 kHz, and~h! 938 kHz.G1 ,G2 is given by solid/dashed
lines, respectively.
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bers greater than 1116 rad/m the mean value ofuGu of the two
curves converge but their variances are different with chan-
nel 2 having consistently larger variance.

The fact that there appears to be a phase lag between
features in Figs. 7 and 8 suggests the possible use of Taylor’s
hypothesis for this data set. Equation~21! can then be used
to estimate the wave-number transformf(K,kz) from the
Fourier transform ofG on z05wt. Using w53 cm/s, esti-
mated from the laser shadowgraph data, in Eq.~20! with b6

calculated fromG6 associated with the two channels esti-
mated values ofuf6(K,kz)u are plotted versuskz in Figs. 10
and 11 for Bragg wave numbers ofK5515 rad/m~f5237
kHz! andK51373 rad/m~f5633 kHz!. The plus/minus sub-
script refer to estimations from data obtained from channels
one and two, respectively. Note the strong peaks atkz5120

and 190 rad/m corresponding to 5.2 and 3.3 cm, respectively,
vertical scale variations. These can also be observed in the
raw data of Figs. 7 and 8. However over much of the range
of kz there is more of an agreement betweenuf1(K,kz)u and
uf2(2K,kz)u than betweenuf1(K,kz)u and uf2(K,kz)u.
This arises since Eq.~23! does not in general hold because
the conditions for Taylor’s hypothesis Eq.~24! do not hold.
Moreover the combination of strong~but not perfect! hori-
zontal cylindrical symmetry along with the wavefront curva-
ture filtering effect would result in similarity between
uf2(2K,kz)u and uf1(K,kz)u. We have also indicated in
Figs. 10 and 11 the Fresnel wave numberkF5p/Ar 0l by
the vertical arrow. In Fig. 11 in which there is a larger re-
gime of wave numbers less thankz there does appear to be
somewhat closer agreement betweenuf2(K,kz)u and
uf1(2K,kz)u indicating that Taylor’s hypothesis may be
valid there. Figure 12 is an expanded version ofkz of Fig. 11
in the region of this agreement.

FIG. 10. Slice of the two component three-dimensional Fourier transform of
temperature field,ufu, atK5515 rad/m~f5234 kHz!. Solid black/gray lines
indicate uf1u and uf2u, respectively, dashed black line isuf1u at K52515
rad/m.

FIG. 11. Slice of the two component three-dimensional Fourier transform of
temperature field,ufu, at K51373 rad/m~f5625 kHz!. Solid black/gray
lines indicateuf1u and uf2u, respectively, dashed black line isuf1u at
K521373 rad/m.

FIG. 12. Expanded graph of the two component three-dimensional Fourier
transform of temperature field,ufu, at K51373 rad/m~f5625 kHz!. Solid
black/gray lines indicateuf1u and uf2u, respectively, dashed black line is
uf1u at K521373 rad/m.

FIG. 13. Contour plot of the magnitude of the scattered signal from a tur-
bulent plume for channel 1.
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B. Turbulent plume

In Figs. 13 and 14 analogous to Figs. 7 and 8 are the raw
magnitude of the scattered pressure fields for channels 1 and
2 for the turbulent plume case. Note that the signal appears
as a series of bursts or intense periods of duration of order 3
s. The same type of mirror image asymmetry is also noted in
these figures as in Figs. 7 and 8. Note the similarity of fea-
tures in the two figures between the times oft50 to t53 s
andt56 to t510 s. In Fig. 15~a!–~h! time series ofG6 are
presented for this case. Note the general similarity of the two
channels over the entire Bragg wave-number bandwidth.
This suggests that the two fields can be considered as ran-
dom realizations of the same process and an assumption of
local stationarity and homogeneity is reasonable and thus
that relationship~25! can be used. We calculate the filtered
spectrum fromC6 5 ^G6(K,t)G6* (K,t)& where the average
is taken over time. We use 151 points corresponding to ap-
proximately 2.5 s. Equation~25! results in for the homoge-
neous stationary case

C15C2 . ~26!

In Figs. 16 and 17 we present a contour plot ofC6 versus
Bragg wave number and time. In Figs. 18~a!–~d! through we

FIG. 14. Contour plot of the magnitude of the scattered signal from a tur-
bulent plume for channel 2.

FIG. 15. Time series ofuG6(K,t)u for frequencies of~a! 117 kHz,~b! 234
kHz, ~c! 313 kHz, and~d! 430 kHz.G1 ,G2 is given by solid/dashed lines,
respectively. Time series ofuG6(K,t)u for frequencies of~e! 508 kHz, ~f!
625 kHz, ~g! 703 kHz, and~h! 938 kHz.G1 ,G2 is given by solid/dashed
lines, respectively.

FIG. 16. Contour plot ofC1 5 ^G1G1* & for turbulent plume.

FIG. 17. Contour plot ofC2 5 ^G2G2* & for turbulent plume.
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plot four curves which are ‘‘cuts’’ through the contour plots
at different Bragg wave numbers. Note in these figures the
two features seen in the time series fromt50 to t53 and
from t56 to t510. These features are stronger and much
more broad bandwidth than the structure of the spectra at
other times. This intermittency and broad bandwidth is an
expected character of turbulent flow. The single scattering
angle experiment does not in general resolve all the scales of
the turbulent field. Our next set of experiments will be di-
rected at this problem. Further discussion on this will be
given in the summary and conclusion section. To examine
the agreement of the curves and see how well~26! is satisfied
we plot the fractional difference between the two spectra in
Fig. 19. Equation~26! is in general well satisfied except
during time periodt512 to 14 s, which from Figs. 16 and 17
and Figs. 13 and 14 are periods of low intensity scattering. It
should also be noted that there are features which clearly
occur in one channel and not the other. In Fig. 17 there is a
circular symmetric feature centered att514 s andK51050
rad/m. No such feature is present in Fig. 16. In addition the
feature present centered att513 s andK5650 rad/m in Fig.
17 appears to be displaced upward abovet514 s ~and
K5650 rad/m! in Fig. 16. In general, agreement from be-
tweenC6 is worse at the beginning and end of the data sets.
This effect is attributed to the displacement of feature effect
illustrated in Fig. 4 and also noted in the unstable nonturbu-
lent plume case.

IV. SUMMARY AND CONCLUSIONS

The experiment discussed in this manuscript was de-
signed to test the application of the far-field approximation to
the case of scattering from unstable nonturbulent and turbu-
lent thermally driven buoyant plumes. Unlike the laminar
plume discussed in an earlier paper23 where the scattering
field is two dimensional, in these cases the scattering field is
a continuous distribution of three-dimensional scattering fea-
tures where the vertical length scales of medium variability
is of order the Fresnel radius. This has required the inclusion

of wavefront curvature terms in the far-field expansion of
phase term in the Green’s function solution. Thus the far-
field approximation is insufficient to adequately describe the
scattering process. A two channel bistatic scattering geom-
etry with oppositely directed scattering wave vectors was
used to observe and quantify the wavefront curvature effect.
The results of the raw acoustic signals from an unstable non-
turbulent plume confirmed the failure of the far-field ap-
proximation. Time series contour plots of the scattered pres-
sure field did not indicate the mirror image symmetry which
would be valid in the far-field approximation. By calculating
the transfer function of the scattering process for the mea-
surements made in the plus and minus directions,G1 and
G2 , and comparing the time series at selected acoustic fre-
quencies, the data show thatuG1uÞuG2u, thus further indica-
tion that the far-field approximation is invalid for the nontur-
bulent unstable plume case. It is interesting to note the
qualitative similar periodicity inuG1u and uG2u. However the
time lag shows that when one channel is measuring a maxi-
mum the other is at a minimum. This is indicative of the
interaction between the wavefront curvature and the vertical
length scales present in the unstable plume. Thus, far-field
correction terms must be included to describe the scattering
process.

The presence of wavefront curvature terms however,
complicates the formerly simple relationship between the
complex acoustic field and the spatial Fourier transform of
the scattering field for far-field incident plane waves. This
complication can be remedied however, when the scattering
field satisfies Taylor’s hypothesis, the plume rises with a
uniform vertical velocity w, i.e., T(x,y,z,t)5T(x,y,z
2wt). This assumption immediately led to the recovery of
the two component three-dimensional Fourier transform of
the scattering field from the acoustic data. The result pre-
dicted that uf1(K,kz)u5uf2(2K,kz)u, i.e., the Fourier
transform of the temperature field,f, measured in the plus
direction equal the negative wave-number spectrum off
when measured in the minus direction. Note in Fig. 11 the
agreement inuf1(K,kz)u anduf2(2K,kz)u at lowerkz val-
ues, however at largerkz values the agreement breaks down.
This result indicates the length scales over which Taylor’s

FIG. 18. Time series spectra foruC1u ~solid! and uC2u ~dashed! for K5~a!
700 rad/m,~b! 900 rad/m,~c! 1100 rad/m, and~d! 1300 rad/m.

FIG. 19. Contour plot of
1
2~C12C2!/~C11C2!.
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hypothesis may hold arekz ^200–300 rad/m, orl z52p/kz&
2–3 cm. Figure 12 indicates that the large scale vertical vari-
ability better satisfies Taylor’s hypothesis than the smaller
scale variability.

Scattering from a turbulent plume using the oppositely
directed scattering geometry was also examined. As with the
unstable nonturbulent plume, time series data of the scattered
pressure field from the turbulent plume showed the same
qualitative asymmetry when viewed from opposite direc-
tions. However, unlike the unstable plume, time series com-
parisons of the transfer functions for the turbulent plume
were in good agreement. This results from the statistical
equivalence of the turbulent plume within the scattering vol-
ume when viewed from opposing directions.

For the turbulent plume, the assumption of local homo-
geneity and stationarity was used to develop a wave-number
spectrum of the scattering field,C, which resulted in predict-
ing equal spectra for oppositely directed scattering geometry
measurements. The fractional difference betweenC1 and
C2 showed that for instances away from the initial and final
conditions of the experiment, agreement from 5% to 25%
over the bandwidth of the measurement. This technique re-
mains to be more fully utilized in the common scattering
direction experiment to better determine the wave-number
spectrum of the scattering field over a broader bandwidth.

Application of this technique to remotely monitor seaf-
loor vents and plumes presents some difficulties. The theo-
retical development described in this paper requires the use
of the weak scattering approximation. Acoustic imaging
measurements of hydrothermal plumes conducted by Rona
et al.,29 had plume temperatures of 350 °C and equivalent
diameters of 5.3 cm. Using these values in Eq.~7!, the re-
quired condition for weak scattering theory, the inequality is
clearly violated. Thus even in the absence of particulates the

complex receive acoustic field is no longer simply related to
the temperature field of the scattering volume. Ronaet al.
stated that the acoustic imaging used was based on backscat-
ter due to metallic mineral particles precipitated in the
plume. Whether the dominate scattering mechanism was par-
ticulates or thermally induced index of refraction changes, it
is reasonable to state that weak scattering theory may not be
satisfied. The use of Taylor’s hypothesis to describe vertical
advection is valid provided the time scale of vertical variabil-
ity is much greater than the ratio of the Fresnel radius to the
vertical velocity of the plume,@Eq. ~24!#. Ronaet al. quote
an initial plume velocity of 1 m/s, at 500 kHz and a plume
receiver of range of 5 m yields a limiting time scale of 0.1 s.
Thus this method could be used to infer vertical variability of
such sea floor vents. Apart from examining seafloor vents
and plumes, application of the methods and techniques de-
veloped can be applied to examine turbulence found in the
ocean. Particular use can be made, as will be discussed in a
future paper, on using multiple bistatic scattering measure-
ments made in a common scattering direction.
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APPENDIX

Expansion ofur2r 8u in terms of integration variables up
to fourth order gives
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A term-by-term evaluation ofkur1r 8u using the above expan-
sion andk51380 rad/m~corresponding to the 6-dB power
down point!, r 0525.0 cm,u530°,x5y50.4 cm, andz53.0
cm. Only the first three terms on the right-hand side of~A1!
are of order or greater than one. The parameters used for the
horizontal variability of the plume are determined by the
e-folding value of the laminar plume23 coupled with time
series temperature data taken at a point located directly
above the scattering volume and simultaneously with the
acoustic data. The vertical extent of the scattering field is
limited by the source/receiver beam pattern and determined

using the 6 dB down point at the lower limiting frequency.
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