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ABSTRACT 

Obtaining, handling, and storing of explosives, especially primaries such as 

triacetonetriperoxide (TATP), presents significant obstacles to instrument 

manufacturers and K-9 trainers.  Microencapsulation techniques were used to trap 

TATP in a plastic matrix rendering it safe to handle, store at room temperature, and 

release by heating.  Detection of most explosive vapor is a challenge for current 

instrumentation.  This work provides a study of polymer systems for the pre-

concentration of explosive vapor for use with portable explosive detection 

technologies, specifically molecularly imprinted polymers (MIPs). 
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Abstract  

   There is a need in the explosives detection community for an insensitive, 

storage-stable source of triacetone triperoxide (TATP).  To achieve this, the solvent 

evaporation microencapsulation technique was used to disperse TATP in a plastic 

matrix.  This lowered the shock sensitivity greatly and prevented loss of TATP at 

room temperature, allowing for easy long term storage.  It was then demonstrated that 

pure TATP vapor was released on demand from the matrix by heating.     

 

Introduction 

Triacetone triperoxide (TATP) is a primary explosive with a high room 

temperature vapor pressure (0.052mm Hg) [1].  The high sensitivity and vapor 

pressure make it impractical for military or industrial use.  It is quite easy to 

synthesize, making it a favored explosive of terrorist organizations and thrill-seeking 

amateur chemists around the world.  The detection of TATP is thus of great interest to 

military and security agencies. Unfortunately, as a primary explosive, it is highly 

hazardous to handle.  Despite this, two communities require this explosive or at least 

the explosive scent:  bomb sniffing dogs and companies manufacturing trace explosive 

detection instruments.   For the manufacturers, obtaining, handling, and storing any 

explosive is a significant obstacle; thus, it is our intention that the protocols developed 

in this study can be transitioned to other energetics materials.  

The approach discussed herein is encapsulation of the explosive with sufficient 

polymer that it is subject to combustion rather than to detonation.   

Microencapsulation procedures distinguish between two types of microparticles: 
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microcapsules and microspheres.  Microcapsules have a discrete polymer shell which 

surrounds either pure core material or a microsphere-like matrix of polymer and core 

material.  Microcapsules are capable of higher loadings of core material. A 

microsphere is a polymer matrix with the desired core material dispersed throughout 

the polymer (Fig. 1).  They can have maximum theoretical loadings of up 50% core 

material [2].     

 <Figure 1> 

There are numerous physical methods used for microencapsulation [3–6].  Pan 

coating is a well-established encapsulation process that is still widely used in the 

pharmaceutical industry [3, 6].  Particles of core material are sprayed with solubilized 

polymer while they are tumbled in a “pan.”  The pan is usually heated to facilitate 

evaporation of organic solvents.  The polymer coats the particles as they rotate in the 

pan and the solvent evaporates, leaving a polymer shell.  Particle size is controlled by 

size of core particles, pan rotation speed, and addition rate of solubilized polymer.  

Disadvantages of the pan coating approach include potential for aggregation of 

particles and adherence of particles and aggregates to walls of the pan as the polymer 

coating hardens.  Because TATP is sensitive to explosive initiation from shock, 

friction, and heat, tumbling inside a heated container is not prudent.   

Fluidized bed coating, also called Wurster coating [3], is similar to pan coating 

except air jets replace the tumbling pan.  Air currents move the core material past a 

nozzle that sprays them with the solubilized or molten polymer.  The spraying nozzle 

can either be tangential to, above, or below the substrate.  The position of the nozzle 

changes the performance of the coating [3].  As with pan coating, this method applies 
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to solid core material. Particle size is controlled by the original size of the core 

particles and polymer coating rates by spray conditions.  It is prone to the same 

disadvantages as pan coating.   

 In spray drying, solid core material is mixed with solubilized polymer in a 

reservoir and sprayed out a nozzle into a collection chamber [3–5].  The chamber is 

large enough to allow the solvent to evaporate before the particles reach the bottom.  

When the solvent evaporates, the core material is left with a solid polymer shell.  

Spray cooling is a similar technique [3–5] where a molten, rather than a solubilized, 

polymer is used. The polymer cools and hardens as the droplet surrounding the core 

material falls into the collection chamber.  In both methods the particle size is 

controlled by the type of nozzle used.  For purposes herein, this method would be 

limited by the number of polymers that melt at temperatures safe for handling TATP.   

The solvent evaporation technique uses emulsions and volatile organic solvents 

to make microspheres rather than microcapsules [2, 7, 8].  The polymer and the core 

material are dissolved in a volatile organic solvent which becomes the dispersed 

phase. All three, the polymer, the core material, and the solvent, must be immiscible 

with a second liquid phase, which will be used as the continuous phase.  Using a 

surfactant and rapid stirring, an emulsion is used to create droplets which harden into 

solid microspheres as the dispersed phase solvent evaporates.  The surfactants, stirring 

speed, rate of dispersed phase evaporation, and amount of solvent used in the 

dispersed and continuous phase all affect particle size [7, 8].  Particle size often varies 

between one to two orders of magnitude inside a batch.   
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Co-acervation uses emulsions and solubility to make microcapsules.  It is most 

commonly performed using a water/oil mix with the oil being the core material [9].  

The polymer is dissolved in water and oil is emulsified into the aqueous solution.  A 

change in conditions (temperature, pH, addition of a salt, addition of an anti-solvent) 

lowers the solubility of polymer in water causing the polymer to reform [3, 10, 11].  

The reforming polymer collects at the surface of the oil droplets, forming a shell.  

Particle size is controlled by stirring time, size of emulsion droplet, and the changing 

solubility of the polymer in the solvent [3].   

Supercritical carbon dioxide is showing considerable promise as a means of 

promoting microencapsulation.  Carbon dioxide acts as an organic solvent and solvent 

removal is accomplished by simply venting the pressurized chamber. The rapid 

expansion of supercritical solution (RESS) and the gas anti-solvent (GAS) methods as 

applied to microencapsulation have been recently reviewed [3].  RESS is similar to 

spray drying; polymer dissolved in supercritical carbon dioxide is sprayed at 

atmospheric pressure with the core material forming particles as the carbon dioxide 

flashes off. Nozzle dimensions determine particle size. The GAS method uses 

supercritical fluid to co-precipitate the core and shell material from solution. The 

particles formed in GAS would be similar to microspheres in core/shell material 

distribution although it is unclear whether actual spheres would form rather than 

random shapes.   

Co-extrusion is a continuous process that encapsulates liquid samples [4].  A 

syringe pump with two feeds is used, one with coating material and the other with core 

material.  The coating line surrounds the core material line, and the pump is adjusted 
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to form droplets of core material in the center with the coating material surrounding 

the outside.  As with spray cooling, the drops fall from a sufficient height to allow the 

polymer shell to harden before impact. It may be possible to use molten, rather than 

solubilized, polymer in this system. Particle size is controlled by the flow rate of the 

pump and the nozzle dimensions.  This method allows for highly repeatable particle 

sizes.   

Lastly, a chemical method called interfacial polymerization is a batch process 

where the microspheres are created at the interface of an emulsified solution [3, 4, 12].  

A monomer is dissolved in the continuous phase of the emulsion, and a second 

monomer is dissolved in the dispersed phase along with the core material. The 

emulsion is stirred to make droplets, and a cross-linker is added to start 

polymerization.  The copolymer forms at the interface of the continuous and dispersed 

phases, making a shell around the dispersed phase droplet.  This method requires that 

both the shell (i.e. polymer) and the core material (i.e. TATP) be solvated in the 

dispersed phase. Residual odors associated with unreacted monomers and short chain 

polymers are of concern.  The desired product of this study should be free of odors 

other than the explosive (i.e. TATP).   

After review of the literature, the solvent evaporation technique was selected.  

This technique required no special equipment and involved limited heating, a major 

concern with encapsulation of energetic materials.  This technique resulted in 

microspheres, rather than microcapsules.  The resulting lower loading of the core 

material in microspheres was considered advantageous for reducing the sensitivity of 

TATP, making the microspheres safer to handle.    
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Experimental Section 

A pre-made polymer (0.5 to 1 g) was dissolved in 7 to 10 mL of solvent, 

usually dichloromethane (DCM).  The active ingredient was added to this solution 

with stirring and this organic mixture was added, with vigorous stirring (IKA RW20 

mechanical stirrer, 900 rpm), to a 200 mL solution of 2% polyvinyl alcohol (PVA) in 

water. No specific particle size was desired; a concentration of PVA was selected to 

yield microspheres that could be easily analyzed at 200x zoom on an optical 

microscope (100µm-300µm).  While 2-4% PVA produced particles in this range, 

using less PVA increased filtration rate; thus, 2% aqueous PVA solution was chosen.  

The mixture was stirred at 900 rpm to remove the solvent and yield the hardened 

polymer spheres. Time required to remove the organic solvent depended on the 

solvent: dichloromethane, 1 hour; chloroform, 3 hours; toluene, overnight. After 

evaporation of the organic solvent, ~600 mL of water was added with stirring to the 

foamy white mixture to aid filtration.  After 5 to 10 minutes, the microspheres were 

recovered by vacuum filtration, rinsed with ~200 mL water, and dried under vacuum 

until the microspheres no longer clumped together.  The microspheres were weighed 

and stored for further analysis.  By this route, the active ingredients TATP, DADP 

(diacetone diperoxide), TNT (2,4,6-trinitrotoluene), HMTD (hexamethylene 

triperoxide diamine),  and naphthalene were encapsulated. 

Polystyrene (PS) was purchased from Acros Organics (average molecular 

weight 250,000).  Other polymers tested include polysulfone (PSf) (Acros Organics, 

Mw 75,000); polyethylmethacrylate (PEM) (Acros Organics, Mw 340,000); 
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poly(lactic-co-glycolic acid) (PLGA) (Sigma Aldrich, Mw 50,00-75,000); 

polycarbonate (PC) (Acros Organics, Mw 45,000); polyetherimide (PEI) (Sigma 

Aldrich, Mw not listed, categorized by melt index); poly (vinyl butyral-co-vinyl 

alcohol-co-vinyl acetate) (PVBVAVA) (Sigma Aldrich, Mw 50,000-80,000); 

Poly(methyl methacrylate) (PMMA) (Sigma Aldrich, Mw 30,000); Poly(4-

methylstyrene) (P4MS) (Sigma Aldrich, Mw ~72,000).  Poly(vinyl alcohol) (PVA)  

was purchased from Acros Organics (88% hydrolyzed, Mw 20,000-30,000) or Sigma 

Aldrich (98-99% hydrolyzed, Mw 31,000-50,000) and used as a surfactant. Initially, 

PVA, 88% hydrolyzed, was found to contaminate the microspheres with 

tetramethylbutane dinitrile; therefore, the source of PVA was altered. All solvents 

were HPLC-grade, purchased from Fisher: n-hexane; dichloromethane; chloroform; 

toluene. 

  Microspheres were baked at various temperatures for several reasons (Table 

1).  Polymers with promise as shell materials were baked to remove the residual DCM 

and surface TATP from the spheres.  In addition to providing a cleaner odor, this 

baking allowed for more accurate determination of the loading of TATP.  Most 

spheres were baked for 24 hours; later it was found that a 48 hour bake was required 

for complete removal of DCM from polycarbonate.  To achieve a pure headspace for 

polystyrene, a purification bake was required to remove residual monomer and other 

contaminants from polystyrene.  This purification was done by baking blank 

polystyrene microspheres at 150°C for 20 minutes.  These microspheres were re-

dissolved in DCM and then used to make a new batch of microspheres free of 

headspace contaminants.   
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<Table 1> 

 Percent loadings of explosive and release profiles of the microspheres were 

determined using a Thermal Analysis Q5000 thermal-gravimetric analyzer (TGA) 

with the off-gas routed through a heated transfer line to a Nicolet 6700 infrared 

spectrometer (FT-IR) using a 20 cm path length vapor cell.  The cell and the transfer 

line were kept at 170°C in order to avoid decomposition of TATP vapor.  The furnace 

and scale of the TGA were purged continuously with nitrogen.  The purge gas was 

vented through a heated transfer line to the gas cell of the FT-IR.  It should be noted 

that the first derivative of mass loss in the TGA was usually identical to the total 

intensity plot from the IR. Pure TATP exhibited four major IR bands at 1194, 1378, 

3005, and 2953 cm-1; however, these overlapped with TATP decomposition products.  

A unique band at 895-899cm-1 was used to track TATP in the presence of 

decomposition products.  TGA oven programs were varied by polymer and solvent 

used.  Once the solvent was removed by isothermal heating, a heat ramp program was 

used to determine loading.  Samples were heated at 2°C/min or 20°C/min from 40°C 

to a temperature determined by the thermal stability of the polymer being tested.  

TATP decomposition vapor signal was obtained by running TATP vapor from the 

TGA through the IR transfer line while the line was held at 250°C.  

 The glass transition point (Tg) of the polymers were determined by differential 

scanning calorimetry (DSC) (TA Instruments Q100, calibrated against indium and 

sapphire).  Samples were sealed in hermetic aluminum pans and run in duplicate.  The 

starting temperature was 40°C and ramped at 20°C/min to end temperatures ranging 

from 200-400°C, depending on the polymer.  Two sets of samples were each run twice 
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to obtain the Tg of a polymer.  Microspheres of the polymers were analyzed using the 

same methods as the Tg experiments, with the exception that thermal cycling was 

impossible as heating released the core material.   

 The purity of the released TATP vapor was determined by gas chromatography 

using a mass spectrometer detector (GC/MS).  An Agilent 6890N GC with a 5973 

mass selective detector and a Varian VF-200ms column was used for normal 

headspace analysis; a Thermo Fisher Trace GC Ultra with an ISQ mass spectrometer 

and a Varian PoraPLOT Amines column was employed for analysis of low molecular 

weight gases released from the microspheres.  To generate these headspace signatures, 

100 mg of microspheres were added to a ~11 mL headspace vial, which was sealed 

and placed in an oven.  The oven was rapidly heated to 150°C, and the vial was 

allowed to equilibrate at temperature for 1 minute.  The vial was removed and 1 mL of 

vapor manually injected into the GC.  Before the syringe was reused, it was cleaned 

with three rinses of volatile solvent, initially acetone and later pentane.  The syringe 

barrel was then baked at ~90°C for ~10 minutes, while the plunger dried in air. 

The method for the most headspace runs on the Agilent system was as follows.  

The inlet was set to 110ºC splitless injection with a 20 mL/min purge at 0.5 minutes.  

The pressure was 1.5 psi for 3 minutes, ramped 10 mL/min to 2.5 psi and held for 4 

minutes, ramped 10 mL/min to 1.5 psi and held for 3 minutes, then maintained at 1.5 

psi for a 3 minute post-run.  The initial oven temperature was 40°C which was held for 

2 minutes, ramped 20°C/min to 60°C, slowed to 2.5°C/min to 70°C, 30°C/min to 

100°C, 10°C/min to 150°C, 30°C/min to 200°C, and then maintained at 310°C post 

run for 3 minutes.  The mass spectrometer transfer line was kept at 150°C.  The 
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method for the low molecular weight region of the headspace, run on the Thermo 

system, was as follows.  The inlet was set to 100°C splitless injection with a 30 

mL/min purge at 2 minutes.  The carrier gas flow through the column was set to a 

constant pressure of 10 psi for the entire method.  The initial oven temperature was 

35°C which was ramped 30°C/min to 220°C and held for 20 minutes.  The mass 

spectrometer transfer line was kept at 200°C.   

 Small-scale explosivity device (SSED) tests were done to compare the 

energetic character of pure TATP to that of encapsulated TATP.  A Winchester 0.303 

shell was filled with 1g of the test material, sealed inside a heavy-walled steel 

chamber, and initiated with a RP-3 detonator. The more of the cartridge adhering to 

the base, the less the explosive power was judged to be. [13, 14].  

Detonation tests were performed on a large scale using 3” long and ¾” 

diameter stainless steel pipes. The microsphere synthesis was scaled up to 5g of 

polycarbonate (PC) and 2.5g of triacetonetriperoxide (TATP) to make sufficient 

microspheres for this test.  The yield for this scale up was ~5.2g of microspheres with 

average loading of 13.8% TATP by mass. The pipes were lined with anti-static bags 

which were cut about 1½” above the top of the pipe and formed to the interior of the 

pipe using cardboard tubes to tamp the bags down.  The threads of the pipe were 

covered with masking tape and then the exposed anti-static bag was cut and folded 

down over the threads to prevent loose material from falling into the threads.  A 0.31 

inch hole was drilled through the bottom end cap of the pipe.  The TATP and 

microspheres were then put into separate pre-weighed plastic pop-top containers and 

weighed again.  This allowed easy filling of the pipes at the range and the mass used 
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could be determined later. At the range the pipes had a detonator inserted through 

the bottom of the pipe, going through the plastic bag to ensure good contact with the 

contents of the pipe once filled.  The pipes were filled using a paper funnel and zip-

tied to a wooden stake that was placed inside a cardboard concrete form inside a 55 

gallon steel drum.  The drum was filled with sand on the bottom and around the 

concrete form.  A wooden dowel was placed on top of the opening in the concrete 

form and sand bags were placed on top of that.  Following the range safety guidelines, 

the detonator was initiated from a safe distance, and once the all clear was given the 

remains of the pipe were recovered using magnets to sweep the sand.  Three shots 

were done: TATP (5.26 g), PC+TATP (8.64 g), and sand.  The remains of the pipe 

were recovered using magnets to sweep the sand. 

 

Results and Discussion  

Thermo-gravimetric (TGA) experiments with polystyrene (PS) encapsulated 

TATP showed that the release of residual dichloromethane (DCM) could be separated 

from the release of the encapsulated TATP. This permitted accurate quantification of 

the mass loading of TATP.  The ability to selectively release DCM and TATP was 

important for purification of the microspheres.  The presence of DCM would interfere 

with the olfactory response of canines to the target material.  

The first derivative traces of the polystyrene (PS) solvent-dried microspheres 

with TATP [PS-TATP] (baked 24 hours at 80°C) indicate three weight loss steps.  IR 

monitoring of the off-gas (Fig. 2) clearly indicated that the first two weight loss steps 

were loss of TATP (Fig. 3).  A third weight loss was observed towards the end of the 
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TGA run (~70 minutes on Fig. 2, ~280°C) was not identified, its IR did not match 

TATP, TATP decomposition gases, nor PS decomposition as generated by PS alone.  

It was concluded that this third loss was related to the presence of TATP in the PS 

microspheres and TGA analysis of TATP in PS microspheres was modified to use 

250°C as the maximum temperature.  

<Figure 2>  

<Figure 3>  

<Figure 4>  

Thermal analysis of the polycarbonate (PC) TATP microspheres [PC-TATP] 

proceeded as with polystyrene. Figure 5 shows release of TATP began at 

approximately 88°C and continued for 100 degrees at the given scan rate.  The IR 

spectrum of the off-gas indicated pure TATP (Fig. 6); only near the end of the 

20°C/min TGA run (above 181°C) were IR bands suggesting other species observed.   

<Figure 5>  

<Figure 6> 

 The polysulfone (PSf) encapsulated TATP [PSf-TATP] TGA trace behaved 

similarly to PS encapsulated TATP [PS-TATP], but weight losses shifted to higher 

temperatures. Since these microspheres were not baked, the TGA showed the loss of 

DCM at about 100°C and IR confirmed this. TATP release began around 139°C and 

reached a maximum at about 167°C (Fig. 7).  Unfortunately, the TATP release 

temperature was close to the decomposition temperature of TATP as observed by DSC 

(Fig. 8).  This, along with the occurrence of extra peaks in the off-gas IR (Fig. 9), 

suggested that some TATP decomposition was occurring with TATP release.  This 
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same problem was observed with a similar high temperature resistant thermoplastic, 

polyetherimide (PEI).  Polysulfone was discarded as a suitable shell material for 

TATP due to the overlap of TATP decomposition with release of TATP vapor. 

<Figure 7>  

<Figure 8>  

<Figure 9> 

 The polyetherimide (PEI) TATP microspheres [PEI-TATP] behaved in a 

similar manner to polysulfone with TATP: release began at 140°C (Table 2, Fig. 10).  

The main peak of the TATP exotherm in DSC matches the maximum loss of TATP at 

195°C (Table 2, Fig. 11).  The IR off-gas from the PEI-TATP microspheres was 

strong but not pure TATP.  As with the PSf-TATP microspheres, the IR spectra 

appeared to be a mix of TATP and TATP decomposition products.  The improved 

signal strength shows even better correlation between the unknown spectra and that 

seen in TATP decomposition (Fig. 12).  The correlation of IR signal and DSC with the 

decomposition of TATP for both PSf and PEI suggested that the release of TATP in 

these polymers was driven by TATP decomposition. 

<Figure 10>  

<Figure 11>  

<Figure 12> 

 TGA of the poly(D,L-lactide-co-glycolide) (PLGA) TATP microspheres 

[PLGA-TATP] included a baking period for one hour at 60°C to remove the DCM.  

The IR of the off-gas showed that along with the DCM, TATP was released as well.  

Furthermore, as soon as the temperature was ramped (1°C/min) after the baking 
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period, TATP loss resumed (Fig. 13).  To determine if this low-temperature release of 

TATP began even lower than the “bake out” temperature of 60°C, the PLGA-TATP 

microspheres were heated from 40°C to 250°C at a constant rate of 5°C/min.  TATP 

release was first observed at ~46°C.  This release could be a result of TATP on the 

surface of the microsphere prior to release of TATP inside the microspheres. 

Nevertheless, PLGA was discarded as a potential shell material because the polymer 

was not stable at room temperature, requiring refrigerated storage.  

<Figure 13>  

<Figure 14>  

 The poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVBVAVA) TATP 

microspheres [PVBVAVA-TATP] made with this polymer exhibited three weight 

losses in the TGA trace (2°C/min).  IR monitoring of the off-gas showed TATP in all 

three mass loss regions. The first mass loss was likely surface TATP with some DCM.  

The second mass loss (started at ~53°C) and third  (started at ~76°C) were pure TATP.  

The TGA suggested that TATP was constantly being released, with release 

accelerating after 76°C.  This polymer was discarded as a potential shell material 

because of its strong odor. 

<Figure 15>  

<Figure 16>  

The poly-4-methylstyrene (P4MS) TATP microspheres [P4MS-TATP] 

behaved like polystyrene. There were two TATP releases and a weight loss that could 

not be attributed to a pure species. The TGA derivative curve (Fig. 17) showed 3 

peaks: TATP loss (peak 1 and 2) and a third weight loss unattributed to TATP.  TATP 
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release temperature appeared lower (~75°C) than that of PS-TATP (88°C), which was 

surprising considering the small modification to the polymer structure. 

<Figure 17>  

<Figure 18>  

 When polyethylmethacrylate (PEM) TATP microspheres [PEM-TATP] were 

heated in the TGA, decomposition of PEM was observed by IR that overlapped with 

TATP release.  TATP release was observed by following an IR peak (894 cm-1) 

unique to TATP (Fig. 19); this allowed rough determination of TATP release 

temperature.  TATP release was pure at the start but quickly overwhelmed by 

decomposition of PEM.  As seen in the IR traces (Fig. 20) TATP release did not 

directly correspond to any of the peaks seen in the total IR intensity trace.  PEM was 

discarded because its decomposition overlapped with TATP release. 

<Figure 19>  

<Figure 20>  

Polymethylmethacrylate (PMMA) TATP microspheres [PMMA-TATP] 

exhibited the same decomposition problems seen with PEM-TATP: polymer 

decomposition overlapped with TATP release.  A peak unique to TATP in the IR was 

used to roughly determine the release temperature (Fig. 21), but PMMA was discarded 

as a shell material due to its decomposition overlapping with TATP release. 

<Figure 21>  

<Figure 22>  

 As shown in Table 2, the temperature of initial TATP release was determined 

by ramping samples slowly (2°C/min) to 300-320°C.  The release “max” temperature 
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was determined as the peak of the first derivative of TGA trace.  Some polymer 

microspheres had IR signatures for off-gas indicating pure TATP, while others 

suggested TATP plus TATP decomposition products.  In polystyrene the release of 

TATP started at 77°C.  The release in polystyrene was near to the glass transition 

temperature (Tg) of polystyrene (109°C) and the melting point of TATP (95°C) [15].  

The release of TATP vapor was assumed to be related to one or both of these 

temperatures.  Supporting glass transition temperature was release observed with 

PVBVAVA-TATP microspheres.  The TATP vapor appeared substantially below its 

melting point. However, with polycarbonate, TATP release began at 88°C, which was 

far below the glass transition temperature.  Furthermore, with polysulfone and 

polyetherimide, both with high glass transition temperatures, (190°C and 220°C, 

respectively) TATP release was not observed until 139-140°C, well above the melting 

point of TATP but below the Tg of either polymer.  The IR of the TGA off-gas and 

independent DSC runs of PSf-TATP and PEI-TATP shed light on the release 

mechanism.  In both cases the off-gas was clearly a mixture of TATP and TATP 

decomposition products.  The DSC of the microspheres showed the “max” release of 

TATP was at approximately the same temperature as the temperature of the DSC 

exothermic maximum.  

To examine the factors governing TATP release, in addition to changing the 

polymer matrix, the core material was also changed.   Diacetone diperoxide (DADP) 

was encapsulated in PC and PSf.  The six-membered ring with diperoxide 

functionalities is chemically very similar to the nine-membered TATP ring with 

triperoxide functionalities.  It is a possible side product of TATP synthesis with a 
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melting point of 133°C [15].  DADP was encapsulated using polycarbonate and 

polysulfone and the release temperature determined by TGA.  The results are shown in 

Table 2.   

<Table 2> 

In selecting the preferred polymer for encapsulation of the explosive, ideal 

candidates were subjected to three criteria as follows: 1) the polymer/explosive 

combination must meet solubility constraints amenable to our preparation method;  2) 

the desired polymer must have long-term shelf-life;  3) the release of the core material 

(explosive) must be pure (type A release), not contaminated by release of polymer or 

polymer decomposition products (type B) or by explosive decomposition products 

(type C) (Table 2).  The solvent evaporation method requires that both the polymer 

and the core material (the explosive) be soluble in readily removable solvent, i.e. 

dichloromethane or chloroform, and be insoluble in a second solvent which is 

immiscible with the first, i.e. water.  For example, using toluene or ethyl acetate 

produced no useful spheres with polystyrene due to difficulty removing the solvent at 

room temperature.  While heating can be used to aid in solvent removal, it has been 

shown to decrease encapsulation efficiency [7, 8].  For polyvinylchloride, Nylon 6/6, 

and polyurethane, no suitable solvent system could be found.  However, this does not 

rule out the possibility that suitable microspheres could be made by one of the other 

methods reviewed.  Polymer instability at room temperature ruled out PLGA.  The 

presence of polymer decomposition products in the microsphere off-gases ruled out 

the use of PMMA as shell materials, while the evidence of TATP decomposition in the 

microspheres of PSf and PEI discouraged use of those polymers.  After the above 
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exclusions, the acceptable polymers were polystyrene, poly-4-methylstyrene, and 

polycarbonate. 

The purity of the evolved vapor released by the microspheres was confirmed 

by headspace analysis using GC/MS.  Headspace was examined first and led to several 

changes to the microsphere production process.  The headspace of PS microspheres 

was compared to that of a headspace vial that was crimped shut with nothing inside 

but air.  This air sample control revealed background from the syringe and vial 

associated with the heating cycle used for the microspheres. Contaminants (Fig. 23) 

consisted of ethylbenzene, styrene, and tetramethylbutanedinitrile.  As discussed in the 

experimental section, the source of the tetramethylbutanedinitrile was the PVA.  A 

new source of PVA lacking the contaminant was found.  The styrene and ethylbenzene 

were thought to be residual in the polystyrene. To remove these contaminants, 

“baking” of empty polystyrene microspheres was required (see experimental section).  

This approach successfully removed the remaining contaminant peaks from PS 

microspheres, but the process more than doubled the effort required to make the 

spheres. 

<Figure 23>  

In contrast to polystyrene, polycarbonate was devoid of contaminants in the 

normal headspace.  Polycarbonate was considered a more desirable polymer than 

polystyrene because with little effort pure TATP vapor was achieved. Note that all 

microspheres were subject to gentle heating to remove DCM or any surface TATP.  

The TATP release temperature near 90°C was sufficiently high to allow bake off of 

contaminating solvents from the microspheres while not triggering the release of 
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TATP.  Nearly all TATP was released from the PC-TATP by 170°C (Fig. 25) which 

was just below where TATP decomposition began between 170°C and 180°C. 

<Figure 24>  

<Figure 25> 

As shown in Figure 25, once TATP released from the microspheres reached a 

maximum at a given temperature, the weight loss gradually declined.  The trace (Fig. 

25) of PC-TATP microspheres suggests that this release behavior can be manipulated.  

Heating to 90°C releases a certain amount of TATP, but the release slows 

considerably over an hour. A new rapid release can be obtained if the temperature is 

raised to 100°C.  For the application desired, TATP generation, Figure 25 shows that 

the microspheres could be used serially. Sufficient TATP for training could be 

released at a given temperature and at a later time more TATP could be released by 

heating to a higher temperature. 

 Repeatability of the microcapsule loading was tested by comparing ten 

replicate batches of PS and PC microspheres.  The results showed little difference in 

loading between PC and PS with slightly less loss in mass from the blank of 

polycarbonate.  These microspheres were baked at 80°C for 24 hours; later GC/MS 

studies indicated 48 hours was required for complete removal of DCM. 

 <Table 3> 

Using TGA-IR to check loadings of the microspheres shelf-stability was 

investigated.  Samples were stored at room temperature after initial experiments 

revealed that TATP was retained in the microspheres until released by heating.  

Samples of polystyrene, polysulfone, and polycarbonate spheres were left at room 
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temperature for one to two years.  The loss of TATP from the microspheres over time 

at room temperature was negligible as the data in Table 4 shows. 

<Table 4> 

The SSED and pipe tests showed similar results, with PC-TATP microspheres 

performing similarly to a blank.  In the SSED test 1g of 12.9% by weight PC-TATP 

microspheres failed to damage the shell casing aside from opening a hole in the side.  

This damage was similar to that seen in an empty shell with only the detonator inside.  

The TATP test destroyed the shell walls and left only the primer base.  This damage 

was characteristic of initiation of an energetic material.  In the pipe tests the damage of 

the PC-TATP microspheres (14% by weight TATP) was similar to that of an identical 

pipe filled with sand.  Pure TATP fragmented the pipe into several large pieces.  

Flame tests on both 12.9% and 14% TATP microspheres showed that they did not 

flash ignite or propagate a flame as pure TATP would.  Microspheres with higher 

loadings, 19-20% TATP by weight, did propagate a small blue flame across the top of 

a line of microspheres that was ignited at one end by a propane torch.  All 

microspheres loaded with TATP (14%-20%) would “pop” when held under the flame 

of a propane torch for 10-20 seconds.  Under the flame the microspheres would melt 

and begin to char before the melted mass would burst open, making a loud popping 

noise.  Microspheres with no TATP encapsulated did not exhibit the same behavior.  It 

was supposed that this “pop” was TATP vapor building up in the molten plastic, then 

combusting to create the loud popping sound.  

<Table 5>  
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 The intended use of these microspheres was to provide the TATP scent to 

bomb sniffing canines without the hazard of working with bulk TATP.  A prototype 

device was made for the release of the TATP from the microspheres for this purpose. 

The prototype used a resistive heater to heat the microspheres to about 150°C for a 

few seconds. This heating profile released most of the encapsulated TATP without 

decomposing it.  The microspheres were placed in a 1 mL glass vial which was open 

at the top and which fit snugly into a larger glass vial that contained the heater.  A 

small piece of aluminum wool was placed just inside the 1 mL vial which was joined 

at the top to another larger glass vial by means of a rubber septum.  The released 

TATP was collected on a piece of aluminum wool which acted as a condenser for the 

TATP vapor.  The heater was controlled by a variable autotransformer.  The power 

was switched on for 3 minutes which brought the microspheres to about 150°C, then 

switched off; the whole setup was allowed to sit for further 3 minutes.  The TATP 

could be seen deposited on the surface of the aluminum wool.  The scent provided was 

easily detected by dogs from the local bomb squad that were imprinted the same 

morning on pure TATP vapor.  

<Figure 26> 

 

Conclusions 

 TATP can be encapsulated inside a polymer matrix to increase handling and 

storage safety.  Volatile solvents, i.e. DCM, can be removed without releasing 

significant amounts of TATP.  This allowed for purification of the vapor signature of 

the microspheres, which is important for use in canine training.  Polycarbonate was the 
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preferred polymer for encapsulation of TATP because it released TATP in the 

temperature range desired and was sufficiently pure for use from the manufacturer.  

SSED and pipe tests indicated that the microspheres were insensitive to shock at the 

scales tested.  Flame tests of the microspheres showed significantly reduced sensitivity 

to flame over pure TATP; however, they were not completely insensitive to flame.  

Microspheres of TATP can be stored for long periods of time at room temperature, 

and the trapped TATP can be released with heating on demand.  Encapsulating TATP 

significantly reduced the risks of handling and storing of TATP.  Microspheres of 

TATP provide a way to supply TATP that is easy to handle and store to canine trainers 

and instrument manufacturers.        
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Table 1 – Baking and Purification Temperatures 
Polymer Bake (°C) Purification (°C) 

Poly(4-methylstyrene) (P4MS) 60 - 
Polymethylmethacyrlate (PMMA) 60 - 

Polystyrene (PS) 80 150 
Polycarbonate (PC) 80 - 
Polysulfone (PSf) 120 - 

Polyetherimide (PEI) 120 - 
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Table 2 – Overall Results 
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Table 3 – Encapsulation Repeatability 

Sample % TATP Std Dev
Polystyrene 19.1 1.0

Polycarbonate 19.2 2.0
Blanks % Mass Lost Std Dev

Blank PS 0.25 0.04
Blank PC 0.17 0.008

All samples baked at 80°C for 24 hours
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Table 4 – Storage Stability 
Polymer % TATP Initial 238 Days 322 Days 432 Days 446 Days 771 Days 873 Days

Polystyrene 16.0 - - 15.8 - - 15.9
Polysulfone 19.7 - 19.6 - - 19.6 -

Polycarbonate 25.7  - - 25.5 - -  
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Table 5 – Sensitivity Tests 

 TATP PC-TATP (13-14%) 
Flame Flash burn If flame held on it, will "pop" 
SSED Violence similar to TNT Did not initiate 

Pipe Tests Fragmented the pipe Damage similar to sand 
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Fig. 1 - Microcapsules and microspheres 
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Fig. 2 - TGA of PS-TATP microspheres trace (solid); TGA derivative (dotted line); at 
2o/min (left) & 20o/min (right) 
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Fig. 3 – IR spectra corresponding to peak release in Fig. 2 
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Fig. 4 – Comparison of PS unknown (middle) IR to pure TATP (bottom) & TATP 
decomposition (top) 
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Fig. 5 - TGA of PC-TATP microspheres trace (solid); TGA derivative (dotted line); at 

2o/min (left) & 20o/min (right) 
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Fig. 6 - IR spectra of TATP from PC microspheres 
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Fig. 7 – TGA of PSf-TATP microspheres trace (solid); TGA derivative (dotted line); 

at 2o/min (left) & 20o/min (right) 



 

38 
 

 

 
Fig. 8 - DSC of PSf: TATP microspheres (solid line), Tg (dotted line) 
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Fig. 9 - Comparison of PSf-TATP (middle) IR to pure TATP (bottom) & TATP 

decomposition (top) 
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Fig. 10 - TGA of PEI-TATP microspheres trace (solid); TGA derivative (dotted line); 

at 2o/min (left) & 20o/min (right) 
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Fig. 11 - DSC of PEI: TATP microspheres (solid line), Tg (dotted line) 
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Fig. 12- Comparison of PEI-TATP (middle) IR to pure TATP (bottom) & TATP 

decomposition (top) 
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Fig. 13 - TGA of PLGA-TATP microspheres trace (solid); TGA derivative (dotted 

line); at 2o/min (left) 
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Fig. 14 - IR spectra of TATP from PLGA microspheres 
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Fig. 15 - TGA of PVBVAVA-TATP microspheres trace (solid); TGA derivative 

(dotted line); at 2o/min (left) & 20o/min (right) 
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Fig. 16 - IR spectra of TATP from PVBVAVA microspheres 
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Fig. 17 - TGA of P4MS-TATP microspheres trace (solid); TGA derivative (dotted 

line); at 2o/min  
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Fig. 18 - IR spectra of TATP from P4MS microspheres 
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Fig. 19 - TGA of PEM-TATP microspheres trace (solid); TGA derivative (dash line); 

895cm-1 IR signal (dot-dash line); at 2o/min   
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Fig. 20 - IR spectra of TATP from PEM microspheres (right); Mix of PEM 

decomposition and TATP (left) 
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Fig. 21 - TGA of PMMA-TATP microspheres trace (solid); TGA derivative (dash 

line); 889cm-1 IR signal (dot-dash line); at 2o/min 
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Fig. 22 - IR spectra of TATP from PMMA microspheres (right); Mix of PMMA 

decomposition and TATP (left) 
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Fig. 23 – Blank vs. early polystyrene microspheres vs. PS microspheres after changing 

PVA and  baking for 20 minutes at 150°C 
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Fig. 24 – Polycarbonate microspheres after baking 
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Fig. 25 – Release profile of TATP from polycarbonate 
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Fig. 26 - Prototype microsphere heater (right); TATP crystals deposited on aluminum 

wool (left) 
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Abstract 

 Molecularly imprinted polymers (MIPs) have potential applications to the field 

of trace explosives detection.  Imprinting conditions from the literature were replicated 

with variable success.  Review of literature addressing explosives imprinting was 

sparse leaving pertinent mechanistic questions unanswered.  Some novel imprinting 

experiments alongside NMR studies were performed to provide insight into the 

mechanism of explosive imprinting. 

 

Introduction 

Molecularly imprinted polymers (MIPs) are copolymer systems designed to 

bind specific analytes, akin to a man-made antibody.  Specific binding sites are created 

by coordinating the target analyte (termed “template”) to a functional group on a 

monomer (termed “functional monomer”).  Once the functional monomer and the 

template are bound or coordinated in solution, the monomer is polymerized using a 

second monomer (“structural monomer”) to bridge between functional monomers.  

The template is extracted, leaving a binding site tailored to the template. 

<Figure 1> 

Molecular imprinting was pioneered in the early 1970’s by Gunther Wulfe [1].  

That work and a majority of the research in the field since then centered on imprinting 

biological molecules.  Early work used covalent bonding between the template and 

functional monomer to create binding sites. Later work by Klaus Mosbach used non-

covalent attractions to create binding sites [2].  Non-covalent imprinting appears to be 

the more popular approach; one source estimates that 90% of MIP publications use 
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non-covalent approach [3].  The authors credit this prevalence to the simpler synthetic 

routes, a closer mimicry of the natural processes of selective molecule formation, and 

a broader range of monomers and template molecules.  The broad range of monomers 

and templates can be attributed to the ubiquity of non-covalent interactions.  Most 

functional groups are susceptible to non-covalent interactions and this type of 

imprinting merely exploits these interactions.  

 There are two major obstacles to creating MIPs: finding the correct ratio 

template: functional monomer: structural monomer and template removal after 

imprinting is complete.  If the ratio of component monomers is not correct, imprinting 

will fail.  Even after successful imprinting, if the polymer lacks rigidity, removal of 

the template can cause binding site collapse or distortion and prevent function .  

Conversely, if the polymer has high rigidity, diffusion will be poor and template 

removal difficult, rendering the binding site unusable.  Even in successful MIPs 

removal can be partially complete [3].  This latter situation is important for analytical 

applications as MIPs designed to pick up and release targeted analytes into a detector 

can act as a source of background contamination by continuous release of low levels 

of template. 

   Success or failure of imprinting is traditionally measured by binding or 

uptake experiments.  A MIP with template removed is allowed to equilibrate in 

solution containing known concentration of template.  After various time intervals, the 

concentration of template remaining in the solution is measured.  The amount of 

template lost from solution is a measure of binding strength between MIP and 

template.  A successful MIP should bind more template than a control polymer made 
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under identical conditions without template.  Furthermore, the MIP should be 

sufficiently selective as to not bind molecules of similar functionality.  For example, 

an MIP designed to bind 2,4,6-trinitrotoluene (TNT) should not also bind 2,4-

dinitrotoluene (2,4-DNT).   

 A comprehensive review of the literature for MIPs, both in general and with 

respect to explosives, is summarized in Supporting Information 1.  Resulting from this 

review we conclude as follows: 

1. Only a few functional monomers were used for explosives applications: 

methacrylic acid (MAA), acrylamide (AA), methacrylamide (MAM), 

phenyltrimethoxysilane (PTMS), aminopropyl-trimethoxysilane (APTES), 

bisaniline, and 2-(trimethoxysilylethyl)pyridine (TMSE-Pyr). 

2. Of functional polymers mentioned in 1, only three were used by more than one 

author: MAA (six authors [8, 14, 15, 16, 17, 18]), AA (5 authors [8, 19, 20, 21, 

22]), and APTES (two authors [5, 6]).  

3. Only 2 out of 15 authors [20, 23] imprinted a template other than TNT or 

DNT.  

4. Most work done in the field was with the MAA and TNT system with the goal 

of developing a novel sensor through surface plasmon resonance [21, 23], 

cyclic voltammetry [15, 24], or fluorescence quenching [18].  Each author, 

therefore, used different analytical techniques to measure success.  This made 

comparison of imprinting effectiveness across authors ambiguous.  In addition, 

some authors [7] demonstrated interest in desorption efficiency rather than the 

sorption efficiency of the polymers. 
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 MIPs are particularly relevant to the field of explosives detection.  Many 

instruments cannot detect explosive vapor due to the low vapor pressures involved [4].  

A way to selectively pre-concentrate explosive vapors from a shipping container or a 

room may dramatically improve the ability of current instruments to detect trace 

amounts of explosive vapors.  In addition, possibilities for novel explosive detection 

techniques utilizing MIPs are wide-ranging.   

 

Experimental Section 

MIP Syntheses:  Preliminary imprinting work was done following the work of 

Ellen Holthoff [5].  The functional monomer was aminopropyltriethoxysilane 

(APTES) and the structural monomer was methyltriethoxysilane (C1 TriEOS).  These 

along with 1M hydrochloric acid were mixed and stirred.  A solution of TNT was 

added and the whole mixture vortexed for 30 seconds.  The resulting red solution was 

then spin-coated onto surfaceenhanced Raman spectroscopy substrates. Later, a 

similar formulation, as outlined in the work of Xie, was tested [6]. The only major 

differences were the ratio of reactants, the use of sodium acetate as the catalyst rather 

than hydrochloric acid, and  the  use of various substrates instead of spin-coating.  In 

early formulations, the MIP was coated on various substrates: glass wool, sand, silica 

gel, and steel wool.  While the coating was eventually successful on glass and steel 

wool, the synthesis was changed to bulk, also called block, polymerization to allow 

easier template extraction and analysis. 

<Figure 2> 
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 Synthesis of the APTES MIPs varied with the different monomer and solvent 

ratios, but the basic synthetic procedure was similar (see Supplement 2). The APTES, 

TNT or 2,4-DNT, and C1-TriEOS were vortexed in a vial for 5 to 10 minutes, with an 

excess of ethanol if the polymer was to be used as a coating but with minimal ethanol 

for block polymers.  Catalyst, usually hydrochloric acid, was added and mixed by 

vortexing.  The resulting solution was either dripped onto the substrate to be coated or 

left in the vial to form a block polymer.  Samples were allowed to cure for 3 days at 

room temperature or left in an oven at 40°C overnight, due to time concerns.  Block 

polymers were ground into a powder using a pill crusher before extraction. 

 Synthesis conditions for phenyltrimethoxysilane (PTMS), 

trimethoxytrifluoropropyl-silane (TMOTFS), and triethoxythienylsilane (TEOTES) 

were similar.  Tetraethoxysilane (TEOS) was used as a structural monomer for all 

three.  PTMS was selected based on the work of Lordel et al. [7].  TMOTFS was 

selected because of its use as a stationary phase in chromatography of explosives and 

TEOTES was also a good medium for explosives.    

Solid TNT or hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was weighed into 

a test tube; the monomers were added by syringe in the appropriate ratios along with a 

stir bar.  Initially minimal solvent (1 mL of acetonitrile and isopropanol or methanol) 

was added to dissolve the explosive.  The reaction was then mixed by vortexing. The 

ammonium hydroxide catalyst was then added by syringe and mixed again by 

vortexing.  The homogeneous mixture was put in a water bath at 60°C with magnetic 

stirring.  It was later discovered that the Meisenheimer complex of TNT which formed 

on the addition of the ammonium hydroxide was miscible in the monomers after 
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sufficient reaction time, so vortex mixing was not required or helpful.  Thereafter, the 

test tube with only the monomers, catalyst, and TNT was placed in a 60°C water bath 

with magnetic stirring.  In either case the sol gel was allowed to cure until hardened.  

This was usually overnight but could take up to a week under some reaction 

conditions.  Initial reactions were allowed to react at room temperature, but reaction 

times were unacceptably long.  Once samples were determined to be solid by visual 

inspection and probing with a spatula, they were removed from the bath and placed in 

an oven overnight at 120°C.  Controls and MIPs were baked separately, and the oven 

was purged for an hour at 350°C to ensure that controls were not exposed to TNT 

vapor.  The block polymers were then ground into a powder with a pill crusher before 

extraction. 

Some PTMS based MIPs were instead coated onto steel wool.  To do this the 

above procedure was changed to allow for dip coating of steel wool.  To each reaction 

test tube 3 mL of methanol and acetonitrile were added before the ammonium 

hydroxide catalyst.  After addition of the catalyst, the reaction was mixed using 

vortexing.  A pre-weighed sample of steel wool, sometimes pre-treated with a UV 

ozone generator, was then submerged in the now homogenous reaction solution for 30 

minutes.  The wool was then removed and placed into a metal tin in a dark room to 

cure for several weeks.  The coating appeared to cure completely; however, pooling of 

the coating towards the bottom of the wool and on the surface of the tin indicated 

faster curing was necessary for uniform coating on the surface of the wool.    

The most successful imprinting followed the work of Bunte [8].  A magnetic 

stir bar and 120 mL of polyvinyl alcohol (PVA, 31,000-50,000 molecular weight) 
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were added to a 3-necked round bottom flask which was heated in a water bath to 

60°C with magnetic stirring.  The atmosphere in the flask was then purged with 

nitrogen for 1.5 hours, while a chloroform solution (25 mL) of 9.91 g of ethylene 

glycol dimethacrylate (EGDMA), 0.69 g of methacrylic acid (MAA), 200 mg of 

azobisisobutyronitrile (AIBN), and 454 mg of TNT was added by syringe to the 

stirring PVA solution.  The reaction was allowed to proceed for 24 hours before the 

reaction solution was added to ~500 mL of water to aid with filtration.  The copolymer 

was then collected using vacuum filtration.   

A number of approaches were used to remove template molecules.  Initially, 

for PTMS, TMOTFS, and TEOTES polymers, Soxhlet extraction was used with 

acetone, acetonitrile, or methanol for times ranging from a few hours to overnight.  

Later, it was discovered that solvent rinsing using vacuum filtration and alternating 

solvents was faster and more effective.  Progress of extraction could be judged 

visually by coloration of the polymer and extraction solvent.  With template removal 

the dark red-brown color of the polymer faded to a whitish-grey.  The extraction was 

judged complete when the solvent remained clear to the eye after rinsing.  Solvents 

used for the rinsing step of each reaction can be found in Supporting Information 2; in 

general acetone, methanol, and acetonitrile were judged best.  The successful 

extraction was then confirmed with an Agilent 8453 UV-Visible spectrometer (UV-

Vis); this was especially important when the template was RDX which imparted no 

color to the polymer.  If the rinse solution of 90% water:10% methanol passed through 

the polymer and appeared clean by UV-Vis, then template was considered fully 

extracted.  For APTES MIPs various extraction procedures were attempted: 1) that 
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used by Holthoff  [5] which soaked the MIP in a solution of ethanol, acetonitrile, and 

acetic acid (8:2:1) from 1 hour to 13 days; 2) refluxing in the same solution; 3) 

Soxhlet extraction with methanol, acetone, or acetonitrile; or 4) solvent rinsing using 

vacuum filtration with the Holthoff extraction solution, cyclohexane, hexane, 

dichloromethane, acetone, acetonitrile, and methanol.  MAA MIPs and control were 

Soxhlet extracted overnight with chloroform.  

 

Evaluation of MIP Performance:  We attempted to assess analyte pickup by 

placing MIPs in a solution containing a known amount of the analyte (TNT or 2,4-

DNT).  See experiments 1 to 34 in Supporting Information 2.  The MIP solutions were 

shaken for 1 to 24 hours and examined using an Agilent 7890 gas chromatograph with 

a micro-electron capture detector (GC-µECD) for loss of the analyte.  Analyte loss 

(uptake) was not observed for any MIP solutions.  Sometimes an increase in TNT or 2, 

4-DNT was observed instead of a decrease. This increase in template concentration 

was attributed to the template’s greater affinity for the solvents used than the MIP 

binding sites. 

The success of imprinting was judged by sorption experiments using UV-Vis.  

A solvent system of 90% water:10% methanol was adopted for the UV-Vis 

experiments to prevent the problems with competing solvent and MIP affinity from 

the GC experiments.  This system couldn’t be used on the GC-µECD as it would 

damage the detector.  For the UV-Vis experiments, 15(+/-0.2)mg of extracted sample 

was weighed out and added to a disposable 5mL plastic syringe with a 0.2µm syringe 

filter attached.  About 3mL of acetonitrile was added to the syringe, pushed through 
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the sample, and collected in a quartz cuvette.  The acetonitrile was checked by UV-Vis 

(water blank) to see if residual solvent or TNT was present.  If the signal was above 

baseline, then the process was repeated until the signal matched that of  clean 

acetonitrile.  Next ~3mL of 90:10 water:methanol was pushed through the syringe to 

rinse out the acetonitrile.  This was also checked by UV-Vis and repeated until no 

baseline variation was observed.  Then 3mL of a TNT solution of known 

concentration (15 µg/mL TNT in 90:10 water:methanol) was pushed through the 

syringe.  This solution was collected and analyzed by UV-Vis to determine decrease in 

TNT concentration by comparison with the standard TNT solution. Quantification was 

completed by comparison with calibration curves.  The procedure was repeated 

starting with the acetonitrile rinses as above to remove the bound TNT. Four 

additional replicates were obtained using the same 15 mg sample.  Alongside these 

tests were tests of uptake from separate MIP samples.  In these experiments the 

procedure was the same except the samples were not cleaned and retested.  Each 

sample was made using a new 15 mg aliquot of polymer.  Similar experiments were 

done with RDX for RDX imprinted MIPs.   

 

Nuclear Magnetic Resonance (NMR) Experiments: TNT was dissolved into 

deuterated solvent [chloroform (CDCl3) for MAA, PTMS, TMOTFS, TEOTES; 

aniline and acetonitrile (d3-ACN) for APTES (due to an interaction of the monomer 

with chloroform)]. As molar equivalents of functional monomer (1 to 4 µL depending 

on the monomer) were added via syringe, 1H-NMR chemical shifts of aromatic and 

aliphatic protons of TNT were noted. See Supporting Information 4.  It was expected 
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that differences in positions of chemical shifts of the complexed and the uncomplexed 

TNT would be observed.  However, since only a single chemical shift was observed 

for the aromatic and the aliphatic protons, the exchange between free and bound TNT 

must be fast on the NMR timescale, and the observed chemical shifts must be 

intermediate between those of the bound and unbound TNT. At higher monomer-to-

TNT ratios, more TNT should be bound, and there would be a corresponding change 

in the chemical shift (Δδ).  

 

Results and Discussion 

 A summary of MIP performance in terms of percent TNT uptake by the MIP 

relative to the untemplated polymer (the control) are shown in Table 1. A 

comprehensive list of imprinting conditions and results can be found in Supporting 

Information 2 and 3, respectively.  Table 1 clearly shows that the MIP using MAA 

was most effective, while some success was had with PTMS and TEOTES. 

<Table 1> 

 MIPs made using APTES were unsuccessful with TNT.  As TNT was added to 

the polymerization reaction, a red color appeared which suggested that APTES and 

TNT form a Meisenheimer complex. This red color was observed with other 

functional monomers, but in APTES the color remained despite extensive attempts to 

extract the TNT template.  Additionally, unique to APTES was that the red 

Meisenheimer was observed after the addition of APTES with no additional base 

required.  GC-µECD and UV-Vis experiments were done on the extracts and no TNT 

was observed.  The inability to extract the template meant that if imprinting was 
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successful, no binding sites could be freed to allow uptake of TNT. Interestingly, 

when 2,4-DNT was used as the template with APTES, no red color was observed. 

 Extracting the TNT template from PTMS MIPs with alternating acetone, 

acetonitrile, and methanol rinses proved to be the most efficient way to remove most 

of the red coloration. With this functional monomer, most work focused on adjusting 

the ratios of template: functional monomer: structural monomer. The varied results 

from different ratios of PTMS MIP formulations showed that the correct ratio of 

components has a large effect on imprinting efficiency (Table 1). The 90:10 

water:methanol solution was used in the UV-Vis uptake experiments was selected to 

be close to the percolation solution used by Lordel [7].   The most successful ratio was 

1:8:40, with a 227% improvement compared to the control.  While these results show 

some increase in affinity for TNT, the increase in binding was not as high as desired.  

This MIP was designed by Lordel et al. as a solid phase extraction media, but their 

testing was primarily done as if it were a stationary phase, which made comparison of 

results difficult.  The work of Lordel et al. [7] showed that PTMS polymers had great 

potential as stationary phases and as extraction media but did not directly measure 

initial binding capacity.  Indeed, although both MIPs and controls in that work showed 

excellent binding of TNT during the percolation step, the difference was retention 

through the washing step.  The excellent uptake by both MIP and control would have 

made the MIP a failure by our metrics, in which the MIP was required to uptake 

dramatically more analyte than the control. 

Tests of PTMS and RDX MIPs showed no significant increase in pickup over 

the controls.  The reason for this was unclear, but there are a few possible 
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explanations.  Since no Meisenheimer complex (i.e. red color) formed when RDX was 

added to the polymerization reaction, it was difficult to judge extraction efficiency.  

Judging extraction efficiency by UV-Vis was also difficult due to weak UV 

absorbance by RDX.  It was possible that the RDX template was not removed 

efficiently or that the template: structural monomer: functional monomer ratio was not 

optimal or that PTMS was not a good functional monomer for RDX.  Indeed, control 

polymers using PTMS showed lower retention of RDX than of TNT, e.g. 0.48 µg of 

RDX per mg of polymer versus 0.94 µg of TNT per mg of polymer.   

 Two novel functional monomers were tested, TEOTES and TMOTFS, chosen 

because it was noted that they had good affinity for explosives.  Only TEOTES 

showed promise for molecular imprinting, with 159% pickup compared to the control 

(Table 1).  TMOTFS pickup was less than the control, but the difference was within 

the standard deviation.  While the performance of either monomer might have been 

improved by changing the ratios used, neither pickup was sufficiently impressive to 

pursue at this time.  

 The most successful MIP used MAA, following the work of Bunte [8].  The 

reason for its success is unclear.  Porogens have been shown to be important to 

successful imprinting; volatile solvent play the role of porogens increasing surface 

area of the MIPs [9].  Chloroform, a porogen, was the dispersed phase solvent for the 

MAA/EGDMA system and may contribute to a successful imprinting.  Water can also 

function as a porogen. A few PTMS reactions [7, and experiments 58, 59, and 78-85, 

Supporting Information 2] used excess water; however, our experiments did not show 

any improved TNT binding ability by the PTMS MIPs made using excess water.  
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Ethanol has also previously been used as a porogen.  In this work, it was added to the 

TEOTES reactions to slow suspected self-polymerization and encourage 

copolymerizing with TEOS.   

Simple NMR titration experiments were performed to attempt to identify the 

best functional monomer and to probe its interaction with the analyte [10, 11]. The 

technique monitors chemical shift when aliquots of one component (the titrant) are 

added to a solution of the second component.  Initially we attempted to add a solution 

of TNT to a solution of one of the functional monomers (MAA); however, the low 

solubility of TNT made the volume of titrant so large that dilution effects became 

significant.   Instead, the monomer of interest was added to a solution of TNT.  The 

change in chemical shift (Δδ) of the TNT protons, 2.7 ppm for the methyl protons and 

8.9 ppm for the aliphatic protons, was monitored.  We anticipated that maximum Δδ 

would indicate optimal ratio of functional monomer to template.  

<Figure 3> 

MAA and TMOTFS titrations showed very little change over a 1 to 10 

functional monomer to TNT ratio.  The changes observed were not high enough to 

distinguish from noise or volume change effects.  The results of the MAA and 

TMOTFS titrations were very similar.  This was surprising considering MAA was the 

best and TMOTS almost the worst functional monomer (Table 1).  Furthermore, the 

pickup of TNT by MAA was so successful (795%) that an observable Δδ was 

expected.  The successful MAA MIP used the 1:4:25 ratio so the largest Δδ was 

expected around the 1:4 TNT:MAA point; instead it was around the 1:8 ratio.  It was 

not expected that the titration of MAA and TMOTFS would lead to similar results.  
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Evidently the titration experiment was not probing the interactions of TNT as 

expected.  

 PTMS, aniline, and TEOTES had similar results in the titration experiments; 

all three had a linear change in chemical shift with increasing amounts of functional 

monomer.  Experiments with PTMS showed that this linear increase continued up to a 

200:1 ratio.  It was supposed that this was a π-stacking interaction and that it would 

continue as concentration of the monomer increased effectively to infinity.  This 

conflicted with the original theory that π electron acceptor-donor interactions between 

the NO2 and the monomer were the cause of imprinting.  While this still could be true 

for non-aromatic explosives, no imprinting was ever witnessed using RDX.  Controls 

for this consistently performed similar to or better than MIPs; it was not expected that 

coordination would be observed with RDX.   

In an effort to eliminate some of the complexities of the NMR titration study, 

the titration of nitromethane with PTMS was performed. This appeared to be a good 

starting point because of the simple nature of the nitromethane molecule and the 

prevalence of the –NO2 functionality in explosives. The resulting plot of the Δδ of the 

methyl protons on nitromethane appears very similar to that seen for the TNT protons.  

 

Conclusions 

 The earliest literature involving molecularly imprinted polymers appeared in 

the 1970s. References to explosives appear after 2000.  The primary approach for 

discovery of a new MIP is combinatorial, which is labor-intensive, time consuming, 

and costly. This explains the prevalence of MAA in explosive MIPs, since it has been 
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shown to work.  To grow as a field and technique, further research into the basic 

mechanisms of formation and template release is required and predictive experiments 

and models need to be developed. 

 The two most successful MIPs were 1:4:25 MAA and 1:8:40 PTMS with 

795% and 227% uptake compared to controls.  Efforts to identify reasons for 

success/failure of the various formulations included NMR titration experiments.  The 

results did not distinguish MAA as a good candidate for a MIP monomer, despite 

experimental results showing imprinting success.  It is clear that the success of 

imprinting cannot be predicted using the simple model used in these experiments. 

Further review of NMR titration literature showed that the interactions are 

complex [12, 13], much more involved than the simple equilibria assumed in the 

experiments performed.  At a minimum, the interaction of the monomer with itself 

must be accounted for with self-titration.  The complex nature of the equilibria must 

also be taken into consideration and volume effects compensated for or eliminated.  In 

addition, modeling work is needed to examine possible interactions between the 

monomers and templates that overcome dimerization and sensitivity in the NMR.  

Further development of general screening methods to evaluate potential functional 

monomers is needed; ideally it would give insight as to best ratios of template to 

monomer and easing design novel MIPs for both explosives and other compounds.    
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Table 1 – Imprinting Results Summary 

Functional 
monomer 

Structural 
monomer TNT:FM:SM 

MIP (µg 
TNT/mg 

poly) 

Std 
Dev 

Control 
(µg 

TNT/mg 
poly) 

Std 
Dev 

TNT 
uptake 

over 
control 

PTMS TEOS 1:8:18 1.54 0.20 1.62 0.13 95% 
TMOTFS TEOS 1:4:20 0.39 0.06 0.41 0.03 97% 

PTMS TEOS 1:23:102 1.31 0.19 1.20 0.39 109% 
PTMS TEOS 1:8:36 1.41 0.23 1.20 0.39 118% 
PTMS TEOS 1:2:9 1.51 0.02 1.20 0.39 126% 
PTMS TEOS 1:10:50 0.98 0.43 0.74 0.20 133% 
PTMS TEOS 1:4:27 0.99 0.06 0.74 0.13 133% 

TEOTES TEOS 1:4:20 1.04 0.15 0.65 0.05 159% 
PTMS TEOS 1:8:40 1.32 0.10 0.41 0.03 227% 
MAA EGDMA 1:4:25 1.2 0.10 0.20 0.03 795% 

APTES C1-TriEOS 1:10:368 0.12 0.21 0.11 0.07 110% 
RDX             

PTMS TEOS 1:4:18 0.36 0.08 0.47 0.14 76% 
2,4-DNT             

APTES C1-TriEOS 1:10:368 0.11 0.03 0.11 0.07 101% 
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Fig. 1 – Generalized synthesis of a MIP 
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Fig. 2 – Structural and functional monomers tested 
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Fig. 3 – From left to right: TNT aromatic protons with no aniline, 1 molar equivalent 

aniline, and 10 molar equivalents aniline 
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SUPPORTING INFORMATION 

Supporting Information 1 

Year Author Reference Template Monomer Crosslinker Initiator MIP formation

2004 Mayes 14 Propanol MAA EGDMA DMPAP  5 w ays

2006 Booker 25 Trans-aconitic acid Ionic liquids & NMR 
titration

2006 Xie 19 TNT Acrylamide (AA) EGDMA AIBN Nanotubes

2007 Bunte 8 TNT, 2,4-DNT methacrylic acid  
MAA or acrylamide

ethylene glycol 
dimethyacrylat

e EGDMA
 AIBN Suspension 

polymerization

2007 Walker 26 TNT
2-

(trimethoxysilylethyl)
pyridine (TMSE-Pyr)

Bis(trimethoxy
silylethyl)benz

ene (BTEB)

Tetrabutylam
monium 
fluoride 
(TBAF)

Zerogel bulk 
polymerization

2008 Riskin 24 Picric Acid, imprinting 
for TNT

p-aminothiophenol Au 
nanoparticles

electropolymeriz
ation

2008 Xie 6 TNT Aminopropyltriethox
ysilane (APTES)

TEOS

Sodium 
acetate 

buffer (pH 
5.1)

Nanotubes

2009 Bunte 9 TNT 

2009 Turner 27 TNT, DNT Methacrylamide 
(MAM)

Acylonitrile 
(AN), EDGMA

AIBN MIP films

2009 Roesling 16 TNT MAA EGDMA UV
Microreactors 

making 
microspheres

2010 Alizadeh 15 TNT MAA EGDMA AIBN

Bulk 
polymerization, 
ground & added 
to carbon paste

2010 Stringer 17 TNT. DNT MAA EGDMA

2010 Riskin 28 Kemp's acid, 
imprinting for RDX

Bisaniline Au 
nanoparticles

Electropolymeriz
ation

2010 Lordel 7 DNT Phenyltrimethylsiloxa
ne (PTMS)

Tetraethoxysil
ane (TEOS)

Ammonia Bulk 
Polymerization

2010 Holthoff 5 TNT APTES
Methyltriethoxy

silane (C1-
TriEOS)

HCl
Spincoating onto 
SERS substrate

2010 Stringer 18 TNT, DNT MAA EGDMA 365nm UV Bulk 
polymerization

2011 Riskin 23

Citric acid imprint for 
PETN or NG & maleic 
acid or fumaric acid, 

imprint for EGDN

Bisaniline Au 
nanoparticles

Electropolymeriz
ation

2011 Lordel 29 DNT PTMS TEOS Ammonia Bulk 
polymerization

2011 Stringer 30 TNT, DNT MAA EGDMA, EGDA AIBN, ACVA Suspension 
polymerization

2011 Liang 20 DNB AA EGDMA AIBN
Films onto 
polyaniline 
nanofibres

2012 Bao 21 TNT AA EGDMA AIBN Polymer Films

2012 Guan 22 TNT AA EGDMA AIBN
Films on 

polystyrene 
spheres  
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Supporting Information 3 

TNT uptake: rinsing and reusing the same sample 

Sample name Sample # 
UV-Vis 

Abs 232 
nm 

TNT left in 
soln out of 15 

ug/mL 

TNT uptake 
out of 15 

ug/mL 

Condition 
Table # 

Supp Info 2 
Ratio 

MIP 1 5-15 1 0.980 10.4 4.60 52 1:4:18 
  2 0.899 9.47 5.53   

   3 0.879 9.23 5.77   
   4 0.938 9.92 5.08   
 *run another day 5 1.26 13.7 1.30   
 *run another day 6 1.02 10.9 4.13   
 Average     10.6 4.40     

MIP 2 5-15 1 0.922 9.73 5.27 52 1:4:18 
  2 0.858 8.99 6.01   

   3 0.854 8.94 6.06   
   4 0.839 8.77 6.23   
 *run another day 5 1.015 10.9 4.11   
 Average     9.46 5.54     

MIP 1 6-25 1 0.594 6.15 8.85 60 1:8:36 
  2 0.617 6.43 8.57   

   3 0.491 4.95 10.1   
   4 0.461 4.58 10.4   
   5 0.477 4.78 10.2   
 Average     5.38 9.62     

MIP 2 6-25 1 0.713 7.56 7.44 61 1:2:9 
  2 0.724 7.69 7.31   

   3 0.814 8.76 6.24   
   4 0.771 8.25 6.75   
   5 0.750 7.99 7.01   
 Average     8.05 6.95     

MIP 2 5-30 1 0.676 7.35 7.65 56 1:4:18 
  2 0.724 7.89 7.11   

   3 0.435 4.59 10.4   
   4 0.596 6.43 8.57   
 *run another day 5 0.696 7.57 7.43   
 Average     6.77 8.23     

MIP 3 6-5 1 0.957 10.6 4.44 56 1:4:18 
  2 0.958 10.6 4.42   

   3 0.977 10.8 4.21   
   4 0.879 9.66 5.34   
 *run another day 5 1.08 12.0 2.99   
 Average     10.7 4.28     

MIP 4 6-5 1 1.01 11.1 3.89 56 1:4:18 
  2 0.868 9.54 5.46   

   3 0.773 8.45 6.55   
   4 0.771 8.43 6.57   
 *run another day 5 0.960 10.6 4.40   
 Average     9.62 5.38     

Control 1 5-15 1 0.851 8.99 6.01 53 
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  2 0.728 7.57 7.43   
   3 0.762 7.96 7.04   
   4 0.602 6.11 8.89   
 *run another day 5 1.20 13.0 1.97   
 *run another day 6 1.07 11.6 3.42   
 Average     9.21 5.79     

Control 2 5-15 1 1.02 10.9 4.09 53 
   2 0.911 9.69 5.31   

   3 0.889 9.44 5.56   
   4 0.856 9.06 5.94   
 *run another day 5 1.02 11.0 4.00   
 Average     10.0 4.98     

Control 1 5-30 1 1.02 10.9 4.11 57 
   2 1.05 11.2 3.76   

   3 1.04 11.0 3.96   
   4 1.10 11.8 3.24   
 *run another day 5 1.11 11.9 3.13   
 Average     11.4 3.64     

MIP 1 5-30 1 1.02 10.9 4.12 58 1:4:18 
  2 1.07 11.4 3.58   

   3 1.07 11.4 3.59   
   4 1.09 11.7 3.33   
 *run another day 5 0.938 9.92 5.08   
 Average     11.1 3.94     

MIP 1 6-5 1 0.895 9.85 5.15 58 1:4:18 
  2 0.843 9.26 5.74   

   3 1.00 11.1 3.90   
   4 0.943 10.4 4.60   
 *run another day 5 0.858 9.43 5.57   
 Average     10.0 4.99     

MIP 2 6-5 1 0.903 9.94 5.06 58 1:4:18 
  2 0.903 9.94 5.06   

   3 1.03 11.4 3.59   
   4 1.01 11.2 3.78   
 *run another day 5 0.946 10.4 4.56   
 Average     10.6 4.41     

MIP 1 6-18 1 0.962 10.3 4.67 78 1:8:36 
  2 0.832 8.85 6.15   

   3 0.876 9.35 5.65   
   4 0.953 10.2 4.77   
 *run another day 5 0.896 9.48 5.52   
 Average     9.65 5.35     

Control 2 5-30 1 1.13 12.2 2.82 59 
   2 1.12 12.0 3.02   
   3 1.02 10.9 4.08   
   4 1.09 11.6 3.37   
 *run another day 5 1.108 12.0 3.00   
 Average     11.7 3.26     

Emulsion MIP 6-12 1 1.20 12.8 2.24 86   
  2 1.24 13.2 1.82   

   3 1.24 13.3 1.72   
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  4 1.08 11.4 3.60   
 Average     12.7 2.34     

Emulsion Cont 6-12 1 1.07 11.3 3.69 87 
   2 0.970 10.1 4.86   
   3 0.920 9.57 5.43   
   4 0.961 10.0 4.96   
 Average     10.3 4.73     

MIP 2 6-18 1 0.982 10.6 4.44 79 1:2:9 
  2 0.962 10.3 4.66   

   3 0.942 10.1 4.89   
   4 1.02 10.9 4.06   
 *run another day 5 0.901 9.54 5.46   
 Average     10.3 4.71     

MIP 3 6-18 1 0.832 8.86 6.14 80 1:8:18 
  2 0.809 8.59 6.41   

   3 0.823 8.75 6.25   
   4 0.937 10.0 4.95   
 *run another day 5 0.854 8.97 6.03   
 Average     9.04 5.96     

Control 1 6-18 1 0.808 8.35 6.65 81 
   2 0.767 7.90 7.10   
   3 0.996 10.5 4.54   
   4 0.894 9.31 5.69   
 *run another day 5 0.944 10.0 4.96   
 Average     9.21 5.79     

MIP 4 6-18 1 0.991 10.6 4.43 82 1:8:40 
  2 0.987 10.5 4.47   

   3 0.985 10.5 4.50   
   4 0.997 10.6 4.36   
 *run another day 5 0.954 10.2 4.83   
 Average     10.5 4.52     

Control 2 6-18 1 0.891 9.29 5.71 83 
   2 1.04 11.0 4.04   
   3 1.07 11.3 3.74   
   4 1.14 12.0 2.99   
 *run another day 5 1.09 11.8 3.22   
 Average     11.1 3.94     

MIP 5 6-18 1 0.927 9.85 5.15 84   
  2 1.04 11.1 3.85   

   3 1.08 11.5 3.46   
   4 1.04 11.1 3.86   
 *run another day 5 0.928 9.85 5.15   
 Average     10.7 4.30     

Control 3 6-18 1 1.10 11.6 3.38 85 
   2 1.13 12.0 3.01   
   3 1.14 12.1 2.93   
   4 1.14 12.1 2.93   
 *run another day 5 1.17 12.8 2.20   
 Average     12.1 2.89     

MIP 3 6-25 1 0.628 6.56 8.44 62 1:8:18 
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  2 0.617 6.43 8.57   
   3 0.582 6.01 8.99   
   4 0.719 7.63 7.37   
   5 0.840 9.06 5.94   
 Average     7.14 7.86     

Control 1 6-25 1 0.632 6.57 8.43 63 
   2 0.592 6.09 8.91   
   3 0.759 8.08 6.92   
   4 0.845 9.11 5.89   
   5 0.820 8.81 6.19   
 Average     7.73 7.27     

MIP 4 6-25 1 0.905 9.82 5.18 64 1:4:27 
  2 0.812 8.73 6.27   

   3 0.879 9.52 5.48   
   4 0.884 9.58 5.42   
   5 0.931 10.1 4.87   
 Average     9.56 5.44     

Control 2 6-25 1 0.985 10.8 4.23 65 
   2 0.886 9.60 5.40   
   3 0.754 8.02 6.98   
   4 0.840 9.04 5.96   
   5 0.850 9.16 5.84   
 Average     9.32 5.68     

TEOTES MIP 1 7-23 1 0.915 9.93 5.07 75 1:4:20 
  2 0.875 9.62 5.38   

   3 0.797 8.73 6.27   
   4 0.788 8.63 6.37   
   5 0.794 8.70 6.30   
   6 0.776 8.50 6.50   
 Average     9.02 5.98     

TEOTES MIP 2 7-23 1 0.943 10.2 4.76 75 1:4:20 
  2 0.883 9.72 5.28   

   3 0.965 10.7 4.35   
   4 0.874 9.61 5.39   

   5 0.833 9.15 5.85   
   6 0.837 9.19 5.81   
 Average     9.76 5.24     

MIP 1 7-20 1 1.08 11.8 3.21 68 1:10:50 
  2 0.876 9.64 5.36   

   3 0.782 8.55 6.45   
   4 0.778 8.51 6.49   
   5 0.946 10.4 4.56   
   6 0.803 8.80 6.20   
 Average     9.62 5.38     

MIP 2 7-20 1 1.02 11.1 3.92 68 1:10:50 
  2 0.876 9.63 5.37   

   3 0.930 10.3 4.75   
   4 0.911 10.0 4.96   
   5 0.999 11.0 3.96   
   6 0.976 10.8 4.22   
 Average     10.5 4.53     
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RDX uptake: rinsing and reusing the same sample. 

Sample 
name 

Sample 
# 

UV-Vis 
Abs 236 

nm 

RDX left in 
soln out of 
15 ug/mL 

RDX 
uptake out 

of 15 ug/mL 

Condition 
Table # 

Supp Info 
2 

Ratio 

MIP 1 5-22 1 0.645 12.7 2.30 54 1:4:18 
  2 0.653 12.9 2.15     
  3 0.645 12.7 2.31     
  4 0.660 13.0 2.01     

Average     12.8 2.19     
MIP 1 6-13 1 0.699 13.8 1.18 54 1:4:18 

  2 0.708 14.0 1.01     
  3 0.690 13.6 1.38     
  4 0.681 13.4 1.56     

Average     13.7 1.28     
MIP 2 6-13 1 0.665 13.1 1.89 54 1:4:18 

  2 0.671 13.2 1.76     
  3 0.659 13.0 2.02     
  4 0.657 12.9 2.06     

Average     13.1 1.93     
MIP 3 6-13 1 0.667 13.1 1.85 54 1:4:18 

  2 0.670 13.2 1.78     
  3 0.680 13.4 1.58     
  4 0.675 13.3 1.68     

Average     13.3 1.72     
Control 1 5-

22 1 0.684 13.5 1.49 55   
  2 0.669 13.2 1.82     
  3 0.666 13.1 1.88     
  4 0.655 12.9 2.10     

Average     13.2 1.82     
Control 1 6-

13 1 0.612 12.0 3.00 55   
  2 0.628 12.3 2.67     
  3 0.632 12.4 2.57     
  4 0.600 11.7 3.25     

Average     12.1 2.87     

MIP 2 5-22 1 0.679 13.4 1.60 66 1:4:18 
  2 0.674 13.3 1.71     
  3 0.694 13.7 1.28     
  4 0.698 13.8 1.20     

Average     13.6 1.45     
Control 2 5-

22 1 0.656 12.9 2.08 67   
  2 0.663 13.1 1.94     
  3 0.658 13.0 2.04     
  4 0.662 13.0 1.95     

Average     13.0 2.00     
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Supporting Information 4 

Comparison of total NMR shift for all monomers 

Monomer 
Max 

[Mono]:[TNT] Aromatic Methyl 
    Start End Start End 

PTMS 20.2:1 0.00198 0.0430 0.00166 0.0352 
Aniline 20:1 0.0104 0.0943 0.00659 0.0623 

TEOTES 10.4:1 0.00121 0.0106 0.00087 0.00986 
Low [MAA]  10:1 -0.0003 0.00174 -0.00002 0.00152 

High [MAA] 1 9.7:1 0.00009 0.00070 0.00053 0.00134 
High [MAA] 2 9.4:1 0.00055 0.00087 0.00074 0.0015 

TMOTFS 9.8:1 0.00001 0.00046 -0.0003 0.00176 
Nitromethane 9.8:1 NA NA 0.0022 0.0234 
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TNT titrated with MAA lower concentration 

Titration of trinitrotoluene (TNT) with methacrylic acid (MAA) 
MAA 
uL [MAA] M [TNT] M [MAA]:[TNT] Aromatic TNT ppm TNT Methyl 

ppm 
0 0 0.0088 0 8.84999 2.71839 
2 0.0088 0.0088 1.0 8.85034 2.71841 
4 0.0176 0.0088 2.0 8.85027 2.71837 
6 0.0264 0.0088 3.0 8.8499 2.71806 
8 0.0352 0.0088 4.0 8.84887 2.7177 

10 0.044 0.0088 5.0 8.84881 2.71763 
12 0.0528 0.0088 6.0 8.84847 2.7174 
14 0.0616 0.0088 7.0 8.84828 2.71719 
16 0.0704 0.0088 8.0 8.84854 2.71727 
18 0.0792 0.0088 9.0 8.84834 2.71705 
20 0.088 0.0088 10.0 8.84825 2.71687 

Change in chemical shift (Δδ)     
MAA 
uL [MAA]:[TNT] Aromatic 

TNT TNT Methyl   
 0 0 0 0   
 2 1.0 -0.00035 -2E-05   
 4 2.0 -0.00028 2E-05   
 6 3.0 9E-05 0.00033   
 8 4.0 0.00112 0.00069   
 10 5.0 0.00118 0.00076   
 12 6.0 0.00152 0.00099   
 14 7.0 0.00171 0.0012   
 16 8.0 0.00145 0.00112   
 18 9.0 0.00165 0.00134   
 20 10.0 0.00174 0.00152   
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TNT titrated with MAA higher concentration 1 

Titration of trinitrotoluene (TNT) with methacrylic acid (MAA) 
MAA 
uL [MAA] M [TNT] M [MAA]:[TNT] Aromatic 

TNT (ppm) 
TNT Methyl 

(ppm) 
0 0 0.0177 0 8.8517 2.719 
4 0.0353 0.0177 1.99 8.85161 2.71847 
8 0.0706 0.0177 3.99 8.85124 2.71825 

12 0.1059 0.0177 5.98 8.85129 2.71813 
16 0.1412 0.0177 7.98 8.85121 2.71794 
20 0.1765 0.0177 9.97 8.851 2.71766 

Change in chemical shift (Δδ)   
MAA 
uL [MAA]:[TNT] Aromatic 

TNT TNT Methyl   
0 0 0 0   

 4 1.99 9E-05 0.00053   
 8 3.99 0.00046 0.00075   
 12 5.98 0.00041 0.00087   
 16 7.98 0.00049 0.00106   
 20 9.97 0.0007 0.00134   
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TNT titrated with MAA higher concentration 2 

Titration of trinitrotoluene (TNT) with methacrylic acid (MAA) 

MAA uL [MAA] M [TNT] M [MAA]:[TNT] Aromatic 
TNT (ppm) 

TNT Methyl 
(ppm) 

0 0 0.0177 0 8.85160 2.71915 
2 0.0176 0.0177 0.99 8.85105 2.71841 
4 0.0352 0.0177 1.99 8.85146 2.71889 
6 0.0528 0.0177 2.98 8.85103 2.71839 
8 0.0704 0.0177 3.98 8.85128 2.71851 

12 0.1056 0.0177 5.97 8.85123 2.71804 
16 0.1408 0.0177 7.95 8.85048 2.71743 
20 0.176 0.0177 9.94 8.85073 2.71765 

Change in chemical shift (Δδ)     
[MAA] M [MAA]:[TNT] Aromatic TNT TNT Methyl    

0 0 0 0    
0.0176 0.99 0.00055 0.00074    
0.0352 1.99 0.00014 0.00026    
0.0528 2.98 0.00057 0.00076    
0.0704 3.98 0.00032 0.00064    
0.1056 5.97 0.00037 0.00111    
0.1408 7.95 0.00112 0.00172    
0.176 9.94 0.00087 0.00150    
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Titration of trinitrotoluene (TNT) with aminopropyltriethoxy silane (APTES) in deuterated 
acetonitrile 

APTES uL [APTES] M [TNT] M [APTES]:[TNT] Aromatic TNT 
(ppm) 

TNT Methyl 
(ppm) 

0   0.010 0 8.83614 2.61207 
1 0.0071 0.010 0.71 8.83691 2.61224 
3 0.0213 0.010 2.13 8.83693 2.61229 
5 0.0355 0.010 3.55 8.83708 2.61211 
7 0.0497 0.010 4.97 8.83779 2.61235 
9 0.0639 0.010 6.39 8.83793 2.6124 

11 0.0781 0.010 7.81 8.83804 2.61222 
14 0.0994 0.010 9.94 8.83824 2.61223 

Change in chemical shift (Δδ)     
APTES uL [APTES]:[TNT] Aromatic TNT TNT Methyl    

0 0 0 0    
1 0.71 -0.00077 -0.00017    
3 2.13 -0.00079 -0.00022    
5 3.55 -0.00094 -4E-05    
7 4.97 -0.00165 -0.00028    
9 6.39 -0.00179 -0.00033    

11 7.81 -0.0019 -0.00015    
14 9.94 -0.0021 -0.00016    
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Titration of trinitrotoluene (TNT) with phenyltrimethoxy silane (PTMS)  

PTMS uL [PTMS] M [TNT] M [PTMS]:[TNT] Aromatic 
TNT (ppm) 

TNT Methyl 
(ppm) 

0 0 0.0177 0 8.84800 2.71767 
2 0.0179 0.0177 1.01 8.84602 2.71601 
4 0.0358 0.0177 2.02 8.84360 2.71383 
6 0.0537 0.0177 3.03 8.84125 2.71222 
8 0.0716 0.0177 4.05 8.83919 2.71042 

10 0.0895 0.0177 5.06 8.83730 2.70891 
12 0.1074 0.0177 6.07 8.83461 2.70671 
14 0.1253 0.0177 7.08 8.83207 2.70471 
16 0.1432 0.0177 8.09 8.82995 2.70285 
18 0.1611 0.0177 9.10 8.82821 2.70150 
20 0.179 0.0177 10.11 8.82589 2.69943 
24 0.2148 0.0177 12.14 8.82106 2.69557 
30 0.2685 0.0177 15.17 8.81542 2.69066 
40 0.3580 0.0177 20.23 8.80500 2.68244 

Change in chemical shift (Δδ)     
PTMS uL [PTMS]:[TNT] Aromatic TNT TNT Methyl   

 0 0 0 0   
 2 1.01 0.00198 0.00166   
 4 2.02 0.00440 0.00384   
 6 3.03 0.00675 0.00545   
 8 4.05 0.00881 0.00725   
 10 5.06 0.01070 0.00876   
 12 6.07 0.01339 0.01096   
 14 7.08 0.01593 0.01296   
 16 8.09 0.01805 0.01482   
 18 9.10 0.01979 0.01617   
 20 10.11 0.02211 0.01824   
 24 12.14 0.02694 0.02210   
 30 15.17 0.03258 0.02701   
 40 20.23 0.04300 0.03523   
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Titration of trinitrotoluene (TNT) with phenyltrimethoxy silane (PTMS)  

PTMS uL [PTMS] M [TNT] M [PTMS]:[TNT] Aromatic 
TNT (ppm) 

TNT Methyl 
(ppm) 

0 0 0.0018 0 8.85048 2.71794 
2 0.018 0.0018 10 8.84965 2.71707 
4 0.036 0.0018 20 8.8479 2.71578 
6 0.054 0.0018 30 8.84657 2.715 
8 0.072 0.0018 40 8.84593 2.7145 

10 0.09 0.0018 50 8.84401 2.71372 
20 0.18 0.0018 100 8.83884 2.70877 
40 0.36 0.0018 200 8.829 2.70101 

Change in chemical shift (Δδ)     
PTMS uL [PTMS]:[TNT] Aromatic TNT TNT Methyl   

 0 0 0 0   
 2 10 0.00083 0.00087   
 4 20 0.00258 0.00216   
 6 30 0.00391 0.00294   
 8 40 0.00455 0.00344   
 10 50 0.00647 0.00422   
 20 100 0.01164 0.00917   
 40 200 0.02148 0.01693   
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Titration of nitromethane (NM) with phenyltrimethoxy silane (PTMS) 
PTMS uL [PTMS] M [NM] M [PTMS]:[NM] Methyl NM (ppm) 

0 0 0.0183 0 4.3318 
2 0.0179 0.0183 0.98 4.3296 
4 0.0358 0.0183 1.96 4.3285 
6 0.0537 0.0183 2.93 4.3255 
8 0.0716 0.0183 3.91 4.323 

12 0.1074 0.0183 5.87 4.3182 
16 0.1432 0.0183 7.83 4.3136 
20 0.1790 0.0183 9.78 4.3084 
Change in chemical shift (Δδ)     

PTMS uL [PTMS]:[NM] Methyl NM   
 0 0 0   
 2 0.98 0.0022   
 4 1.96 0.0033   
 6 2.93 0.0063   
 8 3.91 0.0088   
 12 5.87 0.0136   
 16 7.83 0.0182   
 20 9.78 0.0234   
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Titration of trinitrotoluene (TNT) with aniline 

Aniline uL [Aniline] M [TNT] M [Aniline]:[TNT] Aromatic 
TNT (ppm) 

TNT Methyl 
(ppm) 

0 0 0.0177 0 8.85003 2.71818 
4 0.0354 0.0177 2 8.83962 2.71159 
8 0.0708 0.0177 4 8.82956 2.70509 

12 0.1062 0.0177 6 8.81933 2.69847 
16 0.1416 0.0177 8 8.80965 2.69205 
20 0.177 0.0177 10 8.80001 2.68571 
24 0.2124 0.0177 12 8.79061 2.67948 
30 0.2655 0.0177 15 8.77719 2.67033 
40 0.354 0.0177 20 8.75575 2.65591 

Change in chemical shift (Δδ)    
Aniline uL [Aniline]:[TNT] Aromatic TNT TNT Methyl    

0 0 0 0    
4 2 0.01041 0.00659    
8 4 0.02047 0.01309    

12 6 0.0307 0.01971    
16 8 0.04038 0.02613    
20 10 0.05002 0.03247    
24 12 0.05942 0.0387    
30 15 0.07284 0.04785    
40 20 0.09428 0.06227    
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Titration of trinitrotoluene (TNT) with triethoxythienylsilane (TEOTES) 

TEOTES uL [TEOTES] M [TNT] M [TEOTES]:[TNT] Aromatic 
TNT ppm 

TNT Methyl 
ppm 

0 0 0.0177 0 8.85024 2.71855 
2 0.0142 0.0177 0.80 8.84903 2.71768 
4 0.0284 0.0177 1.60 8.84782 2.71647 
6 0.0426 0.0177 2.41 8.84737 2.71589 
8 0.0568 0.0177 3.21 8.84659 2.71515 

10 0.071 0.0177 4.01 8.84545 2.71417 
14 0.0994 0.0177 5.62 8.84384 2.71252 
18 0.1278 0.0177 7.22 8.84216 2.71109 
22 0.1562 0.0177 8.82 8.84132 2.71019 
26 0.1846 0.0177 10.43 8.83961 2.70869 

Change in chemical shift (Δδ)   
 TEOTES uL [TEOTES]:[TNT] Aromatic TNT TNT Methyl   
 0 0 0 0   
 2 0.80 0.00121 0.00087   
 4 1.60 0.00242 0.00208   
 6 2.41 0.00287 0.00266   
 8 3.21 0.00365 0.0034   
 10 4.01 0.00479 0.00438   
 14 5.62 0.0064 0.00603   
 18 7.22 0.00808 0.00746   
 22 8.82 0.00892 0.00836   
 26 10.43 0.01063 0.00986   
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Titration of trinitrotoluene (TNT) with trimethoxytrifluoropropyl silane (TMOTFS) 

TMOTFS uL [TMOTFS] M [TNT] M [TMOTFS]:[TNT] Aromatic 
TNT ppm 

TNT Methyl 
ppm 

0 0 0.0177 0 8.85009 2.71812 
2 0.0174 0.0177 0.98 8.85008 2.71846 
4 0.0348 0.0177 1.97 8.85024 2.71825 

10 0.087 0.0177 4.92 8.84967 2.71716 
15 0.1305 0.0177 7.37 8.84965 2.71697 
20 0.174 0.0177 9.83 8.84963 2.71636 

Change in chemical shift (Δδ)     
TMOTFS uL [TMOTFS]:[TNT] Aromatic TNT TNT Methyl   

 0 0 0 0   
 2 0.98 1E-05 -0.00034   
 4 1.97 -0.00015 -0.00013   
 10 4.92 0.00042 0.00096   
 15 7.37 0.00044 0.00115   
 20 9.83 0.00046 0.00176   
 

  

  


	APPLICATION OF POLYMER SYSTEMS TO THE DETECTION AND RETENTION OF EXPLOSIVES
	Terms of Use
	Recommended Citation

	Jonathan Canino Thesis formatting corrections

