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We propose modifications to the simple diffusion Monte Carlo algorithm that greatly reduce the 
time-step error. The improved algorithm has a time-step error smaller by a factor of 70 to 300 
in the energy of Be, Li2 and Ne. For other observables the improvement is yet larger. The 
effective time step possible with the improved algorithm is typically a factor of a few hundred 
larger than the time step used in domain Green function Monte Carlo. We also present an 
optimized 109 parameter trial wave function for Be which, used in combination with our 
algorithm, yields an exceedingly accurate ground state energy. A simple solution to the 
population control bias in diffusion Monte Carlo is also discussed. 

I. INTRODUCTION 

Ground state energies of fermion systems such as at
oms and molecules can be computed within the fixed-node 
approximation 1-5 by quantum Monte Carlo methods. 
These methods can also be employed to compute other 
quantities and apply to a wide variety of systems. Mostly 
two basic algorithms have been used: the Green function 
Monte Carlo method developed by Kalos and co
workers,6,7 and extended by Ceperley and co-workers, 8,9 

and the diffusion Monte Carlo method,2,3,1O,1l also some
times referred to as the short-time approximation to Green 
function Monte Carlo. 

In its implementation the diffusion Monte Carlo 
method is simpler than Green function Monte Carlo,4,6,7 
but it suffers from a systematic bias, the so-called time-step 
error. That is, both Green function Monte Carlo and dif
fusion Monte Carlo calculations start from an optimized 
trial wave function for the ground state and improve upon 
variational Monte Carlo by a stochastic implementation of 
the power method, a standard algorithm for computing the 
dominant eigenvalue and eigenvector of an operator. In 
Green function Monte Carlo the ground state is obtained 
by iteratively acting on an initial wave function, i.e., the 
optimized trial wave function tPT, with an operator propor
tional to (JY + Eo) -1, where JY is the Hamiltonian and 
Eo is a shift that renders the operator positive definite. In 
diffusion Monte Carlo one uses an operator proportional to 
e-rJliP, defined in terms of a time step r. In the previous 
expression and throughout the rest of this paper we use 
atomic units. 

In Green function Monte Carlo the stochastic multi
plication by (JY + EO)-l (see Ref. 4) is exact, but in the 
case of diffusion Monte Carlo an approximation to the 
operator e-rJIiP is used. This involves an expression for the 
coordinate space representation of the diffusion Monte 

Carlo operator which is correct only to some order of the 
time step r in the limit r --+ O. In practice, the calculations 
are therefore performed for several values of r and the 
results are extrapolated to give the r --+ 0 limit. These 
values of r have to be small enough to permit an accurate 
extrapolation, but configurations realized in successive it
erations of a Monte Carlo run become more correlated as 
r is reduced, which increases statistical errors for a run of 
a given number of iterations, i.e., a given amount of com
puter time. Hence, the values of r used in a practical com
putation represent a compromise between the systematic 
time-step error and the statistical error. 

Because of this trade-off, several attempts have been 
made to design quadratic algorithms, which have a time
step error in the energy of & ( ~), rather than & ( r). 12-16 

However, in practice these algorithms are not second or
der, except possibly in the special case of nodeless two
electron wave functions, 16 because the local energy and the 
velocity which play an important role in the diffusion 
Monte Carlo algorithm are not uniformly well-behaved in 
configuration space; in particular they diverge at the nodes. 
In this paper we propose, instead, an algorithm with very 
small time-step errors to all orders in r. For the range of 
time steps of interest the error is far smaller than that of 
the "quadratic" algorithms, even in the case of nodeless 
wave functions. Although we have no a priori mathemati
cal reason to believe that our algorithm has strictly 
quadratic errors, they appear to be quadratic to within the 
statistical accuracy for the systems we have investigated. 
Some of the preliminary results of this work, obtained with 
an earlier version of the algorithm presented here, were 
reported previously.17 

As mentioned, the Green function Monte Carlo 
method does not have a time-step error, but the effective 
time steps used in Green function Monte Carlo are consid
erably smaller than the ones commonl.y used in diffusion 
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Monte Carlo. Moreover, Green function Monte Carlo is 
more complex algorithmically than diffusion Monte Carlo. 
Consequently, Green function Monte Carlo is computa
tionally much more expensive, even if diffusion Monte 
Carlo requires calculations for a few different values of 7 

for accurate 7 -+ 0 extrapolation. 
It should be noted that the approach discussed in this 

paper, apart from having a time-step bias, is approximate 
in principle even in the 7 -+ 0 limit because it uses the 
fixed-node approximation to yield antisymmetric wave 
functions, as required by the fermionic nature of electrons. 
For completeness we mention that there are algorithms 
that yield the exact ground state without making the fixed
node approximation.9,18,19 However, the statistical accu
racy one can obtain with these algorithms is limited. 

The layout of this paper is as follows. In Section II A 
we review the basics of diffusion Monte Carlo and intro
duce what we call the simple algorithm. This algorithm is 
typical of one class of algorithms used in the literature2,20,21 

and will serve to provide a benchmark to evaluate the per
formance of the improved algorithm, introduced in Sec
tions III A and III C. Those sections contain a systematic 
discussion of two types of contributions to the time-step 
error. These are, firstly, the failure of the simple algorithm 
to sample the exact probability distribution (the square of 
the ground state wave function) even in the ideal limit in 
which the trial function is the exact ground state wave 
function. In other words, this algorithm can, for suffi
ciently large time steps, yield a distribution and expecta
tion values that are even inferior to those obtained from 
variational Monte Carlo. The solution to this problem is 
the inclusion of an accept/reject step as was proposed by 
Reynolds et af. 3 This is discussed in Section IlIA. 

A problem caused by the introduction of the accept/ 
reject step is that it can give rise to unphysical persistent 
configurations, a phenomenon discussed in Section III B. 
This problem can be alleviated by addressing the second 
source of large time-step errors, viz. Monte Carlo instabil
ities resulting from nonanalyticity of the velocity and the 
local energy in the transformed Schr6dinger equation gov
erning the diffusion Monte Carlo process. The related im
provements of the algorithm are discussed in Section III C. 
Section II B contains a discussion of more technical aspects 
of the diffusion Monte Carlo algorithm, such as the esti
mators employed and systematic errors due to population 
control, which is an essential part of the algorithm. 

In Section IV A we compare the time-step errors of the 
simple and improved algorithms, for the energy, kinetic 
energy and moments of the charge distribution of Be, 
Li2 , and Ne, using simple trial wave functions. These time
step errors are compared to those in the literature in Sec
tion IV B. In Section IV C we present the time-step error 
in the energy of Be using a good wave function. 

Finally, in Appendix A we present a summary of the 
algorithm and in Appendix B we present the form of the 
trial wave functions and their parameters. These two ap
pendices are provided in order to encourage others to pro
gram and test the algorithm for themselves. In Appendix C 
we present an alternative to the generalized Metropolis 

algorithm and in Appendix D we estimate how the errors 
in the simple diffusion Monte Carlo algorithm scale with 
the time step. 

II. REVIEW OF DIFFUSION MONTE CARLO 

A. The simple algorithm 

A transformed version of the Schr6dinger equation in 
imaginary time serves as the starting point of the diffusion 
Monte Carlo method to compute ground state properties of 
fermion systems within the fixed-node approximation. In 
principle, the discussion below is applicable also to excited 
states; except for a minor complication due to the existence 
of inequivalent nodal pockets for excited state wave func
tions. Here we will limit ourselves to ground states. 

We shall consider systems with n electrons, the spatial 
coordinates of which are given by a 31i-dimensional vector 
R. It will be convenient to introduce vectors specifying 
coordinates of one electron only. For example, we write 
R = (fb ... ,fn), where fiis a three-dimensional vector spec
ifying the coordinates of electron number i. More gener
ally, we shall use upper case symbols to denote n-electron 
vectors and lower case symbols for the corresponding sin
gle electron vectors. 

Given a guiding function 1fiG(R) one can introduce a 
distribution f(R,t) = 1fiG(R)1fi(R,t) which, if 1fi(R,t) sat
isfies the Schr6dinger equation, can be shown to be a so
lution of the equation2,3 

1fiG(R) (Jf'" -ET )1fiG(R) -If(R,t) 

= -! V2f(R,t) + V· [V(R)f(R,t)] -S(R)f(R,t) 

af(R,t) 

at 
(1) 

Here the velocity V-we deviate from the usage of referring 
to Vas the (quantum) force-is given by 

V1fiG(R) 

1fiG(R) 

(Ob···,an ) 1fiG(R) 

1fiG(R) 

and the coefficient of the branching term is 

S(R) =ET-EdR), 

which is defined in terms of the local energy 

~1fiG(R) 

1fiG(R) 

(2) 

(3) 

(4) 

where r(R) is the potential energy. ET is a shift in energy 
such that Eo-ETzO, where Eo is the ground state energy. 
In the special case 1fiG = 1 the velocity vanishes and the 
local energy equals the potential energy, so that Eq. (1) 
reduces to the standard Schr6dinger equation in imaginary 
time. 

The modified Schr6dinger equation (1) is equivalent 
to the standard one only for wave functions that vanish at 
the nodes of 1fiG(R). Thus a fermionic state may be treated 
by prescribing a nodal surface on which the Green function 
and 1fiG(R) vanish. This surface divides space into positive 
and negative regions that obey exchange antisymmetry. As 
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is usual, l/lG(R) is chosen to be some optimized antisym
metric trial wave function l/lT(R) within the nodal pocket 
under consideration, and we will not distinguish between 
l/lG(R) and l/JT(R) in the rest of this paper. 

For long times the distribution f(R,f) approaches 
l/JT(R)l/lo(R) up to a normalization constant, where, in 
each nodal region, l/lo(R) is the ground state eigenfunction 
consistent with the boundary condition that it vanish at the 
nodes of l/JT(R). This implies that the long-time limit is the 
true fermion ground state if and only if the nodes of l/lT 
happen to be the exact nodes of the ground state wave 
function. In general there is no procedure for choosing a 
l/JT(R) that has the exact nodes. The fixed-node energy 
obtained by extrapolation to 1"=0 is an upper bound to the 
exact fermion ground state energy. 

An integral equation equivalent to Eq. (t) is 

f(R',t+1") =eTErUH) f dRG(R',R,r)f(R,t), (5) 

where G is the Green function for the case ET = o. The 
power method consists of iterating this equation and this is 
done in an average sense as described below. The energy 
shift ET(t + 1") plays the role of an arbitrary time
dependent normalization constant,22 chosen in such a way 
that the electron density f remains finite and nonvanishing 
in the limit f -+ 00. Note that by convention, ET on the right 
and the electron distribution f on the left-hand side of Eq. 
(5) depend on the same parameter, t+r. In the Monte 
Carlo iteration of Eq. (5) ET(t + r) depends on the spe
cific random realization of f(R,t) but not that of 
f(R',f + 1"). 

The three terms on the left-hand side of Eq. (I) de
scribe diffusion, drift and growth or decay. An approxi
mate Green function, with an error of & ( ~) for small 1", is 
given by the product of the individual diffusion, drift and 
growth/decay Green functions, 

I fdR" -[(R'-R,,)2/2T] 
G(R',R,r) (21T1")3nI2 e 

XS(R" -R-V(R)r) 

xe-(1/2)[EdR')+EL(R)]T+&(~). (6) 

To compute the ground state energy and other expec
tation values, the n-electron distribution f(R,t) is repre
sented in diffusion Monte Carlo by an average over a time 
series of generations of walkers each of which consists of a 
fluctuating number of N walkers. To be precise, a walker is 
a pair (Ra,wa), a= t, ... ,N, with Ra a 3n-dimensional elec
tron configuration with statistical weight wa•

23 At time t, 
the walkers represent a random realization of the 
n-electron distribution, viz. 

N 

f(R,t) = 2: waS(R-Ra)· (7) 
a=! 

Each walker executes a branching random walk con
structed so as to satisfy on average the power method it
eration relation, Eq. (5), where the average is over all 
realizations of walkers at time t+r given a fixed, yet arbi-

trary realization of walkers at time t. This means that we 
are iterating Eq. (5) with f(R,t) on the right-hand side of 
the form ofEq. (7). The exact equation does not conserve 
this form, but its stochastic implementation does. 

In the first step, a given walker (R,w) drifts to R" 
= R + V(R)r, according to the S function in Eq. (6). 
Then in the second step, the walker diffuses to R', where 
R' is sampled from the diffusion Green function 
(21Tr) -3nI2exp{ - (R' -R,,)2/2r}. Finally, the third step, 
resulting from the growth/decay (or branching) term of 
Eq. (1), is to multiply the weight of the walker by the 
remaining exponential factors in Eqs. (5) and (6), i.e., W is 
replaced by waw, with 

aw=exp{HS(R',t+1") +S(R,t+1") n. (8) 

Note that the position dependence in this expression comes 
from the local energy EL, and the time dependence from 
the trial energy ET • We shall usually suppress explicit ref
erence· to the time dependence. 

For reasons of efficiency, walkers with big statistical 
weights are duplicated, while walkers with low weights are 
combined pairwise. That is, in the duplication an old 
walker is replaced by two identical new walkers, each with 
weight equal to half of the old weight. In combining two 
walkers (Rat,wat ) and (Ra2'w~) they are replaced by one 
walker (Ra,wa) with weight wa = wat + wa2 and configura
tion Ra = Ra. sampled with probability wa/wa (i= I or 

I I 

i = 2 ). We note that in both cases the total weight is kept 
constant,23 while the more frequently used alternative ap
proach4,5 of creating int(wa + 5) walkers of unit weight, 
where J is a random number uniformly distributed on 
[0,1], leads to an unnecessary random fluctuation of the 
total weight of the walkers or equivalently the number of 
walkers. 

For the time being we shall assume that the equilib
rium distribution of the Monte Carlo process as described 
above is l/lT(R)l/lo(R). This is only approximately correct, 
because of population control exercised by having a time 
dependent ET (t+1") in Eq. (5), as discussed in more detail 
in Section II B. 

This simple diffusion Monte Carlo algorithm is not 
viable for a wave function with nodes for the following two 
reasons. Firstly, in the vicinity of the nodes the local en
ergy of the trial function l/lT diverges inversely proportional 
to the distance to the nodal surface. For nonzero 1", there is 
a nonzero density of walkers at the nodes. Since the nodal 
surface for a system with n electrons is 3n - 1 dimensional, 
the variance of the local energy diverges for any finite 1". In 
fact, the expectation value of the local energy also diverges, 
but only logarithmically. Secondly, the velocity of the elec
trons at the nodes diverges inversely as the distance to the 
nodal surface. The walkers that are close to a node at one 
time step, drift at the next time step to a distance inversely 
proportional to the distance from the node. This results in 
a charge distribution with a component that falls off as the 
inverse square of distance from the atom or molecule 
whereas in reality the decay is exponential. These two 
problems are commonly remedied by introducing cut-offs 

J. Chern. Phys., Vol. 99, No.4, 15 August 1993 



2868 Umrigar, Nightingale, and Runge: Diffusion Monte Carlo algorithm 

in the values of the local energy and the velocity.15,21 For 
example, DePasquale, Rothstein, and Vrbik15 use the cut
offs 

where Evar is the variational energy associated with 1fJT. and 
where Vi is componenti of the velocity (see Ref. 24). Since 
the cut-offs have no effect in the T -> 0 limit, the results 
extrapolated to T = 0 are correct. 

We will refer to this algorithm as the simple diffusion 
Monte Carlo algorithm24 and will contrast it with the im
proved diffusion Monte Carlo algorithm discussed below. 
There is one more feature of the simple algorithm that 
should be mentioned. For finite T a walker can cross a node 
and move into a region where 1fJT is negative. If this hap
pens the walker is killed. This is the source of large time
step errors, especially in the growth estimator of the energy, 
as discussed later. 

B. Expectation values 

In this section we define the mixed and the growth 
estimators of the energy. We show that the distribution of 
walkers suffers from a population control bias and we 
present a method for projecting away this bias without 
having to perform calculations for more than one popula
tion size.23,25 

The basic power method iteration relation, Eq. (5) has 
a normalization constant, which contains a running esti
mate of the ground state energy. In practice, one also has 
to include a term that insures that the total weight of all 
walkers remains approximately stationary by correcting 
for random drifts in the average. In actual calculations, 
time t is a discrete variable and it is convenient to introduce 
an integral valued variable f = t/ T, but we do not intro
duce a different notation for functions of t and f. We choose 

h h 1 Wi 
ETCt+ 1) =EestCt) --log TiT' 

gT no 
(11 ) 

Here Eest(f) is an estimate of the energy at time f, which we 
have chosen it to be the current cumulative value of the 
mixed estimator [see Eq. (19)], but other choices are 
equally valid. This term serves to suppress an exponential 
population explosion (or implosion) as would occur for a 
constant ET > Eo (or ET < Eo). The second term redresses 
fluctuations and attempts to reset some g generations later 
the total weight of the population, Wp to a target, Woo In 
the calculations reported in this paper we set g= 1/r, 
which is of the order of the correlation time of e-rK. 

Even though each generation of walkers on the average 
evolves by construction from the previous one according to 

Eq. (5), the feedback of the number of walkers into 
ET(f) produces a systematic bias, the population control 
bias. To understand that the equilibrium distribution of the 
stochastic process is only approximately equal to the 
ground state distribution 1fJT1fJo, consider the branching 
term in Eq. (1) with ET = Eo. If a fluctuation increases the 
fraction of walkers in a region where EdR) - Eo < 0 the 
population size increases. The second term in Eq. (11) 
moderates this trend, decreasing the equilibrium distribu
tion relative to 1fJT(R)1fJo(R). In other words, the diffusion 
Monte Carlo eqUilibrium distribution I(R) is too small for 
low EL(R). Similarly, I(R) is too large in regions of high 
EdR). Both effects increase the time average of the en
ergy. This reas(:ming suggests that the expectation value of 
the energy will be biased by an amount proportional to the 
covariance of the fluctuations in exp(ET(f)r) and the fluc
tuations in the average energy of a generation of walkers. 
Since the former fluctuation is also proportional to the 
fluctuations in the average energy of a generation of walk
ers and since both have fluctuations proportional to 
1/ .JWo, we expect a bias linear in 1/Wo, i.e., proportional 
to the inverse of the average popUlation size. In order to 
reduce the covariance, it is desirable to make g, in Eq. 
( 11 ), greater than the auto correlation time of the local 
energy. However, a large value of g results in large fluctu
ation in the population size, so there is a trade-off. It is 
possible to eliminate the population control error by per
forming calculations for different population sizes Wo and 
extrapolating to infinite Woo However, a better method ex-
. t 2325 cd·· hi· I IS S' lor etermmmg t e popu abon contro error, one 
that does not require calculations for different sized popu
lations, as we discuss next. 

Repeated operation by G on an arbitrary distribution 1 
results in an equilibrium distribution proportional to 
1fJT(R)1fJo(R). However, in order to maintain an approxi
mately constant population of w~kers, the operator used 
in tiie Monte Carlo process is G multiplied by a time
dependent renormalization factor erEr(t). In order to re
cover a distribution proportional to 1fJT(R)1fJo(R) it isnec
essary to undo the effect of the time-dependent 
normalization factors. This is done by a reweighting of the 
averages. A complete undoing of the normalization would 
involve products of an ever-increasing number of factors 
which would introduce fluctuations of ever-increasing 
magnitude. Fortunately, the number of factors used for 
reweighting can be kept rather small in practice. The num
ber required to reduce the population-control error to a 
given value is proportional to the autocorrelation time (in 
units of T) of the energy, with a proportionality constant 
that decreases with increasing population size and in
creases with increasing rms fluctuation of the local energy. 
From. a more formal point of view, the diffusion Monte 
Carlo process has been constructed so that 

(12) 

where the bar on the left indicates an average in which the 
distribution corresponding to IJ(f - 1) is kept fixed in 
a state of the form given in Eq. (7). That is, if 1/([- 1» 
is any sum of o-functions in configuration space, then the 
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sum of S-functions resulting from one step of the algorithm 
has expectation value Glf(t - l)/e-TEr(t). By iteration 
one obtains 

fI(i,Tp) If(i»=GTPlf(t-Tp», 

where 
T -1 .. 

fI(t,Tp) = IT e-TEr(t-m), 
m=O 

(13) 

(14) 

with fI(t,O) = I,P(O,Tp) = 1, where Tp = min(t,Tp). 
(Note that Tp = Tp except at the start of the equilibration 
Monte Carlo moves.) In practice, in order to avoid 
overflow/underflow errprs on the computer, most of the 
S,9nstant part of e-TEr(t) is absorbed into the definition of 
G, so that the remaining part in Eq. (14) fluctuates about 
a value close to one. 

It follows from Eq. (13) that one can extract the fol
lowing estimator of the equilibrium distribution 1/IT1/IO of 
the transformed Schr6dinger, Eq. (1), from a Monte Carlo 
run with realizations of the electron distribution f(R,t) as 
defined in Eq. (7): 

1 T A A 

1/IT(R)1/Io(R)ZT ~1 fI(t,Tp)f(R,t). (15) 

In principle, this estimator is unbiased only for infinite 
Tp but, its variance increases with increasing T . The en
ergy autocorrelation time sets the scale for th/ values of 
T p required to project out the population control bias. In 
practice, for systems we studied, this time is small enough 
that the increase in the variance is negligible. Almost all 
the calculations presented in the literature have been per
formed omitting the factor fI(t,Tp) above. This is justified 
in most cases, since the population control errors tend to be 
smaller than the statistical errors for sufficiently large sized 
populations. However, there is the risk that this may not be 
true at times, especially when highly accurate results are 
required. The above expression and the explicit estimators 
given below allow one to estimate the bias due to popula
tion control and correct for it at virtually no computational 
cost without performing several runs with increasing num
bers of walkers. 

Expression (15) is of practical use only upon integra
tion over R, i.e., for the computation of expectation values 
of observables. For example, one can estimate mixed ex
pectation values of the form 

< 1/IT 1 JIJf 11/10) f dR1/IT(R) JIJf(R) 1/10 (R) 

<1/IT 11/10) JdR1/IT(R)1/Io(R) 
(16) 

where JIJf is an arbitrary operator diagonal in the position 
representation. Substitution ofEq. (15) and Eq. (7) yields 

<1fJT I.sa( 11/10) L;=1 fI (t,Tp)L;;,,q{Wa(t) JIJf {Ra(t)} 

<1/ITI1/Io) Z LT=lfI Ci,Tp)WCi) ,(17) 

where WCt~ denotes the total weight of all NCt) walkers of 
generation t. We note that if JIJf commutes with ~ 

< 1/101 .sa( 11/10) 
< 1/10 11/10) 

(18) 

i.e., the mixed expectation value equals the true quantum 
mechanical expectation value. For other operators, if rea
sonably accurate trial functions are used, the mixed expec
tation value closely approximates the true expectation 
value and is likely to have a comparable time-step bias 
which is all that counts for the purpose of this paper. ' 

We have used two different estimators for the ground 
state energy Eo and a single one for the expectation values 
of other operators.4 The mixed estimator estimator for Eo is 
an.immediate application ofEq. (17) with JIJf=~1/IT/1/IT. 
It IS defined as 

Eo;::::;EmixCT,Tp) 

LT_ fICt T )LN(t) Ct) ~1/IT{RaCi)} 
(-1 'p a=IWa 1/IT{Ra(t)} 

2:L 1fI Ct,Tp) wei) (19) 

Another useful estimator is the growth estimator, which 
reads 

In this expression the argument of the logarithm is an 
estimator of < 1/IT 1 GC T) 11/10)/< 1/IT 11/10)· 

It should be noted that the statistical error of the 
growth estimator calculated with the above method is no 
larger than that of the mixed estimator, as will be apparent 
from the results. An alternative method,4,5 mentioned 
above, is to constructintCwa + s) unit-weight walkers from 
each of the original walkers labeled by a. This operation 
does not conserve the total weight of all walkers and hence 
if the integral weights obtained after this operation are 
used in the numerator of Eq. (20), additional large fluc
tuations are introduced in the growth estimator, which are 
not present in the mixed estimator. These unnecessary fluc
tuations can be avoided by simply choosing WCt + 1) in 
the numerator ofEq. (20) to be the sum of weights prior 
to performing this operation. 

The method described in this section for evaluating the 
population control error can be extended to computations 
on parallel computers to yield unbiased expectation values 
while at the same time performing load-balanced compu
tations. 

III. IMPROVED DIFFUSION MONTE CARLO 
ALGORITHM 

A. The limit of perfect importance sampling 

In the limit of perfect importance sampling, that is if 
tfrTCR) = tfroCR), the energy shift ET can be chosen such 
that the branching term in Eq. (1) vanishes identically for 
all.R. It is interesting to note that, in that case, the energy 
estImators have zero variance, but the important observa
tion is that the branching term can be considered small for 
good wave functions. Yet, the simple diffusion Monte 
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Carlo algorithm discussed in Section II A yields an equi
librium distribution of walkers with a time-step error even 
in the ideal limit. If for the moment we ignore the branch
ing term in Eq. (1), then we have the equation 

(21) 

This equation has the steady-state solution f = 1 tPT 12 for 
any tfJT. In the limit of perfect importance sampling this is 
the desired distribution, but for any finite time step 7' it is 
not the equilibrium distribution of the drift-diffusion Green 
function, i.e., the Green function in Eq. (6) without the 
branching factor. Following Reynolds et al.,3 we can sam
ple 1 tPT 12 with no time-step error by using a general
ized26-28 Metropolis algorithm.29 The approximate drift
diffusion Green function is used to propose moves, which 
are then accepted with probability 

. (I tPT(R') 12G(R,R' ,7') ) 
p=mm ItPT(R)1 2G(R',R,7'),1 =l-q, 

as prescribed by the detailed balance condition. 

(22) 

Within the fixed-node approximation, the number of 
walkers that move across nodal surfaces of the trial wave 
function vanishes as 7' --+ O. The fixed-node method can be 
implemented with the requirement that G(R',R,7') vanish 
if R' and R are in different nodal pockets for all 7'. Yet, for 
any finite 7', moves across the nodes will be proposed be
cause of the nature of the approximation of the Green 
function. Hence we always reject moves that attempt to 
cross nodes, even though it is possible to satisfy the de
tailed balance condition without so doing. 

It is worth noting that the common practice of killing 
walkers that stray across nodes l - 3,5,30-32 results in a large 
time-step error, particularly in the growth estimator. In the 
tPT = tPo limit, th~ true Green function is normalized to one, 
I.e., f dR'G(R',R,7') = 1. On the other hand, if walkers 
that cross nodes are killed then the approximate 
G(R',R,7') has a normalization smaller than one, and con
sequently the growth estimator, which is directly related to 
the norm, fails to satisfy a zero-variance principle. Even 
some algorithms that contain an accept/reject step kill 
walkers that cross nodes.3,S,31 In this case they fail to sam
ple 1 tPo 12 in the ideal tPT = tPo limit since detailed balance is 
violated. Unlike the improved algorithm, the simple one 
has a growth estimator for the energy which always has 
nonzero variance, since the algorithm fails to conserve 
probability even in the tPT = tPo limit. 

It is shown in Appendix D that killing walkers that 
cross nodes results in a f dependence of the growth esti
mator. This makes accurate extrapolation to 7'=0 exceed
ingly difficult since f has infinite slope. 

If we stopped here we would have an exact and effi
cient variational Monte Carlo algorithm to sample from 
1 tPT 12. Now, we reintroduce the branching term to convert 
the steady-state distribution from 1 tPT 12 to tPTtPO' This is 
accomplished by reweighting the walkers with the branch
ing factor [see Eq. (6)] 

j
exp{HS(R') +S(R) ]7'eft} for an accepted move, 

= (n) 
exp[S(R)'T'eff] for a rejected move, 

where S is defined in Eq. (3). Following Reynolds et aI., 3 

an effective time step 7'eff was introduced to account for the 
changed rate of diffusion. We set 

(p11R. 2 ) 

7'eff=7' (AR2) , (24) 

where the angular brackets denote the average over all 
attempted moves, and AR are the displacements resulting 
from diffusion. This equals (11R.2

) accepted/ (11R.2
) but has 

somewhat smaller fluctuations. 
An alternative to expression (23) is obtained by re

placing the two reweighting factors by a single, average 
expression, where the average is over accepting and reject
ing the proposed move with the appropriate weights. Sub
sequent reweighting factors contribute multiplicatively and 
thus it is natural to use the expression obtained by averag
ing the exponent, which of course gives the same result as 
averaging the exponential for 7' --+ O. This yields the re
weighting factor 

for all moves. (25) 

In our~omputations this expression was found to yield 
somewhat smaller fluctuations and time-step error than 
expression (23). 

An analogous modification is made in the computation 
of mixed estimators. Equation (17) is modified to read 

(tPTI.If1 tPo) Lf=lII(t,Tp)L;;'~~Wa(t) (q.If{Ra(t-1 )}+p.cf{R' a(t)}) 
(26) 

(tPTI tPo) Z _~f=lrr(i,Tp) wei) 
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where R' aCt) is the proposed move at time t which has 
probability p of being accepted. This is motivated by the 
fact that in a variational Monte Carlo calculation [i.e., all 
weights and II(t,Tp) set to one], the above expression 
yields the same expectation values as Eq. (17), but with a 
somewhat smaller variance. 

A requirement to maintain a correct algorithm is that 
the ratio 1'efflr -> 1 for l' -> O. This is fulfilled since the 
acceptance defined in Eq. (22) approaches 1 in this limit. 
A stronger requirement is that inclusion of the accept/ 
reject step does not alter the first two moments of the 
effective Green function to leading order in 1'. This condi
tion is met since the acceptance p, defined in Eq. (22) can 
be shown, by Taylor expansion, to be 1 + t!l ( 1'). Hence, 
1'effcan be expanded as 1'etf = 1'(1 + CIT + C2-?12 + "'). In 
principle, there always exists a "true" value of 1'eff in the 
range between 0 and l' that yields the true l' -> 0 extrapo
lated value of the fixed-node energy. Empirically we find 
that the time-step error in the energy is nearly quadratic. 
Since the order of the error in the energy is one lower than 
in the Green function, this implies that the procedure out
lined above for determining Tefl' gets values of CI and C2 that 
are very close to the "true" values. 

An estimate of Tefl' is readily obtained iteratively from 
sets of equilibration runs. During the initial run, 1'efl'is set 
equal to 1'. For the next runs, the value of Tefl' is obtained 
from the values of 1'eff computed with Eq. (24) during the 
previous equilibration run. In practice, this procedure con
verges in two iterations, which typically consume less than 
2% of the total computation time. Since the statistical er
rors in Tefl' affect the results obtained, the number of Monte 
Carlo steps performed during the equilibration phase needs 
to be sufficiently large that this is not a major component of 
the overall statistical error. 

The value of 1'eff is a measure of the rate at which the 
Monte Carlo process generates uncorrelated configura
tions, and thus a measure of the efficiency of the compu
tation. Since the acceptance probability decreases when l' 
increases, Tefl' has a maximum as a function of 1'. However, 
since the time-step error increases with 1', the largest values 
of l' that we have used were always smaller than this "op
timum." 

Algorithms that do not exactly simulate the equilib
rium distribution of the drift-diffusion equation without 
the branching term, can for sufficiently large l' have time
step errors that make the energy estimates higher than the 
variational energy. On the other hand, if the drift-diffusion 
terms are treated exactly by including an accept/reject 
step, the energy can be expected to lie below the variational 
energy, since the branching term enhances the weights of 
the low-energy walkers relative to that of the high-energy 
walkers. 

As mentioned above, the notion of including an 
accept/reject step was first introduced by Reynolds et al. 3 

Their algorithm differs from ours in that an accept/reject 
step is performed on each individual electron move sepa
rately rather than on the full n-e1ectron move. We will see 
that the approximate Green function of Eq. (1) is a poor 
approximation to the true Green function near nuclei. 

Consequently, moves of electrons close to nuclei are much 
more likely to be rejected than moves of electrons far from 
nuclei, whereas in our algorithm all the electrons either 
move or do not move. Furthermore, their value of Tefl' fluc
tuates and is different for each walker, whereas ours is a 
constant for all walkers and all times. 

B. Persistent configurations 

As mentioned above, the accept/reject step has the 
desirable feature of yielding the exact electron distribution 
in the limit that the trial function is the exact ground state. 
However, in practice the trial function is less than perfect 
and as a consequence the accept/reject procedure can lead 
to the occurrence of persistent configurations, as we will 
now discuss. We are unaware of any analysis in the liter
ature of this pathology of the algorithm although persistent 
configurations (or trapped walkers) have been observed by 
others.33,34 

For a given configuration R, consider the quantity 
P = (qll.w), where q and ll.w are the rejection probability 
and the branching factor given by Eqs. (22) and (25). The 
average in the definition of P is over all possible moves for 
the configuration Ii under consideration. If the local en
ergy at R is relatively low and Tefl' is sufficiently large, P 
may be in excess of one. In that case, the weight of the 
walker at R, or more precisely, the total weight of all walk
ers in that configuration will increase with time, except for 
fluctuations, until the time-dependent trial energy ET ad
justs downward to stabilize the total population. This pop
ulation contains on average a certain number of copies of 
the persistent configuration. Since persistent configl,lrations 
must necessarily have an energy that is lower than the true 
fixed-node energy, this results in a negatively biased energy 
estimate. The persistent configuration may disappear be
cause of to fluctuations, but the more likely occurence is 
that it is replaced by another configuration that is even 
more strongly persistent, i.e., one that has an even larger 
value of P = (qll.w). This process produces a cascade of 
configurations of ever decreasing energies. Both sorts of 
occurrences are demonstrated in Fig. 1. Persistent config
urations are most likely to occur near nodes or near nuclei. 
Improvements to the approximate Green function in these 
regions, as discussed in the next section, help to reduce 
greatly the probability of encountering persistent configu
rations to the point that they were never encountered in the 
longest runs we performed. We note that Fig. 1 was pro
duced by choosing a value of 1'=0.1 H- I, which is half the 
largest time step that we will use in Section IV in the 
calculations performed with the final version of the im
proved algorithm. On the other hand, in runs without these 
modifications, we have observed persistency even for 
1'=0.025 H- I though much less frequently than for 1'= 
0.1 H- I. Hence if one employs an algorithm that includes 
the accept/reject step, but does not include the other mod
ifications that we will describe, then it is necessary to use 
relatively very small time steps to avoid persistency. It 
should be noted that in the algorithm of Ref. 3, the accept/ 
reject step is performed on individual electrons rather than 
on configurations. Hence, that algorithm runs the risk of 
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FIG. 1. Illustration of the persistent configuration catastrophe. The dot
ted horizontal line is the true fixed-node energy for the simple Be wave 
function extrapolated to 7'=0. 

having persistent electrons rather than persistent configu
rations. Since the acceptance for electrons that are close to 
a nucleus is small, they are particularly likely to be persis
tent. Hence, that algorithm also suffers from this pathol
ogy, but in a less severe form. In practice various authors3

,5 

have made the occurrence of persistent configurations very 
unlikely by using a sufficiently small time-step, that the 
average acceptance is close to one (typically 0.99). 

Despite the fact that the modifications described in the 
next section eliminated persistent configurations for the 
systems we studied, it is clearly desirable to have an algo
rithm that cannot display this pathology even in principle. 
We tested three different methods for doing this which we 
describe next. 

The first method we tried was to force walkers to move 
at each step by eliminating the accept/reject step while 
maintaining an algorithm that samples 1 tPo(R) 12 exactly in 
the limit that tPT(R) = tPo(R). It is shown in Appendix C 
that it is possible to sample 1 tPT(R) 12 exactly by replacing 
the accept/reject step by an additional reweighting 

Aw 
1 tPT(R') 1

2G(R,R','T) 

ItPT(R) 12G(R',R,'T)' 
(27) 

The usual reweighting by Aw ofEq. (25) then converts an 
exact sampling of I tPT 12 to an approximate sampling of 
tPTtPO as before. This method was discarded because it leads 
to statistical errors that are a few times larger. 

The second method was to replace 'Telf in Eq. (23) by 'T 

for an accepted move and by zero for a rejected move. This 
ensures that Aw never exceeds unity for rejected moves, 
hence eliminating the possibility of persistent configura
tions. Further, this has the advantage that it is not neces
sary to determine 'Telf' However, this method led to a time
step error that was about a factor of two larger in the case 
of Be. 

The final solution that we adopted was to monitor the 
age a' of each walker, defined as the number of generations 
for which the walker had persisted at the same position. 

TABLE I. Behavior of the local energy EL and velocity vas a function of 
the distance Rl of an electron to the nearest singularity. The behavior of 
various quantities is shown for an electron approaching a node or another 
particle, either a nucleus or an electron. The singularity in the local 
energy 'at'particle overlap is only present for a 1/J-r that fails to satisfy the 
cusp conditions. 

Region 

Nodes 

Electron! 

nucleus7electron 

Local energy 

1 
EL -- for some 1/J-r 

.. .x 
EL=Eo for 1/10 

Velocity 

v has a discontinuity 

for both 1/J-r and 1/10 

The acceptance probability of walkers with age greater 
than 50 was multiplied by the exponentially growing factor 
1.1a'-5o. Of course, this solution to the persistency prob
lem strictly speaking violates detailed balance but since it is 
never exercised in the 'T = 0 limit, it leaves the limit un
changed. Since the oldest walker that we ever encountered, 
in the algorithm that incorporates the modifications de
scribed in the next section, had a' =21 for Be and Li2 and 
a' =40 for Ne, in runs with as many as 8 X 107 Monte 
Carlo steps, this solution to the persistent configuration 
problem was in fact never exercised in obtaining the results 
presented in this paper. It is presented here merely as an 
algorithm that cannot even in principle exhibit persistency, 
even for trial wave functions that are much inferior to 
those used here.· 

c. Singularities 

The number of iterations of Eq. (5) required for the 
power method to converge to the ground state grows in
versely with the time step 'T. Thus, the statement made 
above, viz. that the Green function of Eq. (6) is in error 
only to t1 ( ,.j2), would seem to imply that the errors in the 
electron distribution and the averages calculated from the 
short-time Green function are of & ( 'T). However, the pres
ence of nonanalyticities in the local energy and the velocity 
may invalidate this argument:. the short-time Green func
tion lacks uniform convergence in 'T over 3n-dimensional 
configuration space. We have modified the Green function 
of Eq. (6) to take into account these singularities in a 
simple and approximate way, such that the Green function 
reduces to the original form of Eq. (6) far from the nonan
alyticities. 

More specifically, for a generic approximate trial wave 
function, the local energy diverges at nodes and at 
electron-nuCleus and electron-electron overlaps. Both for 
approximate and exact wave functions, the velocity di
verges at the nodes and has a discontinuity at the nucleus. 
The remaining improvements of the simple algorithm focus 
on these regions of the n-electron configuration space, since 
they make large contributions to the time-step error. In 
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particular, we shall systematically address the singularities 
summarized in Table 1. 

The local energy diverges at particle overlaps unless 
1frr satisfies the cusp conditions.35 Failure to impose in par
ticular the electron-nucleus cusp condition significantly in
creases the time-step error. More specifically, if the wave 
function 1frr fails to satisfy the electron-nucleus cusp con
dition, the local energy diverges to + 00 as an electron 
approaches the nucleus if the magnitude of the cusp is too 
large and to - 00 in the opposite case. In addition, the 
electron distribution of the simple algorithm has a consid
erable time-step error at the nucleus since the discontinuity 
in the velocity at the nucleus can cause the electrons to 
overshoot it, resulting in a reduced density of electrons at 
the nucleus as T is increased. The combined effect is a very 
large total time-step dependence. We note that this error 
can be either positive or negative, depending on whether 
the magnitude of the cusp is too small or too large, respec
tively. 

In practice, imposing the cusp conditions on the trial 
wave functions for atoms is straightforward since all orbit
als are centered at the same nucleus. For molecules it is 
necessary to consider the contributions to the value of an 
orbital at a nucleus coming from basis functions centered 
at other nuclei. The electron-nucleus cusp condition for 
molecules is imposed iteratively during the optimization of 
the trial wave function. When complicated forms of the 
correlation functions are used, it is sometimes advanta
geous to use a penalty function to impose the cusp condi
tions as part of the trial function optimization.36,37 

Next we address the divergence at the nodes. The 
diffusion term is relatively small near the nodes, and thus 
we may approximate the modified Schrodinger equation, 
Eq. (1), by 

V· {V(R)f(R,t)}+ {EdR) -ET}f(R,t) = 
af(R,t) 

at 
(28) 

The corresponding exact drift-branching Green function is 
given by 

Go(R",R,T) =8{R" -R( T)}~(R)T, (29) 

where R(t) is the solution to the differential equation 
dR/dt = V, satisfying the boundary condition R(O) 
=R,and 

1 IT S(R) =- [ET-EdR(t)} ]dt. 
T 0 

(30) 

This can be verified by using the expression R (T + {jT) 
~ R ( T) + V {R ( T )}8T and expanding to linear order in 
{jT the expression 

f(R,T+8T) = f Go(R,R',8T)f(R',T)dR', (31) 

to show that f satisfies Eq. (28). 
Our goal is to find approximations for R (t) and S in 

Eq. (29). These approximations should be accurate, but 
simple enough to be expressed in terms of the wave func-

tion and its gradient, or more generally in terms of quan
tities that are already being computed to execute the simple 
diffusion Monte Carlo algorithm. 

First consider R (t). The expression R (t) ~ R 
+ V(R)t, as used in Eq. (6), derives from the approxima
tion that VCR) = VtPT(R)/tPT(R) is constant over the 
integration path. However, V diverges in the vicinity of the 
nodes of the trial function, and under those circumstances 
it is more accurate to assume that VtPT rather than V is 
constant. To be precise, within the linear approximation of 
the wave function, the velocity is given by V ~ RllRl , 
where Rl is the distance to the node and Rl is a unit 
vector orthogonal to the nodal surface pointing from the 
nodal surface to R. Integration of the equation of motion 
gives 

Rl (t) -Rl (0) = ~Rl (0)2+2t-R1 (0) = V(t)t, (32) 

by definition of V. In other words, in Eq. (6) expression 
R + V(R)T is replaced by R + V(R)T with 

_ -1+ ~1+2V2T 
V= V2T V (33) 

with V evaluated at R = R(O). V reduces to V for small 
V2T but the magnitude of the drift, V T, is limited to $ for 
large V2T. 

One can make an assumption intermediate between 
V = VtPT/tPT and VtPT being constant by introducing a 
parameter a, approximately in the range 0 to 1, and define 

-1+ ~1+2aV2T 
V2 V. a T 

(34) 

With this choice, the small V2T limit of the drift is un
changed at VT, but the large V2T limit is ~2Tla. 

In our actual calculations a more complicated form 
was used for the curve traced out by the drifting n-electron 
configuration. Velocities are large near a node but this is 
also true near a nucleus. The velocity goes to infinity near 
a node and it is typically as large as Z near a nucleus. The 
constant a was made position dependent in a way that 
roughly distinguishes largeness of V in the proximity of a 
node and in proximity of a nucleus: a should be close to 1 
near a node and close to 0 near a nucleus. For this purpose, 
first of all the drift of the whole n-electron configuration is 
broken up into contributions of individually drifting elec
trons. In terms of single electron coordinates we have 

-1 + ~l +2a(r)v2T 
a(r)v2T v. (35) 

Secondly, the cross-over parameter a introduced in Eq. 
(34) is made dependent on position as indicated above 

1 A Z2z'2 
a(r)="2(1+v·z)+1O(4+Z2z'2) , (36) 

where z is a unit vector from the nearest nucleus to the 
electron, which is at distance z, while v is a unit vector in 
the direction of the single electron velocity (see Fig. 2 ); 
only the order of magnitude of the various constants in this 
expression has physical significance. The motivation for 

J. Chern. Phys., Vol. 99, No.4, 15 August 1993 



2874 Umrigar, Nightingale, and Runge: Diffusion Monte Carlo algorithm 

Next we deal with the divergence of the local energy at 
the nodes. The expression for R' (t) found above with V 
given in Eq. (33) can be used to obtain an approximate 

ii ~expression for S(R) as given in Eq. (30). With the ap-

p 

FIG. 2. An electron initially at r starts to drift in the direction v and at 
sufficiently long times comes to rest at the position of the nearest nucleus 
rnuc' Also shown is the cylindrical coordinate system with unit vectors p 
and z, both of which are coplanar with v. 

these two terms is that the first term is close to one if the 
velocity of the electron is directed away from the nearest 
nucleus, which is an indication of the proximity of a node. 
The second term ensures that the value of a is never very 
small when the electron is not close to any nucleus, thereby 
limiting the magnitude of the drift far from nuclei to rea
sonable values. Note that for nonzero T, Eqs. (34) and 
(35) give slightly different results even for constant a. 

It is illuminating to compare Eq. (35) with the result 
for the average drift obtained from the exact Green func
tion for the modified Schrodinger equation for a particle in 
one dimension in the immediate vicinity of a node in the 
guiding function 

1 a2f au/x) 
-2ax2 + ax (37) 

The substitution f = 1/1x yields the Schrodinger equation 
in imaginary time for a free particle subject to the bound
ary condition that 1/1 have a node at x=o. The Green func
tion of the latter is found with the method of images. The 
result can then be transformed back to give the Green 
function of Eq. (37): 

G(x,x',t) x [e-[(X-X,)2/2tl_e-[(x+X,)2/2tl}. 

x'~ 
(38) 

This yields a large T limit of the average drift of ~8ThT, 
corresponding to a=1T/4 in Eq. (35). We note that, in 
agreement with the exact Green function of Eq. (37), our 
improved Green function goes to zero quadratically at the 
nodes (because of the accept/reject step) whereas the sim
ple Green function goes to a nonzero constant. In principle 
one could modify the algorithm so as to sample from the 
Green function given in Eq. (38) for the direction perpen
dicular to a nearby nodal plane, but we have not found that 
necessary. 

proximation EdRl ) :::::; Eest + (B/Rl ), where Eest is the 
~:cjIrreIit estimate of the energy, integration over the path 

yields 

(39) 

where all position dependent quantities on the right are 
evaluated at.R. It shQuld be noted that Eq. (39) was de
rive4~s!!wni!lg ~~ ·single const~nt a, while in practice V2 is 
cakul"lilcll by sUmining the squared single electron veloci
Ii.:., r, l:adl of which has a different value of a. For small T 

.-this expression (39) differs· appreciably from the original 
expression, Eq. (3), only in the vicinity of a node. Thus we 
always use the branching factor, Eq. (25), with this new 
definition of S. It should be noted that whereas the S of Eq. 
(3) can diverge at nodes, the new S does not, since both 
EL and V diverge as the inverse of the distance to the node 
but V does not. 

Finally, we deal with inaccuracies of the short-time 
Green function near the nucleus. The velocity of an elec
tron close to a nucleus is always directed approximately 
toward the nucleus. That is, the velocity has a discontinu
ity and the true Green function has a cusp at the nucleus. 
The short-time Green function is inaccurate first of all be
cause the drift term can cause an electron to overshoot the 
nucleus. Secondly, the gaussian cannot reproduce the cusp, 
although for sufficiently small T it can approximate one. 
Hence, the distribution of electrons in the vicinity of the 
nucleus depends strongly on T and produces a large time
step error. If the drift is done before the diffusion, as is 
commonly the case, then the electron density close to the 
nuclei is diminished as T is increased. Similar arguments 
apply to electron-electron overlap, but the effect on the 
time-step error is negligible because the electrons do not 
experience the discontinuity in the velocity since the veloc
ity moves the electrons apart and because the probability of 
a close encounter is small. Clearly, the goal is to modify the 
diffusion Monte Carlo walk such that the distribution of 
electrons changes very little from the exact distribution as 
T is increased. 

The discontinuity in the velocity at the nucleus can be 
dealt with by working in cylindrical polar coordinates 
(z,p,f/!) , rather than Cartesian coordinates, with z = r 
- rnuc centered on the nearest nucleus (see Fig. 2). The 
velocity v is resolved into a i component Vz in the direction 
of th~ nearest nucleus and· a p component vP' i.e., v 
= v;t + vpp. If z is the initial distance to the nearest nu
cleus, then the final i component of the distance after drift
ing, zIt, is chosen as max(z + VzT,O). The drift in the p 
direction is chosen as p" = 2VpTZ" /(z + zIt). For increas
ing time the electron traces a curved path that ends at the 
nucleus as illustrated in Fig. 2. Thus, the electron is pre
vented from overshooting the nucleus. 

The true Green function has a cusp at the nucleus. The 
approximate Green function used in the Monte Carlo pro-

J. Chern. Phys., Vol. 99, No.4, 15 August 1993 



Umrigar, Nightingale, and Runge: Diffusion Monte Carlo algorithm 2875 

cess is smooth at the nucleus if the drift is done before the 
diffusion. On the other hand, if the order of the drift and 
diffusion were reversed, and the electrons are prevented 
from overshooting the nucleus, then the approximate 
Green function has a 8 function at the nucleus, which is 
not the right behavior either. In order to have a more 
accurate Green function in the vicinity of the nucleus we 
use a form with one-particle factors that interpolate be
tween the short-time Gaussian diffusion kernel and the hy
drogenic ground state wave function to which for long 
times they would evolve in the absence of other electrons 
or nuclei. The crossover between the two behaviors is ex
pected to occur on a time scale such that the electron 
would move beyond the nucleus by pure diffusion with 
appreciable probability. Hence, we sample from a Gaussian 
(21TT) -3/2e-r,2I2T with probability ji, and from an exponen

tial (t3 hr)e-2,r' with probability q= l-ji. The Gaussian 
is always centered at the position of the electron after it has 
drifted, whereas the exponential is always centered at the 
nearest nucleus prior to drifting. Note that if Z+ VZT < 0 
then both the Gaussian and the exponential are centered at 
the same point. The value of 'if is chosen to equal the prob
ability that the electron diffuses across a plane through the 
nearest nucleus, perpendicular to the line from the electron 
to the nucleus, i.e., 

(40) 

Z being the distance to the nearest nucleus prior to drifting. 
The inverse length t in the exponent is chosen to be 
~Z2+ 1/T. For smailT, t= 1/ $-, i.e., the second moment 
of the exponential equals that of the Gaussian. In this way, 
we maintain a Green function correct to & ( T). On the 
other hand, for large T, t=Z, so that the Green function 
has the correct cusp 

aG(R"R'T)/ar' l 
=-2Z 

G(R',R,T) r'=0 ' 

where r' is the distance of anyone of the electrons to a 
nucleus. 

In summary, in this section we have proposed several 
simple modifications to the Green function that take into 
account its nonanalyticities. These improvements, not only 
reduce the time-step errors but also increase the acceptance 
probability because if the true importance-sampled Green 
function G(R',R,T) were used to generate moves, then all 
proposed moves would be accepted. This follows from the 
fact that the Green function of the original Schr6dinger 
equation, prior to the importance-sampling transformation 
of Eq. (1), is symmetric in its arguments and the definition 
of the importance sampled Green function in terms of the 
original Green function. So, the improvements in the 
Green function not only reduce the time-step error but also 
enhance the acceptance and consequently the efficiency of 
the algorithm and reduce greatly the chance of encounter
ing persistent configurations. Furthermore, if the accept/ 
reject were done for each electron, as in the algorithm of 
Reynolds et al. 3 then these improvements to G(R',R,T) 

would have served to make the acceptance probability 
larger and more uniform for ail the electrons, whereas the 
algorithm of Ref. 3 has a considerably lower acceptance for 
electrons close to a nucleus, than for electrons far from the 
nuclei. 

IV. RESULTS 

In this section we present a numerical comparison of 
the simple and improved diffusion Monte Carlo algorithms 
described above. Results are presented for Be, Li2, and Ne, 
these being representative of a light atom, a molecule and 
a heavy atom. Ne is the heaviest atom that has been treated 
to date by diffusion Monte Carlo without the use of meth
ods that treat core electrons approximately. Hence, this 
constitutes a severe test of the method. We also present 
results both for a simple and a very good wave function for 
Be in order to study the behavior of the algorithm as the 
quality of the wave function is improved. We have applied 
the algorithm to other wave functions, not presented here, 
with equally satisfactory results. 

In employing a particular algorithm for a given atom 
or molecule a practical complication in making a compar
ative evaluation is that the time-step error depends 
strongly on the trial wave function. In the limit that the 
trial wave function approaches an eigenfunction the simple 
algorithm has time-step errors that vanish for the mixed 
estimator for the energy, but not for the growth estimator 
or the mixed estimators of quantities that do not commute 
with the Hamiltonian. (The nonvanishing of the error of 
the growth estimator is directly related to killing walkers 
that cross nodes.) On the other hand, the improved algo
rithm has vanishing time-step errors for all quantities. The 
simple algorithm has a vanishing variance for the mixed 
estimator of the energy in the ""T -> ""0 limit, but not for the 
growth estimator of the energy or the mixed estimators of 
operators that do not commute with K. The improved 
algorithm has vanishing variance for both estimators of the 
energy, but not for operators that do not commute with 
K. In view of the dependence on the trial wave functions, 
we have tested our algorithm first employing simple wave 
functions for Be, Li2, and Ne, consisting of a single con
figuration determinant multiplied by a simple Jastrow 
function. These wave functions are of quality roughly com
parable to many of the wave functions used in the litera
ture. Then, in one case, we repeated the computation with 
an accurate, two-configuration wave function, with a com
plicated Jastrow factor of the form described else
where,36--38 a wave function much more accurate than any 
used by other authors. The wave functions are described in 
detail in Appendix B. 

A. Simple wave function comparisons 

Figures 3, 4, and 5 are plots of the total energy as a 
function of the time step for simple Be, Ne, and Li2 wave 
functions. The triangles and crosses are the results ob
tained with the simple diffusion Monte Carlo algorithm, 
and, respectively, display data for the mixed and growth 
estimators. The various curves are polynomial fits in inte
gral powers of $-. We have reason to believe (see Appen-

J. Chern. Phys., Vol. 99, No.4, 15 August 1993 



2876 

-14.1 

-14.2 

r--. 
en 
~-14.3 
L 

t 
o 
:r: 
'--"'-14.4 

>. 
01 
L 
a) 

tS -14.5 

-14.6 

·-14.7 
0.00 

Umrigar, Nightingale, and Runge: Diffusion Monte Carlo algorithm 

Total Energy of Be (Simple 1/IT) 

A _. -. - Simple DMC, Emix (0, 1, 3/2, 2, 5/2) 
+ ........... Simple DMC, Egr (0, 1/2, 1, 3/2, 2, 5/2) 
o --- Improved DMC, Emix (0, 1, 2) 
o - - - Improved DMC, Egr (0, 1, 2) 

+" 

.+ 

.+= --.~. 

--
.8'/ 

- - - -
0.05 0.10 0.15 0.20 0.25 

Time Step T (Hartree-1) 

FIG. 3. Time-step dependence of the total energy of Be using a simple wave function. The triangles (crosses) are the energies from the mixed (growth) 
estimator in simple diffusion Monte Carlo and the dashed-dotted (dotted) line is a pblynomial fit in powers of T. The powers of T included in the fit are 
shown in the legend. The squares/circles are the energies from the mixed (growth) estimator in the improved diffusion Monte Carlo algorithm and the 
solid (dashed) line is a fit. The two curves are almost indistinguishable. The error bars are plotted, but appear as horizontal ticks since the errors are 
small. 
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J. Chern. Phys., Vol. 99, No.4, 15 August 1993 



Umrigar, Nightingale, and Runge: Diffusion Monte Carlo algorithm 2877 

-125 

Total Energy of Ne (Simple 'I/Ir) 

b. _. _. - Simple DMC, Emix (0, 1, 3/2, 2, 5/2) ..... +:' 
+ ........... Simple DMC, Egr (0, 1/2, 1, 3/2, 2, ~/Z) 

,..--..-126 
en 

CI Improved DMC, Emix (0, 1, 2) .. ,+ 
o - - - Improved DMC, Egr (0, 1, 2) . Q) 

~ -e 
o 

I 
'--"'-127 

~ 
0'1 
I
Q) 

C 
W 

-128 
.' 

.,+ 

A'-'-' 
1J!r'-'-' 

-' .."e.-'-

. ..A-'-'-A_._·-
._'c::I"'" 

-129 
0.000 0.005 0.010 0.015 0.020 

Time Step T (Hartree-1) 

FIG. 5. Same as Fig. 3 but for a simple Ne wave function. 

dix D) that the term proportional to .[r is missing for the 
time-step dependence of the mixed estimator, in which fit 
this term was suppressed. The powers of 7 included in the 
fit are shown in the parentheses in the legends. The squares 
and circles, respectively, display data for the mixed and 
growth estimators obtained from the improved algorithm. 
The two estimators are in all cases sufficiently close that it 
is difficult to tell them apart. 

Table II shows the time-step errors for the two algo
rithms at 7=0.2 H- 1 for Be and Li2 and 7=0.015 H- 1 for 
Ne. The last column shows that the improved algorithm 
has from 70 to 300 times smaller errors in the mixed esti
mator and from 70 to 1100 smaller errors in the growth 
estimator. The improvements are even greater at the 
smaller time steps. 

Figures 6 and 7 are the same as Figs. 3 and 4 but with 
an expanded energy scale to illustrate the functional form 
of time-step dependence of the improved algorithm. Al
though the mixed and growth estimators of the energy 
agree very well here, the agreement in our earlier version 17 

of the improved algorithm was another 2-3 orders of mag
nitude better, in all cases. The deterioration in the agree
ment of the two estimators can be traced to our using Eqs. 
(25), (26), and (39) instead of Eqs. (23), (17), and (3) 
in the earlier version. We do not see a big benefit to having 
the two estimators agree to orders of magnitude better than 
the statistical errors, so we have elected to make these 
changes which slightly degrade the agreement of the two 
estimators, but reduce both the time-step errors and the 
statistical errors. 

We notice that although we have not designed the al-

gorithm to have quadratic time-step errors, in practice the 
errors are quadratic to within the error bars. (The time
step error for Ne are sufficiently small that we cannot dis
cern a clear trend above the error bars; hence an expanded 
energy scale plot is not presented for Ne.) This implies that 
the procedure used for determining 7 eff is particularly ac
curate in determining the lowest two orders of correction 
to 7 as discussed in Section III A. 

The improvement in quantities other than the total 
energy is in many cases even more dramatic, as can be seen 
from Table II. For some quantities it is impossible to see 
any time-step error above the statistical noise, so we give 
upper bounds for the error and lower bounds for the fac
tors by which the time-step errors are reduced. The im
provements range from a factor of more than 80 to a factor 
of more than 1000 for the simple wave functions, with yet 
larger improvements for the good wave function. The ki
netic energy and negative moments of the charge distribu
tion have particularly large time-step errors in the simple 
algorithm because the electron distribution of the simple 
algorithm is significantly in error near the nucleus-a re
gion where these quantities diverge. 

To study the detailed dependence of the time-step er
rors we present as examples, in Figs. 8-10, the mixed es
timators of the kinetic energy Ekin and moments of the 
charge-distribution (r) and (r- I

) for the simple Be wave 
function. We have included a 75/4 term in the fit of Ekin and 
(r- I

) from the simple algorithm because it significantly 
improved the quality of the fit. Chin 16 has presented an 
argument for why this term could occur because of the 
discontinuity in the velocity at the nucleus. We have not 
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TABLE II. Comparison of the time-step errors for various quantities computed by simple and improved diffusion Monte Carlo at 1"=0.2 H-1 for Be and 
Li2 and 1"=0.015 H- 1 for Ne. Energies are in hartrees and lengths in Bohr radii. Statistical uncertainty in the last digit is given in parentheses. The last 
column gives the absolute value of the ratio of the simple diffusion Monte Carlo error to the improved diffusion Monte Carlo error. 

Wave function 
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Be 
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Li2 

Simple 

Ne 

Simple 

Observable 
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(J) 

C 
W 
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Egr 

Eldn 
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Egr 
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Eldn 

(r) 
(r- 1) 

8 

+ ..... _ ..... 
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Extrapolated 
Error at largest 1" 

value at 1"=0 SimpleDMC Improved DMC 

-14.6568(2) +0.268 -0.0038 

-14.6568(2) +0.366 -0.0042 

14.708(4) -15.53 +0.07 

3.956(4) +1.12 <0.006 

2.1120(3) -1.08 +0.0043 
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-14.66718(3) +0.146 -0.00013 

14.674(3) -15.85 <0.004 

4.020(3) +1.10 <0.005 

2.1076(2) -0.98 <0:0003 
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-128.919(3 ) +0.48 <0.004 
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FIG. 6. Same as Fig. 3 but with an expanded energy scale, which makes the error bars visible, to show the time-step dependence of the improved 
algorithm. Note that the results for the simple diffusion Monte Carlo algorithm are almost completely off-scale. The fits for the improved algorithm 
include terms only up to 2nd order. The fitted value of the linear coefficient is zero within statistical errors. 
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FIG. 7. Same as Fig. 6 but for Li2• 
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FIG. 8. Time-step dependence of the mixed estimator of the kinetic energy of Be using a simple wave function. The triangles are the kinetic energies from 
the mixed estimator in simple diffusion Monte Carlo and the dashed-dotted line is a fit. The squares are the energies from the mixed estimator using the 
improved diffusion Monte Carlo algorithm and the solid line is a fit. The powers of r included in the fit are shown in the legend. The error bars are 
plotted, but appear as horizontal ticks since the errors are small. 
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FIG. 11. Mixed estimator of the kinetic energy of Li2• Note the time-step error for simple diffusion Monte Carlo is so big, that the curve is almost 
indistinguishable from the y axis. The fits for the improved algorithm include terms only up to 2nd order. The fitted value of the linear coefficient is zero 
within statistical errors. 

verified in detail the applicability of his arguments to the 
simple algorithm, but the empirical evidence for the exist
ence of the ~/4 term is strong. For example, replacing the 
~/4 term by a r 1l2 term in the fit for the kinetic energy 
increased the value of X2 from 1.3 to 29.3 and yielded an 
extrapolated value that is in error by 0.9 H, whereas leav
ing out the ~/4 term all together resulted in a X2 of 547 and 
an extrapolated value that is in error by -0.8 H. Our 
preliminary work17 has plots of the kinetic energy for 3 of 
the 4 wave functions used in this paper which clearly show 
that the correct extrapolated value is not obtained in the 
simple algorithm if the ~/4 term is omitted. 

The time-step errors for quantities other than the en
ergy (in those cases where it is large enough to be clearly 
discernible beyond the statistical errors) also appears to be 
quadratic. An example of this is shown in Fig. 11 where 
the mixed estimator for the kinetic energy of Li2 is plotted. 
This is in contrast to Chin's algorithm16 which has qua
dratic time-step errors only for the total energy and only 
for nodeless wave functions. 

In Table III we present values of u, the fluctuation of 
the local energy, T corr> the autocorrelation time of the en
ergy, and a'-T corr for both algorithms and refflr and the 
average acceptance for the improved algorithm. These 
quantities were measured in runs with a target population 
size of 100 walkers that were propagated for 4 X 105 (Be 
and Li2 ) or 8 X 105 (Ne) MC generations, making for a 
total of 4 X 107 or 8 X 107 Monte Carlo moves. In order 
to calculate T corr> the Monte Carlo generations were di
vided into 100 blocks, each consisting of 4 X 103 or 8 

X 103 Monte Carlo moves. Note that the number of Monte 
Carlo moves in a block is in all cases much larger than 
Teorr; else the value of Teorr would have been systematically 
underestimated. By repeating runs with different random 
numbers, we have determined that the errors in u are in the 
third significant digit and those in Teorr in the second sig
nificant digit. 

If we ignore fluctuations, mostly due to statistical er
rors in the estimation of Tc~rr> the trends in Table III are 
very clear. a'-T corr is a measure of the number of Monte 
Carlo moves needed to reduce the statistical error to a 
given value. For a given value of r, the value of Teorr is 
larger for the improved algorithm than the simple one be
cause some of the proposed Monte Carlo moves are re
jected. This is reflected in 1"eff being smaller than r. How
ever, the simple algorithm has a considerably larger u than 
the improved algorithm at the larger time steps because as 
1" is increased it has an increasing density of walkers at the 
nodes-a region where the local energy diverges. The value 
of u actually goes down a little with increasing 1" in the 
improved algorithm because of the averaging present in 
Eqs. (25) and (26). In our earlier version of the algo
rithm,17 where we used Eqs. (23) and (17) rather than 
Eqs. (25) and (26) the yaluesof u were independent of 1", 

as expected. The product a'-Teorr is always considerably 
smaller for the improved algorithm than for the simple one 
at the larger time-steps. Hence, not only does the improved 
algorithm have a much smaller time-step error and a 
higher efficiency due to the possibility of using larger val-
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TABLE III. Comparison of u, the fluctuation of the local energy, and T corr> the autocorrelation time of the energy, for the simple and improved diffusion 
Monte Carlo algorithms. The product ifT corr is a measure of the number of Monte Carlo iterations required to reduce the statistical error to a given 
value. The time step T is in inverse hartrees; E and u are in hartrees; and T corr are in units of T. The numbers in parentheses are the statistical errors in 
the last digits. -

Simple diffusion Monte Carlo Improved diffusion Monte Carlo 

Wave function T U Tcorr ifT ';'rr u - Tearr ifT corr Teff/T Acceptance 

Be 0.010 0.384 36.0 5.30 0.385 25.9 3.85 0.954 0.963 
Simple 0.050 0.373 10.5 1.46 0.368 _ 8.5 1.15 0.828 0.861 

0.100 0.413 3.4 0.58 0.361 5.4 0.70 0.773 0.822 

EVMC = -14.6275(1) 0.150 0.465 2.4 0.53 0.359 4.7 0.61 0.758 0.813 
E OMC = -14.6569(2) 0.200 0.521 2.1 0.57 0.358 2.9 0.37 0.754 0.809 

0.250 0.574 1.8 0.59 0.358 2.2 0.28 0.754 0.805 

Be 0.010 0.125 13.5 0.213 0.085 28.0 0.200 0.954 0.963 

Good 0.050 0.166 2.3 0.064 0.078 6.5 0.040 0.828 0.861 
0.100 .0.214 1.8 0.083 0.075 3.3 0.019 0.774 0.823 

EVMC = -14.66648(1) 0.150 0.262 1.6 0.108 0.072 3.3 0.017 0.759 0.814 
E OMC = -14.6671713) 0.200 0.316 1.6 0.163 _0.071 2.3 0.011 0.754 0.808 

0.250 0.380 1.4 0.197 0.070 2.1 0.010 0.751 0.802 

Li2 0.010 0.405 34.6 5.68 0.408 33.4 5.58 0.963 0.968 
Simple 0.050 0.394 9.4 1.46 0.390 11.5 1.75 0.836 0.858 

0.100 0.410 4.9 0.82 0.378 . 5.1 0.72 0.751 0.786 

EVMC = -14.9472(2) 0.150 0.442 3.1 0.61 0.371 4.5 0.62 0.710 0.753 
E OMC = -14.9890(2) 0.200 0.482 2.8 0.66 ·0.370 3.6 0.49 0.689 0.740 

0.250 0.530 2.6 0.72 0.368 3.3 0.45 0.679 0.734 

Ne 0~001O 2.084 134.6 584.0 1.861 139.9 485.0 0.968 0.971 
Simple 0.0050 2.205 25.6 124.4 

0.0100 2.319 13.0 70.3 

EVMC = -128.713(2) 0.0150 2.485 1l.3 69.8 
E OMC = -128.922(4) 0.0200 2.676 6.9 49.4 

ues of 7, but even for a given large value of 7 it has a higher 
efficiency. 

At present, variational Monte Carlo is often resorted 
to when diffusion Monte Carlo is deemed too computation
ally expensive. However, the improved algorithm permits 
one to use large values of 7, so that the values of T corr are 
actually smaller than that in most variational Monte Carlo 
algorithms in use, except for the recent accelerated Me
tropolis algorithm. 39 Hence the improved algorithm should 
be applicable to any system that hitherto could only be 
treated by variational Monte Carlo. 

B. Comparison with the literature 

Thus far, we have compared the results of our im
proved algorithm with those of the simple algorithm which 
we claim to represent fairly some fraction of the algorithms 
found in the literature. To convince the reader that we 
have done more than just defeat a poor caricature, we 
proceed to compare with published results. As mentioned, 
this is hampered by the dependence of the time-step error 
on the trial wave function. Nevertheless, it is possible to 
roughly compare the time-step errors by using as a gauge 
the complexity of the wave functions or the value of the 
variational energy. Three groups of algorithms can be dis
tinguished. The first group consists of algorithms that are 
very similar to the simple algorithm of this paper. The 

1.805 37.1 120.7 0.843 0.856 
1.774 17.6 55.2 0.738 0.759 
1.760 17.6 54.6 0.667 0.693 
1.751 15.5 47.6 0.615 0.643 

second is the algorithm of Reynolds et at. 3 which incorpo
rates the accept/reject step, but does not contain the other 
improvements of our improved algorithm. The third group 
attempts to achieve quadratic time-step error. 

First, we compare with algorithms similar to the sim
ple diffusion Monte Carlo algorithm described above, pos
sibly differing from it only in detail, e.g., the detailed form 
of the cutoffs used for the local energy and the velocity, or 
whether a switch is made to a smaller time-step when the 
local energy or the velocity is large.21

,4O These methods 
should have time-step errors very similar to those of the 
simple diffusion Monte Carlo algorithm used here. 

Garmer and Anderson21 used an extended basis set 
wave function for the F atom and report30 a time-step error 
of 0.33 H at 7=0.012 H-1.By way of comparison, the 
time-step error of our improved algorithm, used with an 
almost minimal basis set wave function, for a slightly 
heavier atom, Ne, is < 0.003 H at the same 7, a reduction 
by a factor of more than 100. Garmer and Anderson2o 

present time-step errors for another lO-electron system, 
methane. Their single and double {; wave functions had a 
time-step error of 0.2 Hand 0.09 H, respectively, at 
7=0.005 H- 1

. These errors are 500 and 225 times larger 
than our error for Ne at the same time-step, in spite of the 
fact that, for a given total nuclear charge, time-step errors 
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are usually smaller for molecules than for a heavy atom 
with the same combined nuclear charge. 

A second group of results to compare with was ob
tained by the algorithm of Reynolds et al. 3 This algorithm, 
which includes an accept/reject step, probably has the 
smallest time-step error of the three groups of algorithms 
used up to the present time. Barnett et al. 41 use double ~ 
wave functions for F and F- and find time-step errors of 
-0.019 Hand -0.087 H, respectively, at 7=0.005 H-1. 
Our time-step error for Ne «0.004 H at 7=0.015 
H- 1) is more than 43 and 195 times smaller than their 
error for F and F-l, respectively, assuming that our time
step error scales quadratically in 7 for Ne, as it does for Be 
and Li2. Even if we make the more conservative assump
tion that our time-step error scales linearly in 7, our time
step error is more that 14 and 65 times smaller than their 
errors. 

Recently, Sun et al. 42 have used optimized wave func
tions and find time-step errors of 0.004 H at 7=0.1 H- 1 

for Li2 and 0.04 H at 7=0.01 H-1 for water. Our time-step 
error for Li2 at 7=0.1 H-1 is 0.00075 H, a factor of 5 
smaller than theirs, and for Ne <0.002 H at 7=0.01 
H-1, a factor of more than 20 smaller than theirs. In mak
ing the comparison for Li2, it should also be noted that 
they have the advantage of having used a slightly better 
wave function: theirs has 12 basis functions and recovers 
68% of the correlation energy in a variational calculation, 
whereas ours has 8 basis functions and recovers 62% of the 
correlation energy variationally. Also, in all of the compar
isons with this second group of algorithms, it should be 
borne in mind that they perform the accept/reject step on 
each electron rather than on the full n-electron move, so 
that their algorithm is at least a factor of two more time 
consuming. 

Finally, there have been attempts to design algorithms 
to achieve a small, quadratic time-step error12- 16 for the 
energy. Vrbik12 was the first to propose an algorithm that 
would have a quadratic time-step error provided that there 
are no discontinuities in the velocity and local energy. 
Vrbik and Rothstein 13 used this algorithm along with a 
modified velocity to obtain what appeared to be an 
& (~) time-step error in the energy for a H2 molecule. 
Rothstein, Patil, and Vrbik14 presented several versions of 
their algorithm, each of which has a quadratic time-step 
error provided that there are no nonanalyticities in the 
velocity or the energy. However, these algorithms when 
applied to H2 and LiH did not have a quadratic time-step 
error even in the nodeless H2 case, because the trial wave 
functions did not satisfy the correct cusp-conditions ex
actly. Furthermore, these authors found that algorithms 
with a relatively small error for one molecule have large 
errors for the other. DePasquale et al. 15 have tried several 
& ( 7) modifications of the usual drift and diffusion terms 
in an attempt to reduce the time-step error. Their proce
dure lacks general validity because a different modification 
of the algorithm was constructed by trial and error for each 
of the systems studied, and in spite of this their time-step 
errors are large. In practice, quadratic time-step errors 
have only been achieved for the special case of nodeless 

2-electron systems16 and only for the total energy. More 
importantly, the time-step error, though somewhat smaller 
than that of simple diffusion Monte Carlo, is nevertheless 
very large. For example, the preferred algorithm of Ref. 16 
has a time-step error of 0.1 H at 7=0.4 H- 1 for He-a 
very large value for a light atom in a nodeless 2-electron 
state. 

The domain Green function Monte Carlo method 4,6,7 
has no time-step error. The time step in Green function 
Monte Carlo is not fixed but there is an average time step 
which is controlled by the shift in the potential. As the 
average time step is increased, a growing number of itera
tions are required to sum the Neumann series, which re
constructs the exact Green function from an approximate 
Green function. There is an optimal average time step, 
approximately given by the time step which maximizes the 
ratio of the average time step to the average computer time 
required to propagate the walkers to the next generation. 
The optimal average time steps for Be, Li2, and Ne are 
approximately 0.0006 H-l, 0.0008 H-l, and 0.00007 
H-1, respectively. These time steps are factors of 400, 300, 
and 300 smaller than the largest time steps used in the 
improved diffusion Monte Carlo algorithm. Furthermore, 
there is much greater branching in Green function Monte 
Carlo resulting in the inefficiency of having many closely 
related, i.e., statistically dependent, walkers. For the sys
tems studied here, this resulted in an additional factor of 
1.5 to 2 greater statistical error, or a factor of 3 to 4 greater 
computer time for a given statistical error. This factor by 
itself is compensated for by the fact that in diffusion Monte 
Carlo one needs to perform calculations at several values of 
7 to get an accurate extrapolation to zero time step. In 
other words, owing to the increased time step, the im
proved diffusion Monte Carlo algorithm is a few hundred 
times more efficient than Green function Monte Carlo. If 
we took into account the additional overhead of the more 
complicated Green function Monte Carlo algorithm, com
ing from the fact that in Green function Monte Carlo in
termediate points are sampled (at which wave functions 
and their gradients need to be evaluated), that do not con
tribute to the expectation values, the balance would tip 
even further in favor of the improved diffusion Monte 
Carlo algorithm. This is not to say that the domain Green 
function Monte Carlo algorithm could not be made more 
competitive by using a better approximate Green function 
from which to construct the exact Green function. The 
comparison is merely for the present state of the art. 
. Ceperley8 has developed a more general form of the 
Green function Monte Carlo method that does not require 
the motion ofthe electrons to be within their 'domains' and 
has used a better approximate Green function from which 
to construct the exact Green function. Hence it is possible 
to take larger time steps. However, in this method the 
electrons may attempt to cross nodes. Hence the time-step 
error is not totally eliminated, though it is probably very 
small. The effective time step used in Ref. 8 for Li2 is 0.043 
H-1 which is considerably larger than the optimal time 
step in domain GFMC but a factor of 6 smaller than the 
largest time step we used in the improved diffusion Monte 
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FIG. 12. Same as Fig. 3 but for the good Be wave function. 

Carlo method. In common with domain Green function 
Monte Carlo, Ceperley's method also suffers from the en
hanced branching and the overhead of constructing an ex
act Green function from an approximate one. 

C. Good wave function comparisons 

So far we have presented results for simple wave func
tions in order that the advantage of using a better wave 
function should, if at all, lie with the other algorithms to 
which we compare ours. We now show that when the im
proved algorithm is used with good wave functions it is 
possible to obtain some of the most accurate results to date. 
Figures 12 and 13 are plots of the total energy as a function 
of the time step for an accurate Be wave function. The time 
step error for either algorithm is, as expected, much 
smaller than for the same algorithm using the simple wave 
function. As shown in Table II, at 7= 0.2 H- 1, the time
step error of Emix and Egr in the improved algorithm is a 
factor of 310 and 1100 smaller than that of simple diffusion 
Monte Carlo. It should be noted that the simple algorithm 
has a time-step error in the growth estimator that is larger 
than that in the mixed estimator. This becomes increas
ingly noticeable as 1f1T is improved and is a direct reflection 
of the fact that the growth estimator lacks a zero-variance 
principle in the case of the simple algorithm because walk
ers that cross nodes are killed. Table II also shows that the 
errors in Ekin, (?) and (r- 1) change very little for the 
simple algorithm in going from the simple to the good 
wave function, but the errors of the improved algorithm 
are greatly reduced. This is a reflection of the fact that the 
improved algorithm yields the correct distribution in the 

limit that the trial wave function approaches the true wave 
function, but the simple algorithm does not. 

We note from Table II that the value of the energy, 
extrapolated to 7=0, is 0.0103 H lower for the good wave 
function than for the simple one. This demonstrates that 
the nodes of single configuration simple wave functions for 
Be are significantly in error. Those of the two-configuration 
good wave function, which takes into account the near
degeneracy correlation of the electrons, are very good. The 
7=0 value of the energy for the good wave function is 
-14.66718±0.00003 H which is 0.OOO21±0.OOOO3 H 
lower than the best energy calculated directly to date using 
a state-of-the-art 650 000 determinant multiconfiguration 
Hartree-Fock wave function,43 and only 0.OOOI9±0.00006 
H higher than Olsen and Sundholm's43 extrapolated en
ergy, which is obtained by a double extrapolation to infinite 
single-particle and multi particle bases size. This result is 
remarkable, and is a consequence both of the improved 
diffusion Monte Carlo algorithm and of the high quality of 
the wave function, despite its compactness. 

V. DISCUSSION 

To summarize, we have identified four important in
gredients that make an algorithm with a small time step 
error. First, it is necessary to construct trial wave functions 
that satisfy the cusp conditions so as to avoid divergences 
in the local energy. Second, by incorporating an accept/ 
reject step the algorithm is constructed so as to sample an 
electron distribution at least as good as the trial wave func
tion I1f1T 12. Third, we have identified the nonanalyticities in 
the local energy and the velocity that result in large time-
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FIG. 13. Same as Fig. 6 but for the good Be wave function. 

step errors and we have proposed simple modifications to 
the approximate Green function that take these into ac
count. These improvements to the Green function not only 
reduce the time-step error but also enhance the acceptance 
and consequently the efficiency of the algorithm and re
duce greatly the chance of encountering persistent config
urations. Fourth, although we find that the improvements 
to the Green function render the likelihood on encounter
ing persistent configurations negligible, we propose simple 
modifications of the algorithm that render them impossi
ble. 

Further improvements to the algorithm are possible. 
First, since the acceptance probability for one-electron 
moves is greater than for multielectron moves, and since 
updating the wave function after one-electron moves takes 
less time than after multielectron moves, it may be advan
tageous, for systems with many electrons, to revert to the 
original Reynolds et al. 3 method of doing the accept/reject 
on each electron, while preserving all the other modifica
tions proposed. Another possibility is to use the Green 
function of this paper as the approximate known Green 
function from which the exact Green function is con
structed by iterating the Neumann series.8 Since the ap
proximate Green function of this paper is a good approx
imation to the true Green function, it may be possible to 
both use large time steps and have a rapidly convergent 
Neumann series. Such an algorithm would still have a non
zero time-step error, as does Ceperley's algorithm,8 be
cause some walkers would attempt to cross nodes, but they 
would be even smaller than the errors presented in this 
paper. 

Although the examples we have chosen are from the 
electronic structure of atoms and molecules, algorithms of 
other applications of diffusion Monte Carlo can be im
proved similarly. In fact in some cases, these improvements 
will be even more important than in the applications de
scribed here. For example, in simulations of Lennard-Jones 
systems, because of the hard-core repulsion of the 
Lennard-Jones particles, the velocity is very large if two 
particles approach each other, while the local energy di
verges strongly. Building these nonanalyticities into the 
Green function and into the short-distance behavior of the 
trial function44 would greatly improve the efficiency of the 
simulation. 

ACKNOWLEDGMENTS 

We thank Malvin Kalos and David Ceperley for useful 
discussions, Gerard Barkema, David Freeman, and Peter 
Reynolds for useful comments on the manuscript and 
Kevin Schmidt for generously making his domain Green 
function Monte Carlo program available to us. The com
putations were performed on IBM RS-6000 workstations 
provided by the Cornell Theory Center and by the 
Cornell-IBM Computing for Scientific Research Joint 
Study. This work was supported by the Office of Naval 
Research. The work at the University of Rhode Island was 
also supported by NSF Grants Nos. DMR-9214669 and 
CHE-9203498. 

J. Chern. Phys., Vol. 99, No.4, 15 August 1993 



2886 Umrigar, Nightingale, and Runge: Diffusion Monte Carlo algorithm 

APPENDIX A: SUMMARY OF ALGORITHM 

In this appendix we summarize the improyed 
algorithm to facilitate its implementation by others. 
Comments in the algorithm will be indicated as follows: 
(* ... comment ... *). 

1. For a= 1 to No generate by variational Monte Carlo 
independent walkers (Ra,wa) with wa= 1 and 
\{IT(R) >0. 

2. Use the algorithm given below to obtain Teff and to 
equilibrate the walkers. This defines the walkers at 
t=O, ET(O), and S(O). 

3. Reset to 0 values of the cumulative variables used to 
compute expectation values. (Do not reset weights W 

or 11.) 
d snm= 0 and a'=O. 

4. For times t= 1 to T do (* Do a run of length 
T. *) 

5. (g=l!T) 
1 Wi-l 

ET(t) = Emix(t - I,Tp) - -log~. 
gTeff lYO 

[* cf. Eq. (11). Emix (0, T p) is taken from equilibra
tion runs *]. 

6. 11 (t,Tp) =11~~-~/e-Te1fEr(i-m). [* cf. Eq. (13). Val
ues of ET for t .;;; m are taken from equilibration 
runs *]. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 
16. 

17. 

For each walker a= 1 to Nt do 

G(R,R') = G(R' ,R) = 1. 

[* Evaluate G(R',R) for forward move. *] 
For each electron i= 1 to n do 

(* Drift and diffuse. Each symbol below 
referring to electron i should have an index 
i. For simplicity of notation such indices 
have been suppressed. *) 

(hpT(R) 
v = tPT(R)' 

Find rune the position of the nucleus nearest 
to r, and the nuclear charge Z. 

t = ~Z2+~. 
(* Evaluate v and decompose v using cy
lindrical coordinates. *) 

z 
z = r - rune; Z = -. z 

1 z2z2 
a = 2(1 + v'z)+1O{4+Z2Z2); 
v=(-I+ ~1+2av2T)v/(av2T) 

[* cf. Eq. (36) *]. 

v~v:i+vpp. 
Z" = max(z + DxT,O). 

2VpTZ" 
p" = z+z"· 

18. 

19 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 
- ~35. 

36. 

[* The previous seven steps define a func
tion d(r), the position drifted to from an 
arbitrary initial position r. *] 
d(r) =r" = rune + p" p+z"z. 

q=l-p=~erfcr*r} 
[* cf. Eq. (40) *]. 

With probability p do 

Sample S from gl (S) = (21TT) -3/2 

e- f/2T (* e.g., with the Box-Muller 
method *). 

r' = r" + S. 
Else 

t3 

Sample S from g2(S) = -e-2~lsl (* for 
1T 

instance see Ref. 45 *). 

r' = rune + S. 

End do. 

G(R' ,R): = G(R' ,R) 

X [pgl{r' -d(r)} 

+qg2(r' -rune)]· 

End loop over electrons i started at step 9. 

Evaluate tPT(R') and EdR') and VCR'). If 
tPT(R) <0 setp=l-q=O and go to step 36. 

[* Evaluate G(R,R') for reverse move. *] 
For each electron i=1 to n do 

Perform steps 10 through 18 starting from r' 
rather than r to evaluate r~ne (the position of 
the nucleus nearest to r') and d(r'). 

1 {Z' +D;T} 
I-p'=q'=2 erfc ~ . 

G(R,R'):=G(R,R') [p'gl{r-d(r')} 

+q'g2(r-r~ne) ]. 

End loop over electrons i started at 30. 

(* Compute accept/reject probability. *) 

p=l-q _ 

. ( max(Oa'_50)ltPT(R')1
2
G(R,R',T) ) 

=mffi 1.1 ' ItPT(R)1 2G(R',R,T),1 . 

(* Reweight walker. *) 

S(R',t) = { (ET(t) -Emix) + [Emix-EL(R')] 

VCR')} 
X VCR') 

S(R,t) = ( {Br(t) -Emix) + [Emix-EdR)] 

VCR)] 
~ -X VCR) [* cf. Eq. (39)*]. 
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37. ~w=exp[ [~S(R"t) +S(R,t)} 

+qS(R,t) ]1"eff] I*cf.Eq.(25)*]. 

38. w:= w~w. 

39. (* Update expectation values of all 
observables. *) 
..ra1sum:= ..ra1sum + I1(t,Tp )w{p..ra1(R') +q..ra1 (R)}. 

40. (* Accept or reject move. *) 
a':=a'+I, R(t)=R'(t), V(t)=v'(i), etc., 
with probability p. 
a' = 0, R(t) =R(t-l), Vet) =V(t-l), etc., 
with probabil~ty q. 

41. End loop over walkers a started at step 7. 

42. Split/join walkers as described in text. 

43. End loop over times t started at step 4. 

APPENDIX B: TRIAL WAVE FUNCTIONS 

The quality of the trial wave functions plays an impor
tant role in comparing the performance of the algorithms 
discussed in this paper. For completeness we therefore give 
in this appendix the explicit form of the trial wave func
tions used. For detailed justification of the functional forms 
we refer the reader to earlier work. 36--38 

The simple n-electron wave functions we used are of 
the form commonly employed in the literature: 

Ndet 

1/1= L (dnD~D~) IT J(rij), 
n=l i<j 

where Dt (D~) are the up (down) spin Slater determi
nants, J(rij) = {exp(aijri/(l +brij)} and rij is the inter
electron distance of electrons i and j. This form consists of 
a product of an antisymmetric part (consisting of a sum of 
Ndet determinants) and a symmetric Jastrow part (involv
ing a product over all pairs of electrons); although the 
notation does not make this explicit the Jastrow part is 
different for like and unlike spins. The N orb orbitals in the 
determinants are themselves linear combinations of prod
ucts of N basis Slater functions and normalized real spherical 
harmonics 

(Bl) 

TABLE IV. Simple Be wave function. Ndet = 1, Nbasis = 3, and Norb = 2. 
Jastrow parameter b= 1.0383. 

Basis functions 

Is Is 2s 

Sf3 4.743989 3.365966 1.096756 
C1f3 0.509325 1 0 
C2f3 0.094609 0 1 

where Np = «2~p)2nf3+1/(2np)!)1/2 is the normalization 
constant of the radial part of the basis function. The basis 
functions, Nbasis in number, are identified by their np and 
lp values (e.g., np = 1, lp = 0 in agreement with standard 
usage is denoted as a Is function); complete identification 
requires in addition sp and mp. The electron-electron cusp 
condition35 implies that the Jastrow aij equal 1/2 for pairs 
of electrons with antiparallel spins and 1/4 for parallel-spin 
pairs. The determinants Dt (D~ ) are functionally identical 
and are of order n12. The values of the parameters ~p, Cap, 
dn and b are given in Tables IV-VII. 

The Jastrow function of the simple wave functions cor
relates pairs of electrons whereas the Jastrow function of 
the good wave function correlates pairs of electrons and a 
nucleus.3

6--38 It is a function of three variables, rb rj' rij' the 
distance to the nucleus of electrons i and j, and the dis
tance between these electrons. The function is written in 
terms of scaled variables Ri = riC 1 - e-Kri)IKrb and addi
tional variables S, T, U, and R = ~R7+R7 where S 
= Ri + R j, T = Ri - R j, U = rij(1 - e-Krij)IKrij.1t has 
the form 

( 
P( {a},S,T,U) +Q( {a},S,T,U) ) 

=exp I+P({b},S,T,U)+Q({b},S,T,U)' (B2) 

where again the spin-dependence is understood and made 
explicit in Table VIII. Here P( {a},S,T,U) is a complete 
4th order polynomial in S, T, U and 

Q({a},S,T,U) 

= (a35U +a3~)R +a37U3IR+ (a38+a39U) 

X (R2_ U2)10gR2. (B3) 

The terms in Q are motivated by the Fock expansion46 and 
serve to reduce the magnitude of the finite discontinuity in 

TABLE V. Simple Li2 wave function. Ndet = 1, Nbasis = 8, and Norb = 3. The first four basis functions are 
centered on the first atom and the second four on the second atom. Internuclear separation is 5.051 ao. 
Jastrow parameter b=0.821683. 

Basis functions 

Is Is 2s 2pz Is Is 2s 2pz 

Sf3 3.579103 2.338523 0.707563 0.532615 3.579103 2.338523 0.707563 0.532615 
C1f3 0.606630 1 0 0.061592 0.606630 1 0 -0.061592 
C2{J 0.603086 1 0 0.002946 -0.&>3086 -1 0 0.002946 
C3{J 0.104957 0 0.305729 0.104957 0 1 -0.305729 
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TABLE VI. Simple Ne wave function. Ndet = I, Nbasis = 10, and Norb = 5. Jastrow parameter b=2.454995. 
Basis functions 7 and 8, and orbital 4 are the same as basis functions 5 and 6, and orbital 3 withpx replaced 
by Py- The same holds for basis functions 9 and 10, and orbital 5 with Px replaced by Pr Parameters not given 
explicitly in the table are defined by (;5 = (;7 = (;9 and (;6 = (;8 = (;10; all nontabulated Ca[3 vanish, except C3S= 
C47=eS9 and e36=e48=eS,IO' 

Basis functions 

Is Is 2s 2s 2px 2px 

(;j 10.694072 8.410602 4.368380 2.820366 5.459124 2.413540 
elj 1 0.628185 -0.003506 0 0 0 

~j 0 -0.545029 0.582661 0 0 
e 3l 0 0 0 0 0.430262 

TABLE VII. Antisymmetric part of the good 2-configuration (4-determinant) Be wave function. Ndet 
= 4, Nbasis=6, and Norb = 8. Orbitals 1 and 2 comprise the first determinant, orbitals 3 and 4 comprise the 
second determinant. The third and fourth determinants are identical to the second determinant with Px 
replaced by Py and p» respectively. Determinant 1 has a coefficient of 1 and determinants 2, 3, 4 have 
coefficient -0.13854052. (Note that the coefficients are for unnormalizecl determinants.) The Jastrow part of 
the wave function is given in Table VIII. 

Basis functions 

Is Is 2s 2px 

(;l 3.19558419 2.98632518 1.01884335 1.00267375 
elj 1 0.00394241 0 0 
e 2l 0 -0.56216281 1 0 
e 3j 0.00007078 0.00688704 0 
e 4j 0 0 0 

TABLE VIII. Jastrow part of the good 2-configuration (4-determinant) Be wave function. K=0.34975. Coefficients that are zero by sy=etry have been 
omitted; hence the missing rows. 

Term all all btl bll 

U 0.5 .0.25 0.76601265 0.15740663 
2 S -0.32174049 -0.16167748 1.19899131 2.52528576 
4 U2 -0.21045945 -0.52058647 -1.33114784 -1.35904505 
5 S2 -0.47543025 -0.03961320 -2.23269739 -2.99137524 
6 T2 0.35599892 0.31816662 0.66142506 1.10603549 
7 US 0.79354593 0.76705142 3.12932039 2.68709399 

10 U3 -0.58102451 -0.64373415 -0.7Q800536 -0.69092478 
11 S3 0.27774564 0.02890483 0.57532420 0.51324051 
13 U2S. 1.15309740 0.65819572 2.05533492 2.44485355 
14 US2 -0.97233708 -0.26631618 -0.81533750 -0.65662838 
16 UT2 -0.22800272 -0 .. 04673077 0.22890273 -0.07731331 
18 ST2 0.20655924 0.12141523 0.42943719 0.73491736 
20 U" -0.23278323 -0.03592145 -0.62929393 -0.21125656 
21 S -0.09443317 -0.03069166 -0.02204179 -0.01084392 
22 1'" 0.09478121 0.06408161 0.10065836 0.13288769 
23 U3S 0.71679511 0.43474543 0.80843246 0.87773934 
24 US3 0.44601457 0.18215904 -0.00843236 0.12032247 
31 UST2 0.32921730 0.11925596 -0.32792418 -0.61325175 
32 U2S2 -0.85492061 -0.47289798 -0.34844499 -0.70648420 
33 U2T2 -0.12507010 -0.12123822 0.20593344 0.12914268 
34 S2T2 -0.f8247064 0.02862570 0.13438414 0.14765475 
35 UR -0.62590436 -0.22546956 -2.71459521 -3.58148361 
36 SR 0.44919268 -0.26189060 1.01996374 2.72970787 
37 U3/R 0.13707051 0.21943996 -0.05980694 -0.94453732 
38 (R2 _ U2)log R2 -0.08096158 -M3173070 0.00131255 0.02686620 
39 U(J?2 - U2)log R2 -0.05582019 -0.00268818 -0.09655479 0.10040772 
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the local energy in the limit that two electrons approach a 
nucleus.47 Symmetry demands that terms containing odd 
powers of T have zero coefficients; hence these terms are 
omitted in Table VIII. 

The good Be wave function has 114 parameters, ldm 

4ca{J's, 4{;p's, lK, 52a's, and 52b's. In order to satisfy the 
cusp conditions these coefficients must satisfy 50 equations 
in the coefficients {a}, {b }. Four of these equations depend 
on the ca{J's, and {;p's. Although these 50 conditions can be 
imposed exactly, in the wave function presented here only 
five are satisfied exactly and the remaining are imposed 
approximately by a penalty function. Hence 109 parame
ters are varied in the optimization. We have also con
structed several wave functions, that have only one-sixth to 
one-third as many parameters, that are almost but not 
quite as good as the wave function presented here. 

The tables below give the values of the parameters of 
the wave functions, namely Ca{J' {;fJ and b for the simple 
wave functions or CaP' (;p, dm K, {a} and {b} for the good 
wave function. d 1 can without loss of generality be chosen 
to be unity. 

APPENDIX C: ALTERNATIVE TO GENERALIZED 
METROPOLIS 

In this appendix we present an alternative to the gen
eralized Metropolis algorithm for exactly sampling any 
known distribution. This alternative is useful in the context 
of the diffusion Monte Carlo algorithm, where the walkers 
carry statistical weights. In that case the accept/reject step 
can be replaced by a reweighting step. 

Let feR) be any known distribution that we wish to 
sample. One possibility is provided by the generalized26---28 
Metropolis algorithm. Here we discuss an alternative in 
which the usual accept/reject step is replaced by a 
weighted, unconditional acceptance. 

Let G(R',R) be a stochastic kernel that is used to 
propose moves from R to R'. (A stochastic kernel is one 
that is non-negative everywhere and whose integral over 
the first argument is one.) LetA(R',R) be the reweighting 
factor for moves from R to R'. We wish to find A(R',R) 
such that the equilibrium distribution of this process is 
feR), i.e., feR') = f dRA(R',R)G(R',R)f(R). From 
the fact that G(R' ,R) is a stochastic kernel it follows that 
a possible choice is 

feR') G(R,R') 
A(R',R)= feR) G(R',R), - (Cl) 

Note that A(R',R) in Eq. (Cl) will exceed one for some 
choices of Rand R', it can only be interpreted as a re
weighting factor, not as a probability. This alternative to 
the generalized Metropolis method has the advantage all 
moves are accepted, but the disadvantage that there is an 
additional source of fluctuations of the weights of the walk
ers. 

It is interesting to note that although the total kernel 
A(R',R)G(R',R) yields the correct distribution feR), it is 
not stochastic and does not satisfy detailed balance. On the 
other hand, if we choose A (R' ,R) to be the square root of 

the right hand side of Eq. eel) then detailed balance is 
satisfied but this kernel does not yield the desired distribu
tion feR). In case the reader is surprised by this result, we 
note that to generate a given distribution detailed balance 
is not a necessary condition, and it is a sufficient condition 
only when the kernel is stochastic. 

APPENDIX D: TIME-STEP ERRORS IN SIMPLE 
DIFFUSION MONTE CARLO 

We argue in this appendix that the act of killing walk
ers that cross nodes in the simple diffusion Monte Carlo 
algorithm leads to a 7

112 term in the time-step error of the 
growth estimator of the energy Egr• We also show that the 
nonanalyticity of the local energy and the velocity near 
nodes does not alter the order of the time-step error in 
either the growth or the mixed estimator [the leading term 
is & (7)] if the energy is cut off as in Eq. (9). 

As in Section III C we let R 1 denote the distance in 
configuration space to the nearest node of 1/lT' Let fT be the 
distribution of the simple diffusion Monte Carlo random 
walk with time step 7, so that fa is the limit of no time-step 
error. One suspects that the error l3fT = fT - fa induced 
by the nonanalyticities of the local energy and of the ve
locity near a node is unimportant beyond some healing 
distance"l - Jr away from the node. Although the exact 
distribution behaves quadratically near the node, 
fo(R l ) :=::; caRf + . ", the simple diffusion Monte Carlo 
distribution has a constant density of walkers at the node: 
fT(R l ) :=::; aT + brRl + c"Rf + .. '. Theexact distriQu
tion behaves quadratically near the node so that the coef
ficients aT and bT must vanish as 7 -> 0 to retrieve the exact 
distribution. We note in passing that for the improved al
gorithm aT and bT are rigorously zero for all 7 as a result of 
the accept/reject step. 

How might we model this 7 dependence of the coeffi
cients for the simple algorithm? One way is to argue that 
the aT + brRl contribution must somehow "match onto" 
the correct caRf behavior in the vicinity of the healing 
distance. Thus aT + bj., - coA 2, from which one reads off 
aT - "l2 - 7 and bT - "l - Jr. Numerically exact results 
obtained for a one-dimensional lattice model indicate that 
the simple arguments presented here are correct so long as 
the local energy does not diverge in the vicinity of the 
nodes.48 

Let us first consider the error induced by the node for 
the mixed energy estimator. In Eq. (8) the divergence of 
the local energy EL is cut off to 2/ Jr, thus 

l3Emix - J: ~fT(Rl )dRL _"l2_ 7 . (Dl) 

Hence the nonanalyticities in the nodal region do not de
crease the order of time-step error in Emix from the & ( 7) 
error already present in the simple diffusion Monte Carlo 
algorithm. Similar arguments also apply to the growth es
timator. 

We note that on the other hand, if Eq. (8) is not used 
to cut off the divergence in the local energy, the above 
estimate is modified to 
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(D2) 

which is logarithmically divergent at any nonzero r. If the 
local energy at a point infinitesimally on one side of a nodal 
surface diverges to + 00, the local energy at a point infin
itesimally on the other side diverges to - 00. Hence the 
logarithmic divergences cancel, but the infinite variance 
renders the algorithm unusable. 

Next we show that if walkers that cross nodes are 
killed then the growth estimator Egr has an & ($-) time
step error. The population at time t+ I is in error due to 
killing walkers that cross nodes in the simple algorithm. 
The number of such walkers near the node is estimated as 

l)Nt+1-Nt J: l)fr(R1 )dR1 _N;.3 -Ntr'312
• 

The growth estimator is basically 

1 
Egrz-In(Nt+1INt) r 

(D3) 

(D4) 

(somewhat more precisely, it is the ratio of the sum of the 
walker weights W a, but this form is correct to leading or
der). So if we now say Nt+ 1 is "in error" by the above 
estimate for l)Nt+ 1> we find, after expanding the logarithm, 
th~t: ' 

1 l)Nt+1 112 
l)Egr-- -N ~-r . 

r t 
(DS) 

Thus the convergence of the groWth esti~ator is slower 
than the mixed. Our empirical observations discussed in 
Section IV confirm the two power laws for the two estima
tors. The' r 1l2 convergence of Egr makes accurate extrapo
lation to r=O very difficult. 
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