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ABSTRACT

Electrical grids have been developed over a century, which are considered

as one of the most important infrastructures on the earth. In the past decade,

the emergence of the Smart Grid, referred to the next generation of power grid,

makes existing systems more complicated and vulnerable. Cyber-physical attacks

against existing systems and future smart grids have drawn increasing attention,

because such attacks could trigger large-scale cascading failures and result in major

blackouts.

In the traditional power society, contingencies are widely considered as the

causes that result in power outages. The contingency analysis is the predominant

method to investigate the vulnerability of power grids. With the increasing ma-

licious attacks against power transmission systems, however, studying the grid’s

security and reliability only from the contingency analysis perspective has apparent

limitations. First, contingencies happen randomly and unintentionally; malicious

attacks are mostly intentional. Second, it is rare that multiple contingencies hap-

pen simultaneously. Malicious attacks, however, can likely occur on a few, even

more, the power grid components.

In this dissertation, the security and reliability of power grids is investigated.

Briefly speaking, the attackers identify a few components in the grid as targets

(e.g., substations, transmission lines, or both). Then, the attackers take down

these targets by either physical sabotages or cyber intrusions, hoping that the

initial failures can trigger large-scale cascading failures. The goal of the attackers

is to find a group of targets, attacking on which can yield large damage to the

power grid.

In particular, this dissertation investigate the attacks against the power system

from the following aspects.



� It is a nature question that why attacking a few, even one, critical com-

ponents can severely weaken the system. In manuscript 1 (i.e., chapter 2),

the cascading process is visualized to help people under such complicated

phenomena, as well as discovering different types of failure propagation.

� Attackers might only know the topological connection of the power grid, e.g.,

the topology. In manuscript 2 (i.e., chapter 3), a topology-based cascading

model is adopted to study cascading failures. The metric load distribution

vector (LDV) and LDV-based attack strategy are proposed and investigated.

� Attackers can possibly know some general information of the power grid,

e.g., the topology, types of substations and length of transmission lines. In

manuscript 3 (i.e., chapter 4), the extended topological model is used to

mimic cascading failures. A novel metric, called the risk graph, is proposed to

reveal the hidden relationship among critical substations/transmission lines.

In addition, the risk-graph based attack strategies are developed regarding

substations and transmission lines, respectively.

� Attacks can occur on substations and transmission lines simultaneously. In

manuscript 4 (i.e., chapter 5), both the vulnerability analysis and the attacks

are investigated from the joint substation-transmission line perspective.

� Attacks can be conducted not only synchronously but sequentially. In

manuscript 5 (i.e., chapter 6), the sequential attack is introduced; the met-

ric sequential attack graph (SAG) is constructed; the SAG-based sequential

attack strategy is developed and evaluated.
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PREFACE

This dissertation is organized in the manuscript format. In particular, it con-

sists of seven chapters. The introduction is given in the chapter 1. From the

chapter 2 to the chapter 6, five manuscripts are discussed in details. The disser-

tation is summarized in the chapter 7. Brief introduction of the five manuscripts

are given as follows.

* Manuscript 1 in Chapter 2:

Yihai Zhu, Jun Yan, Yufei Tang, Yan (Lindsay) Sun, and Haibo He, “Failure

Propagation and Visualization for Vulnerability Analysis in Power Grids,” in

submission to IEEE Conference on Communications and Network Security

(CNS), 2014.

* Manuscript 2 in Chapter 3:

Yihai Zhu, Yan (Lindsay) Sun, and Haibo He, “Load Distribution Vector

Based Attack Strategies against Power Grid Systems,” in Proceeding of IEEE

Global Telecommunications Conference, Anaheim, CA, USA, Dec.3-7 2012.

* Manuscript 3 in Chapter 4:

Yihai Zhu, Jun Yan, Yan (Lindsay) Sun, and Haibo He, “Revealing cascading

failure vulnerability in power grids using risk-graph,” IEEE Transactions on

Parallel and Distributed Systems, 2014, in press.

* Manuscript 4 in Chapter 5:

Yihai Zhu, Jun Yan, Yufei Tang, Yan (Lindsay) Sun, and Haibo He, “Joint

Substation-Transmission line Vulnerability Assessment against the Smart

Grid,” in submission to IEEE Transactions on Information Forensics and

Security, 2014.
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* Manuscript 5 in Chapter 6:

Yihai Zhu, Jun Yan, Yufei Tang, Yan (Lindsay) Sun, and Haibo He, “Re-

silience Analysis of Power Grids under the Sequential Attack,” in submission

to IEEE Transactions on Information Forensics and Security, 2014.
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CHAPTER 1

Introduction

The U.S. power grid has been developed over a century. Nowadays, this

grid has involved into a extremely complicated system with more than 55,000

substations and nearly 300,000 miles of transmission lines. Such a big system is

facing various security threats and reliability issues.

1.1 Public Voices on U.S. Grid Security

Recently, the U.S. power grid security and reliability has attracted increasing

public concerns.

Janet Napolitano, the former U.S. Homeland Security Secretary, had a warning

for her successor: A massive and “serious” cyber attack on the U.S. homeland is

coming, and a natural disaster - the likes of which the nation has never seen - is

also likely on its way [1]. An unreported study from the Federal Energy Regulatory

Commission shows: the U.S. could suffer a coast-to-coast blackout if saboteurs

knocked out just nine of the country’s 55,000 electric-transmission substations on

a scorching summer day [2]. A report from Nature News and Comment : U.S.

electrical grid on the edge of failure [3]. Adam Kredo, a senior writer for the

Washington Free Beacon, had reported: U.S. Electric Grid Inherently Vulnerable

to Sabotage [4].

In the history, the U.S. power grid experienced several major blackouts, which

caused catastrophic results to the societies.

Traditionally, the causes that can trigger major blackouts are mainly uninten-

tional, such as natural disasters [5] (e.g., earthquakes, hurricanes, blizzards, tor-

nadoes, lightnings, etc.), errors from computer hardware and software [6], misop-

eration from operators, vegetation sagging [7] and increasing energy demand [8].
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Table 1.1. History of Major United States Blackouts

Date Location Reasons Consequences

Nov. 1965
Northeastern of U.S.,

Ontario in Canada
Human errors

30 million people
without power

Jul. 1977 New York City
An electrical substation

stroke by lightning
9 million people
without power

Jan. 1981 Utah
Knocking out

transmission lines
1.5 million

people lost power

Oct. 1989
Northern
California

Electrical substations
damaged by earthquakes

1.4 million
people lost power

Jan. 1989
Northeastern of
North America

Transmission towers
destroyed by ice

3.5 million
people affected

Aug. 2003
Northeastern of U.S.,

Ontario in Canada
Transmission lines
tripped by trees

55 million
people without
power for days

Sep. 2011 California
Error made by

a technician
7 million people
without power

Jul. 2012
New York

New Jersey
Hurricane Sandy

10 million people
without power;
some for weeks

These causes often occur in a unpredictable manner. Although many works have

been done to enhance the security and reliability of the U.S. grid, major blackouts

are still inevitable. Table 1.11 shows the history of U.S. notable blackouts in the

past 50 years.

1.2 Malicious Attacks

Recently, malicious attacks against power systems have drawn increasing at-

tention from many aspects, e.g., governments, industries, academies and even the

public. Recent terrorist attacks have shown that U.S. are vulnerable to physical

sabotages [10, 11]. With the emergence of the “Smart Grid”, generally referred to

as the next-generation power transmission system [12], power transmission systems

are growing to rely on modern techniques, e.g., computer and communication net-

works and smart meters. The new techniques for traditional power systems have

1The information is collected from [9].
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raised great concerns of cyber intrusions to the systems currently in use. Such

attacks, physical sabotages or cyber intrusions, can be controlled by attackers to

target on critical substations and transmission lines and likely cause national power

outage [13].

Attackers are referred to as those people with strong willing carry out attacks

to disable the power grid. Generally speaking, the attackers might include, but

not limited to, those as follows.

� Individuals : The person who is disgruntled with the society could likely be-

come the attacker [10]. The individual can target on those power grid com-

ponents that are less protected, e.g., transmission lines. Individual attacks

can be conducted by using simple physical sabotages.

� Terrorists : Terrorism is the critical issue to the United States. Terrorists

possibly come from both inside and outside. Inside terrorists can directly

attack substations by using sophisticated but low-tech physical sabotages

[11]; outside terrorists can access and destroy power grid components through

remote cyber intrusions [14].

� Hostile Countries : There are quite a few adversaries to the United States.

Nuclear weapons from those hostile nations can release electromagnetic pulse

(EMP) to destroy regional grids; the computer hackers in those hostile coun-

tries can remotely access and possibly shunt down target substations and

transmission lines.

Individual attacks and terrorist attacks are highly possible, some of which

already happened [10, 11]. Although attacks from hostile countries are less often

than individual attacks and terrorist attacks, once the type of attacks occur, the

entire U.S. grid might be shut down for weeks, even months [2].
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Physical Sabotages refer to physically destroy the parts of power grids, e.g.,

transmission lines, transformers, generators, and even substations. Such sabotages

can be conducted in different ways. Some ways can be easily done, e.g., failing

down poles that support transmission lines [10]. Others can be complicated and

powerful, e.g., terrorist attacks targeting on substations [11] and electromagnetic

pulse (EMP) attacks to destroy reginal grid [15].

Examples of physical sabotages against the U.S. electric grids include the

attacks on transmission lines in [10] and on substations in [11]. In 2013, a 37-year-

old Arkansas man launched three attacks on the local power grid [10]. Specifically,

the first attack occurred on August 21, 2013, with the sabotage of a 500 KV power

line; the second attack occurred on September 29, 2013, at a switching station; the

third attack occurred on October 6, 2013, destroyed two power poles that support

a 115 KV transmission line.

In addition, on April 16 2013, two gunmen assaulted an electrical substation

near San Jose, California [11]. During the 19 minutes of shooting, 17 transformers

were knocked out, which then took nearly a month to repair. The attack raises

great concerns on potential terrorist attacks against U.S. grid.

Finally, physical sabotages can possibly launched by military forces from hos-

tile nations [15], e.g., EMP attacks and airforce attacks. The type of sabotages are

powerful and possible to destroy many power grid components simultaneously.

Cyber intrusions to power systems are highly possible with the emergence of

the Smart Grid [14, 16]. In March 2007, a simulated cyber attack was conducted

at the Idaho National Laboratory to destroy a $1 million dollar large diesel-electric

generator [17]. In particular, the generator turbine is forced to overheat dramat-

ically and shut down, after receiving malicious commands from a hacker. The

destroyed generator is similar to many now in use throughout the United States.
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In order words, there exist many generators that could potentially be disabled the

same way.

Furthermore, cyber worms could intrude into supervisory control and data

acquisition (SCADA) systems [14]. For instance, the well-known Stuxnet worm

were designed to target SCADA systems as well as nuclear power plants. With

modifications, Stuxnet worm could become a serious threat to power grids.

Attacks caused by cyber intrusions, or cyber attacks, can be conducted re-

motely and secretely. The attackers will mainly adopt cyber intrusions to attack

future smart grids.

1.3 Cascading Failure

Cascading failures are considered to be the leading reasons of large-scale power

outages in power systems [18]. The cascading failure refers to a sequence of de-

pendent failures of individual components that successively weakens the power

system [19]. Generally speaking, the cascading failure includes initial failure(s)

and dependent failures.

The initial failure(s) can occur on substations, transmission lines, or other

components. Initial failures can be triggered by different causes. From the per-

spective of traditional contingency analysis, random causes are under great consid-

erations. Such causes include natural disasters, e.g., earthquakes and hurricanes,

operator errors, equipment failures, supply shortages, and so on [5]. It is predom-

inant to check N − 1 and N − 2 system security [6], because it is rare that the

system loses multiple components simultaneously by random causes. From the at-

tack’s perspective, malicious attacks, e.g., physical sabotages and cyber intrusions,

are likely to trigger large-scale cascading failures. Different from random causes,

malicious attacks are powerful. Attacks can be controlled in terms of selecting

different targets and different number of targets. Attacks can be conducted in
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Figure 1.1. Brief Summary of Cascading Models
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different ways, simultaneously or sequentially.

Dependent failures are triggered by initial failure(s). The phenomenon is

that many power grid components are failed subsequently after initial failure(s).

These subsequent failures are referred to as the failure propagation. The reasons

causing the failure propagation are very complicated [6]. Briefly speaking, massive

power cannot be stored; the balance between power supply and demand should be

met on time; initial failure(s) of critical components could cause great power loss

or large-scale power redistribution; such disturbances trigger subsequent failures.

In existing works, the cascading process is mimicked by using different models.

Many models have been proposed to study the cascading failure from different

aspects [6, 20–22]. From the attack’s perspective, these models include CASCADE

model [23], Wang-Rong model [22], Motter-Lai model [24], betweenness model [25],

efficiency model [26], extended betweenness model or extended model [21], Hines

model and [27, 28], OPA model [29], hidden failure model [30] and Manchester

model [31]. (The models are named by either the popularly accepted name or the

author’s name who proposed the model.) The brief description of each model is

shown in Fig. 1.1.

In this dissertation, three models, i.e., the efficiency model [26], the extended

betweenness model, or the extended model in short [21] and the Hines model [28],

will be employed to investigate the attack strategies. The adopted models will

be introduced in details in each manuscript. For interested readers, the details of

other models can be found in [6, 20–22].

1.4 Attack Strategy

If attackers want to launch successful and powerful attacks, they need to

answer the following three questions.

1. In what ways can attackers initially attack the targets?
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2. Which cascading model is the best one to predict the attack performance?

3. Which and how many components should be identified as targets?

Comprehensively answering any of aforementioned questions needs significant

amount of research work. In the current literature, the power grid is considered

as one of critical cyber-physical systems, and cyber-physical attacks against such

power grids have attracted broad attentions [32–35]. These works can well answer

the first question. In addition, many models have been developed by using different

information of power grids [20, 21]. These models are helpful to answer the second

question.

However, there are few works that specifically discuss the attack strategies. In

this dissertation, the attack strategy refers to the following aspects.

� Which substations, transmission lines, or both, should be considered as tar-

gets?

� How many targets should be chosen to balance between the attack cost and

performance?

� Should the targets be attacked synchronously or sequentially, aiming to ob-

tain the best strength?

This dissertation focuses on tackling the third question from the attackers’

perspective. The works in this dissertation also build the foundation for develop-

ing defense solutions. It is assumed that the attackers can completely conduct

attacks and have enough knowledge about the cascading models. In particular,

this dissertation will discuss four proposed attack strategies, which have strong

performances and low complexity. Brief discussions of proposed attack strategies

are given in Section 1.5.
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Figure 1.2. Different levels of power grid information known by the attackers

1.5 Motivations and Highlights of Manuscripts

It is a nature assumption that different attackers might have different amonts

of information on the power grid. In reality, power grid information can be ob-

tained in different ways, e.g., gathering the topology from online Google Maps [10],

purchasing the U.S. grid with raw data from commercial companies [36] and pos-

sibly hacking the details of power systems [37]. In this dissertation, it is not to

specifically discuss how the attackers can obtain the information of power grids.

Instead, developing attack strategies will be discussed based on three different

levels of power grid information that are possibly known by attackers. Brief de-

scriptions of the considered levels are given in Fig. 1.2. Under different levels of

power grid information, we have adopted different cascading models to develop

attack strategies.

1.5.1 Understanding Failure Propagation

Major blackouts, e.g., Northeast blackout of 2003 in Table 1.1, mainly result

from cascading failures in power transmission systems. It is of great importance
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for both attackers and defenders1 to understood how failures propagate in power

systems.

In manuscript 1, a useful tool is implemented to visualize cascading failures.

Such a tool can let people “watch” how the failure propagates from a local point

to the entire grid. It is of great help to understand the complicated cascading

process. In addition, through investigating single-substation attacks, it is possibly

to discover different failure propagation processes in the testing power grid.

1.5.2 LDV-based Attack Strategy

It is of importance for attackers to gather the information of the power grid.

The more detailed the collected information is, the more accurate the cascading

model can be adopted and the stronger the attack strategies can be developed.

In manuscript 2, it is assumed that the attackers have known the topology

(i.e., level 1) of the power grid. Under this scenario, the efficiency model [26] is

adopted to study cascading failures. In particular, a new metric, called the load

distribution vector (LDV), is proposed to represent the feature of substations or

transmission lines. The LDV can be used to design attack strategies on substations

or transmission lines. Take substations as an example. Referring to LDV, if two

substations have similar LDVs, they are close in terms of the Euclidean distance

between the two LDVs. Therefore, it is possible to cluster all substations into

different groups and then select a target from each group, which is referred to as

the LDV-based node attack strategy.

1.5.3 Riskgraph-based Attack Strategy

Attackers are likely to obtain more information of the power grid, not just

knowing the topology. One possible way is to purchase the power grid raw data

1Defenders refer to those who want to make power systems secure and reliable (e.g., power
companies).
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from business companies, e.g., Platts [36]. The raw data include the general in-

formation, e.g., the grid’s topology, geographic coordinates of substations, power

plants and generators, length of transmission lines and affiliations, but do not pro-

vide the details of power systems. The general information is enough for attackers

to adopt a more accurate model to mimic cascading failures and discover strong

attack strategies.

In manuscript 3, the extended model [21] is used to set up cascading simu-

lator. Adopting the extended model needs the topology, types of substations (i.e.,

generator, demand substation and transmission substation), and the admittance of

transmission lines. The needed information of the grid is either included in IEEE

standard test benchmarks [38] or can be estimated for the purchased data [39, 40].

In particular, it is found that there are hidden relationship among substations in

terms of vulnerability analysis. Such relationship is useful to design strong attack

strategies with low complexity. A new metric, called risk graph, is proposed to

show the hidden relationship. Based on the new metric, the riskgraph-based at-

tack strategies against substations or transmission lines are proposed for attackers.

1.5.4 CIG-based Attack Strategy

Continuing the discussion in the previous manuscript, in manuscript 4 it is

of great interest to investigate the attacks that occur on substations and trans-

mission lines simultaneously. Because, the previous two manuscripts and many

existing works on analyzing the vulnerability of power grids are conducted from

the substation-only perspective or the transmission-line-only perspective. In other

words, it is assumed that attacks or contingencies occur on either substations or

transmission lines.

However, it is reasonable that malicious attacks can occur on both substations

and transmission lines. In this manuscript, the joint-substation-transmission-line
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perspective is introduced to conduct vulnerability analysis in power grids. In

addition, the metric component interdependency graph (CIG) is proposed by gen-

eralizing the idea of risk graph in manuscript 3. Balancing between choosing

substations and transmission lines as targets, the CIG-based attack strategy is

proposed to possibly find strong attacks.

1.5.5 SAG-based Attack Strategy

Attackers can be the experts in power systems and have the details of target

power systems. For instance, the hostile countries can first obtain the entire or part

of the U.S. power grid details by hacking or other means, and then organize the

experts to launch possible attacks. Such possible attacks have attracted growing

concerns in the U.S. (seeing the public voices in Section 1.1). In addition, multiple

attacks can be conducted in different ways, e.g., synchronously or sequentially. In

manuscripts 2, 3 and 4, attacks are assumed to occur synchronously to possibly

trigger cascading failures, which is referred to as the synchronous attack. However,

the synchronous attack have apparently missed the scenario that multiple attacks

can be conducted sequentially.

In manuscript 5, a new attack scenario, called the sequential attack, is in-

troduced for attackers with expertise. Similar idea on contingency analysis in the

power society has rarely been reported. The Hines model [27, 28], a DC power-flow

model, is adopted to mimic cascading failures on transmission lines in power sys-

tems. From the sequential attack perspective, there are many multiple-substation

combinations that can yield large attack strength. Previously, these combinations

cannot yield large strength from the synchronous attack perspective. In addition,

a novel metric, called the sequential attack graph (SAG), is specifically designed to

reveal the relationship among substations from the sequential attack perspective.

Also, the SAG-based sequential attack strategy is proposed and compared with
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some representative schemes.

1.6 Summary

As a summary, it is of great importance to comprehensively investigate the

malicious attacks against power transmission systems. This dissertation focuses

on tackling such critical issues. Generally speaking, this dissertation provides the

reasonable answers to the following questions.

� Why can malicious attacks trigger large-scale power outages in power trans-

mission systems? The answer: initial failures of a few, even one in extreme

cases, critical power grid components can trigger severe cascading failures in

the entire grid and results in large-scale blackouts.

� How can attackers determine the targets, the attacks on which can trig-

ger major blackouts? The answer: there are hidden relationships among

power grid components in context of vulnerability analysis; such relation-

ships are revealed in four proposed metrics, i.e., load distribution vector,

risk graph, component interdependency graph and sequential at-

tack graph; relying on these metrics, attackers can easily identify targets

for different attack strategies.
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2.1 Abstract

The cascading failure is considered to be the leading reason of large-scale

power outages. One of the fundamental characteristics of cascading failures is

that failures can propagate within the entire power grid and cause severe power

loss. Investigating failure propagation significantly contributes to understanding

large-scale power outages. In this work, we introduce a new platform that can

visualize the failure propagation in power grids. The proposed platform not only let

people “watch” how failures propagate, but enable investigation on the insights of

cascading failure triggers. In particular, we adopt the extended model to simulate

cascading failures, and develop the platform in ArcMap. The power grid around

Bay Area, California, is used as the test benchmark. The proposed platform can

successfully demonstrate how a failure propagates from a local point to the entire

grid and eventually paralyzes the system. Through this platform, we investigate

single-node (i.e. substation) failure problem. We discover three different and

important types of failure propagation, which have different requirements on the

system protection

2.2 Introduction

In the past decade, several major blackouts, e.g., the famous cases in [1–3],

seriously affected the modern society and raised many concerns. Enhancing secu-

rity and robustness of these cyber-physical power transmission systems becomes an

increasingly urgent task [4–7]. Due to the complexity and significance of this prob-

lem, the investigation of blackouts attracts attentions from researchers, companies

and governments.

The cascading failure is considered to be the main mechanism that results in

major blackouts in power systems [8, 9]. Specifically, the failure of one or several

power grid components (i.e., substations and transmission lines), due to natural
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disasters, errors from equipments, etc., can trigger a series of successive failures of

other components and progressively weaken the power transmission system.

An important research direction on the cascading failure is to understand the

relationship between initial failures and the final damage to the power grid after

the cascading process finishes. Specifically, it is to investigate the vulnerability

of power grid components. In this type of research, the cascading failure process

is mimicked by different models [10]. The inputs are substations/transmission

lines that are initially failed; the outputs are the damage quantified in different

measures, such as blackout size [5], net-ability [11], and network efficiency [12].

The detailed cascading process is often treated as a “black box”.

Although the existing method is predominant in power grid vulnerability anal-

ysis, it is arguable that unfolding the “black box” gives opportunities to further

understand cascading phenomena. There are three interesting questions that have

not been answered. First, shall we treat the following two scenarios separately? (1)

An initial failure can immediately trigger large-scale failures; (2) an initial failure

can continually trigger trivial failures and eventually involve into large-scale fail-

ures. Second, two different initial failure cases might yield the same or very close

cascading damage, e.g., net-ability. Do they have similar impact on the power

grid? Finally, using two different cascading models, the damage for the same ini-

tial failure, e.g., net-ability or blackout size, can be different. Does this mean that

at least one model is wrong?

Unfolding the “black box” can disclose the diversities of cascading failures. It

has been found that the cascading failure has multifarious intermediate results [13].

Quantitative risk analysis can identify the criticality of components (i.e., substa-

tions/transmission lines) in a power grid. Generally speaking, the components that

have equal or very close quantitative results are considered to be of similar signif-
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icance to the power grid. In [13], however, even with equal quantitative results,

the initial failures can demonstrate different failure accumulation processes. Such

differences are the fundamental characteristics of cascading failures, and cannot be

revealed or further investigated, if one only checks the eventual damage.

Power grids are man-made cyber-physical systems on the Earth, whose se-

curity and reliability issues also have strong relation with the geographical and

regional information [14–16]. It is highly possible that malicious attackers can

trigger the initial failures by failing substations in different regions [14], or fail

several transmission lines in the same geographical area [15]. In addition, power

failures can affect different areas and result in different impact [16]. Integrating

the geographical and regional information into the existing quantitative analysis

can help people comprehensively understand power grid vulnerability.

There exist different methods in analyzing cascading failures [5, 10, 17, 18],

such as transient stability analysis (TSA), power-flow models and topological mod-

els. Comparisons among different methods or models can be conducted by looking

into the details of cascading processes. TSA methods, based on differential al-

gebraic equations, are predominant in power system control design; power-flow

models, based on steady-state analysis, are widely adopted in power grid vulnera-

bility analysis. In [17], the detailed power flow comparisons are conducted between

a DC-power model with a TSA method. At the beginning of cascading failures, the

power flow redistribution in the DC-power model is consistent to that in the TSA

method. Topological models are developed from complex network theories. It is

still necessary to further compare in detail the cascading processes of topological

models with those of other methods and models [5, 18].

Based on the aforementioned discussions, it is necessary to develop such a

tool that can reveal the insights of the cascading processes. It is of importance to



21

point out that different research communities use different terminologies, models

and approaches when investigating the cascading failure. From the perspective of

power systems, people often use detailed electrical information of power grids to

perform analysis. From the perspective of complex networks, people mainly adopt

the topological structure of power grids to set up simulations. We would like to

give a solution that is meaningful to both aspects. A promising way is through

visualization.

In this work, we develop a platform to visualize the failure propagation in

detail. Such platform can lead to new discoveries of cascading failures. Generally

speaking, there are three major challenges in developing such a platform. First,

because of security reasons, the information of real-life power transmission systems

are not publically available, or available, but incomplete. Second, it is necessary

to develop reasonable cascading models based on the available power grid data.

Finally, both the simulation and visualization of cascading failures need heavy

computation, especially for large-scale power grids.

Specifically, we have purchased the real-life power grid data from Platts [19]

and adopted the extended model [11] to set up cascading simulation on the power

grid around Bay Area, California. In addition, we use ArcMap (i.e., a product

from ESRI [20]) to store the power grid topology and visualize cascading failure

processes.

Our contributions are as follows.

� We propose a new platform to investigate cascading failures in power grids.

The proposed platform can successfully demonstrate how failures propagate

and paralyze the power grid. The observations are consistent with recent

discoveries [21]. In addition, the proposed system is implemented with real-

life power grids, which provides not only quantitative analysis results but
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geographical results of cascading damage.

� By investigating single-substation failures in the proposed platform, we dis-

cover three different initial failures that can trigger failure propagation with

very different features in time domain. Such discoveries are of importance to

understand the cascading failure and protect power grids.

The work is structured as follows. The related work is given in Section 4.3.

System model and design are discussed in Section 2.4. Simulations and observa-

tions are made in Section 6.7. Finally, conclusions and future works are provided

in Section 6.8.

2.3 Related Work

In the current literature, different models have been proposed to mimic failure

propagation (i.e., the cascading failure) [11, 13, 22–29]. In [13, 22–24], pure topo-

logical models are adopted to model cascading failures. Although those models are

not accurate to reveal the power distribution in power systems, they are still use-

ful in conceptually setting up the cascading failure model and discovering stronger

attack strategies. Pure power-flow models in [25–27] are mainly employed to iden-

tify critical components (i.e., substations and transmission lines). Those models

are completely based on electrical theories. Such models, however, are with high

computation cost as well as needing detailed electrical features in analyzing cas-

cading failures. Although power-flow models are close to mimicking real cascading

failures, they are limited in many cases, e.g., without enough information of power

grids. Recently, the hybrid model, called the extended model, is proposed to inves-

tigate the vulnerability of power grids [11, 28]. The extended model adopts simple

electrical features (e.g., impedance of transmission lines) and the topology informa-

tion to set up the cascading model. The extended model has two key advantages.
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First, the extended model adopts Power Transfer Distribution Factors (PTDFs)

to calculate the power distribution [11, 30]. In other words, the extended model is

based on calculating DC power flows and is more accurate than pure topological

models in mimicking cascading failures. Second, the extended model needs much

less electrical features than pure power-flow models, and is more suitable for set-

ting cascading model to different power grid data. Different models for mimicking

cascading failures are summarized and compared in [10].

Furthermore, the application of visualization approaches provides other ways

to investigate the vulnerability of power grids [31–36]. The topology of U.S. power

grids is visualized in [31], including important power plants and high-voltage trans-

mission lines. Some visualization platforms, e.g. GreenGrid in [32] and 3D visu-

alization scheme in [33], have been explored to monitor the American electricity

infrastructure. To aid power system operators interpret contingency analysis re-

sults, a three-level visualization tool was proposed to visualize vulnerability and

severity of substations [34]. Besides, there are two tools that can visualize cascading

failures [35, 36]. However, the work in [35] adopted IEEE power grid benchmarks,

which could not connect the vulnerability analysis with the geographical informa-

tion of power grids; the work in [36] adopted the pure topological model to mimic

cascading failures, where the model itself could not reveal failure propagation ac-

curately.

In this work, we implement a new platform that can be used to investigate the

failure propagation in power grids. In particular, we adopt the extended model to

mimic cascading failures and choose the power grid around Bay Area, California,

as the test benchmark.
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2.4 System Model and Design

In this work, we adopt the power grid data that we purchased from Platts [19]

as the test benchmark. Generally speaking, to conduct investigation with such

commercial power grid data has advantages and disadvantages. The purchased

data include the power grid that is operating in real life. Such power grid provides

the possibility to study, even verify, the failure propagation in real power trans-

mission systems. However, the purchased data lack the detailed electrical features

of the power grids. In other words, the information about the purchased power

grid is not enough to set up pure power-flow models to study the cascading failure.

To balance between the availability of the power grid data and the accuracy of

cascading model, we choose the extended model to mimic the cascading failure.

In the rest of this section, we briefly review the extended model and the setup

of cascading simulator under this model in subsection 2.4.1. In subsection 2.4.2,

we introduce the constriction of the test benchmark from raw data we purchased.

In subsection 2.4.3, the design and implementation of the proposed platform is

introduced in details.

2.4.1 Cascading Failure Simulator using the Extended Model

The extended model is first introduced in [28], and well developed in [11]. We

briefly summarize the key features of this model as follows.

1. Directed Graph: The power grid under this model is considered to be a

directed graph G = {B,L}, where B represents the set of nodes (i.e. substa-

tions) and L represents the set of links (i.e. transmission lines). The direction

of a link stands for the direction of the electricity. The nodes consist of gen-

erators, transmission nodes and load nodes. Generators are denoted as the

set G (G ⊆ B); load nodes are denoted as the set D (D ⊆ B). In addition,

NB, NL, NG and ND are adopted to represent the number of substations,
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transmission lines, generators and load substations, respectively.

2. PTDFs : In power systems, power distribution basically follows electrical

theories. Under the extended model, Power Transfer Distribution Factors

(PTDFs) [11, 28, 30] are employed to reflect the sensitivities of power flow

changes in links, caused by the real power injection and withdrawal at a

pair of nodes. PTDFs are derived from DC power flow model, making the

power distribution under the extended model be governed by the fundamental

electrical theories. We adopt the PYPOWER in [37] to calculate all PTDFs

in the simulations.

3. Extended Betweenness : In power systems, power is transmitted from gen-

erators to load nodes along links, which means the change of power flow in

transmission lines is caused by each generator-load node pair. In other words,

the summation of all power in a link caused by all generator-load node pairs

could determine the total power in this link. The extended betweenness of a

node is defined as half of the total summation of power in all links connecting

to this node, as the summation double counts the inward and outward power

flow which are equal in the magnitude,

4. Net-ability : In [11], the net-ability of a power grid network (e.g. G), denoted

as E(G), is defined as 1
NGND

∑
g∈G

∑
d∈D

Pgd

Zgd
, where Pgd and Zgd are the

maximum power injection and the impedance between the generator g and

the load node d, respectively.

Cascading failures have already been well studied under pure topological mod-

els [24, 38]. Here, we defined the cascading failure simulator (CFS) under the

extended model by redefining some important concepts as follows.

� Load : The extended betweenness of a node, e.g. node i, is employed as the
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definition of its load, similar to the functionality of the betweenness in [38].

Before any failure, the load of node i is referred as its initial load. Once the

occurrence of any failure in the power grid, the load of node i will be updated

by recalculating its extended betweenness.

� System Tolerance: In cascading failure simulations, the system tolerance

is an important parameter, which represents the stability of power grids.

Generally speaking, the larger the system tolerance of a power grid is, the

more robust this power grid is.

� Capacity : In reality, the capacity of a node represents the maximum load

that it can tolerate. Due to many reasons, e.g., the cost of construction fee,

the capacity cannot be infinity. In the work, the definition of the capacity of

a node is similar to that in [24, 38], the multiplication of the system tolerance

and its initial load.

� Overloading : When the load of a node exceeds its capacity, the overloading

will happen. Under the extended model, the overloaded nodes and their links

are assumed to be removed from a power grid.

� Load Redistribution: After removing the overloaded nodes and its corre-

sponding links, the topological structure of the power grid network will

change. Thus, the power that originally passes through the removed nodes

needs to be detoured, which causes the power to be redistributed in the power

gird. Under the extended model, the new load distribution is based on recal-

culating the PTDFs and the extended betweenness. The load redistribution

may raise other nodes to be overloaded and removed from the power grid,

which might cause the failure propagate from one point to the while grid.

The load redistribution will stop until there is not any overloaded node in
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the remaining power grid network.

� Time Simulation: In the CFS, the concept of “round” is adopted to describe

the progress of cascading failures [13]. In the first round, initial failed nodes

will removed from power grids. In the following each round, the CFS will

first update the topological structure of power grids, then calculate the new

load distribution for all nodes, and finally remove all overloaded nodes. The

CFS will stop at the final round, in which there is not any overloaded node.

The number of rounds of each attack might be different, which will be seen

in Fig. 2.5.

The detail of the CFS is discussed in our previous works [29, 39].

2.4.2 Construction of the Test Benchmark

We have purchased the entire North American power grid data, which includes

thousands of substations and transmission lines, from Platts [19]. Currently, it is

computationally infeasible for us to conduct cascading simulations on such a big

power grid. For demonstration purpose, we chip the power grid around Bay Area,

California, as the test benchmark.

Originally, the raw GIS data consist of four types of layers (i.e., the shapefiles

in ArcGIS [40]), the substation layer, the transmission line layer, the generator

unit layer and the power plant layer. To construct the test benchmark from the

raw data, there are three challenges. First, the notations of substations in the

substation and transmission line layers are not completely consistent, due to the

fact that Platts originally collects those information from different providers. Sec-

ond, identifying the generators and load substations is difficult, because the IDs

of power plants in the power plant layer are different from that of substations

in the substation layer, and also no corresponding information is about the load
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Figure 2.1. Bay Area power grid topology

distribution in the raw data. Finally, the raw data also lacks the corresponding

information to discuss the electrical impedance of transmission lines.

In what follows we will briefly introduce how to set up the test grid network

according to the introduction of American power transmission system [41] and

some explanations from Platts [42].

First, originally there are 688 transmission lines and 532 substations in the

transmission line layer and the substation layer, respectively. In the substation

layer, every substation has an unique ID. In the transmission line layer, each

line has two endpoints (i.e. substations in the substation layer), which can be

represented by the unique IDs of the two endpoints. In addition, there are 23

fields in the transmission line layer to describe the properties of transmission lines,

such as voltage, length in KM (kilometer) and so on. The voltage of transmission

lines in USA is usually more or equal than 69 KV (kilovolt) [41]. When we dove

into the voltage field of all transmission lines, we found that the voltage of some

transmission lines are less than 69 KV, which are either 10 KV or a negative
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number. In [19], we know transmission lines with the voltage as 10 KV are just

used by Platts to connect a substation with a power plant, which only has one

valid endpoint and is not included in the real transmission system. The lines

with voltage as a negative number have two valid endpoints, and they are part

of the transmission system. Also, some substations in the substation layer are

redundant. When we filter out those transmission lines with the voltage as 10 KV

and the redundant substations, the Bay Area power grid network can be easily set

up.

Second, generators are decided according to explanations from Platts [19].

That is, substations, which associate with a 10 KV transmission line or geograph-

ically close to a power plant in power plant layer (within 1 KM in this work), are

considered as generators. In a transmission system, load substations usually work

in lower voltages [41]. In this work, substations that have the maximum voltage

less or equal than 115 KV but more than 0 KV are viewed as the load substations.

Other substations, not a generator or a load substation, are viewed as transmission

substations. It should be stated that some substations not only work as generators,

but work as load substations simultaneously.

Finally, the valid Bay Area power grid network consists of 614 transmission

lines and 467 substations, which includes 120 generators and 320 load substations.

Fig.2.1 shows this power grid and its generators and load substations.

Employing the extended model to analyzing the vulnerability of power grid

networks basically needs the reactance of each transmission line, due to the loss-

less assumption of transmission lines [30]. The reactance of transmission lines is

estimated according to [43], and the ratio is 0.4Ω/KM (ohm per kilometer). For

example, if the length of a transmission line is 15 KM, its estimated reactance

is 6Ω. This estimation is similar to the way directly adopting the length of a
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Figure 2.2. The flowchart of the proposed platform.

transmission line as its reactance in [15].

2.4.3 Platform Design

The proposed platform is to help people understand the principles of failure

propagation in power grids. The new platform consists of three major functional

modulations: visualization in ArcMap, user interface and CFS.

� Visualization in ArcMap: ArcMap is adopted as data storage and visualiza-

tion in this platform. The test benchmark is visualized in ArcMap as different

layers. The proposed platform adopts three of the four layers in the raw data,

i.e. the substation, transmission line and power plant layers, to construct the

grid network. In order to simulate the statuses and types of substations and

transmission lines, e.g. alive and failed, one additional field, called “STA-

TUS”, is added into each of these layers. We assume each valid transmission

line has two status, “failed” and “alive”. In ArcMap, the two statuses are

distinguished by using different colors (black and green). Also, substations
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are divided into four categories, generator only, load substation only, both

generator and load substation, and transmission substation. Originally, they

are alive and symbolized as green circles, blue triangles, red polygons, and

yellow squares, respectively. If a substation of any type is failed, it will be

replaced by a black circle.

� User Interface: A toolbar, based on the Python add-in in ArcGIS desktop, is

developed and added into ArcMap to control the procedures of the visualiza-

tion. The toolbar consists of three buttons named as “build”, “select” and

“start”, respectively. Each button has its corresponding functional script.

The “build” button is responsible for constructing the power grid network

from raw GIS data and resetting the statuses of substations and transmis-

sion lines. The “select” button is adopted to choose target substations in

ArcMap, while “start” button is used to trigger the cascading failures and

to refresh the statuses of substations and transmission lines in ArcMap.

� CFS : The extended model and the CFS, discussed in Section 2.4.1, are em-

ployed to simulate the load distribution and cascading failures after initial

failures. Given a certain system tolerance value, a cascading failure process

consists of one or more rounds. Within each round, the overloaded nodes

are failed, and their statuses (including the statuses of the connecting links)

are updated as “failed”, visualized as black circle and black lines in ArcMap,

respectively. If no more overloaded nodes, the cascading failure procedure

will stop.

The flowchart of the proposed visualization platform is shown in Fig. 2.2. As

a summary, the proposed visualization platform has the following features that are

not presented in the existing visualization tools [31–34, 36],
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(a) (b) (c)

(d) (e) (f)

Figure 2.3. An example of the cascading failure with six rounds.

� Providing a way to “watch” how cascading failures propagate in power grids,

which can help people understand the cascading phenomenon.

� Providing the user interface to trigger and simulate different types of initial

failures, e.g. selecting different initial nodes and different number of them.

� Providing a DC based model, i.e. the extended model, to investigate the

vulnerability of power grids.
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2.5 Simulation Results and Analysis

The proposed platform is developed in ArcMap and all scripts are written

in Python. The power grid around Bay Area, California, is adopted as the test

benchmark. The construction of the power grid network from the raw GIS data is

discussed in Section 2.4.2. The simulations and discussions are made detailedly in

the following subsections.

2.5.1 Failure Propagation

Understanding the failure propagation is an important aspect of studying the

vulnerability of power grids. In reality, the failure propagation means when one or

more substations/transmission lines fail, they will shift their load to other substa-

tions/transmission lines, which could trigger the successive failure of them. The

proposed visualization platform could let people “watch” how a failure propagates

from a point to the while grid network. In particular, we observe two critical failure

propagation patterns that can collapse the power grid.

The first critical pattern is that the single initial failure can continually trigger

other failures and paralyze the power grid after a few rounds. An example of such

pattern is demonstrated in Fig. 2.3. The single failure is manually triggered,

and the cascading failure finally stops after six rounds. In the subfigures, the

failed nodes, together with their links, are marked as black circles and black lines,

respectively. In Fig. 2.3(a), the failure begins after manually knocking down a

node. The removal of this node and its links changes the topological structure of

the power grid, then raises the power redistribution, and finally causes another

node to be overloaded and failed, as shown in Fig. 2.3(b). From Fig. 2.3(c) to Fig.

2.3(e), the number of overloaded and failed nodes is increasing, and the failure

propagates from the initial point to the global power grid. It is clearly seen in Fig.

2.3(f) that when the failure procedure stops, most nodes are failed and the power
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grid is almost paralyzed.

The second critical pattern is that the single initial failure can quickly trigger

many other failures and paralyze the power grid with one or two rounds. One of

such examples is shown in Fig. 2.4, where black circles and black lines have the

same meanings with those in Fig. 2.3. In Fig. 2.4(a), the initial failure is manually

triggered, which raises many nodes to be severely overloaded. Just after the second

round, the power grid occurs large-scale avalanche, demonstrated in Fig. 2.4(b).

We have the following observations from Figs. 2.3 and 2.4.

� The power grid, as a type of man-made orderly network, has lots of critical

node. The existence of such critical nodes significantly increase the instability

of the power grid. For instance, the two single failures demonstrated in Figs.

2.3 and 2.4 can severely damage the power grid. This observation is consistent

with the statement recently published in Nature News & Comment [21].

� Geographically, the failure propagation begins from the local point, where

the initial failure is triggered, gradually involves into large-scale failures,

and finally trigger failures that might be far from the initial point. This

observation is similar to the failure propagation process that occurred in real

cases, e.g., Northeast blackout [1].

� Different initial failures can affect different regions that the power grid serves.

Compared Fig. 2.4(b) with Fig. 2.3(f), although both initial failures result

in severe damage to the test benchmark, the regions that lose the power

are partially different. Put differently, it is of importance to analyze the

cascading damage from the perspective of the affected regions.
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(a) (b)

Figure 2.4. An example of the cascading failure with two rounds

2.5.2 Different Initial Triggers of Cascading Failures

In Section 2.5.1, we discussed two different critical failure propagation pat-

terns, which were caused by initially failing different nodes. Therefore, it is of

great importance to investigate the classifications of nodes in the power grid based

on the contribution to power outage. In the context of single node failures, we

investigate that the initial failures of different nodes can result in different types

of cascading failures in the power grid.

Using the proposed visualization platform, we observed that different initial

failures could cause three types of power grid network failures: non-critical, rapid-

and-critical, and propagative-and-critical. The brief description of them is given as

follows.

� In the non-critical failures, the initial failure of a node could not cause severe

damage to a power grid.

� In the rapid-and-critical failures, the initial failure of a node could cause

severe damage to a power grid within very few rounds. In other words, the

large-scale failure occurs quickly after the initial failure.
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Figure 2.5. Three different types of initial failures.

� In the propagative-and-critical failures, the initial failure propagates to the

whole power grid network within several rounds, and eventually causes severe

damage. In other words, there is a certain amount of delay between the large-

scale cascading failure and the initial failure.

The definition and classification consider two factors: the damage to the power

grid and the number of rounds in each failure process. The amount of the damage

can be measured by various metrics [11, 12, 27]. For illustration purpose, we adopt

the metric percentage of drop in net-ability (PoDN), defined in [11]. The PoDN is

defined as,

PoDN =
E(G)− E(G

′
)

E(G)
(2.1)

where E(G) and E(G
′
) represents the net-ability of a grid network before and after

an initial failure, respectively. The more serious an initial failure is, the larger the

PoDN this failure causes.

In particular, using the test benchmark, we illustrate these three types of

initial failures. We set thresholds for PoDN and the corresponding number of

rounds as follows. The severe damage means the finial PoDN is more or equal



37

than 15%. That is, if the final PoDN is below the threshold (i.e. < 15%), this

failure is marked as a non-critical failure. If the final PoDN is larger and equal

than 15%, the failure is either rapid-and-critical or propagative-and-critical. If the

PoDN increases more and equal than 20% in the first round or 30% within the

first two rounds, with the total number of rounds less than 5, this failure is called

as the rapid-and-critical failure, Otherwise, it is called the propagative-and-critical

failure. All thresholds mentioned above should be adjusted according to different

power grid networks. We use these numbers just for demonstration purpose. The

simulation is performed when the system tolerance (described in Section 2.4.1) is

1.2. There are 367 nodes whose failure cause non-critical failures, 18 nodes causing

rapid-and-critical failures, and 84 nodes causing propagative-and-critical failures.

For each type of initial failures, we show three typical cases in Fig. 2.5. The

horizontal axis is the number of rounds, and the vertical axis is the PoDN. In

addition, the magenta-triangle, blue-square and red-star curves present the non-

critical, rapid-and-critical and propagative-and-critical failures, respectively. Gen-

erally speaking, the non-critical nodes are not critical to power grids, and approx-

imately 80% of nodes in the Bay Area power grid network belong to this category.

This is consistent with the observations made in [27]. The rapid-and-critical nodes

are very important to power grids, the failure of which could seriously raise the

power redistribution and cause lots of other nodes to be overloaded in a short

time. The propagative-and-critical nodes are also very critical to power grids due

to its severe damage. However, its severe damage is due to the accumulation of

failures in each round. In Fig. 2.3, a case of the propagative-and-critical failure

is shown. It is clearly seen that this initial failure continually triggers small-scale

failures of other nodes in the test benchmark, and finally raises the overloading

of many nodes and causes large-scale failure. From the perspective of PoDN, the
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Table 2.1. Comparisons among different initial failures.

Failure Type Non-critical
Rapid-and

-critical
Propagative-and

-critical
Trigger severe power

redistribution
No Yes Yes

Critical to
power grids

No Yes Yes

Number of such nodes
in best benchmark

367 16 84

blue-square curves in Fig. 2.5 increase slowly within the beginning several rounds,

suddenly jump up within the next several rounds (showing the rapid increase of

the failed nodes), and finally reach the maximum PoDN.

From the perspective of protecting power grids, the classification presented

in this section is important for the investigation on defense. For example, for the

nodes that trigger rapid-and-critical failures, the protection should focus on pre-

venting these nodes from initial failures. On the other hands, for the propagative-

and-critical failures, the protection can be from several angles, including stopping

the cascading process before the failures become large scale.

As a summary, in Table 2.1, we listed the main features of these three types

of initial failures. Although the nodes causing rapid-and-critical and propagative-

and-critical failures only take a small percentage of total nodes, around 22% in the

test benchmark, these nodes are the pivot points that can affect the stability and

security of man-made power transmission systems.

2.6 Conclusion

In this work, we developed a new platform to investigate the failure propa-

gation in power grids. The proposed platform could successfully demonstrate the

failure propagation, which was useful to help people understand such complicated

cascading phenomena. We adopted the power grid around Bay Area, California,
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as the test benchmark, and investigated single-node failures. Briefly speaking,

we observed three different power grid network failures, and classified all nodes

into three different groups. Such classification could help people effectively and

efficiently protect power grids.

In the future, we plan to continue this work as follows. First, we will utilize

the proposed platform to study large-scale power grids, e.g. the entire North

America electrical infrastructure benchmark, where the key challenge is to improve

the loading speed. Second, we will extend the extended model to visualize the

consequence of link failures and study their features. Third, we will improve the

accuracy of cascading modeling by adopting pure power-flow models. The key

challenge is how to reasonably estimate more electrical features from the raw data.

Finally, we will also study some real blackout cases with the proposed platform.
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3.1 Abstract

Security issues in complex systems such as power grid, communication net-

work, Internet, among others have attracted wide attention from academic, gov-

ernment and industry. In this paper, we investigate the vulnerabilities of power

grid under a topology-based network model in the context of cascading failures

caused by physical attacks against substations and transmission lines. In particu-

lar, we develop attack strategies from the attackers’ points of view, aiming to cause

severe damage to the network efficiency, as a way to revealing the vulnerability of

the system. We propose a new and useful metric, load distribution vector (LDV),

to describe the properties of nodes and links. Based on the LDV, we develop a

multi-node attack strategy and a multi-link attack strategy, which are proved to be

stronger attacks than the traditional load-based attacks using the Western North

American power grid data. For example, the removal of only three critical nodes

in the grid can reduce more than 30% of the original network efficiency, and the

removal of only three critical links can reduce the network efficiency by 23%. In

the above cases, the traditional load-based schemes reduce the network efficiency

by 23.57% and 18.35%, respectively.

3.2 Introduction

With the continuous growing energy demand, accidents and natural disasters,

power outage has become more and more frequent within recent years. The four

largest power blackouts in the history occurred only within the recent 10 years [1].

This seriously affects economy and raises concerns from the homeland security

points of view.

The problem of large scale power system failure has attracted wide research

attention. In current literature, there are two prevalent types of analysis to power

system failures: power flow based analysis [2–8] and topology based analysis [9–
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15]. Power flow based analysis is rooted on the circuit theory with Kirchhoff’s

law to understand the power flows in the grid under system failures. Because

such approaches are built on the foundation of the physical laws governing the

electricity generation, transmission, distribution, and utilization, they can provide

the most critical insights and fundamental understanding of the grid behavior

under attacks or failures. IEEE Power and Energy Society (PES) has dedicated

task forces to understand the grid reliability, predict its failure propagation, and

restore electricity from cascading failures [2–5]. In addition to the power flow based

analysis, recent topology based analysis motived from complex systems research

has also been investigated to understand the power grid vulnerability and cascading

failure. In these approaches, simplified topology based models are considered, such

as the recoverable models and non-recoverable models to study the complex grid

behavior under physical or cyber attacks, or a failure due to natural disasters

such as hurricanes or snow storms. These approaches offer new possibilities for

understanding and monitoring power grid behavior by, for example, using existing

complex network analysis approaches. Our work presented in this paper is aligned

with this direction and adopts topology based analysis. We would also like to note

that most recently, a kind of hybrid approach with the integration of power flow

based analysis and topology based analysis, named extended topological approach,

has been proposed to study the power grid vulnerability [6–8]. This approach

incorporates several key features of power grid such as flow path, transmission line

limitation, and bus distribution together with topological models to assess the grid

vulnerability under attacks.

In the complex network literature, the large scale power outage can be referred

to as cascading failure, meaning when one of the components (substations and

transmission lines) in power grids completely or partially fails, shifts its load to
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nearby components and triggers the failure of successive components in the system.

Many works in this field can contribute to analyzing errors, failures, attacks, and

resilience of power grid systems. For instance, cascade-based attack on power grid

network was presented in [9–11]. In [9], two types of attack methods, random

removals and intentional removals, were compared and the latter was proved to be

much stronger than the former. This comparison is done in the context of the single

node attack, defined as only one node taken down by the attacker. In [10], multiple-

node attack, defined as multiple nodes taken down by the attacker simultaneously,

was presented. It was shown that the multiple-node attack can cause more severe

damage to the power grid than the single node attack. The work in [12] adopted a

model that calculates the load of a substation from local topology of the substation,

when studying the multiple node attacks. The results in the paper indicate that

attacking the nodes with small load can cause severe cascading failures under

certain circumstances.

Many existing work on cascading failure assumes attacks occur on nodes. On

the other hand, five out of six the largest power outage accidents (except 1999

Southern Brazil blackout) [1] were initially triggered by the damage to one or

more transmission lines, and finally spread to whole power grid system. Some

researchers studied the system behavior on basis of link removal [14, 15]. For

example, in [14], range-based attacks on link was investigated, showing that scale-

free networks were more sensitive to attacks on short-range than long-range links.

In [15], efficient link attack strategies and lower cost protections on links were both

investigated based on load model similar to [12].

In this paper, we develop a novel attack strategy. The motivation of our work

comes from the observation that the existing multi-node attack strategies in [11, 16]

are not the strongest attacks. Our goal is to investigate the vulnerabilities of power
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grid network under different attack strategies, node attack strategy (NAS) and link

attack strategy (LAS). We found that although load plays very important role

in attack strategies, it still does not represent the strongest strategy from both

attack and defense points of view. Instead, we discover a new metric, called load

distribution vector (LDV), which gives us a new way to identify the importance of

components in power grid network in the context of cascading failure. Utilizing

this load distribution vector, we develop a new and much stronger attack strategy

which can be used in both node and link attacks. The new attack strategy is tested

and compared with existing load-based attack strategy using the Western North

American power grid network data. The simulation results demonstrate that the

proposed attack strategy is much stronger than the existing schemes.

The rest of this paper is organized as follows. Section 3.3 introduces the

network model and assessment metrics. Section 3.4 describes the proposed work

in details including load distribution vector, the proposed multi-node and multi-

link attack strategies. Simulation results will be shown in Section 3.5. Finally,

discussion and conclusion are made in Section 3.6.

3.3 System Model
3.3.1 Network Model

In practice, an power grid is an interconnected network for delivering electric-

ity from generators to customers. It consists of substations (generators, transmis-

sion substations and distribution substations) and transmission lines. The topology

of the power grid is often represented as an undirected and weighted graph, G,

with substations being as nodes and transmission lines being as links (or edges).

In the topology-based system models, there are several very important concepts.

The first concept is load. Adopting the definition of betweenness on complex

network [17], we define the load for nodes and links as betweenness. Specifically, the
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load of node ni, at time t, denoted by Lni
(t), is the number of most efficient paths

(also known as the shortest paths) from generators to distribution substations that

pass through ni at time t. To obtain Lni
(t), one needs to find the most efficient

paths between each pair of generators and distribution substations, and then count

how many of such paths pass ni. Here, the process of finding the most efficient

paths is closely related to the definition of link efficiency and path efficiency, which

will be introduced in Section 3.3.2. Similarly, the load of link lk, denoted by Llk(t),

is the number of the shortest paths passing through lk at time t. The definitions

are just slight extension from the concept proposed in [18].

The second concept is capacity, defined as the maximum load that a node (or

link) can carry. Let Cni
(or Clk) denote the capacity of ni (or lk), and Lni

(0) ( or

Llk(0) ) denote the initial load of ni ( or lk) before any attacks occur. It is usually

assumed that Cni
(or Clk) is proportional to the initial load of node ni (or link

lk) [11], as

Cni
= α ∗ Lni

(0)

Clk = α ∗ Llk(0)

(3.1)

where α(> 1) is called the system tolerance parameter. Higher α means better

capability to resist perturbation in the system.

3.3.2 Assessment Metrics

How does the network respond to node or link failures? To model the cascad-

ing failures in power grid, a topology-based recoverable model was first employed

in [10], and then slightly modified and extended in [11]. Next, we briefly introduce

the key concepts of this model.

Load Redistribution: If a node (or link) is taken down (i.e. removed from the

network), some shortest paths between generators and distribution substations be-

come unavailable. For these generator-to-distribution-substation pairs, they need
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to find the new shortest paths, which will change the load of remaining nodes and

links, according to the definitions of load in Section 3.3.1. This process is called

the load redistribution.

Overloading occurs when the load exceeds the capacity of a node (or link).

That is, node ni is overloaded when Lni
(t) > Cni

, and link lk is overloaded when

Llk(t) > Clk . In the context of investigating cascading failures, overloading is

caused by load redistribution.

Link Efficiency represents how well a link can carry the power flow. Let elk(t)

denote the efficiency of link lk at time t. Initially, for each existing link, elk(0) = 1,

meaning that this link works properly. When a node is overloaded (say node ni),

the efficiency of all links that connect to node ni is reduced as [11],

elk(t+ 1) =

{
elk(0)

Cni

Lni (t)
if Lni

(t) > Cni

elk(0) otherwise
(3.2)

When a link is overloaded (say link lk), the efficiency of this link is reduced, as

elk(t+ 1) =

{
elk(0)

Clk

Llk
(t)

if Llk(t) > Clk

elk(0) otherwise
(3.3)

When the link efficiency is smaller than 1, it means that the link partially losses

its functionality and becomes less efficient. The amount of reduction in the link

efficiency is proportional to the overload extent: Cni
/Lni

(t) for node overloading

and Clk/Llk(t) for link overloading.

Path Efficiency is defined as harmonic composition of link efficiency [11]. From

node ni to nj, there exists many paths. The path that has the highest path

efficiency value is called as the most efficient path or the shortest path in this

paper. We use εij(t) to denote the efficiency of the shortest path at time t. It is

defined as εij = 1/(
∑P

p=1 1/xp(t)), where P is the number of links on the path and

xp(t) is the efficiency value of each link on the path.

Network Efficiency: Assume there are Ng generators and Nd distribution sub-

stations. Let set G contains all generators and set D contains all distribution
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substations. The network efficiency at time t, denoted by E(t), is defined as

E(t) =
1

NgNd

∑
ni∈G

∑
nj∈D

εij(t) (3.4)

3.4 Load Distribution Vector Based Attack Strategies

To understand the vulnerabilities of power grid systems, one effective method

is to study this problem from the attacker point of view. That is, to find the

strong attack strategies that cause large damage to the grid. In the context of

investigating cascading failure using topology-based model, the attacker’s goal is

to identify a set of victim nodes or links, whose failure will cause large reduction

of the network efficiency. The methods of selecting victim nodes are referred to

as Node Attack Strategies (NAS), and the method of selecting victim links are

referred to as Link Attack Strategies (LAS).

3.4.1 Load-based Attack Strategies and Their Limitations

In the existing literature [10, 11], the prevalent attack strategies choose victim

nodes/links according to their load, which can have different definitions in different

network models. In the topology-based model discussed in Section 3.3.1, load is

defined as betweennees. When the attacker aims to knock down M nodes or links,

the load-based attack strategies are as follows.

* NASM
load : Selecting the top M largest load nodes as the victim nodes.

* LASM
load : Selecting the top M largest load links as the victim links.

Although load-based attack strategies are widely used, they often are not the

strongest attacks. This has been shown in [13], which adopted a non-recoverable

network model using degrees to compute the load. In this subsection, we discuss

and demonstrate the intrinsic limitation of betweenness (ILB) (or load) as

the victim node or link selection criteria.
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If node A has large load (i.e. betweeness), it is highly likely that the nodes

around A also have large load, since the shortest paths passing A often pass its

neighbors too. According to NASM
load, the victim nodes tend to be ”close” to each

other, residing in a small area in the network. In this case, attacking A and its

neighbors may not be much more damaging than attacking A alone.

To see this, let us examine a special example shown in Fig. 3.1. This power

grid contains a set of 10 generators (denoted by SG) and a set of 10 distribution

substations (denoted by SD). We find 100 shortest paths, and one path between

each pair of generator and distribution substation. Assume that SG and SD are

completely separated by a set of transmission substations, denoted by ST . We also

assume that 90 shortest paths pass through the A-G link and 10 shortest paths

are through the B-N link. Thus, the loads of node A, G, B, N are 90, 90, 10, and

10 respectively.

Now, if we launch the traditional load-based node attack strategy, NAS2
load,

what will happen? The attacker should knock down node A and G, which will

cause severe load redistribution, make node B and N carry much higher load,

reduce link efficiency, and reduce network efficiency. However, is this the strongest

attack? Obviously not. A smart attacker should choose the first victim node as

either A or G, and the second victim node as either B or N . This new attack

will make the network efficiency reduce to 0. This simple example illustrates the

limitation of the betweenness (or load) as the sole metric in the selection of victim

nodes.

3.4.2 Primary Idea

The optimal multi-node attack strategy, denoted by NASM
opt, surely exists and

can be found through an exhaustive search. For instance, for NAS3
opt, the at-

tacker can run simulation for each three nodes combination as the victim nodes.
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Figure 3.1. Demonstrating the limitation of the load-based attack strategies

This approach, however, has two major problems. First, the simulation has to be

performed for a given system tolerance T value. The search results may not be gen-

eralized to different T values. Second, the computation complexity is prohibitively

high because (a) the network size (N) is a very large number in practice, (b) the

cost of finding all betweenness values in one round of iteration increases dramati-

cally with N , and (c) the number of M nodes combinations increases sharply with

N .

We propose a practical multi-node attack strategy. Here, load is still an

important metric. Besides load, as discussed in Section 3.4.1, we would like to

capture features such as (1) attacking both A and G in Fig. 3.1 has the similar

effect as attacking node A alone, and (2) attacking A and attacking B leading to

very different consequences. Our primary idea is to

* Select the nodes with reasonably large load as candidate nodes.

* Divide the candidate nodes into different groups. The nodes in the same

group should cause load-redistribution in a similar area in the network if

they are taken out of the network. The nodes in different groups should
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impact different areas in the network if they are taken out.

* Pick one node from each group, and compose the victim nodes selection.

This idea also works for LAS, as long as you replace ”node” with ”link” in the above

description. Obviously, the most challenging part is to determine how to divide

nodes into groups, which is addressed by our newly proposed load distribution

vector metric.

3.4.3 Load Distribution Vector

Before any attack, all nodes (or links) have their own load as between-

ness. We define the original node load distribution vector as ONLDV =

[Ln1(0), Ln2(0), ..., LnN
(0)]

′
, and the original link load distribution vector as

OLLDV = [Ll1(0), Ll2(0), ..., LlK (0)]
′
, where ′ is vector transpose. If we remove a

node or link, the load distribution vector changes. We define the L̂j
ni

as the load

of node ni after node nj is removed, and the L̂k
ls

as the load of link ls after link lk

is removed. Then, the node load distribution vector (NLDV) of node nj is defined

as

NLDVj = [L̂j
n1
, L̂j

n2
, ..., L̂j

ni
, ..., L̂j

nN
]
′
. (3.5)

Similarly, the link load distribution vector (LLDV) of link lk is defined as

LLDVj = [L̂k
l1
, L̂k

l2
, ..., L̂k

ls , ..., L̂
k
lK

]
′
. (3.6)

Furthermore, for i = j, we set L̂i
ni

= Lni
(0), the original load of node ni. For

s = k, we set L̂k
lk

= Llk(0), the original load of link lk.

As a summary, a node’s NLDV is just the new load distribution of all re-

maining nodes after this node is removed, and a link’s LLDV is just the new load

distribution of all remaining links after this link is removed.

Given the definition of load distribution vectors, we compute the distance

between ni and nj, (denoted by dninj
) and the distance between ls and lk (denoted
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by dlslk) as

dninj
= Dist(NLDVi, NLDVj)

dlkls = Dist(LLDVk, LLDVs)
(3.7)

The function Dist(.) can be any distance definition, such as Euclidean distance,

Mahalanobis distance et al [19]. In the paper, we adopt the Euclidean distance.

From the definitions of load distribution vector and distance metric, we expect

that two nodes (links) with smaller distance cause similar impact to the network

if they are taken out, and vice versa.

3.4.4 Load Distribution Vector Based Multi-node Attack Strategy

Following the primary idea in Section 3.4.2, we propose a load distribution

vector based multi-node attack strategy, denoted by NASM
LDV , which contains the

following steps.

� Step 1: Choose the top R (R > M ≥ 2) largest load nodes and put them

into a candidate set, denoted by Sc. The nodes in Sc are called the candidate

nodes.

� Step 2: For each node ni ∈ Sc, compute its load distribution vector NLDVi.

For each pair of nodes ni, nj ∈ Sc and i 6= j, compute the distance dninj
.

� Step 3: Use the well-known hierarchical clustering algorithm, Ward’s algo-

rithm in [20], to get the hierarchical tree of candidate nodes and divide them

into M unique groups.

� Step 4: Select one candidate node in Sc such that its average distance to all

other candidate nodes is the largest. Put the selected node (say nx) into the

victim set, denoted by Sv. In order to make sure that only one node in each

group (see step 3) can be added to the victim set, we remove the candidate

nodes belonging to the same group as nx from the candidate set Sc.
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Figure 3.2. Demonstration of node attack strategies and link attack strategies
under topology snapshot 1

� Step 5: For each remaining node in Sc, calculate its average distance to all

nodes in Sv. This average distance is called the to-Sv-distance. Select the

node in Sc that has the largest to-Sv-distance value, and put this node into

Sv. If some nodes are in Sc and belong to the same group as the selected

node, these nodes are deleted from Sc.

� Step 6: Repeat Step 5 until the candidate pool is empty. (There will be

M − 1 iterations.)

� Step 7: Finally, there are M nodes in Sv, which are the selected victim nodes.

In Fig. 3.2, we plot the local topology of top 20 largest load nodes under

topology snapshot 1 of Western North American power grid network. The details

of the data set can be found in Section 3.5. The selected victim nodes chosen by

NAS3
load are marked with blue octagons, and victim nodes selected by NAS3

LDV

are marked with red circles. It is clearly seen that the proposed scheme, NAS3
LDV ,

is better in terms of finding victim nodes from different regions of the power grid

network. It is also a stronger attack, which will be demonstrated in Section 3.5.
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3.4.5 Load Distribution Vector Based Multi-link Attack Strategy

Most works in the current literature aim to model cascading failure of power

grid based on the removal of nodes (substations). On the other hand, transmission

lines can be more vulnerable [1]. We propose a link attack strategy (LAS), denoted

by LASM
LDV , based on the concept of load distribution vector. The procedure to

selecting victim links of LASM
LDV is very similar to the 7-step-procedure ofNASM

LDV

presented in Section 3.4.4. The only modifications are replacing (1) ”node” with

”link”, (b) ni with lk, (c) nj with ls, (d) NLDVi with LLDVk, (e) dninj
with dlkls ,

and (f) nx with lx. In Fig. 3.2, we also demonstrate the selected victim links of the

proposed scheme (LAS3
LDV ) and these of the load-based scheme (LAS3

load). The

bold red lines represent candidate links. We clearly see that the victim links of

LAS3
LDV (marked as L1, L13, and L18) are further apart than the victim links of

LAS3
load (marked as L1, L2, and L3).

In summary, we propose the novel concept of load distribution vectors and

develop new attack strategies that have the following features. First, they cause

more damage than the traditional load based attacks. The comparison results will

be shown in Section 3.5. Second, the proposed attacks do not require extensive

search or pre-determined system tolerance value (T ).

3.5 Simulation Results

We use Matlab to simulate all attack strategies under recoverable model dis-

cussed in Section 3.3 and adopt the Western North American power grid network

data [21], consisting of 4941 substations and 6594 transmission lines, as the bench-

mark. Since the Western North American power grid data does not specify the

types of substations, we use the method in [22] to determine the generators and

distribution substations. Particularly, there are 1226 nodes that have only one

transmission line connected. Among those 1226 nodes, which are highly likely to
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be distribution substations, we randomly select 800 nodes as the distribution sub-

stations. From the remaining nodes, we randomly select 600 nodes as generators.

By doing so, we can create multiple snapshots of the power grid topology. In this

paper, we will use two different snapshots to do the simulations.

The simulation results for node attack strategies (NAS) and link attack stra-

gies (LAS) will be shown in Section 3.5.1 and 3.5.2 respectively, followed by a

comparison between them in Section 3.5.3.

3.5.1 Simulation Results for Multi-node Attack Strategies

In this subsection, we first demonstrate how the network efficiency (E(t))

changes after the proposed NAS is launched. In Fig. 3.3, the x-axis is the index of

iteration round, and the y-axis is network efficiency. In the simulation, we set the

system tolerance (α in Equ. 3.1) to be 1.2 and the number of victim nodes (M)

changes from 1 to 6.

When the iteration index is 0, the network is not under attack. When one

or multiple nodes (also called as the victim nodes) are taken down, the network

efficiency first drops sharply due to the overloading problem, then recovers a little

because the network tries to find the new shortest paths to increase its efficiency,

and finally starts to fluctuate. The reason for the occurrence of fluctuation is due

to the reversibility of effects of overload, which was clearly explained in [11].

We observe that the network efficiency converges very quickly (usually after 4

iterations) and has some fluctuations after its convergence. In the simulation, we

usually perform 12 rounds of iteration and compute the stabilized average network

efficiency (SANE), denoted by E(Gf ), as the average of E(t) from round 5 to 12.

Furthermore, we define η to measure the damage of the attack as η =
E(0)−E(Gf )

E(0)
.

Next, we compare the proposed load distribution vector based scheme with

the traditional load based scheme. In Figure 3.4, the x-axis is the number of victim
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nodes, and the y-axis is the E(Gf ) value. The curves marked with square represent

the proposed scheme, NASM
LDV , and the curves marked with star represent the

load-based scheme, NASM
load.

It is clearly shown that the proposed attack strategy is much more power-

ful than the load-based attacks. For instance, when M = 3 under the topology

snapshot 1, NAS3
LDV reduces the network efficiency from 0.0594 to 0.0415 lead-

ing to η = 30.13%, whereas NAS3
load reduces the network efficiency from 0.0594

to 0.0454 leading to η = 23.57%. We see that NAS3
LDV chooses node 4220, 427

and 70 as victim nodes, and NAS3
load chooses node 4220, 2544 and 4165 as victim

nodes. Obviously, the proposed attack chooses the victims that are further away

and conquers the limitation of the betweenness discussed in Section 3.4.1.

We performed simulation for different topology snapshots, and observed sim-

ilar results. Fig. 3.5 shows the results of another topology snapshot, which is

similar to Fig. 3.4. The similarity indicates that the advantage of the proposed

multi-node attack (from the attacker points of view) exists in different power grid

network topologies. We also performed simulations for different choices of R value,

which is the number of nodes selected in Step 1 of the proposed attack. We ob-

served that the attack performance for M ≤ 6 is not sensitive to R as long as

R > 30.

3.5.2 Simulation Results for Multi-link Attack Strategies

In this subsection, we compare the proposed link attack strategy, LASM
LDV ,

with the traditional load strategy, LASM
load. Fig. 3.6 shows the stabilized average

network efficiency (E(Gf )) under different numbers of victim links.

It is clearly shown that the proposed scheme is much more powerful than

the load-based attack scheme. For instance, when M = 3 under the topology

snapshot 1, LAS3
LDV reduces the network efficiency from 0.0594 to 0.0458, leading
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Figure 3.3. Network efficiency of the proposed node attack strategy

to η = 22.9%, whereas LAS3
load reduces the network efficiency from 0.0594 to

0.0485, leading to η = 18.35%. Furthermore, LAS3
LDV chooses link L1, L13 and

L18 as victim links, and LAS3
load chooses link L1, L2, and L3 as victim nodes.

From Fig. 3.2, we see that the proposed scheme chooses the victim links that

have not only relatively high load and but are further away from each other. The

load-based scheme, however, chooses the victim links that are connected together.

We also conduct the simulation on topology snapshot 2 and observe the similar

results. Due space limitation, we will not show that figure in the paper.

3.5.3 Multi-node Attack Strategies vs Multi-link Attack Strategies

In Fig. 3.7, we show an interesting comparison between node attacks and

link attacks, given different numbers of victim nodes/links. We make the following

observations.

� Given the same number of victim nodes/links, the node-based attacks (NAS)

are obviously stronger than link-based attacks (LAS). NAS not only cuts off

nodes themselves, but also links adherent to those nodes, whereas LAS only

cuts off victim links from the network which causes less damage. For exam-
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Figure 3.4. Comparison between the proposed node attack strategy and the com-
parison scheme on topology snapshot 1

ple, NAS2
LDV , removing two critical nodes, can reduce the average network

efficiency by 29.12%, whereas the η of LAS6
LDV , which cuts off six critical

links, is only 26.26%.

� Although weaker than NAS, the proposed LAS can cause severe damage

to power grid. For example, LAS1
LDV , only removing one critical link, can

sharply reduce the network efficiency from 0.0594 to 0.0493, leading to η =

17%. This is only a little bit weaker than NAS1
LDV with η = 20.54%.

� In practice, the attacker may choose to attack links because knocking down

links are usually considered easier than knocking down nodes. For example,

when the cost of attacking a transmission line is less than a third of the

cost of attacking a substation, the attacker should launch LAS3
LDV , instead

of NAS1
LDV . The former requires less resource, but causes severer damage.
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parison scheme on topology snapshot 2

3.6 Conclusions and Discussions

In this paper, we studied the vulnerabilities of US power grid under a betwee-

ness based network model. After analyzing the intrinsic limitation of betweenness,

we found that the traditional load-based attacks cannot represent the strongest

attacks in the grid. Then, we propose a new metric, called load distribution vec-

tor (LDV), to measure the functionality of nodes in the network, and extend this

idea to links. Simulation results show that our proposed attack strategies generate

much stronger attacks.

There are several important future research directions along this topic. First,

the current work often investigates node failures and link failures separately. In

practice, attackers can surely attack several nodes and several links simultaneously.

It is highly desirable to study the vulnerability of power grids by joining node and

link attacks together. Second, as we discussed in Section I, power grid is a unique

complex system not only with complicated topological structure, more importantly

it has the fundamental circuit theory (i.e., Kirchhoff’s law) governing the electricity
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generation, transmission and distribution in the grid. Therefore, it will be critical

to go beyond the pure topological vulnerability analysis with the consideration

of the physical laws governing the power systems. One natural extension is to

integrate our approach with the extended topological model as discussed in [6–8]

to see how our proposed method will perform with the consideration of several key

features in power flow analysis. Finally, the data set we investigated in this work

is based on the Western North American Power Grid data. It would be interesting

to analyze and validate the observations from our research presented in this paper

to other data sets, such as the IEEE-118-bus and IEEE-300-bus benchmarks, as

well as the entire North America Electrical Infrastructure data that we recently

obtained. We are currently investigating all these issues and the corresponding

results will be reported in future work.
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4.1 Abstract

Security issues related to power grid networks have attracted the attention of

researchers in many fields. Recently, a new network model that combines complex

network theories with power flow models was proposed. This model, referred to

as the extended model, is suitable for investigating vulnerabilities in power grid

networks. In this work, we study cascading failures of power grids under the

extended model. Particularly, we discover that attack strategies that select target

nodes (TNs) based on load and degree do not yield the strongest attacks. Instead,

we propose a novel metric, called the risk graph, and develop novel attack strategies

that are much stronger than the load-based and degree-based attack strategies.

The proposed approaches and the comparison approaches are tested on IEEE 57

and 118 bus systems and Polish transmission system. The results demonstrate

that the proposed approaches can reveal the power grid vulnerability in terms of

causing cascading failures more effectively than the comparison approaches.

4.2 Introduction

Power grid is considered as one of the most significant infrastructures on the

Earth. Within recent decades, several large-scale power outages around the world

seriously affected the livelihood of many people and caused great damage [1]. For

example, the well-known Northeast blackout in 2003 affected 55 million people and

caused an estimated economic loss between $7 billions and $10 billions [2].

Large-scale power outage is often caused by cascading failure. A cascading

failure refers to a sequence of dependent events, where the initial failure of one or

more components (i.e. substations and transmission lines) triggers the sequential

failure of other components [3, 4]. Triggers of the initial failures can be natural

damage (e.g. the fall of trees), aging equipment, human errors, software and

hardware faults, and so on. Within recent years, power grids are facing new threats,



67

e.g. cyber-physical attacks [5, 6]. Therefore, malicious attacks become new and

potential triggers of cascading failures.

Many existing works have been proposed to investigate the vulnerability of

power grids from the attack perspective. Important challenges, however, still re-

main. First, developing reasonable models that can mimic cascading failures in

reality is still a critical challenge. In current literatures, there are three popular

models, pure topological models [7–9], pure power flow models [4, 10] and hybrid

models [11–13]. Each category has its own advantages and disadvantages. Second,

finding stronger malicious attack strategies is one of the key ways to investigate

cascading failures. Although the exhaustive search approach can yield the best

attack from the attack performance point of view, it is sometimes computationally

infeasible in practice [9]. Thus, practical and efficient attack strategies need to be

found. Finally, attackers might have different knowledge of power grids, such as

topological structures, electric features and real-time information. Under different

levels of knowledge, attackers may adopt different attack strategies.

In this work, we do not tackle the first challenge. Instead, we choose a hy-

brid model, called the extended model. Although hybrid models [11, 13] have been

adopted to study the vulnerability of power grids, few existing studies have dis-

cussed how cascading failures occur under hybrid models. A reasonable cascading

failure simulator (CFS) under the extended model will be introduced.

To address the second challenge, we study the node attack strategy (NAS)

under the extended model to address how to find stronger attacks. In this work,

an attack means an attacker knocks down one or more nodes (i.e. substations).

These removed nodes are referred to as target nodes (TNs). From the attacker’s

point of view, attackers need to carefully choose a few TNs, aiming to maximize

the damage. the node attack strategy describes how the attacker chooses TNs.
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In addition, a stronger attack means that the initial removal of the TNs could

yield larger percentage of drop in net-ability (PoDN), which will be discussed in

Section 5.4.4. If the attacker knows everything about a power grid and can model

how cascading failures occur, the exhaustive search node attack strategy can yield

the most serious damage. The exhaustive search, however, is often not practical

due to its huge search space on a large-scale, even moderate-scale, power grid

networks. Instead, we propose a reduced search space node attack strategy or RSS

node attack strategy in short. The RSS node attack strategy can sharply reduce the

search space and achieve comparable attack performance to that of the exhaustive

search node attack strategy.

We also investigate the third challenge. To adopt the proposed RSS node

attack strategy, an attacker needs to know the topology of power grid networks,

as well as the system tolerance factor that is defined as the capacity divided by

the initial load of a node. In practice, such tolerance factors may not be known to

attackers. Therefore, as the third task of this work, we investigate attack strate-

gies under the assumption that an attacker does not know the tolerance factors.

We propose a novel metric, called the risk graph (RG), to show the criticality

of important nodes in a grid network and the hidden relationship among them.

Using the risk graph, we develop the riskgraph-based node attack strategy. The

riskgraph-based node attack strategy is conducted on IEEE 118 bus system and

Polish transmission system, and compared with the load-based, the degree-based

and the proposed RSS node attack strategies. The simulation results demonstrate

the surprising strength of the riskgraph-based approach even if an attacker has

limited knowledge of power grids.

This work is structured as follows. The related work is presented in Section 4.3.

In Section 5.4 we set up the cascading failure simulator under the extended model.
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In Section 4.5 we describe the reduced search space node attack strategy, risk graph,

and the riskgraph-based node attack strategy in detail. In Section 6.7, the details

of simulation and observation are made. Discussions and conclusions are provided

in Section 6.8. Finally, the supplementary file of this published manuscript is

provided in Section 4.8.

4.3 Related Work

In this work, we study node attack strategies under the extended model con-

sidering two scenarios: attackers know or do not know the system tolerance factor.

We briefly summarize existing works as follows.

In the current literature, from the attack perspective, there are three prevail-

ing models in studying cascading failures, pure topological models, pure power flow

models and hybrid models. Pure topological models [7, 8] are rooted in complex

network theories, and useful to develop strong attack metrics, e.g. degree and load

in [14], percentage of failure (PoF) and risk if failure (RIF) in [9], and load distri-

bution vector (LDV) in [15]. Originating from circuit theories, e.g. Kirchoff’s and

Ohm’s Laws, pure power flow models provide the fundamental insights and under-

standing of cascading behaviors. Recently, hybrid models [11, 13] are proposed to

investigate the vulnerability of power grids by combining complex network theory

with basic features of power systems, e.g. power transmission distribution factors

(PTDFs). More discussions about existing cascading failure models are given in

Section 4.8, the supplementary file of this work.

Different models have different advantages and disadvantages. First, although

pure topological models are useful to develop malicious attack strategies, the re-

lated concepts and metrics are far from the physical characteristics of power grids.

Thereby, these models are far from reflecting the fundamental behaviors of cascad-

ing failures. Second, pure power flow models are more accurate to reveal vulnera-
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bility of power grids, and are mainly used to assess the security and reliability of

power grid networks [10, 16]. However, a detailed analysis of large-scale power grid

is usually computationally expensive due to its complexity, nonlinearity, and dy-

namics [4]. Finally, the extended model in [13] is a new angle in modeling cascading

failures. The power distribution under the extended model is based on PTDFs [12].

Thus, the extended model is more accurate than pure topological models in terms

of studying cascading failures. In addition, the calculation of PTDFs is less com-

plex than the detailed analysis of power flows in a power grid [17]. That is, the

extended model is less complex than pure power flow models.

When discussing about malicious attack strategies, we assume that attack-

ers might have certain information of power grid networks, such as topological

structures, electric features, and system tolerances. For instance, the topological

structure information can be purchased from companies (e.g. Platts [18]), the

electric features, such as impedance, can be estimated based on the topological

information. The system tolerances of real power systems are hard to be clearly

known by attackers due to various reasons [7–9]. Thus, the attack strategies in

prior studies can be divided into two categories: unknown system tolerance, e.g.

degree, load, RIF and LVD, and known system tolerance, e.g. PoF and the exhaus-

tive search approach. The more information attackers know about power grids,

the stronger attacks they might find.

4.4 The Extended Model for Cascading Failures Analysis in Power
Grids

4.4.1 Network Topology

Generally speaking, a power grid composes of substations (e.g. generators,

transmission and distribution substations) and transmission lines. In this work,

we model the power grid network as a directed graph, G = {B,L}, where B is the

set of nodes (i.e. substations) and L is the set of links (i.e. transmission lines).
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We put all generators and all distribution substations into different sets G and D,

respectively, where G ⊆ B and D ⊆ B. In addition, NB, NL, NG and ND are used

to represent the number of nodes, links, generation nodes and distribution nodes,

respectively.

4.4.2 Introduction of the Extended Model

The extended model was originally established in [12, 13]. The introduction

of the extended model and comparisons among different models can be found in

Section 4.8. We briefly summarize three important concepts about the extended

model as follows.

1. PTDFs : Power Transfer Distribution Factors (PTDFs) can represent the

sensitivity of power flow change in each transmission line for power injec-

tion/withdrawal at a pair of nodes [12, 17]. In reality, power is only trans-

mitted from generation nodes to distribution nodes. Under the extended

model, power flow on links is considered to be caused by the node pairs that

one node is generator and the other node is transmission node.

2. Extended Betweenness : The link extended betweenness is the summation of

power flows caused by each generation-distribution-node pair. The node

extended betweenness is defined as the summation of extended betweenness

on links that connect to a node. The extended betweenness is adopted as

the load definition of nodes/links in this work.

3. Net-ability : For a grid network G, the net-ability, denoted by E(G), is de-

fined as 1
NGND

∑
g∈G

∑
d∈D

Pgd

Zgd
, where Pgd represents power injection limi-

tation and Zgd represents the impedance between the generator g and the

distribution node d. Net-ability is the measure to evaluate how well a power

grid supplies power [12].
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4.4.3 Cascading Failure Simulator under the Extended Model

In the current literature [7–9], cascading failure simulators (CFSs) under pure

topological models are well established. However, few researchers have conducted

in-depth study on cascading failures under the extended model. In this subsection,

we setup the CFS under the extended model by introducing several important

concepts as follows.

� Load : We employ the extended betweenness as the definition of load. Dur-

ing cascading failures, the grid network is often broken into more than one

subnets after several rounds. At round t, the load of node i, or ni, is denoted

by Ani
(t), and is updated by recalculating the extended betweenness of ni in

the subnet that contains ni. In this work, the load of a node (e.g. ni) before

an attack is called the initial load of ni and denoted by Ani
.

� Capacity : The capacity of ni, denoted by Cni
, is the maximum amount of

load that ni can carry.

� Overloading : When the load of a node exceeds its capacity, the overloading

will occur. Under the extended model, the overloaded nodes are assumed to

be removed from the power grid network immediately.

� System tolerance: The system tolerance, α (α > 1), is the parameter describ-

ing the relationship between the initial load of a node and its capacity. For

example, the capacity of ni is assumed to be α = Cni
/Ani

[7]. In general,

we assume α values for all nodes are the same, and calculate the capacity as

Cni
= α× Ani

.

� Load redistribution: When the topology of a grid network changes due to the

removals of nodes, the load on nodes will be redistributed by recalculating

the extended betweenness for all surviving nodes. If the entire grid network
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is broken into more than one subnets, the calculation will be conducted in

each subnet separately.

The CFS under the extended model includes three parts: (1) initializing the

CFS and removing the TNs; (2) starting the cascading failures process till it stops;

(3) measuring the damage using assessment metrics. A similar CFS under the

extended model can be found in our previous work [19].

4.4.4 Assessment Metric

In this work, the primary assessment metric is percentage of drop in net-ability

(PoDN), which is defined as follows.

η =
E(G)− E(G

′
)

E(G)
(4.1)

where E(G) and E(G
′
) represents the net-ability of power grids before and after

the occurrence of cascading failures. The larger η is, the stronger the attack is.

The second and third assessment metrics are average inverse geodesic length

(AIGL) [20] and connectivity loss (CL) [21]. Geodesic length is the shortest path

between a pair of nodes in a graph [20]. When a pair of nodes are in different

subnets, the geodesic length between this pair is ∞ (i.e. infinity). The metric

AIGL, denoted by `−1, is defined as `−1 = 1
NB(NB−1)

∑
ni∈B

∑
nj 6=ni∈B

1
d(ni,nj)

, where

B is the node set and d(ni, nj) is the geodesic length between ni and nj. The

metric CL represents the connectivity between generators and distribution nodes

in a power grid. The definition of CL is 1 − 〈N
k
G

NG
〉
k
, where NG is the number of

generators and Nk
G is the number of generators connected to the distribution node

k. The averaging, 〈•〉, is done over all surviving distribution nodes after cascading

failure. Referring to AIGL, the smaller `−1 represents the stronger attack, while

by using CL a stronger attack is with larger CL.
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4.5 Attack Strategies under the Extended Model

In this section, we investigate malicious attack strategies by discussing node

attack strategy (NAS). The similar link attack strategy (LAS) is introduced in

Section 4.8. From the attack perspective, the biggest challenge is to find the attacks

that can cause larger damage. In the context of studying cascading failures, an

attacker’s goal is to identify a set of TNs, whose simultaneous failures could yield

as large PoDN as possible.

4.5.1 Complexity Measure of Attack Strategies

In this work, the complexity analysis of different attack strategies is based on

the size of search space for each attack strategy. In order words, it is the calculation

of how many times an attack strategy needs to launch CFS before finding its best

attack. O(CFS) is adopted to represent the time of launching CFS once and as

the unit to compare the complexity of different attack strategies. Theoretically,

it is very hard to precisely analyze the computational complexity of CFS, due to

different power grid network sizes, network topologies, system tolerances, attack

strategies, and so on. However, the network size and topology are the major factors.

For instance, in order to compute the extended betweenness, CFS needs to examine

each pair of generation-distribution nodes. For each pair, it needs to determine the

sensitivity value of each link. Roughly speaking, assume there are NG generators,

ND distribution nodes, and NL links in a grid network. The number of sensitivity

values needed to be computed is close to NG × ND × NL. After obtaining all

sensitivity values, summation operation is performed for each node, in order to

obtain the extended betweenness (i.e. load) for all nodes. The above operation

is performed in each round of cascading failure. From the above discussion, we

can see that it is very difficult to have a closed-form expression of O(CFS), because

it depends on the network size and topology, as well as how a cascading failure
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occurs. We do not address how to reduce the computation complexity of CFS

itself. Instead, we focus on analyzing the complexity of different attack strategies

based on the number of times launching CFS before making decision. For instance,

if an attack strategy needs to launch (NB)M times of CFS in order to find its best

attack, the complexity of this attack strategy is (NB)M × O(CFS), or (NB)M in

short.

4.5.2 Load-based and Degree-based Node Attack Strategies

In this subsection, we introduce the well-studied load-based and degree-based

approaches [9, 20]. The load of a node is defined as the node extended betweenness,

discussed in Section 4.8.1, while the degree of a node is defined the number of the

links connecting to this node [20]. When an attacker aims to knock down M target

nodes (TNs), the load-based and degree-based node attack strategies, denoted by

NASM
load and NASM

degree, respectively, are shown as follows,

* NASM
load: Choose nodes with the top M largest load values as TNs.

* NASM
degree: Choose nodes with the top M largest degree values as TNs.

Let CM
degree and CM

load denote the complexity of NASM
degree and NASM

load. Be-

cause these approaches do not need to launch CFS before selecting TNs. Both

CM
degree and CM

load are 0.

4.5.3 Exhaustive Search node Attack Strategy

For an attacker, the strongest node attack strategy is no doubt the exhaustive

search. The exhaustive search NAS is denoted by NASM
ES and conducted below,

* NASM
ES: Find the M TNs, whose simultaneous failure yields the largest

PoDN under a given α.
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Table 4.1. The strongest target node combinations on IEEE 118 bus system

Index
NAS1

ES NAS2
ES NAS3

ES

TNs PoDN(%) TNs PoDN(%) TNs PoDN(%)

1 65 64.5 30,68 81.3 30,65,80 88
2 38 55.7 30,80 79.2 30,65,96 87.8
3 68 52.9 30,65 77.9 30,68,96 87.2
4 30 48.2 65,69 77.8 30,68,94 86.8
5 80 46.7 38,68 77.4 30,68,103 86.2
6 81 42.3 38,80 77.1 38,69,94 85.9
7 77 33.4 38,69 76.1 30,65,94 85.5
8 49 31.1 17,65 76.1 38,69,96 85.2
9 64 30.8 38,77 75.9 30,66,68 85.2
10 17 30.6 30,81 75.3 30,68,92 85

Let CM
ES denote the complexity of NASM

ES. Theoretically, the complexity is,

CM
ES =

(
NB

M

)
×O(CFS) (4.2)

where
(
NB

M

)
= NB(NB−1)×···×(NB−M+1)

M !
. Therefore, CM

ES is the same order as (NB)M ,

which increases as a power function with NB and explodes as an exponential func-

tion with M .

The exhaustive search is very time-consuming, and often computationally in-

feasible. Numerically, take IEEE 118 bus system as an example. Running CFS

once on IEEE 118 bus system needs an average time of 0.06 second by using Matlab

under Window 7 OS with 4 GB memory and dual-core i5 CPU (2.4GHz each). The

time for simulating
(

118
5

)
= 174, 963, 438 node combinations is roughly 4 months.

Note that, the real power grid networks are often much bigger than IEEE 118 bus

system. Even if parallel computing is available, adopting NASM
ES on large-scale

networks is still impractical.

4.5.4 Reduced Search Space Node Attack Strategy

It is the goal to develop practical attack strategy in this work. Although the

exhaustive search is often infeasible, it is still doable at small M values on the
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moderate-scale grid network, and can provide some useful insights. We conducted

experiments on IEEE 118 bus system by using NASM
ES, where M is set to be 1,

2 and 3 and α is set to be 1.5. The node combinations of the top ten strongest

attacks are shown in Table 5.3.

There is a helpful observation made from Table 5.3. For instance, in NAS2
ES,

at least one TN in the two-node combination is from the TNs of the top ten

attacks in NAS1
ES. In NAS3

ES, all three-node combinations contains the two-

node combinations that in NAS2
ES. In Table 5.3, the highlighted nodes or node

combinations illustrate such observation.

This observation is easy to understand. If a M -TN combination can result in

severe damage to a power grid, adding another TN to this combination will most

likely be a strong attack. It is important to point out that the new (M+1)-TN

combination may not be the strongest attack of NASM+1
ES . However, as long as

the resulted PoDN is large enough, the new combination will be a strong attack of

NASM+1
ES .

Inspired by the above discussions, we propose a novel search based attack

strategy, called reduced search space attack strategy or RSS attack strategy in short,

which can be applied to both nodes and links. The RSS node attack strategy is

denoted by NASM
RSS. Before discussing in detail about the algorithm procedure

of NASM
RSS, we need to give some explanations. First, the procedure of searching

TNs is an iterative process, which includes one initial round and M − 1 successive

rounds. Second, the criticality of a node combination (or a node) is determined by

PoDN. The larger the PoDN is, the more critical the node combination is. Third, in

each iterative round, e.g. mth round (1 ≤ m ≤M), the top R critical combinations

are chosen as the round recommended combination set (RRCS), denoted by Sm
RRC .

Those
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Procedure 1 Initialize the iterative process and obtain the TN for NAS1
RSS

1: Set up a system tolerance, e.g. α = 1.5, and initialize a vector x with all values
as 0.

2: //The indices of nodes are consecutive from 1 to NB.
3: for i = 1 : NB do
4: Conduct one-node attack by knocking down node i under given α. Cal-

culate the PoDN after the cascading failure and set the value of xi as the
corresponding PoDN value.

5: end for
6: Choose the node with the largest PoDN in x as the TN for NAS1

RSS.
7: Choose the nodes with the top P largest PoDNs in x as candidate nodes, and

put them into SC .
8: Choose the nodes with the top R largest PoDNs in x as the 1st round recom-

mended combination, and put them into S1
RRC .

There are three procedures working together to select TNs for NASM
RSS. Pro-

cedure 1 shows the steps to obtain the TNs for NAS1
RSS. When M = 1 (launching

one-node attack), attackers only need to use Procedure 1, without considering

the other two procedures. When M > 1 (launching multi-node attack), attackers

need to first use Procedure 1 to initialize the iterative process, then use Procedure

2 to complete the iterative process, and finally use Procedure 3 to find TNs for

NASM
RSS.

Let CM
RSS denote the complexity of NASM

RSS. Searching TNs for NASM
RSS is

performed in M rounds. In the 1st round, Procedure 1 needs to run CFS NB

times. In mth round (2 ≤ m ≤ M), Procedure 2 needs to run CFS P × R times.

Therefore, the theoretical complexity is,

CM
RSS = {P ×R× (M − 1) +NB} ×O(CFS) (4.3)

where P and R are set to limit the search space. At the worst case, when P = R =

NB, CM
RSS equals to (M − 1) × (NB)2, the same order as M × (NB)2. Therefore,

CM
RSS increases as a power function with NB and increases linearly with M .

From the above discussions, we know that NASM
RSS has three advantages.
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Procedure 2 Find the Sm+1
RRC under given Sm

RRC

1: Perform the Procedure 1, and obtain SC .
2: Initialize a candidate combination set, SCC , and a vector y with all values as

0.
3: //Construct the candidate combinations in (m+ 1)th round.
4: for i = 1 : R do
5: Get the ith node combination in Sm

RRC , denoted by Ci.
6: for j = 1 : P do
7: Get the jth candidate node in SC , denoted by nj.
8: Combine Ci and nj to get a new candidate combination, and put it into

SCC .
9: end for

10: end for
11: //Conduct multi-node attack for each candidate combination in SCC .
12: for kth combination in SCC do
13: Conduct multi-node attack by knocking down all nodes in the kth combina-

tion under given α. Calculate the PoDN when CFSor stops, and set yk to
the corresponding PoDN.

14: end for
15: Choose the candidate combinations with the top R largest PoDNs in y as the

(m+ 1)th round recommended combination, and put them into Sm+1
RRC .

Procedure 3 Find TNs for NASM
RSS under given SM

RRC

1: There are R node combinations in SM
RRC . The nodes in the combination that

can cause the largest PoDN are the TNs for NASM
RSS.

First, compared with NASM
ES, NASM

RSS has sharply-reduced complexity (or search

space). CM
RSS is approximate to M × (NB)2, which is much lower than (NB)M

of CM
ES. Given the available computing resources, NASM

RSS can analyze a much

bigger network than NASM
ES. In other words, NASM

RSS scales much better than

NASM
ES. Furthermore, we can adjust the parameters P and R to achieve a good

balance between the complexity and the attack performance. For example, sup-

pose NASM
ES and NASM

RSS are both tested on IEEE 118 bus system, where M = 5

for both schemes, and NB = 118, P = 118, R = 16 for NASM
RSS. NAS5

ES needs to

launch 174, 963, 438 times of CFS and its calculation probably needs four months;
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whereas NAS5
RSS only needs to launch 7, 670 times of CFS, which needs 7.8 min-

utes. The improvement about the complexity of NASM
RSS is a big step. Second, the

performance of NASM
RSS is comparable to that of NASM

ES, which will be shown in

Section 6.7. Finally, during the procedures to find the best attacks, NASM
RSS keeps

the track of the round recommended combination set, which is useful to construct

the risk graph. The details of the risk graph will be discussed in subsection 4.5.6.

4.5.5 Limitations of Reduced Search Space Attack Strategy

Although NASM
RSS can sharply reduce the complexity of NASM

ES and reach

comparable attack performance, which will be discussed in Section 4.6.1, it still

has limitations.

First, NASM
RSS relies on the system tolerance (α). As shown in Procedure

1, if attackers adopt NASM
RSS to launch attacks, they must first estimate the

system tolerance. In reality, system tolerances of power grids are rarely known by

attackers due to various reasons, e.g. security concerns. Furthermore, although

many existing works assume that the capacity of a node is defined as the initial load

multiplying α, and assume that α is the same for all nodes, these assumptions could

be over-simplifying the case. The nodes in a power grid surely can have different

tolerance factors. It is surely not an easy task for an attacker to estimate the

tolerance factors for all nodes in a power grid. Therefore, from the attack point of

view, requiring the knowledge of system tolerance is a drawback.

Second, although NASM
RSS has greatly reduced the complexity, it is still a

search based approach and not suitable for real-time attacks. For example, if an

attacker knows that a few substations are currently down due to some reasons, e.g.

a winter storm, the attacker wants to determine TNs in this situation and launch

an attack. Similarly, the defense side may also want to know the vulnerability

of the power grid network in this situation. Recall that the worst case of the
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complexity of NASM
RSS is M×(NB)2, which is still much higher than 0 of NASM

degree

and NASM
load, discussed in Section 4.8.2. Further reduction in the complexity of

NASM
RSS is desirable.

In summary, a practical real-time attack strategy should have two features:

fast and not depending on system tolerances.

4.5.6 Construction of Risk Graph

Is it possible to obtain an attack strategy without knowing the information of

system tolerances? We find the “relationship” among nodes in a power grid and

can conduct strong attacks based on such relationships. This is particularly useful

to choose multiple TNs. In this subsection, we propose a novel metric, called the

risk graph (RG), to describe such relationship. Here, we demonstrate the procedure

of building the risk graph for nodes, called the node risk graph (NRG).

In the procedures to search the strongest attack for NASM
RSS, we keep a track

of the top R strongest node combinations in each round, called RRCS and denoted

by S1
RRC , S

2
RRC , ..., S

M
RRC . One realization of the RRCS are shown in Table 6.2, from

which we have basic observations. First, several nodes, e.g. nodes 30, 38, 68, 65 and

80, appear more frequently than others. Second, several node combinations, e.g.

{30, 68}, {38, 69, 96}, happen frequently. These observations demonstrate there

probably are some fixed node combinations, the failure of which may seriously

threaten the safety of the power grid. Studying these fixed node combinations or

the relationship among nodes is helpful to find strong malicious attack strategy.

To demonstrate such relationship of nodes, we construct NRG according to

the intermediate results of NASM
RSS under a given system tolerance. Furthermore,

we merge single NRGs under different system tolerances into an node integrated

risk graph (NIRG) to describe such relationship among nodes. If several nodes are

closely related in NIRG, their combination is expected to cause severe damage to
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the power grid network.

Next, we describe the procedure of constructing single NRG under a given

system tolerance value α.

* Step 1: Given an α, performing the procedures of NASM
RSS and obtain

S1
RRC , ..., S

M
RRC .

* Step 2: Examine those sets (an example is shwon in Table 6.2), and find how

many times a node appears in such sets. If a node appears at least once, this

node becomes a vertex of the risk graph. In addition, each vertex has a vertex

occurrence frequency (VOF), defined as the number of the corresponding

node appears in those sets.

* Step 3: Add an edge between each pair of vertices and assign the weight

of this edge as zero. The edge weight is referred to as the edge occurrence

frequency (EOF).

* Step 4: Examine the node combinations in each Sk
RRC (k = 1, 2, · · · ,M). If

a pair of nodes, say node i and node j, appears in the combination with m

nodes, increase the EOF of the edge between node i and j by adding 2
m(m−1)

.

For example, for the combination {30, 80, 65}, we increase the EOF of three

edges, edge30−80, edge80−65, edge30−65, by 1/3. If the pair of nodes appear

in more than one node combinations, the final EOF of the edge between

this pair of nodes is to summarize all EOF values from the combinations

this pair of nodes are in. For another example, assume nodes 30 and 80

appear simultaneously in {30, 80}, {30, 80, 65} and {30, 80, 65, 94}, the EOF

of edge30−80 is 1 + 1/3 + 1/6 = 3/2.

* Step 5: Remove the edges having EOF values as zero.
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Table 4.2. An realization of RRCS on 118 bus system.

S1
RRC S2

RRC S3
RRC S4

RRC S5
RRC S6

RRC

65 68,30 30,80,65 38,69,96,17 38,69,96,17,103 38,69,96,17,103,66
38 30,80 65,30,96 38,69,94,17 38,69,94,17,103 30,80,65,94,11,56
68 65,30 68,30,96 30,80,65,94 38,69,96,17,66 38,69,94,17,103,83
30 65,69 68,30,94 30,80,65,96 38,69,96,17,23 38,69,96,17,66,92
80 38,68 68,30,103 38,69,94,30 30,80,65,94,11 30,80,65,94,11,103
81 38,80 38,69,94 30,80,65,103 38,69,96,17,92 38,69,94,17,103,82
77 38,69 65,30,94 68,30,94,66 38,69,96,17,105 38,69,96,17,66,94
49 65,17 38,69,96 38,69,96,30 38,69,96,17,94 38,69,94,17,103,98
64 38,77 68,30,66 30,80,65,92 38,69,94,17,89 30,80,65,94,11,54
17 30,81 68,30,92 30,80,65,89 30,80,65,94,7 30,80,65,94,7,56
96 65,80 68,30,80 38,69,94,5 30,80,65,96,11 38,69,94,17,98,66
94 68,17 65,30,103 68,30,96,63 38,69,94,17,98 38,69,94,17,99,66
63 65,96 65,17,80 68,30,96,66 38,69,94,17,83 30,80,65,96,11,56
8 65,38 65,17,96 65,30,96,68 38,69,94,17,97 38,69,94,17,103,66

100 38,81 65,69,96 65,30,96,81 30,80,65,94,103 30,80,65,94,103,56
37 65,37 30,80,64 68,30,96,11 38,69,94,17,99 30,80,65,94,11,105

* Step 6: Remove the vertices that are not connected with other vertices.

This occurs when some nodes are in S1
RRC but not in other round recommend

combination sets.

A NRG of IEEE 118 bus system, built directly from Table 6.2, is shown in

Fig. 4.1(a). The size and color of a vertex is decided by its VOF. And the width

and color of an edge is determined by its EOF. The bigger (wider) and redder

of a vertex (or an edge), the larger its VOF (EOF). Fig. 4.1(a) is visualized by

Gephi [22]

There are two important factors affecting the construction of risk graphs, the

system tolerance (α) and the parameters (P and R). The former is the major

factor and the latter is the minor factor. Different values of the parameters, P

and R, may slightly change the nodes in the RRCS; whereas different values of the

system tolerance, α, could probably lead to major changes of nodes in the RRCS.

In other words, single risk graphs are sensitive to the system tolerance.
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(a) Node Risk Graph (b) Node Integrated Risk Graph

Figure 4.1. The node risk graphs on IEEE 118 bus system

Risk Graph Additivity : The risk graphs constructed under different system

tolerances of the same power grid network are additive. If two NRGs are added

together, the vertices and edges in the new NRG are obtained as, (1) all vertices

in the two NRGs will be in the new NRG, and the VOF of vertices in the new

NRG is calculated as either adding the corresponding VOF of the vertex in the

two NRGs, if the vertex appears in both NRGs; or keep its own VOF, if it just

appears in one NRG; (2) for edges, the procedure is the same as vertices.

By adding single NRGs, we can obtain NIRG. As discussed above, single

NRG is sensitive to α, while the NIRG is more robust in terms of reflecting the

relationship between candidate nodes. Based on prior knowledge and construction

restrictions of power grids [7, 8], the range of the system tolerance is set to be

1 < α ≤ 2. Without losing the generality, the NIRG here is generated by adding

20 NRGs, where α is from 1.05 to 2 with an interval 0.05. The NIRG of IEEE 118

bus system is shown in Fig. 4.1(b).
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4.5.7 Risk-Graph Based Node Attack Strategy

The NIRG provide a good way to find stronger attack strategy, which is not

sensitive to system tolerances. Suppose attackers have already had the NIRG of a

power grid, they can launch node attacks as follows,

* NASM
riskgraph: The riskgraph-based node attack strategy. IfM equals 1, select

the node with the largest VOF in the NIRG as the TN for NAS1
riskgraph. Oth-

erwise, we choose the M nodes from the NIGR as the TNs for NASM
riskgraph

by meeting two requirements. First, each pair of nodes should have a di-

rect edge in the NIGR. In total, there are M(M−1)
2

edges among these M

chosen nodes. Second, the summation of all EOF of those M(M−1)
2

edges is

the largest among these of all other M nodes selections. In other words, we

select the M TNs, whose summation of EOF is maximal.

Although the nodes with large VOF often have more impact on the power grid,

their combination does not necessarily yield strong attacks. For instance, in Fig.

4.1(b) the vertices marked with labels as 17 and 30 are important candidate nodes,

which have large VOF values and are represented by bigger circles. However, there

is no direct edge between them. This means the node combination {17, 30} is not

a strong two-node attack. Therefore, the basic idea of NASM
riskgraph is to find

the set of M nodes with the strongest connection. The rationale behind the first

requirement is to avoid including nodes that never appear together in any node

combinations in RRCS. The rationale behind the second requirement is to choose

the nodes, whose pair combinations appear most frequently in RRCS.

Let CM
riskgraph denote the complexity of NASM

riskgrph. CM
riskgrph includes two

parts: the construction of the NIRG and the selection of TNs. The former has

the similar complexity as that of NASM
RSS, because single risk graphs are based

on the intermediate results of NASM
RSS. It is important to point out that this
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Table 4.3. The summary of different node attack strategies

Attack
Strategy

NASM
degree NASM

load NASM
riskgrph NASM

RSS NASM
ES

O(CFS) 0 0 0 M × (NB)2 (NB)M

Effectiveness Low Low High High High
System

tolerance
No No No Yes Yes

computation can be done “offline”: first obtain single risk graphs under a set of

representative system tolerances, and then construct the NIGR. The latter is to

find TNs from the NIGR. This procedure does not rely on CFS, which means its

complexity is 0, similar to that of the load-based and the degree-based approaches.

This can be done in “real-time”. For example, if an attacker has observed that

n103, node 103, in Fig. 4.1(b) is down for some reasons (e.g. nature disaster), the

attacker can quickly identify an attack strategy adding one more TN, e.g. n38, to

the already-down n103. Therefore, considering on-line attacks, CM
riskgraph is 0.

In summary, the comparison of the real-time complexity of different node

attack strategies is CM
degree ≈ CM

load ≈ CM
riskgraph � CM

RSS � CM
ES. More comparisons

among different node attack strategies are shown in Table 4.3.

4.6 Simulation Results

In this section, the simulations and observations are presented in detail. The

simulation experiments are conducted in Matlab, including the setup of power

grid network, PDTFs calculation and the process of CFSor. The proposed attack

strategies are tested on the well-known IEEE 57 and 118 bus systems [23], and

Polish transmission system [17]. The details of the three benchmarks are listed in

Table 6.3. Here, we will give our major experiment results and observations, and

additional results are given in Section 4.8.
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Table 4.4. The summary of different test benchmarks.

Test Benchmarks NB NL NG ND

IEEE 57 bus system 57 80 7 42
IEEE 118 bus system 118 179 54 99

Polish transmission system 2383 2896 327 1817
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Figure 4.2. The performances versus M between the ES and RSS attack strategies
on IEEE 57 bus system.

4.6.1 Performance Comparisons between the Exhaustive Search NAS
and the Reduced Search Space NAS

In this subsection, the proposed RSS node attack strategy, NASRSS, is com-

pared with the exhaustive search node attack strategy, NASES. Both node attack

strategies are tested on IEEE 57 bus system. Due to the huge search space of the

exhaustive search, we conducted experiments for NASM
ES with M ≤ 5. The maxi-

mum M for NASM
RSS is set to 6. The comparisons between NASM

ES and NASM
RSS

are shown in Fig. 4.2. In the subplots, x-axis represents the number of TNs

(M), while y-axis represents PoDN, AIGL, and CL, respectively. In each subplot,

the solid blue-hexagram curves represents NASM
ES, and the dashdotted red-plus

curves represents NASM
RSS. The system tolerance (α) is set to 1.5. Theoretically,

it is very difficult to analyze how close the attack performance of NASM
RSS is to

that of NASM
ES. The CFSor under the extended model is too complex to yield

theoretical bounds for the attack performance. Therefore, researchers often judge
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Figure 4.3. The performances versus M among four node attack strategies on
IEEE 118 bus system.
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Figure 4.4. The performances versus M among four node attack strategies on
Polish transmission system.

the efficiency of different approaches based on numerical evaluation [7, 21, 24–26].

Several important observations are made from Fig. 4.2.

First, the attack performance of NASM
RSS can compete with that of NASM

ES.

Within these subfigures, the dashdotted red-plus curves match the blue-square

solid curves in terms of the three measurement metrics. The match is reasonable,

because the TNs selected by NASM
RSS are often the same as those of NASM

ES. We

do expect a small gap between those two approaches when M is large. Such results

are not included because performing the exhaustive search for a large M value is

computationally prohibitive.

Second, from the attackers point of view, launching attacks on a few critical
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Figure 4.5. The performances versus α among four node attack strategies on IEEE
118 bus system.

nodes will cause serious damage to power grid networks. In power grid networks,

usually there are a few critical nodes, the failure of which will cause serious enough

damage. The prior study shows that cascading failures have the power-law dis-

tribution of blackout sizes in both theoretical models and empirical blackouts [4].

Thus, from the attack perspective studying cascading failures by initially triggering

a few TNs is practicable and meaningful.

Finally, NASM
RSS is an ideal substitution of NASM

ES. As discussed above,

the attack performance of NASM
RSS is very close to that of NASM

ES. In addition,

it is important for attackers to determine the number of TNs (i.e. M). When

M is small, the attacker may not be able to cause serious damage to power grid

networks. When M is large, the attacker needs to take down more nodes, which

makes the attack difficult to be launched. Furthermore, increasing M will not

significantly increase the attack performance if the smaller M value already causes

large damage to power grids. More important, with appropriate parameter values,

P and R, NASM
RSS has sharply-reduced complexity and is doable.

4.6.2 Comparison among Different Node Attack Strategies

In this subsection, comparisons are made among NASM
riskgraph, NASM

load,

NASM
degree, and NASM

RSS on IEEE 118 bus system and Polish transmission system.
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The comparisons among these four node attack strategies are shown in Figs. 4.3,

4.4 and 4.5. In simulations, there are two important parameters for all approaches,

the number of TNs (M) and the system tolerance (α). Figs. 4.3 and 4.4 show the

change of attack performance against M , while Fig. 4.5 shows the performance

change against α. In addition, there are three subplots in each figure, which shows

the results evaluated by the three different metrics. The y-axis noted by (a), (b)

and (c) represents percentage of drop in neb-ablity, average inverse geodesic length

and connectivity loss, respectively; the x-axis represents the number of TNs in

Figs. 4.3 and 4.4, and the system tolerance in Fig. 4.5. In each subplot, the dash-

dotted red-plus curve, solid magenta-pentagram curve, solid blue-square curve and

solid green-star curve represent NASM
RSS, NASM

riskgraph, NASM
load and NASM

degree,

respectively. For example, Fig. 4.3(a) demonstrates the comparison among the

four node attack strategies on IEEE 118 bus system, when M is set from 1 to 6, α

is set to 1.5, and results are measured by PoDN. From these figures, we have the

following observations and discussions.

First, the attack performances of NASM
riskgraph are a little weaker than that of

NASM
RSS, but much stronger than those of NASM

load and NASM
degree. As discussed

in Section 4.6.1, NASM
RSS could be employed as the substitution of the exhaustive

search node attack strategy. From all subplots in Figs. 4.3 and 4.4, the attack

performance against M , the solid magenta-pentagram curves are very close to the

dashdotted red-plus curves, which means the attack performances of NASM
riskgraph

are close to those of NASM
RSS. In addition, the solid green-star curves are far from

the dashdotted red-plus curves, while the solid blue-square curves are closer than

those green-star curves, but still are not comparable with the magenta-pentagram

curves. Similar observations are made in Fig. 4.5, the attack performance against

α. In conclusion, from the attack performance perspective NASM
RSS is the best
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achievable node attack strategy, and NASM
degree is the worst; while the NASM

riskgraph

is very close to NASM
RSS, and much better than NASM

load and NASM
degree.

Second, as M increases, the regression on the attack performance of

NASM
riskgraph, NASM

degree and NASM
load might occur. Such examples could be found

in Figs. 4.3 and 4.4. The reason of the regression happens is that the cascading

failure under the extended model quickly stop when the whole power grid network

is broken into more than one balanced subnets. NASM
degree and NASM

load do not

consider this fact and select their TNs according to the degree or load distribu-

tion. The failure of those high-degree or high-load nodes might quickly break the

whole power grid network into several subnets. For the NASM
riskgraph, the regression

sometimes occurs, when the number of TNs is large, e.g. M ≥ 3. The reason is

that the NIRG is mainly reflecting the hidden relationship between a pair of nodes.

Thus, when the number of TNs increases, the TNs selected from NIRG might not

represent the strongest attacks, and then the attack performances downgrade a

little.

As a summary, when the system tolerance value is unknown, NASM
riskgraph

is much stronger than NASM
degree and NASM

load. Furthermore, NASM
riskgraph has

similar performance to that of NASM
RSS, but do not require performing search in

real time. In other words, after the NIRG is established, there is no need to launch

CFSor before making attacks. The major advantages of NASM
riskgraph are: (a) not

requiring the knowledge of system tolerance, (b) low real-time complexity, and (c)

comparable attack performance with that of NASM
RSS. Detailed comparisons are

given in Table 4.3.

4.7 Discussion and Conclusion

In this work, we investigated cascading failures of power grids under the ex-

tended model. The major contributions are summarized as follows,
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� Proposed a new search based node attack strategy, called the reduced search

space node attack strategy, which can sharply reduce the complexity of the

exhaustive search node attack strategy, and yields the attack performance

very close to that of the exhaustive search. By using the proposed approach,

we can analyze a much bigger network than using the exhaustive search.

Furthermore, we can adjust the parameters in the proposed approach to

achieve a good balance between the complexity and the attack performance.

� Proposed a novel metric, called the risk graph, to describe the hidden re-

lationship among potential TNs in terms of causing cascading failures. In

other words, if several nodes are closely tied together in the NIRG, the si-

multaneous failure of these nodes is more likely to raise serious cascading

failures.

� Proposed a practical node attack strategy, called the riskgraph-based node

attack strategy, whose attack performance is comparable to that of the reduce

search space node attack strategy, but its complexity is extremely low when

used in real-time situations.

Although we investigated cascading failures from the attack perspective, the

results can be very useful for the research on defense side. In particular, the risk

graph is a concise and effective way to describe the criticality of nodes in power

grids. Furthermore, the RSS node attack strategy can be used to evaluate the

effectiveness of defense approaches by finding the strong attacks after a certain

defense approach is applied.

In the future work, the proposed approaches can be further improved from

several aspects. First, the risk graph shows the hidden relationship of node pairs.

The risk graph may not accurately describe the relationship among a group of

nodes, when the group size is larger than 2. We have seen the degradation of
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attack performance when M > 5. In the future, the risk graph construction proce-

dure may consider more than two-node combinations. Second, the riskgraph-based

NAS can handle the situation when each node has different tolerance factors. The

next step may be evaluating its performance after being given some practical data,

describing the distribution of tolerance factors. Third, the proposed node attack

strategies can also work on links. Therefore, the proposed approaches can be

extended to address joint-node-link attacks. Fourth, investigating the cascading

failures in large-scale power grids, e.g. the entire North America power grid bench-

mark, will be more meaningful. Fifth, the RSS node attack strategy in this work

is pretty intuitive and straightforward. As an interesting future research direc-

tion, more advanced methods could be used to improve the search efficiency and

results. For instance, dynamic programming (DP) [27] and approximate dynamic

programming (ADP) [28, 29] are the popular techniques in solving the problems

that have the properties of overlapping subproblems. Integrating them with the

search-based approach here will be an interesting and possible direction to improve

the proposed approach. Finally, we plan to investigate the risk-graph idea in as

stochastic models [30] and temporal features of cascading failures [31].

4.8 Supplementary File
4.8.1 Models for Investigating Cascading Failures

In current literatures, many simulation methods have been proposed to inves-

tigate the vulnerability of power grids [4]. Generally speaking, high-level statistical

models, e.g. the CASCADE model [32], provide some statistical and probabilistic

methods to study cascading failures; historical data methods try to find failure pat-

terns from the historical blackout records [33]; deterministic models are the most

important and prevalent models in studying the vulnerability of power grids, within

which N−x contingency analysis [10] is the biggest family; network models mainly
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employ the topological properties of power grid networks, e.g. “betweenness” and

“degree”, to mimic the power distribution in power grids.

In addition, network theory models are widely adopted to study the malicious

attack strategies against power grids. There are two prevailing network models,

the recoverable model [24] and the non-recoverable model [8]. The major difference

between them is the assumption of load definition and load redistribution after

occurrences of failures or overloading of nodes/links [9]. Under the recoverable

model, the load of each node/link is defined as betweenness [24]. To calculate the

betweenness of nodes/links, we need to find the shortest path between each pair

of generator and distribution substations. For example, if there are NG generator

and ND distribution substations, there are NG ×ND generator-distribution pairs.

The betweenness of a node/link is then defined as the number of such shortest

paths going through this node/link. When one or more nodes/links are knocked

down, the shortest paths that originally pass through them need to be detoured,

and then the load of surviving nodes/links is redistributed by recalculating the

betweenness. Compared to the recoverable model, the load of a node/link under

the non-recoverable model is defined as the multiplication of its degree with the

summation of its neighbor’s degree [8]. While a node/link is knocked down or

overloaded, the load it holds will be proportionally redistributed to its surviving

neighbors.

The Extended Model

The extended model is first discussed in [12], where net-ability was proposed

to replace the network efficiency as the measure to evaluate how well a power grid

supplies electricity. Then, the extended beteweenness was introduced in [13] to

replace the betweennees as load of nodes/links. Generally speaking, the extended

model is similar to the recoverable model [9]. We briefly summarize how to use
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the extended model to investigate the vulnerability of power grids as follows.

1. First, the DC model of power grids [17] is adopted to calculate Power Transfer

Distribution Factors (PTDFs), which represent the sensitivity of power flow

change in each transmission line for power injection/withdrawal at a pair of

nodes. In this work, PTDFs are denoted by H , a NL × NB matrix. Each

element in H , e.g. hlj (i.e. the element at lth row and jth column), reflects

the change of real power flow in link l given per unit power injection at node

j and withdrawal at the slack node. In this work, the MATPOWER [17],

a well-known Matlab based tool for solving power flow analysis problems, is

adopted to calculate PTDFs of power grids.

2. Second, power is only transmitted from generators to distribution substations

in power grids. The power flow change on link l for power injection at the

generator node (g) and withdrawal at the distribution node (d) is presented

as hgdl = hlg − hld, where hlg and hld are the elements in H at row l with

column g and d, respectively. Due to the stability and security concerns of

power grids, each transmission line has its power limitation. Thus, for each

generator-distribution node pair, the power injection at the generator side is

limited. Under the extended model, the power injection limitation of each

pair, denoted by Pgd, is defined as minl∈L(
Pmax
l

|hgd
l |

), where Pmax
l is set to be 1

(p.u.).

3. Each generator-distribution node pair can raise power change more or less

in all transmission lines, which represents the power distribution under the

extended model. The accumulation of the power changes on each node/link

is the extended betweenness, including the node extended betweenness and

the link extended betweenness. In this work, the extended betweenness is

adopted as the load of nodes/links.
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4. Finally, the net-ability of a power grid network (i.e. G), denoted by E(G),

is defined as 1
NGND

∑
g∈G

∑
d∈D

Pgd

Zgd
, where Zgd is the electric distance, equiv-

alent to the impedance between the generator g and the distribution node d.

Compared with the recoverable model in [24], the electric distance replaces

the concept of the shortest path, and the net-ability replaces the concept of

the global efficiency. If the failure of nodes/links occurs, the comparison of

net-ability between before and after the failure will show how serious the fail-

ure is. In other words, the strength of an attack is measured as the reduction

in the net-ability of the power grid network caused by the attack.

To interested readers, an example on the six-bus power system in [34] is shown

here. The six-bus power system has six nodes and eleven links. In this power

system, generators have indices of 1, 2, 3 and distribution nodes have indices of

4, 5, 6. In addition, MATPOWER includes this six-bus power system as one of

its test cases. The original PTDFs of the six-node power system are shown in

Table 4.5, where n1, node 1, is selected as the slack bus. Take the generator-

distribution node pair, n2 and n4, as an example. The power flow change in l1,

link 1, caused by this pair is: hn2n4
l1

= hl1n2−hl1n4 = −0.1557. Similarly, the power

flow changes in l2, l3, · · · , l11 caused by this node pair are 0.1895, -0.0338, 0.0384,

0.6904, 0.0701, 0.0453, 0.0439, -0.0055, -0.1201, -0.0399, respectively. Thus, the

power injection limitation for (n2, n4) is Pn2n4 = minl∈L(
Pmax
l

|hgd
l |

) = 1.4483 (p.u.).

The original net-ability, before an attack, of this six-bus system is around 21.2.

Comparison with Other Models

IEEE PES CAMS Task Force on Understanding, Prediction, Mitigation, and

Restoration of Cascading Failures has listed a bunch of criteria in comparison of

different risk assessment methodologies to power grids [4]. Those criteria include

the accuracy of reproduction of real phenomena, the degree of dependency on large
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Table 4.5. PTDFs of the six-bus power system

Link Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
1 0 -0.4706 -0.4026 -0.3149 -0.3217 -0.4064
2 0 -0.3149 -0.2949 -0.5044 -0.2711 -0.2960
3 0 -0.2145 -0.3026 -0.1807 -0.4072 -0.2976
4 0 0.0544 -0.3416 0.0160 -0.1057 -0.1907
5 0 0.3115 0.2154 -0.3790 0.1013 0.2208
6 0 0.0993 -0.0342 0.0292 -0.1927 -0.0266
7 0 0.0642 -0.2422 0.0189 -0.1246 -0.4100
8 0 0.0622 0.2890 0.0183 -0.1207 0.1526
9 0 -0.0077 0.3695 -0.0023 0.0150 -0.3433
10 0 -0.0034 -0.0795 0.1166 -0.1698 -0.0752
11 0 -0.0565 -0.1273 -0.0166 0.1096 -0.2467

volumes of data, the accuracy of modeling of the power system (AC or DC power

flow), and so on. From the attack perspective, we will compare the extended model

and other models based on those criteria.

From the above discussions, we know the biggest difference between the pure

topological models and the extended model is that the former are completely from

the network theory without considering the features of power systems, whereas

the latter partly root itself in electric circuit theories. For example, the definition

of the load of a node/link under the non-recoverable model [8] only considers the

degree distribution of nodes/links. If a node/link fails, its load is only redistributed

to its neighbors. This model is far from the reality in power transmission systems.

In addition, the load definition and redistribution under the recoverable model [24]

are related to the shortest paths. This model is closer to the reality than the non-

recoverable model, but still does not consider the features of power transmission

systems. Compared with the above two representative pure topological models, the

power distribution under the extended model is governed by using PTDFs following

the basic circuit theories. This means that the extended model is more accurate in

representing power distribution in power grids than the purely topological models.
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Table 4.6. The summary of different models

Network
model

Pure topological models Extended
model [13]

Pure power
flow models [10]Non-recover-

able [8]
Recover-
able [24]

Accuracy Low Low
Relatively
accurate

Accurate

Information
needed

Topology Topology
Topology
& PTDFs

Comprehensive
structure

& electrical
features

On the other side, the pure power-flow models [10] are based on circuit theo-

ries, but they are too complex to analyze cascading failures from the attack per-

spective. First, those models require more information about power grids than

other models. They not only need the topological structure of power grids, but

more electrical features, e.g. the admittance matrix and voltage distribution. Such

information is not easy to be known by attackers. Second, to analyze the vulner-

ability of power grids, pure power flow models require high computation cost.

Sometimes, this kind of analysis is computationally infeasible for a simulator with

any fidelity [4]. Meanwhile, the extended model makes several simplifications, with

which it is less complex than the pure power flow models and more suitable for cas-

cading failures analysis. In addition, there are an increasing number of researchers,

who believe that the extended model is useful in identifying critical components

in power grids [35]. The summation of different models is shown in Table 4.6.

4.8.2 Link Attack Strategies

In this section, we introduce the link attack strategy (LAS), which is similar

to node attack strategy (NAS). The links that are initially removed are referred

to as target links (TLs). Here, we will discuss the load-based LAS, the degree-

based LAS, the exhaustive search LAS, the reduced search space LAS and the

riskgraph-based LAS.
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Load-based and Degree-based Link Attack Strategies

The definition of “degree of a link” is not straight forward. We adopt the

definition in [20], in which the degree of a link is the summation of the degrees of

the two nodes that this link connects. When an attacker aims to knock down M

TLs, the degree-based LAS, denoted by LASM
degree, is shown as follows,

* LASM
degree: Select links with the top M largest degree as TLs.

We adopt the link extended betweenness as the load definition of links. The

load-based LAS, denoted by LASM
load, is shown as follows,

* LASM
load: Choose links with the top M largest load as TLs.

The complexity of the load-based LAS and the degree-based LAS are both 0,

because these approaches do not need to launch CFSor before selecting TLs.

Exhaustive Search Link Attack Strategy

From the attackers’ point of view, the strongest LAS is obtained by adopting

the exhaustive search, denoted by LASM
ES,

* LASM
ES: Find the M TLs, whose simultaneous failure yields the largest PoDN

under a given α.

The complexity of LASM
ES is (NL)M , which is similar to (NB)M of NASM

ES.

Proposed Link Attack Strategies

The proposed iterative procedures (i.e. Procedures 1, 2 and 3 in the main

manuscript) can also be adopted to investigate the attack strategy on links. The

reduced search space link attack strategy or RSS link attack strategy in short is

denoted by LASM
RSS. The procedures of selecting TLs for LASM

RSS are similar to

selecting TNs for NASM
RSS. The changes are to substitute the concepts related to

nodes with those of links. The complexity of LASM
RSS is M × (NL)2.
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(a) Single Link risk graph (b) Link integrated risk graph

Figure 4.6. The link risk graphs on IEEE 118 bus system.

Similarly, the procedures for finding TLs for NASM
RSS will keep a record of

round recommended combination set (RRCS), which can be used to construct link

risk graph (LRG). The procedure of constructing single LRG is similar to the

procedure of building single NRG. Instead of using link indices as labels, the labels

of vertices in the LRG are the corresponding directed links, e.g. 30→ 80. Attackers

can conduct single LRGs under different system tolerance values and combine them

to generate link integrated risk graph (LIRG). The LRG and LIRG of IEEE 118

bus system are demonstrated in Fig. 4.6.

When attackers have already obtained the LIRG of a power grid, they can

launch attacks based on the LIGR. This attack strategy is called the riskgraph-

based link attack strategy, denoted be LASM
riskgraph. The procedure to select TLs

for LASM
riskgraph from the LIRG is similar to that of selecting TNs for NASM

riskgraph

from the NIRG. In addition, the real-time complexity of LASM
riskgraph is 0, because

choosing TLs from the LIRG does not require to launch CFSor.



101

(a) (b)

Figure 4.7. A scale-free synthetic network and its node risk graph
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Figure 4.8. The performances versus M among four node attack strategies on the
scale-free synthetic network.

4.8.3 Experiments on Synthetic Network

The scale-free complex network, which follows the power-law distribution of

nodes and has the topological similarity to real man-made networks, is one of

the important types of synthetic network [36]. A 300-node scale-free network was

generated as the test benchmark of synthetic network. Its topological structure is

shown in Fig. 4.7(a).

From the perspective of attack, the scale-free network is vulnerable to ma-

licious attacks [24]. The proposed concepts and approaches are not restricted to
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cascading failure models and types of complex networks. Due to the lack of electric

features of the synthetic networks, we could not adopt the extended model and

the corresponding measurement metrics in the main manuscript to simulate cas-

cading failures and measure the damage of attacks. Instead, we adopted another

cascading failure model, the recoverable model [24], to set up the simulations. In

addition, the network efficiency was adopted as the measure metric. The details of

the recoverable model and the network efficiency measure could be found in [9, 24].

The procedures of conducting NASM
RSS and constructing risk graphs are sim-

ilar to that in the main manuscript. The difference is that the system tolerance

values for this synthetic network were chosen between 1 and 1.1. Due to the simi-

larity of experiments on nodes and links, we only conducted experiments on node

attacks. The node risk graph of the 300-node synthetic network is shown in Fig.

4.7(b). The comparison among NASM
degree, NAS

M
load, NAS

M
riskgraph and NASM

RSS

on the synthetic network is shown in Fig. 4.8, in which the horizontal and vertical

axes represent the number of target nodes and the network efficiency, respectively.

From the perspective of the attack performance measured by network efficiency,

the lower the network efficiency is, the stronger the attack is. The dashdotted red-

plus curve, the solid magenta-pentagram curve, the solid blue-square curve and the

solid green-star curve represent NASM
RSS, NASM

riskgraph, NASM
load and NASM

degree,

respectively. In Fig. 4.8, we could make similar observations from the comparison

among the four node attack strategies as follows.

� The proposed NASM
RSS and NASM

riskgraph are stronger than NASM
degree and

NASM
load. In addition, the solid magenta-pentagram curve entirely overlaps

the dashdotted red-plus curve in Fig. 4.8, which means NASM
riskgraph and

NASM
RSS have the same performance on this synthetic network.

� As the number of target nodes (i.e. M) increases, the increase of the attack
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Table 4.7. Complexity analysis between the exhaustive search and the reduced
search space attack strategies

P M = 1 M = 2 M = 3 M = 4 M = 5
16 ε = 0 ε = 0 ε = 0.0625 ε = 0 ε = 0
32 ε = 0 ε = 0 ε = 0.0625 ε = 0.0313 ε = 0
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Figure 4.9. The performances versus α among the ES and RSS attack strategies
on IEEE 118 bus system.

performance becomes slow and slow. From the attackers’ perspective, choos-

ing a few critical nodes will cause serious damage to the scale-free network.

4.8.4 Additional Experiments on Power Grid networks
Additional Comparison between the Exhaustive Search NAS and the
Reduced Search Space NAS

In this subsection, we continue to compare the proposedNASM
RSS withNASM

ES

on IEEE 118 bus system. Due to the huge search space of the exhaustive search,

we conducted experiments for NASM
ES with M ≤ 3. The maximum M for NASM

RSS

is set to 6. The results are shown in Fig. 4.9. Based on the subplots, it is clearly

seen that the dashdotted red-plus curves, representing NASM
RSS, exactly match the

blue-square solid curves, representing NASM
ES, in terms of the three measurement

metrics. The match demonstrate that The TNs of NASM
RSS, when M = 1, 2, 3,

are the same as those of NASM
ES, which can be verified from Table I and Table II

in the main manuscript. In other words, from the perspective of performance the
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Figure 4.10. The performances versus α among four node attack strategies on
IEEE 300 bus system

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

The Number of Target Link

P
er

ce
nt

ag
e 

of
 D

ro
p 

in
 N

et
−

ab
ili

ty

 

 

LAS
RSS
M

LAS
riskgraph
M

LAS
load
M

LAS
degree
M

(a) Measured by PoDN

1 2 3 4 5 6
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

The Number of Target Link

A
ve

ra
ge

 In
ve

rs
e 

G
eo

de
si

c 
Le

ng
th

 

 

LAS
RSS
M

LAS
riskgraph
M

LAS
load
M

LAS
degree
M

(b) Measured by AIGL

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Number of Target Link

C
on

ne
ct

iv
ity

 L
os

s

 

 

LAS
RSS
M

LAS
riskgraph
M

LAS
load
M

LAS
degree
M

(c) Measured by CL

Figure 4.11. The performances versus M among four link attack strategies on
IEEE 118 bus system

proposed NASM
RSS is comparable to NASM

ES.

In addition, let SetMES denote the set of M -node combination, identified as

top R strongest attacks by NSAM
ES, and SetMRSS denotes the set of M -node com-

binations, identified as top R strongest attacks by NSAM
RSS. We compare SetMES

with SetMRSS. We define R′ as the number of elements that are in SetMRSS but not

in SetMES. In other words, the reduced space search attack strategy would miss R′

strong attacks, which would otherwise be found by the exhaustive search attack

strategy. Then, we define metric ε as,

ε =
R′

R
(4.4)
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Figure 4.12. The performances versus α among four link attack strategies on IEEE
118 bus system

When ε = 0, the NSAM
RSS did ont miss any top R strongest attacks. The

larger ε is, the more attacks are missed by the NSAM
RSS. On IEEE 57 bus system,

we obtained ε through simulations, when M is set to be 1, 2, 3, 4 and 5, and R is

set to be 16 and 32, respectively. The results of ε are shown in the following Table

4.7.

We made two observations according to Table 4.7. First, ε is small, meaning

that the NSAM
RSS captures most strong attacks. Second, ε is not necessarily larger

for larger M values. Recall that NSAM
RSS is conducted in M rounds, and the top

M -node combinations are based on the top (M − 1)-node combinations. Take

M = 4 as an example. In third round, assume the strong 3-node combination

{a, b, c} is missed by the NSAM
RSS. In fourth round, will the NSAM

RSS surely miss

the combination {a, b, c, d}, assuming {a, b, c, d} is a strong 4-node combination?

The answer is sometimes no. This is because a subset of {b, c, d} could be included

in Set3RSS, and {a, b, c, d} can still be discovered in round 4.

Table 4.8. Description of IEEE 300 bus system.

Test benchmark NB NL NG ND

IEEE 300 Bus System 300 411 69 191
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Additional Comparison Among Node Attack Strategies

By adjusting the two parameters, P and R, the proposed node attack strate-

gies can be used to launch attacks on different sizes of power grid networks.

Here, we choose a moderate-scale power grid network, IEEE 300 bus system, to

test the four node attack strategies, which are NASM
RSS, NASM

riskgraph, NASM
load

and NASM
degree. The description of IEEE 300 bus system, included in MAT-

POWER [17], is shown in Table 4.8. The experiment results are demonstrated

in Fig. 4.10. The observations from Fig. 4.10 are consistent with those in the

main manuscript.

Comparisons among Link Attack Strategies

In this subsection, comparisons are made among LASM
RSS, LASM

riskgraph,

LASM
load and LASM

degree on IEEE 118 bus system. There are two important pa-

rameters for comparing different link attack strategies, the number of TNs (M)

and the system tolerance (α). Fig. 4.11 demonstrates the change of attack per-

formance against M , while Fig. 4.12 shows the change of attack performance

against α. In addition, there are three subplots in each figure, which shows the

results evaluated by the three different metrics, percentage of drop in neb-ablity,

average inverse geodesic length and connectivity loss. In each subplot, the dash-

dotted red-plus curve, solid magenta-pentagram curve, solid blue-square curve and

solid green-star curve represent LASM
RSS, LASM

riskgraph, LASM
load and LASM

degree, re-

spectively. According to these figures, we have the following observations and

discussions on link attack strategies.

First, the performance of the proposed LASM
riskgraph is close to that of LASM

RSS,

and much better than those of the LASM
degree and LASM

load. In addition, LASM
riskgraph

can represent one of the best performances availably by adopting search-based

approaches.
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Second, as the number of TLs (i.e. M) increases, fluctuations occur in the

performances of LASM
riskgraph, LASM

load and LASM
degree. The reason for the latter two

is that the metrics, degree and load, only explore the information of grid networks

before cascading failures. However, cascading failures are very complex and can

not easily predicted by these simple metrics. While, the reason of LASM
riskgraph is

that the construction of link risk graphs only considers the relationship between a

pair of links. However, when M ≥ 3, the TLs from LIRG might not stand for the

strongest attacks, therefore the attack performance downgrades a little.
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5.1 Abstract

The smart grids are often run near the operational limits because of increas-

ing electricity demand, where even small disturbances could possibly trigger major

blackouts. The attacks are the potential threats to trigger large-scale cascad-

ing failures in the smart grid. Specifically, the attacks mean to make substa-

tions/transmission lines lose functionality by either physical sabotages or cyber

attacks. Previously, the attacks are investigated from node-only/link-only per-

spectives, assuming attacks can only occur on substations/transmission lines. In

this work, we introduce the joint-substation-transmission-line perspective, which

assumes attacks can happen on substations, transmission lines, or both. The

introduced perspective is a nature extension to substation-only and transmission-

line-only perspectives. Such extension leads to discovering many joint-substation-

transmission-line vulnerabilities. Furthermore, we investigate the joint-substation-

transmission-line attack strategies. In particular, we design a new metric, the

component interdependency graph (CIG), and propose the CIG-based attack strat-

egy. In simulations, we adopt IEEE 30 bus system, IEEE 118 bus system and

Bay Area power grid as test benchmarks, and use the extended degree-based and

load attack strategies as comparison schemes. The CIG-based attack strategy has

stronger attack performance.

5.2 Introduction

The U.S. power grid has been developing over a century and becomes to a

extremely complicated system that has more than 55,000 substations and nearly

500,000 kilometers of transmission lines. Such a complex system likely experi-

ences severe blackouts, which cause catastrophe to modern societies. For instance,

Northeastern blackout of 2003 left more than 55 million people in dark for days

and resulted in estimated 10 billion economic loss [1, 2]. The emergence of the
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“Smart Grid”, the next-generation power transmission system [3], can significantly

increase the risks of system failures caused by errors from computer software and

hardware [4], cyber intrusions [5], and so on.

Generally speaking, large-scale blackouts are resulted from the cascading fail-

ure in power transmission systems [4, 6]. The triggers of cascading failures are

various and mainly include random causes and malicious attacks. First, there are

a wide variety of exogenous causes that can trigger cascading failures. Such causes

include natural disasters [7] (e.g., earthquakes, storms, blizzards, tornadoes, etc.),

errors from computer hardware and software [4], misoperation from operators,

vegetation sagging [1], increasing energy demand [8], and so on. In existing power

systems, although the failures resulted from random causes have been considered,

major blackouts are still inevitable.

Second, different from random causes, malicious attacks can be manipulated.

The well-designed attack strategies can choose a few critical components (i.e.,

substations and transmission lines) as targets. Successfully attacking these tar-

gets can trigger large-scale failures and severely weaken power transmission sys-

tems [9, 10, 14]. People who want to conduct attacks are referred to as attackers,

including computer hackers, terrorist groups, disgruntled individuals, or hostile

countries. Malicious attacks can be initiated by physical sabotages [20] or cyber

intrusions [5, 21]. In reality, physical sabotages includes individual attacks on

high-voltage transmission lines [22] and powerful EMP attacks from hostile coun-

tries [20]. Cyber intrusions are prevailing in smart grids [5] and can intentionally

destroy targets. Examples include “Aurora Generator Test” [23]. Conducted by

Department of Homeland Security (DHS) in 2007, this simulated cyber attack suc-

cessfully damaged a $ 1 million dollar large diesel-electric generator. The destroyed

generator is similar to many now in use throughout the U.S., which demonstrates
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the high possibility of cyber threats to the U.S. power grid. Although malicious

attacks have not yet resulted in large-scale blackouts, such attacks are greatly

potential to trigger big events [24].

In this work, we study malicious attacks against the power transmission sys-

tem. In particular, we introduce a new perspective to investigate the vulnerability

of power grids.

In the current literatures [9–11, 14], substations are referred to as nodes ;

transmission lines are referred to as links. Attacks against power systems have been

mainly investigated from node-only perspective [13, 16] and link-only perspective

[17, 25, 26], which assume attacks occur on nodes and links individually. It is

obvious that existing studies miss an important perspective: joint-node-link, which

assumes attacks can occur on nodes and links concurrently. This perspective is a

nature extension of node-only and link-only perspectives and has great impact on

investigating power grid vulnerabilities.

The advantages of joint-node-link perspective are threefold. First, such per-

spective can reveal the complex mechanisms of failure propagation in power sys-

tems. In existing major blackout cases [1, 8], tripping of transmission lines can

shut down power plants; failures of substations can trip transmission lines. Second,

vulnerability analysis from the joint-node-link perspective can discover new vulner-

abilities. Finally, from the attack’s point of view, the joint-node-link perspective

is insightful to find strong attack strategies.

In this work, we introduce the joint-node-link perspective to conduct the vul-

nerability analysis of power systems. In particular, we have done the following

works.

� Adopt the extended model [18] to set up the cascading failure simulator

(CFS) that can mimic the failures on both nodes and links.
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� Conduct the vulnerability analysis from the joint-node-link perspective, and

find extensive number of joint-node-link combinations that can yield severe

damage.

� Design a new metric, called component interdependency graph (CIG), to re-

veal the relationship among critical nodes and links from the attack’s per-

spective.

� Propose a novel joint-node-link attack strategy, called the CIG-based attack

strategy. The proposed scheme can choose both nodes and links as target

components (TCs).

� Perform extensive simulations to demonstrate the proposed CIG-based attack

strategy. Specifically, we adopt IEEE 30 bus system, IEEE 118 bus system

and Bay Area power grid as test benchmarks, and the extended degree-based

and load-based attack strategies as comparison schemes. Experiment results

show the CIG-based attack strategy has stronger attack performances.

The major contributions are (1) revealing many vulnerabilities that are not

previously demonstrated; (2) designing a new metric, CIG; (3) proposing the CIG-

based joint-node-link attack strategy.

This work is organized as follows. The related work is given in Section 5.3. In

Section 5.4, we briefly introduce the system model, including the extended model

and the cascading failure simulator. In Section 5.5, we demonstrate joint-node-

link vulnerabilities. In Section 5.6, we construct a new metric, called component

interdependency graph (CIG), and propose the CIG-based attack strategy. Section

5.7 includes all experiments and performance comparisons, followed by concluding

this work in Section 6.8.
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5.3 Related Work

In existing works, investigating attacks on power systems is mainly addressed

from three angles: cascading failure models, metrics development, target selection

on nodes or links.

Roughly speaking, cascading failure models include three categories, topo-

logical models [9, 10, 12, 14], power-flow models [16, 17, 26, 27] and the hybrid

model [18]. Although topological models are useful to study new attack strate-

gies [16], these models are far from mimicking power dynamics in power transmis-

sion systems, because they largely ignore the electric engineering properties [28].

Power-flow models, including ac and dc models, are accurate to mimic cascading

failures. Such models, however, require the detailed information of power systems

and need intensive computation [4]. The hybrid model is set up by combining

complex network theory and power flows [18]. This model is less complex, as well

as needing less information, than power-flow models, and more accurate than topo-

logical models. We compare this work with some representative works in Table

5.1. The first three columns show the models using in each work. In this work, we

adopt the hybrid model in [18] to study cascading failures.

Many metrics have been developed to help attackers identify target compo-

nents (i.e., target nodes or target links). Two metrics, degree and load, are pre-

dominant [9, 14–16, 16, 29]. They are developed by employing the structure or

initial load information of power grids. Complicated metrics include risk if failure

(RIF) [10], load distribution vector (LDV) [12], geographic information [13], risk

graph [19], etc. Although complicated metrics are useful to find strong attack

strategies, they are not prevailingly validated under different models. In Table 5.1,

we show the metrics investigated in each work from the fifth column to the twelfth

column. In this work, we compare the proposed metric, CIG, with the metrics,
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degree and load, in terms of studying joint-node-link attack strategies.

As discussed in Introduction, lots of studies focus on node-only investiga-

tion [9–11, 13, 14, 29]; many studies highlight link-only investigation [17, 25, 26];

only a few studies discuss the investigation on both nodes and links [12, 15, 18, 30],

but individually. It is obvious that existing works are not comprehensive, because

they miss an important direction, which is conducting vulnerability analysis from

the joint-node-link perspective. The last three columns in Table 5.1 clearly demon-

strate one significant difference between this work and existing works.

5.4 System Model
5.4.1 Grid Network

In this work, the grid is represented as a network H, where H = {N ,L}. N

is the set of nodes (i.e., substations); L is the set of links (i.e., transmission lines).

Nodes are divided into three groups, generation nodes (supplying power), demand

nodes (delivering power to customers), and transmission nodes. Let G denote the

set of generation nodes (G ⊆ N ); let D denote the set of demand nodes (D ⊆ N ).

Let KN , KL, KG and KD represent the number of nodes, links, generator nodes

and demand nodes, respectively. In addition, let ni denote node i (ni ∈ N ) and lj

denote link j (li ∈ L).

5.4.2 The Extended Model

The hybrid model in [18] is referred to as the extended model in this work.

This model was originally developed in [18, 31]. Generally speaking, using the

extended model to mimic the load distribution in the power grid is conducted as

follows.

� Inputs : the topology, the admittance matrix of links and the types of nodes.

For IEEE standard benchmarks [32], these information is included. For the

Bay Area power grid, these information can be estimated from the raw GIS



119

data (discussed in Section 5.7.1).

� Outputs : the extended betweenness and the net-ability. The extended be-

tweenness is used to model the load of nodes/links; the net-ability represents

how well the system works to supply power.

We briefly introduce the extended model as follows. For interested readers,

more details can be found in [18, 31].

First, power transfer distribution factors (PTDFs) matrix is one of dc power-

flow analysis methods [33]. Let F denote the PTDFs matrix, whose size is KL ×

KN . Each element in F, e.g., fji, represents the power change in lj when a unit

power is injected at ni and withdrew at the reference node [32].

Second, the extended betweennes (EB) is developed to model the load of a

node/link, which is calculated as follows.

� In power systems, power is transmitted from generation nodes to demand

nodes. Therefore, each generation-demand-node pair can cause power change

in links. Let g denote a generation node (g ∈ G); let d denote a demand node

(d ∈ D). Let f j
gd denote the power change in lj (link j) caused by the pair

of g and d. f j
gd is defined as,

f j
gd = fjg − fjd (5.1)

where fjg and fjd are the elements in F at lj row gth column and lj row dth

column, respectively.

� Each link, e.g., lj, has its own power flow limit, denoted by Pmax
lj

. For the

pair of g and d, let Pgd denote the capacity of power transmission between

them. In order to secure all links, Pgd is defined as,

Pgd = min
lj∈L

(
Pmax
lj

|f j
gd|

) (5.2)
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� The overall power distribution is determined by all generation-demand-node

pairs. For a link, e.g., lj, let EBlj denote its EB. EBlj is defined as,

EBli = max(EB+(li), |EB−(li)|) (5.3)

where EB+(li) represents the positive EB of li and EB−(li) represents neg-

ative EB of li,

EB+(lj) =
∑

g∈G
∑

d∈D Pgdf
j
gd iff j

gd > 0

EB−(lj) =
∑

g∈G
∑

d∈D Pgdf
i
gd iff j

gd < 0

For a node, e.g., ni, let EBni
denote its EB. EBni

is defined as,

EBni
=

1

2

∑
g∈G

∑
d∈D

Pgd

∑
lj∈L

|f j
gk|, nj 6= g 6= k (5.4)

EBni
is half of the summation of power flows in the links connecting ni.

Finally, the net-ability is used to evaluate how well the power system can

supply power. Let E(H) denote the net-ability of the power system H. E(H) is

defined as [31],

E(H) =
1

KG ×KD

∑
g∈G

∑
d∈D

Pgd

Zgd

(5.5)

where Zgd is the electric distance, equivalent to the impedance between the gener-

ation node g and the demand node d.

5.4.3 Cascading Failure Simulator

In our previous works [19, 34], we set up cascading failure simulator (CFS) for

node-only failures in the extended model. In this work, we extend the CFS in [34]

to study failures on both nodes and links. The extended CFS is demonstrated in

Algorithm 1. We briefly explain it as follows.

1. Load : We adopt the EB to model the load of nodes/links. The EB before

removals (or attacks) is called the initial load. After the occurrence of re-

movals, the entire grid might be broken into subgrids. We recalculate the

EB for all nodes/links in each subgrid separately, and update the load.
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Function CFS(H, α, RL)
Input: Input parameters
H: the Power grid network, with KN nodes and KL links
α: system tolerance
RL: the list of target components
Output: PoDN, CL
/* Obtain the initial load for all components */

Calculate initial extended betweenness for all components in H;

EBinit
N ← Nodes’ initial extended betweenness ;

EBinit
L ← Links’ initial extended betweenness ;

/* Calculate the capacity for all components */

CN ← α×EBinit
N ;

CL ← α×EBinit
L ;

/* Failed Component List: FCL */

FCL ← RL ;
overloading ← 1 ;
while overloading do

overloading ← 0 ;

H′ ← H by removing all components in FCL ;

Calculate new extended betweenness for all components in H′
;

EBnew
N ← Nodes’ new extended betweenness ;

EBnew
L ← Links’ new extended betweenness ;

for i = 1, ...,KN do
if EBnew

N (i) > CN (i) then /* Node i is overloaded. */

overloading ← 1 ;
FCL ← FCL ∪ node i ;

end if

end for
for j = 1, ...,KL do

if EBnew
L (j) > CL(j) then /* Link j is overloaded. */

overloading ← 1 ;
FCL ← FCL ∪ link j ;

end if

end for

end while
/* Cascading failures stop and measure the damage. */

Measure the damage caused by the initial removals in terms of PoDN and
CL.

end
Algorithm 1: Cascading Failure Simulator
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2. System Tolerance: We assume each substation/transmission line has the

capacity, i.e., the maximum load it can tolerate [14]. The capacity of a

node/link is proportional to its initial load. We introduce α to denote the

proportional rate or system tolerance. For simplicity, α is assumed to be the

same for all components [9, 14, 15].

3. Overloading : In the CFS, we check the overloading round by round. Within

each round, we do the following steps. First, update the load for all com-

ponents. Second, check the overloading for each node/link. If the load of a

node/link in this round exceeds its capacity, this node/link is overloaded. If

a link is overloaded, remove this link; if a node is overloaded, remove this

node and all links connecting this node. Third, if there are not overloaded

components in this round, the CFS stops; otherwise, the CFS continues for

next round.

5.4.4 Assessment Measures

In this work, we adopt two measures to evaluate the damage caused by the

attack. The primary measure is percentage of drop in net-ability (PoDN), which

is defined as [18],

PoDN =
E(H)− E(H′

)

E(H)
(5.6)

where E(H) represents the net-ability before the attack and E(H′
) represents the

net-ability after the attack. The larger PoDN is, the stronger the attack is.

The secondary measure is connectivity loss (CL), which is defined as [11],

CL = 1− 〈
Kd
G

KG
〉
d

(5.7)

where KG is the number of total generation nodes, and Kd
G is the number of gen-

eration nodes connecting the demand node d. The averaging, 〈•〉, is conducted

over all remaining demand nodes after cascading failures. CL can evaluate how
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Table 5.2. Joint-node-link vulnerability analysis on IEEE 30 bus system
M -component
combination

Node-only Link-only Joint-node-link
# of

combinations
% of

vulnerabilities
# of

combinations
% of

vulnerabilities
# of

combinations
% of

vulnerabilities
M = 2 435 18.91% 820 33.13% 1,230 47.95%
M = 3 4,060 7.61% 10,660 18.59% 42,435 73.8%
M = 4 27,405 2.94% 101,270 10.35% 842,960 86.71%

well demand nodes structurally connect to generation nodes. The larger CL is, the

stronger the attack is.

5.4.5 Summary

In this work, attacking/removing a node/link means to disconnect it from

the entire grid. Investigating the strength of attacking targets (i.e., nodes, links,

or both) is conducted through the CFS by removing targets to trigger cascad-

ing failures. The CFS adopts the extended betweenness to represent the load of

nodes/links. Cascading failures occur when the load of a node/link exceeds its ca-

pacity, which is calculated by multiplying the system tolerance (α) with the initial

load of the node/link. When the CFS stops, the damage is evaluated in terms of

PoDN and CL.

5.5 Joint-node-link Vulnerability Analysis
5.5.1 Concepts of Combinations and Vulnerabilities

Before demonstrating joint-node-link vulnerabilities, we briefly introduce sev-

eral concepts as follows.

� A multiple-component combination is referred to as a group of nodes, links

or both. We conduct vulnerability analysis based on such combinations.

� In simulations, we perform the removals for a multiple-component combina-

tion to possibly trigger cascading failures. The strength of this combination

is referred to as the damage, e.g., measured by PoDN in Equ. 5.6, after the

cascading failure.
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� The vulnerability of the power grid has broad meanings. In particular, we

define vulnerabilities as the multiple-component combinations that can yield

large strength.

� Node-only vulnerabilities are referred to as the node-only combinations with

large strengths.

� Link-only vulnerabilities are referred to as the link-only combinations with

large strengths.

� Joint-node-link vulnerabilities are referred to as the joint-node-link combina-

tions with large strengths.

5.5.2 Demonstration of Joint-node-link Vulnerabilities

We adopt IEEE 30 bus system [32] as the test benchmark for demonstration.

This power system consists of 30 nodes (i.e., KN = 30) and 41 links (i.e., KL = 41).

There are in total 71 power network components (i.e., nodes and links). We label

the nodes from n1 to n30 and the links l1 to l41 for discussion.

For demonstration, referring to the combination consisting of M components,

there are in total
(
KN +KL

M

)
M -component combinations. We divide these combina-

tions into three categories as follows.

� Node-only combination: The combination consists of nodes only. There are

in total
(
KN
M

)
such node-only combinations.

� Link-only combination: The combination consists of links only. There are in

total
(
KL
M

)
such link-only combinations.

� Joint-node-link combination: The combination includes at least one node

and at least one link. In other words, except node-only and link-only com-
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Table 5.3. Top Ten strongest combinations in IEEE 30 bus system

Index Two-component Three-component Four-component
1 n6,l37 l6,l22,l29 n5,n12,n21,l3
2 n6,l38 n5,n6,l37 n5,n12,l3,l28

3 n5,n6 n5,n6,l38 n5,n18,l6,l29

4 n6,n7 n6,n7,l37 n5,n21,l6,l22

5 n6,l5 n6,n7,l38 n7,n12,l3,l29

6 n6,l8 n6,l5,l37 n9,n13,n30,l2
7 n6,l39 n6,l5,l38 n9,n30,l2,l16

8 l6,l29 n6,l8,l37 n11,l6,l22,l29

9 n6,n9 n6,l8,l38 n12,n21,l3,l5
10 n6,n11 n6,n9,l37 n12,n21,l3,l8

binations, the remaining combinations are the joint-node-link combinations.

There are in total
(
KN +KL

M

)
−
(
KN
M

)
−
(
KL
M

)
such joint-node-link combinations.

In particular, we study all two-component, three-component and four-

component combinations, i.e., M = 2, 3, 4. Take M = 2 as an example. In

IEEE 30 bus system, there are in total
(

71
2

)
= 2,485 two-component combinations.(

30
2

)
= 435 of them are node-only combinations;

(
41
2

)
= 820 of them are link-only

combinations; the reminding 1,230 of them are joint-node-link combinations.

Furthermore, for each two-component combination, we remove these two com-

ponents in the CFS to possibly trigger cascading failures. When the CFS stop, the

strength is evaluated in terms of PoDN. We introduce the threshold η to quantify

the strong attack. Specifically, when PoDN ≥ η, the multiple-component combi-

nation yields strong attack performance. We are interesting in these combinations

yielding strengths. Numerically, we set η to be 0.2 (20% drop in net-ability is an

important sign of system failure [30]). Among all 2,485 two-component combina-

tions, there are 1,606 strong attacks, where joint-node-link vulnerabilities account

for 47.95%, node-only vulnerabilities account for 18.91%, and link-only vulnerabil-

ities account for 33.13%.

We conduct similar study for all three-component combinations and four-
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component combinations, respectively. The analytical results are showed in Table

5.2. In addition, in Table 5.3 we show these combinations that yield top ten largest

PoDN values. These combinations represent the strongest attack performances.

Based on Tables 5.2 and 5.3, we have the following observations regarding joint-

node-link vulnerability analysis.

� The joint-node-link perspective can significantly enlarge the number of

multiple-component combinations. In Table 5.2, it is apparent that the num-

ber of joint-node-link combinations is much larger than those of node-only

combinations and link-only combinations. For instance, when M = 4, there

are 842,960 joint-node-link combinations. This number is much larger than

27,405 node-only combinations and 101,270 link-only combinations.

� Joint-node-link vulnerabilities contribute to a big portion of entire vulnera-

bilities. Seen from Table 5.2, joint-node-link vulnerabilities account for the

biggest portion and increase sharply, from 47.95% at M = 2 to 86.71% at

M = 4.

� Joint-node-link combinations can yield top strongest strengths. In Table 5.3,

for instance, 6 out of 10 two-component combinations, 9 out of 10 three-

component combinations and all 10 four-component combinations consist

of both nodes and links. In other words, joint-node-link combinations can

yield large strengths, even larger than those of the strongest node-only and

link-only combinations.

In summary, joint-node-link combinations are of importance to investigate

vulnerabilities and attack strategies in power transmission systems.
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Input: H = {N ,L}, α, P , and Q
SetCNs ← ∅ , SetCLs ← ∅
Set1RCC ← ∅
xi ← 0 , 1 ≤ i ≤ KN
yj ← 0 , 1 ≤ j ≤ KL
for i = 1, ...,KN do

PoDN = CFS( G, α, RL = [node i])
xi = PoDN

end
for j = 1, ...,KL do

PoDN = CFS( H, α, RL = [link j])
yj = PoDN

end

N ′ ← sort N descendingly according to x

L′ ← sort L descendingly according to y

SetCNs ← first P nodes in N ′

SetCLs ← first P links in L′

Set1RCC ← first Q nodes in N ′ ∪ first Q links in L′

Algorithm 2: Iteration initialization

5.6 Joint-node-link Attack Strategy

In this section, we introduce joint-node-link attack strategies, which are re-

ferred to as the methods that can select both nodes and links together as target

components (TCs). In particular, we design a new metric, called the component

interdependency graph (CIG), and propose the joint-node-link attack strategy.

We introduce the design of CIG in Section 5.6.1 and the CIG-based joint-node-

link attack strategy in Section 5.6.2.In Section 5.6.3 we extend existing load-based

and degree-based node-only/link-only attack strategies to the load-based/degree-

based joint-node-link attack strategies.

5.6.1 Introduction to Component Interdependency Graph

In our previous works [19, 34], we introduced the metric, risk graph (RG),

which could be adopted to design strong node-only/link-only attack strategies.

Previously, RGs of nodes and links were constructed separately. These RGs cannot

accurately reveal the relationship among nodes and links in terms of finding joint-
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Input: H = {N ,L}, α, P , Q, SetCNs, SetCLs, and Setm−1
RCC

SetmRCC ← ∅
/* Temporary combination set Settmp. */

Settmp ← ∅
for i = 1, ...,m×Q do

RCCi ← the ith combination in Setm−1
RCC

for j = 1, ..., P do
cnj ← the jth candidate node in SetCNs

/* Obtain a new component combination */

newCombination← RCCi ∪ cnj
Settmp ← Settmp ∪ newCombination

end
for j = 1, ..., P do

clj ← the jth candidate link in SetCLs

/* Obtain a new component combination */

newCombination← RCCi ∪ clj
Settmp ← Settmp ∪ newCombination

end

end
/* There are m×Q× 2P new combinations in Settmp. */

zo ← 0 , 1 ≤ o ≤ m×Q× 2P
for o = 1, ...,m×Q× 2P do

RL ← the oth combination in Settmp

PoDN = CFS( H, α, RL)
zj = PoDN

end

Set
′
tmp ← sort Settmp descendingly according to z

/* Determine m+ 1 groups for SetmRCC. */

for k = 1, ...,m+ 1 do

SetmRCC ← SetmRCC∪ first Q combinations in Set
′
tmp, each of which consists

of k − 1 nodes and m− k + 1 links.
end
Finally, SetmRCC includes (m+ 1)× P combinations.

Algorithm 3: Find SetmRCC under given Setm−1
RCC (2 ≤ m ≤M)
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node-link combinations with strong strengths. In this work, we generalize the idea

of RG to the idea of CIG for specifically investigating the joint-node-link attack

strategy.

Iterative Procedure

The iterative procedure in [34] is very useful to obtain node-only/link-only

combinations that can yield strong strengths. This rationale can be generalized

to obtain joint-node-link combinations that can yield strong strengths. Briefly

speaking, we make two modifications. First, we extend the procedure of finding

node-only/link-only combinations to obtain joint-node-link combinations. Second,

we change the conditions to keep the required multiple-component combinations.

The new conditions are (1) the strengths of the kept combinations are as large as

possible, (2) the number of links in final combinations should be equal to that of

nodes, the goal of which is to balance numbers of links and nodes.

The modified procedure is presented in Algorithms 2 and 3. In particular,

Algorithm 2 is to initialize the iteration; Algorithm 3 shows the details of one-

round iteration. Introduction of the iterative procedure is given as follows.

� Suppose the power network has KN nodes and KL links, where there are in

total KN +KL grid components.

� Suppose the iterative procedure has M rounds, including an initial round

(i.e., 1st round) and M − 1 iteration rounds (i.e., from the 2nd round to the

M th round). In each round, the task is to choose the multiple-component

combinations that meet the two aforementioned conditions. The chosen com-

binations are referred to as round chosen combination set (RCCS), denoted

by SetRCC . The combinations chosen in each round, e.g., the mth round

(1 ≤ m ≤M), is denoted by SetmRCC .
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Table 5.4. An realization of RCCS on IEEE 30 bus system
Index Set1RCC Set2RCC Set3RCC Set4RCC Set5RCC Set6RCC

1 n6 n6,n7 n6,n7,n9 n5,n6,n7,n9 n5,n6,n7,n9,n11 n3,n6,n7,n9,n11,n18
2 n9 n5,n6 n5,n6,n7 n6,n7,n9,n11 n6,n7,n9,n11,n18 n3,n5,n6,n7,n9,n18
3 n10 n6,n9 n6,n7,n11 n5,n6,n7,n11 n5,n6,n7,n9,n18 n3,n5,n6,n7,n11,n18
4 n15 n6,n21 n5,n6,n9 n5,n6,n9,n11 n5,n6,n7,n11,n18 n5,n6,n7,n9,n11,n18
5 l6 n6,l37 n6,n7,l37 n6,n7,n9,l37 n5,n6,n7,n9,l37 n5,n6,n7,n9,n11,l37
6 l11 n6,l6 n5,n6,l37 n5,n6,n7,l37 n6,n7,n9,n11,l37 n5,n6,n7,n9,n11,l6
7 l14 n6,l11 n6,n9,l37 n6,n7,n11,l37 n5,n6,n7,n11,l37 n5,n6,n7,n9,n11,l11
8 l3 n6,l14 n6,n21,l37 n5,n6,n9,l37 n5,n6,n9,n11,l37 n5,n6,n7,n9,n11,l14
9 l6,l29 n6,l6,l37 n6,n7,l6,l37 n6,n7,n9,l6,l37 n5,n6,n7,n9,l6,l37
10 l3,l11 n6,l11,l37 n6,n7,l11,l37 n6,n7,n9,l11,l37 n5,n6,n7,n9,l11,l37
11 l3,l14 n6,l14,l37 n6,n7,l14,l37 n6,n7,n9,l14,l37 n5,n6,n7,n9,l14,l37
12 l6,l36 n6,l3,l37 n6,n7,l3,l37 n6,n7,n9,l3,l37 n5,n6,n7,n9,l3,l37
13 l6,l22,l29 n11,l6,l22,l29 n6,n7,l6,l11,l37 n6,n7,n9,l6,l11,l37
14 l6,l29,l35 n6,l6,l11,l37 n6,n7,l6,l14,l37 n6,n7,n9,l6,l14,l37
15 l6,l29,l32 n6,l6,l14,l37 n6,n7,l3,l6,l37 n6,n7,n9,l3,l6,l37
16 l6,l26,l29 n6,l3,l6,l37 n6,n7,l6,l29,l37 n6,n7,n9,l6,l29,l37
17 l6,l19,l22,l29 n6,l6,l11,l14,l37 n6,n7,l6,l11,l14,l37
18 l6,l22,l29,l35 n6,l3,l6,l11,l37 n6,n7,l3,l6,l11,l37
19 l6,l16,l29,l35 n6,l6,l11,l29,l37 n6,n7,l6,l11,l29,l37
20 l6,l26,l29,l35 n6,l6,l11,l28,l37 n6,n7,l6,l11,l28,l37
21 l6,l16,l29,l35,l37 n13,l6,l16,l29,l35,l37
22 l1,l6,l22,l29,l35 n11,l6,l16,l29,l35,l37
23 l3,l6,l16,l29,l35 n29,l3,l6,l16,l29,l35
24 l6,l16,l29,l35,l41 n6,l3,l6,l11,l14,l37
25 l6,l16,l29,l35,l37,l41
26 l6,l16,l26,l29,l35,l37
27 l3,l6,l16,l28,l29,l35
28 l3,l6,l7,l16,l29,l35

� In the 1st round, the procedure is initialized, which is shown in Algorithm 2.

The initialization process is conducted as follows. First, set up the system

tolerance α and conduct all one-node and one-link attacks. Second, among

all one-node attacks, select P nodes with top largest attack strengths as can-

didate nodes, denoted by SetCNs; among all one-link attacks, select P links

with top largest strengths as candidate links, denoted by SetCLs. (Briefly

speaking, we select these critical nodes and links as candidate nodes and

links.) Finally, we determine Set1RCC by selecting Q nodes with top largest

attack strengths among all nodes, as well as selecting Q links similarly.

� In the following each found, e.g., the mth round, SetmRCC is determined, which



131

is shown in Algorithm 3. In particular, SetmRCC includes (m+ 1) groups, and

each group includes Q multiple-component combinations. In other words,

there are in total Q × (m + 1) combinations in SetmRCC . In the kth group

(1 ≤ k ≤ m + 1), the combination consists of k − 1 nodes and m − k + 1

links. For instance, when m = 4 and k = 2, Set4RCC has 5 groups, and the

combination in the 2nd group consists of 2 nodes and 2 links. The rationale

behind this design is to ensure that the number of links is the same as that

of nodes in SetmRCC .

� When the iterative procedure stops, the determined SetRCC includes

{Set1RCC , Set
2
RCC , ..., Set

M
RCC}.

In particular, based on the aforementioned discussions, the proposed iterative

procedure in this work is different from that in [34] in two aspects. First, we

initialize the iteration, in the first round, by selecting both candidate nodes and

candidate links, denoted by SetCNs and SetCLs, respectively. Also, Set1RCC includes

equal numbers of first round chosen nodes and links. Previously, we only considered

the scenario of node-only/link-only combinations [34]. Second, we keep Q×(m+1)

combinations in each iteration round, which increases as m increases. Nodes and

links can cause different damages to the power system, and the new procedure can

balance the numbers of links and nodes appearing in SetmRCC . In [34], however,

we kept a constant number (i.e., Q) of node-only/link-only combinations in each

iteration round.

In Table 5.4, we present a realization of RCCS (i.e., SetRCC) on IEEE 30 bus

system, where α = 1.5, M = 6, P = 30 and Q = 4. Take m = 3 (the third found)

as an example. Set3RCC includes 4 (i.e., m+ 1) groups, and each group has 4 (i.e.,

Q) three-component combinations. In the first group, the combination consists of

3 nodes; in the second group, the combination consists of 2 nodes and 1 link; in the
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third group, the combination consists of 1 node and 2 links; in the fourth group,

the combination consists of 3 links.

There are four parameters, α, M , P and Q. First, α represents the system

tolerance. This parameter has big effect on the nodes and links kept in Table 5.4,

which will be discussed late in Section 5.6.1. Second, M represents the maximum

number of nodes/links that the attacker wants to remove from the power system.

Because of the orderly network structure, the power system has critical grid com-

ponents, removing a few of which can collapse the entire grid [35]. Therefore, in

practical attack scenario, M can be a small number, e.g., M = 6 in Table 5.4.

Finally, P and Q are of importance to limit the search space in Algorithm 3. For

P , its value is determined according to the scale of power systems (i.e., KN ). For

the small-scale system, P can be set to KN . For the large-scale grid, P can be a

number that is much smaller than KN . That is to select critical nodes and links as

candidate nodes and links. For Q, its value is not necessary to be large, e.g., Q = 4

in Table 5.4, because choosing a few strongest multiple-component combinations

within each iteration round are enough to find strong attacks.

Construction of Component Interdependency Graph

With the availability of RCCS (a realization is shown in Table 5.4), we can

construct a new metric, component interdependency graph (CIG). The procedure of

constructing CIG is similar to that of constructing RG in [34]. We briefly introduce

the construction idea. For interesting readers, the details are included in [19, 34].

� The nodes and links in SetRCC (or Table 5.4) become the vertexes individ-

ually in CIG. For the repetitive ones, merge them together as one vertex.

Assign the weight for each vertex, referred to as vertex occurrence frequency

(VOF). The VOF value is the number of times that the vertex appears in

SetRCC .
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� Add an edge between each pair of vertexes in CIG and assign the weight for

each edge, referred to as edge occurrence frequency (EOF). Initially, EOF

value is 0.

� Examine each combination in SetRCC and update EOF. Take the combina-

tion {n6, n7, l37} in Table 5.4 as an example. Assign the overall weight of the

combination as 1, and add the EOF of three edges by 1
3
, which are edgen6−n7 ,

edgen6−l37 and edgen7−l37 .

� Delete the edges, whose EOF value equals to 0, and obtain CIG.

Construction of CIG highly depends on RCCS. For a given power system, the

system tolerance α is the major factor of generating RCCS, as well as constructing

CIG. In other words, CIG is sensitive to α. In reality, however, system tolerance

values are rarely known by attackers [15]. In existing studies [9, 14], researchers

usually assume that all components have the same α, and choose representative

values.

In this work, we choose three representative α values, 1.2, 1.5 and 1.8, to sim-

ulate the “low”, “middle” and “high” system tolerance scenarios, respectively. Un-

der each chosen system tolerance, we construct one CIG. Then, we merge the three

CIGs together to generate integrated component interdependency graph (ICIG).

Compared with single CIG, ICIG is more robust and representative. The ICIG on

IEEE 30 bus system is demonstrated in Fig. 5.1, where sizes and colors of vertices

(edges) are determined by VOF (EOF) values. For simplification of demonstra-

tion, we use the index of a node to represent the node and two endpoints of a link

to represent the link. In Fig. 5.1, for instance, n6 is shown as 6 and l29 is shown

as 21-22.
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Figure 5.1. The integrated component interdependency graph of IEEE 30 bus
system

5.6.2 CIG-based Attack Strategy

In ICIG, the criticality of single node/link is determined by the VOF, high-

lighted by the size and color of the vertex in Fig. 5.1. The bigger and darker a

vertex is, the more critical the corresponding node/link is. The relationship of a

pair of components is decided by the EOF, highlighted by the size and color of

the edges. The wider and darker an edge is, the higher possibility this pair of

components can yield large strength against the power system. Such information

is useful to design strong attack strategy.

Based on ICIG, we propose the CIG-based attack strategy, denoted by ASCIG.

Suppose the attacker wants to choose U nodes and V links as target components

(TCs). U and V are both integers and U + V ≥ 1, where 0 ≤ U ≤ M and

0 ≤ V ≤ M . (Recall M is one of parameters to construct CIG in Section 5.6.1.)

ASCIG is conducted as follows.

� Construct ICIG for a power system. M is chosen to be larger than both U

and V .
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� If U + V = 1, a TC is chosen from ICIG. There are two cases, U = 1 &

V = 0 (i.e., single-node attack) or U = 0 & V = 1 (i.e., single-link attack).

For the first case, the node with the largest VOF value in ICIG is selected

as target node (TN). For the second case, the link with the largest VOF in

ICIG is selected as target link (TL).

� If U + V > 1, multiple TCs are chosen from ICIG. These TCs are deter-

mined as follows. First, find all multiple-component combinations in ICIG.

Each combination consists of U nodes and V links, and each pair of these

components should have a direct edge. Second, for each combination, the

summation of EOF on all edges is computed. The combination that has the

largest EOF summation is chosen as TCs.

According to Fig. 5.1, for instance, the attacker can choose node 6 as TC

for single-node attack and link 21-22 as TC for single-link attack. If the attacker

wants to two TCs, a node and a link, node 6 and link 21-22 are together chosen

as TCs.

The rationale behind choosing single TC or multiple TCs is different. When

launching single-component attack, the TC is recommended by using VOF, similar

to the functionality of the metrics, degree and load. When launching multiple-TC

attack, these TCs are determined by EOF, because these TCs are tightly connected

in ICIG, which means their pairs appear most frequently in RCCS (or in Table

5.4).

5.6.3 Degree-based and load-based Attack Strategies

In existing works [14–16, 36], two metrics, degree and load, have been pre-

vailingly studied for the node-only/link-only attack strategies. In this section, we

extend existing load-based and degree-based node-only/link-link attack strategies
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to load-based and degree-based joint-node-link attack strategies.

In power networks, “node degree” is defined as the number of links connecting

with the node [14]. Definition of “link degree” is related to the definition of “node

degree” [15]. Specifically, the degree of a link is defined as the summation of two

nodes’ degrees that this link connects. Let ASdegree denote the degree-based attack

strategy. When the attacker wants to choose U nodes and V links as TCs, ASdegree

is conducted as follows,

� Sort all nodes descendingly according to their degrees, and select top U

nodes; sort all links descendingly according to their degrees, and select top

V links.

In this work, we adopt the extended betweenness as the load definition of

nodes/links (discussed in Section 5.4). Let ASload denote the load-based attack

strategy. ASload is conducted similarly as ASdegree, by replacing “degree” with

“load”.

Although we mainly discuss the joint-node-link attack strategy in this work,

these three aforementioned attack strategies, i.e., ASCIG, ASdegree and ASload, can

be specialized to node-only/link-only attack strategies as follows.

� When V = 0, the joint-node-link attack strategy turns to the node-only

attack strategy.

� When U = 0, the joint-node-link attack strategy turns to the link-only attack

strategy.

5.7 Performance Evaluations and Discussions

In this work, we conduct all simulations in MATLAB environment. Three

power systems are employed as test benchmarks, IEEE 30 bus system, IEEE 118

bus system and Bay Area power grid in California, United States. The first two are
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included in MATPOWER [32]; the last one is the power system that are currently

in use. We purchased the raw power system data from Platts [37]. The brief

description of three test benchmarks is given in Table 5.5.

Table 5.5. Brief description of test benchmarks

Test Benchmarks KN KL KS KD
IEEE 30 bus system 30 41 6 20
IEEE 118 bus system 118 179 54 99
Bay Area power grid 603 846 146 184

5.7.1 Construction of Bay Area Power Grid

In this section, we introduce the construction of Bay Area power grid from

the raw data. The original data format is provided with GIS shapefiles, including

substation layer, transmission line layer, generator unit layer and power plant layer.

Generally speaking, building the grid from the raw GIS data includes three aspects,

(1) chipping the grid raw data, (2) constructing the grid topology, (3) identifying

the electric features, such as substation types and transmission line reactance. We

briefly introduce the construction of Bay Area power grid according to [38] and [39]

as follows.

� Chipping the grid raw data: Bay Area power grid data is chipped from

the entire North American power network in ArcGIS desktop [40].

� Building the grid topology: The topology of Bay Area power grid is

constructed mainly according to raw data in the transmission line layer.

Transmission lines are viewed as links; the endpoints of transmission lines

are viewed as nodes. The raw power network include one large-scale network

and a few small-scale networks. After manually eliminating the small-scale

ones, Bay Area power grid topology is set up.
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� Determining electric features: In this work, we adopt the extended model

to set up CFS. This model needs the electric information about substation

types (i.e., generation substation, demand substation and transmission sub-

station) and the reactance of transmission lines. We estimate those infor-

mation as follows. First, the type of nodes is determined by exploiting the

information in raw data. According to the explanations from Platts [39],

two types of nodes are identified to be generation nodes, (1) the node is

associated with a 10 KV (kilovolt) transmission line, (2) the node is geo-

graphically close to a power plant (within 1 KM in this work). According

to the introduction of North American power transmission system [38], the

nodes, whose maximum voltage is less or equal to 69 KV but more than 0

KV, are considered to be demand nodes. Other nodes are viewed as trans-

mission nodes. Second, the reactance of a transmission line is determined

by its physical properties. There is a linear relation between the length and

the reactance. According to [41], we set the ratio between the length and

the reactance as 0.4Ω/KM(ohm/kilometer). That is, the reactance of a 20

KM length transmission line is 8Ω. With the availability of the length of

transmission lines in raw data, we can simply estimate the reactance.

In summary, Bay Area power grid has 846 transmission lines and 603 nodes,

where there are 146 generation nodes and 184 demand nodes.

5.7.2 Comparison Set-up

When discussing the joint-node-link attack strategy, a question comes out

naturally that how to balance between choosing nodes and links as TCs. In reality,

attacking substations and transmission lines are both highly possible [42, 43]. In

this work, it is not our focus to specifically discuss how hard for attackers to fail a

substation or a transmission line. Instead, we conduct the comparison as follows.
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� It is a fact that attacking substations or transmission lines both needs the

resource from the attacker. Specifically, we assume that attacking a substa-

tion needs γ1 units resource and attacking a transmission line needs γ2 units

resource.

� Also, the attacker has the overall resource to launch attacks. Suppose the

attacker has in total Γ units resource. In particular, we assume that γ1, γ1

and Γ are all integers, where 1 ≤ γ1, γ2 ≤ Γ.

� Having Γ units resource, the attacker can make different decisions, depending

on how to use the resource. For instance, the attacker can fully or partially

utilize these Γ units resource, aiming to obtain the maximum damage to the

power system. When the attacker wants to choose U nodes and V links as

TCs under given γ1, γ2 and Γ, pairs of U and V are calculated as follows.

Find : (U, V )

s.t.


U ∗ γ1 + V ∗ γ2 ≤ Γ

U + V ≥ 1

U ≥ 0

V ≥ 0

(5.8)

� Recall U and V are non-negative integers, presenting the number of

nodes and links chosen by the attacker. We can search for all quali-

fied pairs of (U ,V ) and put them into a set, denoted by Λ. Take Γ =

4, γ1 = 2 and γ1 = 1 as an example. Λ includes eight pairs, i.e.,

{(0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (2, 0)}. Take the pair (1, 2) as

an example. This pair mean that the attacker chooses 1 node (i.e., U = 1)

and 2 links (i.e.,V = 2) as TCs. Specifically choosing which node and links

depends on different attack strategies. For instance, ASdegree will choose the

node with the largest node degree and two links with top two largest link

degrees as TCs (discussed in Section 5.6.3).
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Figure 5.2. Performance comparisons among three attack strategies on IEEE 30
bus system, where γ1 = 1 and γ2 = 1

� Under given γ1, γ2 and Γ, an attack strategy, e.g., ASCIG, might have multiple

choices, i.e., the pairs in Λ. We conduct the simulation for all pairs and can

obtain the maximum attack performance in terms of PoDN for ASCIG. We

do similar simulations and operation for ASload and ASdegree, and conduct

performance comparison among these attack strategies.

5.7.3 Performance Comparison among CIG-based, degree-based and
load-based attack strategies

We specialize performance comparisons as follows. First, we adopt IEEE 30

bus system, IEEE 118 bus system and Bay Area power grid as test benchmarks.

Second, we assume the attacker has limited resource. In particular, Γ is set to

be 1, 2, ..., or 8 (i.e., 1 ≤ Γ ≤ 8). Finally, in order to mimic different ways of

distributing resource on selecting TNs and TLs, we set γ1 and γ2 as the following

two scenarios,

� Scenario I : γ1 = 2 and γ2 = 1. Attacking a node needs 2 units resource;

attacking a link needs 1 unit resource.



141

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resource

P
er

ce
nt

ag
e 

of
 D

ro
p 

in
 N

et
−

ab
ili

ty

 

 

AS
CIG

AS
load

AS
degree

(a) Measured By PoDN

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resource

C
on

ne
ct

iv
ity

 L
os

s

 

 

AS
CIG

AS
load

AS
degree

(b) Measured By CL

Figure 5.3. Performance comparisons among three attack strategies on IEEE 30
bus system, where γ1 = 2 and γ2 = 1.

� Scenario II : γ1 = 1 and γ2 = 1. Attacking a node or a link both needs 1 unit

resource.

The meaning of Scenario I is straightforward. Substations are harder to be at-

tacked. In reality, substations are complicated and under well protection; transmis-

sion lines usually spread in very long distances (typically hundreds of kilometres),

which can be easily found and attacked. In 2013, for instance, it was reported that

a man in Arkansas launched a series of attacks on local high-voltage transmission

lines [22]. The emergence of the Smart Grid, however, can dramatically increase

the chances of cyber intrusions [21], which make substations possibly as vulnerable

as transmission lines. Therefore, Scenario II is likely with consideration of cyber

attacks in smart grids.

It is definite that the attacker can have more resource and the values of γ1

and γ2 can be others. We select the group of Γ values and two scenarios of setting

γ1 and γ2 for demonstration purpose only.
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Figure 5.4. Performance comparisons among three attack strategies on IEEE 118
bus system, where γ1 = 1 and γ2 = 1.

Performance comparisons among ASdegree, ASload and ASCIG are shown in

Figs. 5.2 and 5.3 on IEEE 30 bus system, in Figs. 5.4 and 5.5 on IEEE 118

bus system and in Figs. 5.6 and 5.7 on Bay Area power grid. In each figure,

there are two subfigures, which represent the performances are measured in terms

of percentage of drop in net-ability (PoDN) and connectivity loss (CL). In each

subfigure, x-axis represents the amount of resources (i.e., Γ); y-axis represents

PoDN or CL. The green-star curve, blue-square curve, and magenta-pentagram

curve represent the attack performance of ASdegree, ASload and ASCIG, respectively.

In addition, in Table 5.6 we demonstrate the target components (TCs) that result

in the performances for ASdegree, ASload and ASCIG in Fig. 5.6(a).

Based on Figs. 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 and Table 5.6, we have the

following observations and discussions.

First, ASCIG can obtain better performance than ASdegree, ASload. In Figs.

5.2(a), 5.3(a), 5.4(a), 5.5(a), 5.6(a) and 5.7(a), the performances are measured

in terms of PoDN. It is apparent that the magenta-pentagram curves are higher

than the green-star curves and the blue-square curves. In Figs. 5.2(b), 5.3(b),
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Figure 5.5. Performance comparisons among three attack strategies on IEEE 118
bus system, where γ1 = 2 and γ2 = 1.

5.4(b), 5.5(b), 5.6(b) and 5.7(b), the performances are measured in terms of CL.

The magenta-pentagram curves are still higher than the green-star curves and

only lower than the blue-square curves at some cases, e.g., Γ = 4 in Fig. 5.6(b).

These observations are reasonable. The proposed metric, CIG, is specifically de-

signed and can be used to find these joint-node-link combinations that yield large

strengths. The metrics, degree and load, are not carefully designed for investigat-

ing joint-node-link attack strategies. From the performance’s point of view, ASCIG

is stronger than ASdegree, ASload.

Second, from the attack’s perspective, attacking a few pivot components can

trigger severe cascading failures in power systems. Take IEEE 30 system as an

example. Only attacking one component ASCIG can obtain the performance

PoDN = 0.98, which is shown in Fig. 5.2. Similar observations can be made

in Fig. 5.4 and Fig. 5.6, i.e., the results on IEEE 118 bus system and Bay Area

power grid, respectively. Generally speaking, there are some components that are

critical to the power transmission system [35]. Attacking a few, even one, of criti-

cal components can collapse the entire grid. Because, power transmission systems
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Figure 5.6. Performance comparisons among three attack strategies on Bay Area
power grid, where γ1 = 1 and γ2 = 1.

have the characteristic of self-organized criticality [26]. If they are operating closely

to limitations, the disturbances caused by removing critical components are severe

enough to trigger large-scale cascading failures and result in serious power outage

in the grid.

Third, as the network size increases, the number of TCs should increase, if the

attacker wants to entirely paralyze the grid. For instance, suppose the attacker

wants to obtain more than 90% drop in net-ability (i.e., PoDN ≥ 0.9). By using

ASCIG, the attacker needs to attack 1 TC on IEEE 30 bus system, at least 3

TCs on IEEE 118 bus system and at least 5 TCs on Bay area power grid. The

observation is consistent with that in [24]. In order to cause national blackout, it

is necessary to attack at least 9 substations in the U.S. power grid, which has in

total 55,000 substations.

Finally, the joint-node-link attack strategy is the generalization of the node-

only and link-only attack strategies. In Table 5.6, we show the combinations of

TCs for ASdegree, ASload and ASCIG on Bay Area power grid. It is apparent that

these combinations include three groups, node-only, link-only and joint-node-link.
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Figure 5.7. Performance comparisons among three attack strategies on Bay Area
power grid, where γ1 = 2 and γ2 = 1.

Previously, the node-only/link-only attack strategies only select nodes/links as

TCs [10, 11]. The joint-node-link attack strategies are the general cases, in which

TCs can be nodes, links or both. In addition, there are in total 24 TC combina-

tions in Table 5.6, including 10 node-only combinations, 2 link-only combinations

and 12 joint-node-link combinations. The joint-node-link TC combinations are of

importance to find strong attack performances.

5.8 Conclusions and Future Works

In this work, we introduced the joint-node-link perspective to investigate

the power grid vulnerabilities and attack strategies . In particular, it was found

that the power system had many joint-node-link vulnerabilities. In addition, we

proposed the CIG-based joint-node-link attack strategy based on the specifically-

designed metric, CIG. Through intensive experiments, it was shown that the pro-

posed scheme shew better attack performances than comparison schemes.

In future, there are a few interesting directions along this topic. First, it is

likely that multiple attacks are launched sequentially on substations and transmis-
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sion lines, but not simultaneously. Second, the CFS can be further improved by

introducing the stochastic analysis. Finally, validating existing blackouts is useful

for the society to understand the cascading failure and major blackouts.
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6.1 Abstract

The modern society has increasingly relied on electrical service, which also

brings risks of catastrophic consequences, e.g., large-scale blackouts. In the current

literature, researchers reveal the vulnerability of power grids under the assump-

tion that substations/transmission lines are removed or attacked synchronously.

In reality, however, it is highly possible that such removals can be conducted se-

quentially. Motivated by this idea, we discover a new attack scenario, called the

sequential attack, which assumes substations/transmission lines can be removed

sequentially, not synchronously. In particular, we find the sequential attack can

discover many combinations of substation whose failures can cause large black-

out size. Previously, these combinations are ignored by the synchronous attack.

In addition, we propose a new metric, called the sequential attack graph (SAG),

and a practical attack strategy based on SAG. In simulations, we adopt three

test benchmarks and five comparison schemes. Referring to simulation results and

complexity analysis, we find that the proposed scheme has strong performance and

low complexity.

6.2 Introduction

Electric grids have been developed over decades and become increasingly inter-

connected and complex. Although mechanisms and regulations have been applied

to maintain the stability and security of power transmissions, large-scale blackouts

are still not inevitable. In the past decade, large-scale blackouts have caused catas-

trophic results. Examples include 2003 Northeast American blackout affecting 55

million customers [1] and 2012 India blackout leaving 700 million people without

power [2]. In these cases, initial failures of one or a few power grid components

(i.e., substations and transmission lines) can trigger the successive failures of other

components. In other words, a sequence of dependent failures of individual com-
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ponents successively weakens power grids, which is referred to as the cascading

failure [3].

The triggers of cascading failures can be diverse, such as natural reasons,

aging of equipment, and human errors [4]. Recently, malicious attacks become

significant and potential triggers of cascading failures. For instance, there are

increasing evidences of malicious intention and actions that aim to destruct the US

power systems [5–7]. To understand the vulnerability of power grids, an important

approach is to investigate malicious attacks, in terms of possible attack strategies,

features, and consequence. Such investigation would also facilitate the study on

mitigating or even preventing cascading failures in the future.

In the current literature [8–12], designing attack strategies is an important

direction to investigate malicious attacks on power grids. In particular, attackers

can obtain information of the power grid, choose a set of nodes (i.e., substations),

referred to as victim nodes (VNs), or a set of links (i.e., transmission lines), referred

to as victim links (VLs), and assume to remove these VNs/VLs through either

cyber penetration [7] or physical sabotages [6, 13]. In reality, attackers can collect

the power grid information in different ways, e.g., purchasing the entire North

American power grid from commercial companies [14]. In addition, both cyber and

physical attacks on power grids are highly possible. A simulated cyber attack on

the U.S. power grid has shown power grid’s components can be remotely accessed

and destroyed by hackers [15]. Physical attacks can be conducted in easy ways,

such as cutting down a tree to trip transmission lines [1], or in complex ways, such

as using electromagnetic pulse (EMP) to destroy substations and transmission

lines [16, 17].

Attack strategies in existing works [8–12, 18–25] can be classified from different

angles. The first angle is the number of VNs/VLs. Single-node/link attacks are
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studied in [8, 18, 19]; many industry reliability criteria require power grids can

tolerate failure of single node/link [4]. Multiple-node/link attacks often cause

larger damage and receive more research attention [10–12, 21, 22, 24, 26]. The

second angle is whether nodes, links, or both are removed. There are some studies

that investigate attacks on links [10, 18, 22, 23], whereas many investigate attacks

on nodes [8–12, 18, 19, 21, 22, 24–26]. Very few studies address attacks on both

together [27]. The third angle differentiates attack strategies according to the

underlying cascading failure models they assumed. Some attack strategies are

only meaningful for a given model [9, 24, 26], whereas others are useful under

various assumptions [8, 11, 21].

We argue that the above three classification angles are not sufficient. An im-

portant classification angle is missing. In the current literature, the investigation

of multiple-node/link attacks assumes that VNs/VLs are removed synchronously.

This assumption, however, omits the fact that multiple removals can occur sequen-

tially. In other words, the attacker can remove VNs/VLs according to a carefully

designed time sequence.

Furthermore, cascading failures in real life involved the sequences of various

events, such as voltage collapse, generators shunt down, and transmission lines

tripping [4]. The cascade process lasts probably minutes, or even hours [1, 2].

Thus, time domain is an essential dimension to cascading failures. The assump-

tion of synchronous removals has apparent limitations to comprehensively exploit

the characteristics of cascading failures. In this work, we discover a new attack sce-

nario, called the sequential attack. From the perspective of the new angle, attack

strategies can be divided into newly-discovered sequential attack strategy (SeqAS)

and existing synchronous attack strategy (SynAS).

Is the sequential attack more dangerous than the synchronous attack? Can the
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new attack scenario reveal new vulnerabilities of power grids? Are existing metrics

useful to design the SeqAS? In this work, we answer these questions by investigat-

ing the sequential attack and the SeqAS on nodes. The major contributions are

summarized as follows.

� First, we find strong sequential attacks by using the exhaustive search on

IEEE 39 bus system. On this small-scale power grid, we discover that the

sequential attack generally cause more severe cascading failures, measured

by the blackout size, than the synchronous attack.

� Second, we propose a novel metric, called the sequential attack graph (SAG).

Compared with existing metrics, e.g., degree and load, this metric can intu-

itively capture the combination of vulnerable nodes and indicate the order

of their removals, which would lead to stronger sequential attacks.

� Third, we design a new SeqAS based on SAG, called the SAG-based SeqAS,

which can achieve good attack performance with low complexity.

� Finally, we perform extensive testing to demonstrate the features of the se-

quential attack, the proposed metric, SAG, and the proposed SeqAS. Briefly

speaking, we adopt three different power grids as test benchmarks. The pro-

posed SAG-based SeqAS is compared with five other schemes. The compari-

son schemes include the straightforward degree-based SeqAS and load-based

SeqAS, and three existing synchronous attack strategies. The results demon-

strate that the proposed SeqAS strategy yield strong attacks against power

grids. The complexity of the proposed scheme and the comparison schemes

are also analyzed.

The rest of this work is organized as follows. Related work is discussed in Sec-

tion 6.3. In Section 6.4, the cascading failure simulators (CFS) used in this work
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are presented in detail. In Section 6.5, we define the sequential attack and demon-

strate the new vulnerabilities. In Section 6.6, we propose a new metric, called

sequential attack graph (SAG), and the SAG-based sequential attack strategy. Ex-

periments and discussions are given in Section 6.7, followed by the conclusion in

Section 6.8.

6.3 Related Works

Traditionally, investigating the attack strategy is from the perspective of the

SynAS. We briefly summarize the existing attack strategies as follows.

The random removal, randomly choosing VNs, is to mimic unintentional fail-

ures, e.g., vegetation sagging, earthquakes, lightening, or software and hardware

faults. Power grids have been proven to be insensitive to random removals [21, 25].

The search-based approaches provides attackers a possible way to search for

a set of VNs whose synchronous removals can yield the strongest performance.

However, the exhaustive search [9], or called contingency analysis in the power

society [4], usually has extensive search space and is computationally infeasible

[4, 9]. In order to improve search efficiency, some heuristic approaches [11, 22] are

proposed to reduce the search space. The key problem of search-based approaches

is that they can not make quick attack decisions because of the large search space.

The metric-based approaches are prevailing in studying attack strategies.

Many metrics have been proposed. Some metrics are straightforward, e.g., de-

gree [25], load [8] and risk if failure (RIF) [9]. These metrics directly exploit the

features of power grids, e.g., the topology and initial power flows. Other metrics

are more complex, such as load distribution vector (LDV) [10], risk graph (RG) [11]

and geographic information [12]. These metrics can find stronger attacks than the

straightforward metrics. Existing metrics, however, are specifically designed for

the SynAS. It is unknown for whether the existing metrics can yield SeqAS.
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Table 6.1. Comparison between the proposed work and some existing studies

Attack Strategy
Single-node
Synchronous

Multiple-node
Synchronous

Multiple-node
Sequential

Random removal [25] X X
Search-based
approaches [4]

X X

Attack
metrics

Degree [25] X X
Load [21] X X
RIF [9] X X

LDV [10] X
Geographic

information [12]
X

RG [11] X X
Proposed

work
X

Furthermore, a few recent works have studied the vulnerability of power grids

from the perspective of time domain [28, 29]. Cascading failures in power grids can

have dramatically different intermediate processes, which reveals various evolution

of cascading failures [28]. In addition, multiple triggers can be applied consecu-

tively [29], with intervening time between two consecutive removals.

In this work, we consider the time domain in revealing the vulnerability of

power grids and developing practical and strong attack strategy. Particularly, we

are interested in investigating the sequential attack. A brief summary is shown in

Table 6.1.

6.4 Cascading Failure Simulator

In this work, we use two types of cascading failure simulator (CFS), the se-

quential attack CFS and the synchronous attack CFS. Our CFSs are modified from

the CFS in [22], based on the DC power-flow model. Briefly speaking, we conduct

the modifications as follows.

� In our CFSs, multiple removals can be conducted either sequentially or
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Figure 6.1. The diagram of sequential attack CFS.

synchronously; in the CFS from [22], multiple removals are conducted syn-

chronously.

� Our CFSs will stop when there is no more attacks and no overloading links;

the CFS from [22] will terminate when 10% of the nodes are no longer con-

nected to the largest island.

� In our CFSs, we adopt the blackout size (defined in Equ. 6.4) to measure the

damage of the attack; in the CFS from [22], there is no such measurement.

We first introduce the sequential attack CFS. Fig. 6.1 illustrates its flow

diagram; the description of each step is given as follows.

CFS Step 1: Suppose an attack strategy has determine M victim nodes

(VNs) and the order to remove them, e.g., {V N1, V N2, ..., V NM}, where V Ni

represents ith VN (1 ≤ i ≤ M). These M removals are performed individu-

ally at M different times, e.g., {T1, T2, ..., TM}, during cascading failures.
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CFS Step 2: Initialize CFS, e.g. set up timer T and calculate initial power

lows.

CFS Step 3: Remove one VN each time at time T to mimic the sequential

attack. That is, remove V Ni at time Ti. After each removal, update the

topological and electrical features of the power grid. The calculation of Ti

will be discussed below.

CFS Step 4: Check whether CFS needs to stop. If yes, quit CFS and goto

CFS Step 11. The criterion to terminate CFS include (1) all removals are

finished, (2) there is no overloaded link.

CFS Step 5: If the power grid is broken into additional subgrids due to

removals of VNs or trips of links from CFS Steps 3 to 9, re-dispatch genera-

tion and shed load to meet power supply/demand balance in each subgrid as

follows. First, ramp up or down the supply of generators to meet the demand

as closely as possible. These adjustments are restricted by the capacity of

generators and ramping time [22]. Second, after re-dispatching generators

in a subgrid, if the generation is surplus (η = (
∑

g∈G(Pg)−
∑

d∈D(Pd)) > 0,

where G and D represent the sets of generation nodes and demand nodes in

the subgrid, respectively), trip the generators sequentially, beginning from

the smallest one, until η ≤ 0 [22]. Third, after ramping the generation and

tripping the surplus generators, if the supply is insufficient (i.e., η < 0), trip-

ping the demand nodes sequentially, beginning from the smallest one, until

η ≥ 0. Then, if η > 0, recover the last tripped demand node partially to

the demand η to meet supply/demand balance. When a subgrid reaches the

balance, DC power-flows are recalculated to check the overloading on links.

CFS Step 6: Check link overloadings. If there is (are) overloaded link(s),
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go through CFS Steps 7 to 9 to deal with the overloading; otherwise go to

CFS Step 10 to check next possible removal.

CFS Step 7: Update relays. For the link(s) with overloading, use the time-

delayed overcurrent relay to determine whether/when next link is tripped

[22]. Here, the “relay modeling” is to mimic a number of processes by which

links may shut down, such as the overheating of a transmission line due to

sagging into vegetation. If a link is overloaded at time T, the timer begins

to count the overloading time. We assume that each link can tolerate the

overloading for certain time, denoted by τ . The τ for link j, denoted by τj,

is defined as,

τj =

{
Oj

fj−Fj
iffj > Fj

0 otherwise
(6.1)

where fj is the current power flow, Fj is the flow limit, andOj is the threshold,

which is chosen such that link j can tolerate 5 seconds of being 50% above

its power flow limit. For instance, suppose the flow limit of link j is 45 (i.e.,

Fj = 45), the threshold Oj is calculated as 0.5∗ 45∗ 5 = 112.5. If the current

flow in link j is 55 (i.e., fj = 55), τj is 11.25 = 112.5
55−45

s. The definition

indicates that how fast a link is tripped depends how seriously this link is

overloading. Among all overloaded links, the link(s) with the smallest τ value

is chosen to be tripped in CFS Step 9. The corresponding τ value is referred

to as τmin.

CFS Step 8: Update the timer to when next trip happens, as T = T +

τmin, the smallest τ in CFS Step 7.

CFS Step 9: Trip the chosen link(s) in CFS Step 7, and update the topo-

logical structure and the electrical features of the power grid network.

CFS Step 10: Check whether all removals are finished. If not, current time
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T is the “time” for next removal.

CFS Step 11: When CFS stops, evaluate the damage by exploiting the

blackout size, defined in Equ. 6.4.

In CFS Step 3, Ti is calculated as follows. First, when i = 1, T1 = 0, meaning

the first removal, V N1, occurs at the beginning of cascading failures. Second,

when 2 ≤ i ≤ M , Ti is obtained depending on whether there are overloaded links

after removing V Ni−1 at Ti−1. If there exist overloaded links, Ti = Ti−1 + τmin,

where τmin is decided in CFS Step 7. That is, the removal of V Ni at Ti occurs

after tripping an overloaded link in CFS Step 9. Otherwise, Ti = Ti−1 + ε (ε is a

small interval, e.g., 0.001.). That is, the removal of V Ni at Ti occurs just after the

removal of V Ni−1 at Ti−1.

Note that if we use different policies to determine Ti, the sequential attack

performances may be different. In this work, we specifically use the above policy

to demonstrate the sequential attack. In the future works, we will surely consider

to further investigate various policies in determining the removal time.

The procedures of the synchronous attack CFS is similar to that of the se-

quential attack CFS. The only difference is that in CFS Step 3 all M VNs are

removed simultaneously at the begging of cascading failures. That is, T1 = T2 =

· · · = TM = 0.

6.5 The Sequential Attack and New Vulnerabilities

Before introducing the sequential attack scenario, we introduce several con-

cepts as follows.

� The removal of a node means physically disconnecting this node from the

power grid by removing its incoming and outgoing links. In reality, such

removals can be conducted by either cyber attacks or physical attacks [13].
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� A multiple-node combination is referred to as a set of nodes. An attack

strategy is to select one such multiple-node combination as its VNs.

� For a multiple-node combination, we can perform the removals either sequen-

tially or synchronously. Either attack strategy can cause damage (in terms

of blackout size defined in Equ. 6.4) to the power grid. The strength of the

multiple-node combination for the SeqAS (or SynAS) is referred to as the

damage caused by sequentially (or synchronously) removing these nodes.

� The vulnerability of the power grid can have broad meanings in the current

literature. In this work, the vulnerability analysis is to specifically find these

multiple-node combinations that have large strengthes.

� Known vulnerabilities are referred to as strong multiple-node combinations

found by the synchronous attack.

� New vulnerabilities are referred to as strong multiple-node combinations that

are discovered by the sequential attack, but are not found by the synchronous

attack.

In the rest of this section, we first introduce the formal definition of the se-

quential attack in Section 6.5.1, then introduce several concepts related to setting

up the demonstration in Section 6.5.2, and finally discuss the new vulnerability of

the power grid in Section 6.5.3.

6.5.1 The Sequential Attack

For a multiple-node combination with M nodes, suppose the removals of them

occur at T1, T2, ..., TM . If all removals happen at the same time (i.e., usually at

the beginning of cascading failures or time 0), this attack scenario is referred to as
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Figure 6.2. The sequential attack versus the synchronous attack.

the synchronous attack in this work. That is,

T1 = T2 = · · · = TM (6.2)

If Equ. 6.2 dose not satisfy, this attack scenario is referred to as the general

definition of the sequential attack. In particular, in this work we are interested in

the special case that all removals occur at different times. That is,

T1 < T2 < · · · < TM (6.3)

The definition of the sequential attack in Equ. 6.3 is assuming to remove one

node each time. This definition is extensible. In Fig. 6.2, we demonstrate the two

attack scenarios in this work. Roughly speaking, under the synchronous attack

scenario M removals are conducted simultaneously at T1 = 0, while under the

sequential attack scenario the first removal occurs at T1 = 0 and the rest removals

(i.e., M − 1 removals) occur sequentially at T2 till TM during cascading failures.

6.5.2 Concepts Related to Demonstration Setup

We show the features of the sequential attack through demonstrations, and

explain some concepts for the demonstration as follows.

� Grid Network : A power grid is viewed as a network, where substations and

transmission lines are viewed as nodes and links, respectively. The set of
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nodes is denoted by B; the set of links is denoted by L. Due to different

functionalities, nodes are generally categorized into three sets, generation

nodes (or generators that produce electricity), transmission nodes, and de-

mand nodes (delivering electricity to customers) [9]. The set of generation

nodes is denoted by G; the set of demand nodes is denoted by D. The num-

ber of nodes, links, generation nodes and demand nodes are represented as

NB, NL, NG and ND, respectively.

� Test Benchmark : We adopt IEEE 39 bus system [26] as the test benchmark to

demonstrate new vulnerabilities. IEEE 39 bus system consists of 39 nodes (10

generation nodes and 29 demand nodes) and 46 links, which means NB = 39,

NL = 46, NG = 10 and ND = 29.

� Blackout Size: We adopt the blackout size to measure the strength of a

multiple-node attack. Blackout size is defined as [21],

∆ = 1−
∑

d∈D P
′
d∑

d∈D Pd

(6.4)

where Pd and P ′d represent the power on the demand node before and after the

attack, respectively. This definition, similar to that in [21], is the normalized

power loss, which means 0 ≤ ∆ ≤ 1. The larger ∆ is, the stronger the

multiple-node attack is.

� Strong Attack : We define a threshold, η. Numerically, if the strength of a

multiple-node attack, denoted by ∆, is larger or equal to η (i.e., ∆ ≥ η), this

multiple-node attack is called a strong attack; otherwise it is called a weak

attack (i.e., ∆ < η).

� Sequential Attack CFS : Cascading failure simulator (CFS) is employed to

mimic the occurrence of removing nodes and the evolution of cascading fail-

ures. The sequential attack CFS in this work is modified from the CFS
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in [22]. In Section 6.4, we give the detailed discussion on both the sequential

attack CFS and the synchronous attack CFS adopted in this work.

Next, for a multiple-node combination with M nodes, we perform both the

synchronous attack and the sequential attack. The strength of the M -node syn-

chronous attack is denoted by ∆M
syn; the strength of the M -node sequential attack

is denoted by ∆M
seq. They are obtained as follows.

� ∆M
syn: Perform the synchronous attack on M nodes in the synchronous attack

CFS. ∆M
syn is measured in terms of blackout size when the synchronous attack

CFS stops.

� ∆M
seq: There are M ! orders of the M -node combination. Perform the se-

quential attack for each order in the sequential attack CFS, and record all

strengthes in terms of blackout size. The largest strength value is ∆M
seq.

6.5.3 Demonstration of New Vulnerabilities

We conduct two-node attacks (i.e., M = 2) on IEEE 39 bus system. There

are in total
(

39
2

)
= 741 two-node combinations. For each two-node combination,

we obtain two strength values, ∆2
syn and ∆2

seq. The relation between the sequential

attack and the synchronous attack is demonstrated in Fig. 6.3 by plotting ∆2
seq

versus ∆2
syn. There are 741 dots in Fig. 6.3, each of which represents a two-node

combination. The relation between ∆2
seq and ∆2

syn is not straightforward based on

Fig. 6.3, because the dots are scattered in the plane. For demonstration purpose,

we conduct two classifications among all dots.

First, we compare both ∆2
seq and ∆2

syn with η (i.e., the threshold of defining a

strong attack). If ∆2
seq ≥ η (or ∆2

syn ≥ η), the two-node sequential attack (or the

two-node synchronous attack) is strong; otherwise, this attack is weak. By setting

η = 0.2 (20% power loss is a big enough event for a power grid [21, 22]), we divide
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Figure 6.3. The correlation between the sequential attack and the synchronous
attack.

the 741 dots in Fig. 6.3 into four types as follows.

� Type I : Both the sequential attack and the synchronous attack are strong.

That is, ∆2
seq ≥ η and ∆2

syn ≥ η.

� Type II : The sequential attack is strong, while the synchronous attack is

weak, which means ∆2
seq ≥ η and ∆2

syn < η.

� Type III : The sequential attack is weak, while the synchronous attack is

strong, which means ∆2
seq < η and ∆2

syn ≥ η.

� Type IV : Both the sequential attack and the synchronous attack are weak.

That is, ∆2
seq < η and ∆2

syn < η.

Type II is particularly interesting. From the perspective of the synchronous

attack (i.e., according to x-axis), dots belonging to Type I and Type III are strong

attacks, while dots in Type II and Type IV are weak attacks. However, if refer

to y-axis, from the sequential attack’s point of view, dots in Type II are viewed

as strong attacks. It is clearly seen from Fig. 6.3 that there are a considerable
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number of dots belonging to Type II. In particular, the dots in Type II are of

importance to reveal new vulnerability of power grids, which are not discovered in

previous works.

Second, from Fig. 6.3, we see that the sequential attack can not only dis-

cover new vulnerabilities but improve the strength of many two-node attacks. We

compare ∆2
seq with ∆2

syn and categorize these 741 dots into three groups.

� Group 1 : The performances of the sequential attack and the synchronous

attack are similar. If the difference between ∆2
seq and ∆2

syn is less or equal

to the threshold θ (i.e., |∆2
seq −∆2

syn| ≤ θ), we put this dot (i.e., a two-node

combination) into group 1.

� Group 2 : The sequential attack is stronger than the synchronous attack. If

∆2
seq −∆2

syn > θ, the dot is put into group 2.

� Group 3 : The synchronous attack is stronger than the sequential attack. If

∆2
syn −∆2

seq > θ, the dot is put into group 3.

For the dots in Group 2, the sequential attack reaches better strength than

the synchronous attack. We set θ to be 0.1. Among the 741 dots in Fig. 6.3,

75.44% belong to Group 1, 22.94% belong to Group 2, and only 1.62% belong to

Group 3. This statistic demonstrates the sequential attack can find more strong

attacks.

More demonstrations and analysis on the features of the sequential attack are

discussed in Section 6.7.

6.6 Sequential Attack Strategy

The sequential attack strategy (SeqAS) is referred to as the method to identify

multiple VNs and the order of sequentially removing. In this section, we extend
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three existing synchronous attack strategies to the sequential attack scenarios in

Sections 6.6.1 and 6.6.2, and propose a new SeqAS in Section 6.6.3.

6.6.1 Degree-based and Load-based Sequential Attack Strategies

Two metrics, degree and load, have been widely used in the SynAS [8, 9,

17, 21, 24, 25, 30, 31]. We straightforwardly extend the degree-based and load-

based synchronous attack strategies to obtain the degree-based and load-based

sequential attack strategies. The degree of a node is defined as the number of the

links connecting to this node [9]; the load of a node is defined as the summation of

the absolute values of power injection into this node by all generation-demand-node

pairs [21]. This load definition is similar to the functionality of other definitions,

e.g., betweenness in [8] and extended betweenness in [18].

We present the degree-based SeqAS with M VNs, denoted by SeqASM
degree as

follows. There are two steps. In the first step, select M nodes with maximum

degrees as the VNs. This is the same as the degree-based SynAS in [8, 21, 24].

In the second step, we determine the order of removal of these VNs. We study

two orders: (1) from higher degree to lower degree, and (2) from lower degree to

higher degree. We choose the order that yields the stronger attack strength. In

other words, we need to perform twice the sequential attack CFS to determine the

order of removal.

The specific time of removing these M VNs is presented in Section 6.4 and

briefly described as follows. The first removal is conducted as at the beginning.

The mth, 2 ≤ m ≤ M , removal is conducted either after the (m − 1)th removal

or after tripping an overloaded link. Take removing two VNs as an example.

Removing the first VN occurs at the beginning. After the removal, if there exists

overloaded link(s), removing the second VNs will be conducted after tripping an

such overloaded link; otherwise, the second removal is conducted after the first
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removal.

The load-based SeqAS with M VNs, denoted by SeqASM
load, uses the same

procedure, except replacing “degree” by “load”.

6.6.2 Exhaustive Search Based Sequential Attack Strategy

The strongest multiple-node sequential attack can be found through the ex-

haustive search. Let SeqASM
ES denote the exhaustive search based SeqAS with M

VNs. In a power grid with NB nodes, SeqASM
ES needs to launch

(
NB
M

)
×M ! times

of the sequential attack CFS. Obviously, for a large-scale power grid, SeqASM
ES is

computationally infeasible. We use SeqASM
ES as the comparison scheme to analyze

the complexity of other attack strategies, which will be discussed in Section 6.7.5.

6.6.3 Proposed Sequential Attack Strategy

In this substation, we present a practical and strong SeqAS with three steps.

The first step is to use the iterative procedure (Section 6.6.3) to search multiple-

node combinations that yield strong sequential attacks. The second step is to

construct the sequential attack graph (SAG) (Section 6.6.3). The final step is to

determine the VNs and removal order based on the SAG (Section 6.6.3). This

proposed scheme is called the SAG-based SeqAS, denoted by SeqASM
SAG.

Iterative Procedure

The iterative procedure in [11] is an effective and efficient way to find node

combinations that yield strong synchronous attacks. The rationale behind is that

if a m-node combination can yield strong synchronous attack, by combining these

m nodes with another important node, the new (m + 1)-node combination likely

become another strong synchronous attack. Here, the important node refers to

these nodes that has strong single-node attack performance; the selection of im-

portant nodes (also referred to as candidate nodes) is discussed in the following
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Table 6.2. The realization of RRCS on IEEE 39 bus system.

Index Set2RRC Set3RRC Set4RRC Set5RRC

1 21,33 21,33,39 26,31,39,20 26,31,39,20,21
2 31,21 24,33,39 26,31,39,3 26,31,39,20,27
3 6,21 26,31,39 6,33,39,34 26,31,39,20,24
4 24,33 6,33,39 31,35,39,20 26,31,39,20,6
5 31,24 31,22,39 31,22,39,20 26,31,39,20,2
6 6,24 31,35,39 31,33,39,20 26,31,39,20,11
7 6,33 31,33,39 31,36,39,20 26,31,39,20,14
8 2,31 31,36,39 21,33,39,34 26,31,39,20,16
9 27,6 6,24,39 21,33,39,20 26,31,39,20,38
10 26,31 31,21,39 24,33,39,20 26,31,39,20,29
11 14,39 27,6,39 24,33,39,34 26,31,39,20,15
12 31,22 14,39,24 14,39,8,19 26,31,39,20,3
13 31,35 14,39,8 21,33,39,8 26,31,39,20,35
14 31,33 24,33,31 21,33,39,4 26,31,39,20,22
15 31,36 31,21,20 24,33,39,8 26,31,39,20,33
16 31,23 31,21,7 24,33,39,4 26,31,39,20,19

part of this section. We extend this rationale to exploit node combinations that

yield strong sequential attacks.

Next, we briefly introduce the iterative procedure used in this work. This brief

introduction focuses on the main idea of the procedure. For interesting readers,

more details can be found in [11, 32].

� Assume the power grid has NB nodes, and the total number of iteration

rounds is M̂ .

� The rationale is to design a M̂ -round iterative process to search the node

combinations that yield strong sequential attacks. We consider two restric-

tions. First, we select P nodes as candidate nodes, denoted by SetC . Second,

in each round we select R node combinations as round recommended com-

bination set (RRCS). The mth RRCS (1 ≤ m ≤ M̂) is denoted by SetmRRC .

The parameter P and R will be introduced later.
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� The strength of a node or a node combination is measured in terms of the

blackout size defined in Equ. 6.4. Stronger nodes or node combinations yield

larger blackout size.

� In the 1st round, the iteration is initialized. We first conduct NB one-node

attacks, then select the top P strongest nodes as candidate nodes and put

them into SetC , and finally select the top R strongest nodes as 1th RRCS

and put them into Set1RRC .

� In the following each round, e.g., mth round, we do three steps. First, combine

each candidate node in SetC with each node combination in Setm−1
RRC to obtain

P × R m-node combinations. Then, conduct the sequential attack using

nodes in each m-node combination as VNs. Finally, select top R strongest

combinations, out of P × R combinations, as mth RRCS and put them into

SetmRRC .

� The set-up of parameters R and P are of importance to limit the search space.

For R, we choose a small value, e.g., 16 in this work, because selecting a few

strongest node combinations within each round are enough to find strong

attacks [11]. For P , it can vary according to the scale of a power grid (i.e.,

NB). For a small-scale power grid, e.g., IEEE 39 bus system, P can be NB.

For a large-scale power grid, e.g., Polish transmission system with NB = 2383

nodes, P can be a value that is much smaller than NB, e.g., P = 150. Because

these most vulnerable nodes are more critical than others in finding strong

attacks [8, 9, 21].

Referring to multiple-node attacks, node combinations in

{Set2RRC , Set
3
RRC , ..., Set

M̂
RRC} are the strong sequential attacks found. Take

IEEE 39 bus system as an example, when the parameters P , R and M̂ are set to
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Figure 6.4. The demonstration of constructing SAG

be 39, 16 and 5, respectively, a realization of {Set2RRC , Set
3
RRC , Set

4
RRC , Set

5
RRC}

is shown in Table 6.2. It is seen that the iterative procedure identifies top R

strongest node combinations within each iteration round.

Sequential Attack Graph

We specifically design a new metric, called sequential attack graph (SAG), to

find VNs and their removal order. The SAG metric is constructed according to

RRCS obtained in Section 6.6.3. The construction of SAG includes the following

steps.

� Step 1: For a given power grid, set up parameters P , R and M̂ and obtain

RRCS (i.e., {Set2RRC , ..., Set
M̂
RRC}). An example of RRCS is demonstrated in

Table 6.2.

� Step 2: Generate the combination-SAG for each node combination. Take

the combination {b1, b2, b3} as an example. First, add three vertexes, labeled

as b1, b2 and b3. Second, for each pair of nodes in this combination, add

a directed edge with the direction pointing from the node at front to the
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node behind. That is, b1 → b2, b1 → b3 and b2 → b3. Finally, assign the

weight to each edge, referred to as the edge occurrence frequency (EOF). If a

combination has m nodes, there are m(m−1)
2

edges and the EOF of each edge

is 2
m(m−1)

, such that the total weight introduced by this combination is 1.

Referring to the example, m equals to 3 and the EOF of each edge is 1
3
. Figs.

6.4(a), 6.4(b) and 6.4(c) demonstrate the examples of the combination-SAG.

� Step 3: Merge all combination-SAGs to generate the SAG. We give an ex-

ample of merging two combination-SAGs as follows. First, put all vertexes

in both combination-SAGs into a new combination-SAG, and merge the re-

peated vertexes. Second, put all edges in both combination-SAGs into the

new combination-SAG. For the repeated edges, merge them and sum their

EOF as the new EOF; for the non-repeated edge, keep this edge and its EOF.

Figs. 6.4(d) and 6.4(e) demonstrate the results of merging two combination-

SAGs. Fig. 6.4(d) is generated by merging Fig. 6.4(a) and Fig. 6.4(b); Fig.

6.4(e) is generated by merging Fig. 6.4(c) and Fig. 6.4(d).

The SAG of IEEE 39 bus system, for example, is constructed based on Ta-

ble 6.2 and demonstrated in Fig. 6.5, where the width and color of an edge is

determined by its EOF. The wider and darker an edge is, the larger the EOF is.

SAG-based Sequential Attack Strategy

The direction and weight of an edge in SAG convey important information.

The higher the weight of an edge is , the more likely the pair of nodes connected

by this edge is a strong sequential attack. The direction represents the removal

order of these two nodes.

Recall that SAG is constructed base on RRCS, {Set2RRC , ..., Set
M̂
RRC}. This

SAG can be used to find strong sequential attacks, as long as the number of VNs
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Figure 6.5. The sequential attack graph of IEEE 39 bus system.

(i.e., M) is no larger than M̂ (i.e., M ≤ M̂).

We propose a sequential attack strategy, called the SAG-based SeqAS. Let

SeqASM
SAG denote the SAG-based SeqAS with M VNs. SeqASM

SAG is conducted

as follows.

� Construct the SAG, where M̂ ≥M .

� Find all interesting M -VN combinations in SAG. Each interesting combina-

tion, e.g., {b′1, b
′
2, ..., b

′
M}, satisfies the condition that for any pair of i and j,

1 ≤ i < j ≤M , there exists an edge between b′i and b′j, and the direction is

b′i → b′j.

� For each interesting combination, compute the summation of EOF for all

edges. The combination that yields the largest EOF summation is chosen

as the VNs for SeqASM
SAG. In this combination, the removal order already

exists. That is, b′i is removed earlier than b′j, if i < j. The corresponding

removal order is 1, 2, · · · ,M .
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For instance, according to SAG in Fig. 6.5, if attackers want to choose three

VNs (i.e., M = 3) for SeqAS3
SAG, the VNs chosen by the above procedure is

{26, 31, 39}. The removal order is first node 26, then node 31, and finally node 39.

Determining removal time is discussed in Section 6.4. For example, the node 26

is initially removed, which might cause some links to be overloaded. The second

removal, removing node 31, occurs either after removing node 26 or after tripping

an overloaded link caused by removing node 26. The time to remove node 39 is

similarly determined.

The basic idea behind SeqASM
SAG is to find these VNs whose node pairs occur

most frequently in RRCS. Obviously, it is not guaranteed that the above proce-

dure can discover the strongest M -node sequential attack, which can be found

by SeqASM
ES. The complexity of SeqASM

SAG, however, is much lower than that of

SeqASM
ES, as demonstrated in Section 6.7.5.

6.7 Simulations and Discussions

We investigate the sequential attack on three different test benchmarks, IEEE

39 and 300 bus systems and Polish transmission system, which are all available

in MATPOWER [33]. The brief description of these test benchmarks is given in

Table 6.3. IEEE 39 bus system, a small-scale power grid, is used to demonstrate

new vulnerabilities discovered by the sequential attack. All test benchmarks are

adopted to compare the proposed SAG-based SeqAS with comparison schemes.

Simulations are conducted in Matlab environment.

Table 6.3. Description of test benchmarks

Test Benchmarks NB NL NG ND
IEEE 39 bus system 39 46 10 21
IEEE 300 bus system 300 411 69 191

Polish transmission system 2,383 2,896 327 1,817



176

6.7.1 Further Demonstration of the Sequential Attack

In this subsection, we extend the demonstration of the sequential attack. In

Section 6.5 we have demonstrated the new vulnerabilities discovered by the sequen-

tial attack. Here, we extend the demonstration by conducting three-node attacks

and four-node attacks on IEEE 39 bus system.

Similar to the discussion in Section 6.5.3, we conduct both the sequential

attack and the synchronous attack for each three-node/four-node combination,

obtain two strength values, and perform two types of classifications. Take three-

node attacks as an example. There are in total 9,139 three-node combinations. For

each combination, we obtain ∆3
seq and ∆3

syn. By comparing both ∆3
seq and ∆3

syn

with the threshold η (i.e., η = 0.2), we divide these 9,139 combinations into four

types (i.e., Type I, Type II, Type III and Type IV). Note that the combinations

in Type II represent the new vulnerabilities. Recall that new vulnerabilities refer

to the strong multiple-node combinations that are individually discovered by the

sequential attack. If only the synchronous attack is used in vulnerability analysis,

these new vulnerable combinations will not be recognized as critical ones, in terms

of causing cascading failures. In addition, we can divide these combinations into

three groups (i.e., Group 1, Group 2 and Group 3). The combinations in Group 2

lead to sequential attacks that are stronger than synchronous attacks.

There are 82,251 four-node combinations; similar classifications are conducted.

Comparison results are shown in Table 6.4 and Table 6.5, respectively. We have

the following observations.

� As M increases, the number of multiple-node combinations belonging to

Type II increases sharply, which is highlighted in bold in Table 6.4. This

means that the sequential attack can discover more new vulnerabilities.

� As M increases, the percentages of Group 2, highlighted in bold in Table 6.5,
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Figure 6.6. Comparisons between the sequential attack and the synchronous attack

go up quickly, which means the sequential attack can exploit more strong

attacks.

Table 6.4. The number of node combinations belonging four types on IEEE 39 bus
system.

M−node removals Type I Type II Type III Type IV
Two-node 415 93 21 212

Three-node 7,307 1,342 99 391
Four-node 76,136 5,742 117 256

Table 6.5. The percentage of node combinations belonging three groups on IEEE
39 bus system.

M−node removals Group 1 Group 2 Group 3
Two-node 75.44% 22.94% 1.62%

Three-node 51.15 47.18% 1.66%
Four-node 34.17% 65.43% 0.40%

6.7.2 Comparison Between the Sequential Attack and the Synchronous
Attack in terms of Attack Strength

Although we focus on studying the attack in the work, we want to understand

the attack strength under simple defense scheme. It is reasonable to assume that

some critical nodes in a power grid have strong physical and/or cyber protection

such that the attacker cannot successfully remove them [6, 34]. In this subsection,
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Figure 6.7. Blackout size versus the number of victim nodes

we compare the sequential attack with the synchronous attack in terms of the

average strength, under the condition that some critical nodes are protected from

the initial removal. In particular, the comparison is conducted as follows.

� We sort all nodes of a power grid in a list by ∆1
syn, i.e., the strength of

one-node attacks, from the largest to the smallest. Note that ∆1
syn and ∆1

seq

are the same since there is no sequential concept when considering one-node

attacks. The nodes on the top of the list are the ones to be protected.

� We introduce the protection rate, denoted by α. Assume that the top dNB×

αe nodes on the above list are protected, where d•e is to obtain the nearest

integer towards infinity. That is, these nodes cannot be initially removed by

the attacker, but can be failed due to the overloading during the cascading

process.

� We consider multiple-node attacks, where nodes can only be chosen from the

N
′
B = NB − dNB × αe unprotected nodes. Let ∆seq and ∆syn denote the

average blackout size for the sequential attack and the synchronous attack,

respectively. Considering M -node attacks, there are in total
(
N

′
B

M

)
combina-

tions. We perform the sequential attack on each combination, and average all
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(
N

′
B

M

)
strength values as ∆seq. Similarly, we conduct the synchronous attack

on all combinations and obtain ∆syn.

� In simulations, α is chosen from 0 to 0.4 with the step size as 0.05; M is set

to be 2, 3 and 4, respectively.

Comparisons are demonstrated in Fig. 6.6, where three subfigures show com-

parisons regarding two-node attacks, three-node attacks and four-node attacks,

respectively. In each subfigure, the x-axis represents the protect rate; y-axis repre-

sents the average blackout size. In addition, the red-square curve represents ∆seq;

the blue-star curve represents ∆syn. The observations and discussions made from

Fig. 6.6 are given as follows.

First, on average, the sequential attack is stronger than the synchronous at-

tack. In the three subfigures, the red-square curves are higher than the blue-star

curves. That is, the sequential attack can obtain better average attack perfor-

mance. For instance, when the protect rate is zero (α = 0), meaning no nodes are

protected, ∆seq are 0.38, 0.56 and 0.69, while ∆syn are relatively 0.32, 0.42 and 0.5

(see in Fig. 6.6).

Second, the protection scheme can reduce the damage caused by initial re-

movals to the power grid. As α increases from 0 to 0.25, all curves in Fig. 6.6

decrease. This is reasonable. Because, as the number of critical nodes that are

protected from initial removals increases, there will be less and less multiple-node

combinations that can yield strong attack performance. Therefore, as α further

increases from 0.3 to 0.4, the curves do not reduce monotonically. The small fluc-

tuations occur because the total number of combinations at these α values are

different and their average blackout size fluctuates. In general, both ∆syn and

∆syn go down as α increases in a range, from 0 to 0.25 on IEEE 39 bus system.
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Third, the protection scheme alone cannot solve the cascading failure problem.

The simulation is conducted under the assumption that up to 40% of nodes are ini-

tially protected, which is really high percentage in any realistic systems. However,

even α is chosen as 0.4, on IEEE 39 bus system the average blackout size caused by

the sequential attack is still around 0.28 for two-node attacks, 0.47 for three-node

attacks, and 0.62 for four-node attacks. Besides the protected nodes, there are

many remaining nodes, whose single removals might not cause serious cascading

failures. The combination of these nodes, however, can cause moderate-scale, even

large-scale, power outages. Note that our discussion here bases on the assumption

that people can only choose and protect a limited number of critical nodes. It is

not practical to protect a large number of, or even all, nodes in a power grid.

Finally, as M increases, the sequential attack yields better attack strength.

We can see from the three subfigures in Fig. 6.6 that the gap between the two

curves becomes larger while M increases from 2 to 4. This is reasonable. In this

work, for a M -node combination, we perform the exhaustive search to find the

removal order with the largest ∆ for the sequential attack (discussed in Section

6.5.2). When M increases, the total number of removal orders (i.e., M !) increases

sharply. The sequential attack has more flexibility, and the synchronous attack is

a special case of the sequential attack.

6.7.3 Comparison among Different Sequential Attack Strategies

In this subsection, we compare the proposed the SGA-based SeqAS with the

straightforward degree-based SeqAS and load-based SeqAS. Comparisons are con-

ducted on IEEE 39 and 300 bus systems and Polish transmission system, where

the number of VNs (M) is set to be 2, 3, 4 or 5. Results are shown in Fig. 6.7,

where three subplots represent comparisons on different test benchmarks. In each

subplot, x-axis represents the number of victim nodes (VNs); y-axis represents
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the blackout size. In addition, red-triangle curves, blue-square curves and green-

pentagram curves represent the strength of SeqASM
SAG, SeqASM

load and SeqASM
degree,

respectively. Based on Fig. 6.7, we have the following observations and discussions.

First, the proposed metric, SAG, is better than the widely-studied metrics,

degree and load, in terms of finding stronger sequential attacks. It is clearly seen

from Fig. 6.7 that the proposed SeqASM
SAG is much stronger than SeqASM

load and

SeqASM
degree. In Fig. 6.7(b), for instance, the strengths of SeqAS3

SAG, SeqAS3
load

and SeqAS3
degree are 0.78, 0.32 and 0.17, respectively. These results are reasonable.

The metrics, degree and load, are not specifically designed for the sequential attack.

These metrics cannot accurately find VNs and the removal order, which can yield

strong sequential attack. However, the proposed metric, SAG, can reveal not only

vulnerable nodes but orders of their removals (an example is shown in Fig. 6.5).

From the perspective of the sequential attack, SAG is an effective metric.

Second, it is highly possible to cause serious power loss to a power grid by only

sequentially removing several VNs. This observation agrees with a recent discovery

in [35]. In this article published at Nature news, the author discussed that in

power grids failure in one place leads to failure in another place, which cascades

into collapse. SeqASM
SAG is powerful to cause serious power loss. In Fig. 6.7(c),

for example, if only two VNs are chosen and removed from Polish transmission

system (less than 1h of the total number of nodes), SeqAS2
SAG can cause nearly

87% power loss, a serious blackout case. It is clearly seen that SeqASM
SAG is a

strong attack strategy against power grids.

6.7.4 Comparison Between the proposed SeqAS and Synchronous At-
tack Strategies

In this subsection, we compare the SAG-based SeqAS with three synchronous

attack strategies, the degree-based SynAS, denoted by SynASM
degree, the load-
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Table 6.6. Comparisons between the proposed attack strategy with other attack
strategies

Test
Benchmark

Attack
Strategy

M = 2 M = 3 M = 4 M = 5

IEEE 39
Bus System

SeqASM
SAG 0.66 1 1 1

SynASM
degree 0.43 0.63 0.63 0.63

SynASM
load 0.63 0.63 0.63 0.74

SynASM
RG 0.89 0.65 1 1

IEEE 300
Bus System

SeqASM
SAG 0.57 0.78 0.85 0.89

SynASM
degree 0.23 0.22 0.22 0.26

SynASM
load 0.15 0.30 0.35 0.37

SynASM
RG 0.48 0.77 0.84 0.86

Polish
System

SeqASM
SAG 0.86 0.87 0.90 0.93

SynASM
degree 0.63 0.67 0.67 0.39

SynASM
load 0.53 0.39 0.39 0.38

SynASM
RG 0.78 0.86 0.93 0.87

based SynAS, denoted by SynASM
load, and the RiskGraph-based SynAS, denoted

by SynASM
RG. In the current literature [8, 9, 11, 21, 25], there schemes represent

the most popular ones and are conducted as follows.

� SynASM
degree: Calculate the degree for all nodes, and select M nodes with

top largest degree as VNs [9].

� SynASM
load: Calculate the load for all nodes, and select M nodes with top

largest load as VNs [21].

� SynASM
RG: Construct the metric, Risk Graph (RG), and select M nodes that

are tightly connected in RG as VNs [11].

All three benchmarks are used in this comparison. We set the number of VNs

(i.e., M) to be 2, 3, 4 and 5. Results are demonstrated in Table 6.6. The strengths

of SeqASM
SAG are underlined; in each group comparison, the strongest strength is

highlighted in bold. We make the following observations.
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First, SeqASM
SAG is much stronger than SynASM

load and SynASM
degree. Because,

the metric, SAG, is specifically designed and more accurate than degree and load

in finding multiple-node combinations that yield strong attacks.

Second, SeqASM
SAG is mostly stronger than SynASM

RG, with a few exceptions.

In Table 6.6, we can see that SeqASM
SAG is weaker than SynASM

RG only at M = 2

for IEEE 39 bus system and M = 4 for Polish transmission system. We explain

this as follows. In Fig. 6.3, it is already shown that the strongest synchronous

attack (according to x-axis) has similar strength to the strongest sequential at-

tack (according to y-axis). Although, in an average sense the sequential attack

is stronger the synchronous attack, the SeqAS does not guarantee to yield the

strongest attack. This also indicates that SeqASM
SAG can be further improved. For

example, we allow that more than one nodes can be removed at the same time.

That is, allow “equality” in the Equ. 6.3. This combination of sequential and

synchronous attacks has a potential to yield strong attacks.

In summary, compared with the existing synchronous attack strategies,

SeqASM
SAG can surely yield larger damage and needs to be considered in designing

defense approaches for power grids.

6.7.5 Complexity Analysis of Different Attack Strategies

In the current literature [3, 4, 26], the cascading failure in power grids is

considered to be a complex process, and the close-form theoretical analysis the

cascading failure is still unavailable. In this work, we use two CFSs, the sequential

attack CFS and the synchronous attack CFS. Both are introduced in Section 6.4.

We use OSeqCFS to represent the computational complexity of the sequential attack

CFS and OSynCFS to represent the computational complexity of the synchronous

attack CFS.

Although, theoretical complexities of OSeqCFS and OSynCFS are unavailable,
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their numerical complexities can be obtained by simulations. On Window 7 OS

with 4 GB memory and dual-core i5 CPU (2.4GHz each), we run the sequential

attack CFS for 1000 times on each test benchmark, and obtain the average time

as the numerical complexity of OSeqCFS. Similarly, we can obtain the numerical

complexity of OSynCFS. In Table 6.7, numerical complexities are demonstrated.

The unit is second (s). We have the following observations.

� Numerically, OSeqCFS and OSynCFS are almost the same on each test bench-

mark. Because, both CFSs use similar cascading procedures (discussed in

Section 6.4).

� The numerical complexities increase dramatically as NB increases. The scale

of the power gird is an important factor to the computational complexity of

both CFSs.

Table 6.7. Numerical complexity values.

NB = 39 NB = 300 NB = 2383
OSeqCFS 0.0107 (S) 0.0367 (S) 41.37 (S)
OSynCFS 0.0108 (S) 0.0367 (S) 40.82 (S)

To compare different attack strategies on the same power grid, we use OSeqCFS

and OSynCFS as the basic unit for complexity analysis. In other words, the com-

plexity of an attack strategy is the number of times that this method needs to

launch CFS before identifying its VNs. Compared with running once CFS, the

complexity of other calculations is negligible. This philosophy of complexity anal-

ysis has been widely adopted in the existing works [4, 22, 32].

First, we calculate the complexity of SeqASM
ES, denoted by ΩES

SeqAS. SeqASM
ES

needs to search among
(
NB
M

)
×M ! different removal orders. The complexity of

SeqASM
ES is,

ΩES
SeqAS =

(
NB
M

)
×M ! (6.5)
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Second, we calculate the complexity of SeqASM
degree, denoted by Ωdegree

SeqAS. There

are two steps to obtain Ωdegree
SeqAS. The first step is to obtain the metric, degree. This

step dose not rely on CFS; the complexity is counted as 0. The second step is to

determine VNs as well as the removal order. Determining VNs dose not rely on

CFS; the complexity is counted as 0. Determining the removal order needs to run

CFS twice, meaning the complexity is counted as 2. Therefore, the complexity of

the second step is counted as 2. In summary, Ωdegree
SeqAS is counted as 2 (i.e., 0 + 2).

In addition, let Ωdegree
SynAS denote the complexity of SynASM

degree. The calculation

of Ωdegree
SynAS is similar to that of Ωdegree

SeqAS. The difference is that SynASM
degree does not

need to determine the removal order of VNs. Therefore, determining VNs for

SynASM
degree does not rely on CFS; Ωdegree

SynAS is counted as 0. The complexities of

SynASM
degree and SeqASM

degree are,

Ωdegree
SynAS = 0

Ωdegree
SeqAS = 2

(6.6)

Third, calculating the complexity of SeqASM
load, denoted by Ωload

SeqAS, is similar

to that of Ωdegree
SeqAS; calculating the complexity of SynASM

load, denoted by Ωload
SynAS, is

similar to that of Ωdegree
SynAS.

Finally, we calculate the complexity of SeqASM
SAG, denoted by ΩSAG

SeqAS. There

are two steps to obtain ΩSAG
SeqAS. The first step is to obtain the metric, SAG,

which includes searching for RRCS (discussed in Section 6.6.3) and constructing

SAG (discussed in Section 6.6.3). Obtaining RRCS needs to run CFS in total

NB + P × P × (M − 1) times; constructing SAG dose not rely on CFS. Therefore,

the complexity of the first step is counted as NB + P × P × (M − 1). R and P

are chosen to be less or equal to NB. At the worst case, when R = P = NB, the

complexity of the first step is counted as (M − 1)× (NB)2 +NB, the same order to

M × (NB)2. The second step is to choose VNs and the removal order from SAG
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Table 6.8. The complexity comparison among different attack strategies.
Attack

Strategies
SeqASM

ES SeqASM
SAG SynASM

RG SynASM
degree SynASM

load SeqASM
degree SeqASM

load

Complexity

(NB
M

)
·M ! Off-line On-line Off-line On-line 0 0 2 2

M × (NB)2 0 M × (NB)2 0

(discussed in Section 6.6.3). This step does not rely on CFS; the complexity is

counted as 0.

In practice, as long as attackers know the topology and electrical features of

a power grid, they can construct SAG of the power grid in advance. This step can

be done off-line. When conducting the attack, attackers may encounter different

situations. If an attacker, for instance, has observed that node 31 in Fig. 6.5 is

down for some reasons (e.g., nature disasters and previous attacks), he/she can

quickly identify a sequential attack strategy by adding another VN, e.g. node

39, to the already-down node 31. Therefore, sequential attacks can be conducted

on-line based on SAG.

From the above discussions, ΩSAG
SeqAS consists of two parts as follows,

ΩSAG
SeqAS =

{
M × (NB)2 Off-line

0 On-line
(6.7)

The calculation of the complexity of SynASM
RG, denoted by ΩRG

SynAS, is similar

to that of ΩSAG
SeqAS.

Generally speaking, other attack strategies in this work are conducted on-

line. SeqASM
ES is not a metric-based approach, and can only be conducted on-line.

In addition, compared with simulating cascading failures, obtaining the metrics,

degree and load, is fast, and does not need to be specifically calculated off-line.

Therefore, the degree-based and load-based approaches can be conducted on-line.

In summary, complexity comparisons among different attack strategies in this

work are given in Table 6.8. For the proposed SAG-based SeqAS, its on-line

complexity is as low as that of the degree-based and load-based attack strategies,
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and its off-line complexity is much lower than that of the exhaustive search SeqAS.

6.8 Conclusions and Future Works

In this work, we investigated the sequential attack against power grids. The

sequential attack can discover new vulnerabilities of power grids. We specifically

designed the metric SAG, and proposed the SAG-based SeqAS. Intensive experi-

ments were conducted to study the features of the sequential attack, and to com-

pare the proposed SAG-based SeqAS with the existing approaches.

There are several possible future directions along this topic. First, it is of

importance to study the relation between the removal order of VNs and the perfor-

mance. Are there better methods to determine the removal order besides searching

all possible removal orders? Second, the proposed metric, SAG, demonstrates how

nodes are related to each other in terms of sequential removals. This information

can be exploited in terms of designing defense solutions against malicious attacks.

Third, the construction of SAG on large-scale power grids, e.g., with thousands of

nodes, is time-consuming, even computationally infeasible. Developing new strong

SeqAS with lower complexity is needed. Finally, the visulization of sequential at-

tacks and cascading process can help people better understand the triggers and

propagation of cascading failures.
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CHAPTER 7

Summary

This dissertation is the study of malicious attack strategies against power

grids. It investigated the vulnerability of power grids from the attack perspective.

Different from the traditional contingency analysis, malicious attacks can be care-

fully designed by select substations, transmission lines, or both, as targets. In this

dissertation, malicious attacks have been investigated from several perspectives.

� In manuscript 1, the details of failure propagation was demonstrated by

a newly-designed platform. The proposed platform could visualize failure

propagation in details, which was of great importance to help people under-

stand such complicated phenomenon. In addition, by using the proposed

platform to investigating single-substation failures, three different types of

initial failures were discovered, which were non-critical failures, rapid-and-

critical failures, and propagative-and-critical failures. These discoveries were

meaningful to both attackers and defenders. For instance, from the attack-

ers’ perspective, propagative-and-critical failures provided a good direction

to find stronger attacks. From the defenders’ perspective, substations that

yielded rapid-and-critical failures were very critical to the grid and needed

to be protected from initial failures.

� In manuscript 2, it was assumed that attackers knew the topology of the

target grid. Under this assumption, the efficiency model was used to mimic

cascading failures. In particular, a new metric load distribution vector (LDV)

was designed, and the LDV-based attack strategy was proposed. The load-

based attack strategy was adopted as the comparison scheme, where the load
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of a substation/transmission line was calculated as its betweenness. The

simulation results showed that the LDV-based attack strategy could cause

more damage than the comparison scheme in terms of reducing the grid

network efficiency.

� In manuscript 3, it was assumed that the attackers would have some general

information on the target grid, including the topology, the types of sub-

stations, and the admittance of transmission lines. With knowing of these

information, the extended model was developed to mimic cascading failures.

The extended model, obeying the Kirchoff’s and Ohm’s Laws, was more ac-

curate than the efficiency model to reveal the power distribution in power

systems. In particular, a novel metric risk graph was proposed to show

the vulnerability relationship among critical substations/transmission lines.

Based on the proposed metric, the riskgraph-based attack strategy was de-

veloped. The proposed attack strategy was compared with four other attack

strategies in terms of attack performance and complexity analysis on three

test benchmarks. The comparison results showed that the riskgraph-based

attack strategy had strong performance and low complexity.

� In manuscript 4, it was assumed that attacks could occur on both substations

and transmission, which was referred to as the joint-substation-transmission-

line perspective. This assumption was a nature extension to the existing as-

sumption that attacks/contingencies occurred on substations only or trans-

mission lines only, which were referred to as the substation-only perspective

and the transmission-line perspective. In this work, both the vulnerability

analysis and the attack strategy were conducted from the joint-substation-

transmission-line perspective. Specifically, there were many joint-substation-

transmission-line combinations that could yield large attack strength. Such
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combinations represented the joint-substation-transmission-line vulnerabili-

ties, which were ignored by substation-only and transmission-line-only per-

spectives. In addition, three metrics, i.e., CIG, load and degree, were adopted

to investigate joint-substation-transmission-line attack strategies. The met-

ric CIG was newly-designed in this work; the other two were existing met-

rics. The comparison results showed that the CIG-based attack strategy had

strong performance by balancing to choose substations and transmission lines

as targets.

� In manuscript 5, the sequential attack was introduced to analyze the vulner-

ability and study the attack strategy of power grids. In the existing works,

it was assumed that the attacks/contingencies occurred synchronously, re-

ferred to as the synchronous attack. Referring to malicious attacks, however,

multiple attacks could be launched sequentially. The sequential attack was

a new direction to conduct vulnerability analysis and develop attack strat-

egy. In this work, it has been found that the sequential attack could discover

many combinations of substation whose failures caused large attack strength.

Previously, these combinations were ignored by the synchronous attack. In

addition, a new metric, called the sequential attack graph (SAG), was pro-

posed to reveal the relationship among substations/transmission lines. The

SAG-based sequential attack strategy was developed from the attacker’s per-

spective. Extensive simulations were conducted. Referring to simulation

results and complexity analysis, the proposed SAG-based sequential attack

strategy had strong performance and low complexity.
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