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Chiral exponents of the square-lattice frustrated XY model:
A Monte Carlo transfer-matrix calculation

Enzo Granato
Jaboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais,

22.925 Sao Jose dos Campos, Sao Paulo, Brazil

M. P. Nightingale
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

(Received 4 May 1993)

Thermal and chiral critical exponents of the fully frustrated XY model on a square lattice are
obtained from a finite-size scaling analysis of the free energy of chiral domain walls. Data were
obtained by extensive Monte Carlo transfer-matrix computations for infinite strips of widths up
to 14 lattice spacings. Two transfer matrices were implemented, one for each of the two principal
lattice directions. The results of both are consistent, but the critical exponents differ significantly
from the pure Ising values. This is in agreement with other recent Monte Carlo simulations. Our
results also support the identification of the critical behavior of this model with that along the line
of transitions of simultaneous ordering or becoming critical of Ising and planar rotor degrees of
freedom in the XY-Ising model studied recently.

I. INTRODUCTION

There has been considerable interest, both experi-
mentally and theoretically, in phase transitions of two-
dimensional, fully frustrated XY models. Most stud-
ies have been motivated by their relevance to Josephson
junction arrays in a magnetic field, where these models
describe the superconducting-to-normal transition at half
a flux quantum per plaquette, but there are also inter-
esting theoretical questions regarding the identification
of the universality class.

In the standard XY model without frustration the rel-
evant symmetry is the continuous U(1) symmetry which,
as is well-known, is responsible for a Kosterlitz- Thouless
phase transition. The fully frustrated XY model has a
richer behavior with a low-temperature phase with crit-
ical fluctuations associated with the U(1) symmetry, ac-
companied by a broken, discrete Z2 symmetry. In prin-
ciple, there are two different ordering scenarios: ordering
can take place in two stages via separate XY and Ising
transitions, or both symmetries can be broken or become
critical simultaneously, which yields a single transition,
presumably in a new universality class.

On a square lattice the model can be defined by the
Hamiltonian

II = —) J,s cos(0; —0s),
(ij)

where J,s = J (J ) 0) for horizontal rows and J;s = +J
for alternating vertical columns. Owing to the presence
of an odd number of antiferromagnetic bonds in each
plaquette, the model is fully frustrated. This leads to
a double degeneracy of the ground state, which is of
course accompanied by an additional continuous degen-

cracy, a manifestation of the U(1) symmetry. One can
introduce an Ising-like order parameter y„, the local chi-
rality, which measures the sense of rotation of a spin of
unit length s = (cos 0, sin 0) along the sides of a given pla-
quette p. In the ground state there is antiferromagnetic
order of the local chiralities (yz ——kl).

Early Monte Carlo simulations led to the conclusion
that the chiral order parameter of the fully frustrated XY
model has pure Ising model critical exponents, but
more recent estimates of the exponents have differed
significantly from the Ising values. In particular, predic-
tions were made for the values of chiral critical exponents
of the fully frustrated XY model. These predictions are
based on results for the XY-Ising model, ' which is
expected to describe the critical behavior in these sys-
tems. These ideas are supported by recent Monte Carlo
simulations. ' However, in view of results that sug-
gest pure Ising critical exponents, and in the absence of
precise agreement among the more recent estimates, the
current state of affairs is unsatisfactory from a compu-
tational point of view. The additional numerical results
presented in this paper may serve to help settle the issue.

We report results of extensive numerical calculations
of the chiral domain wall free energy of the fully frus-
trated XY model in an infinite strip geometry. Because
of the continuous nature of the phase variables of this
model, the transfer-matrix is intractable for numerically
exact computation of its eigenvalues. We therefore use
the Monte Carlo transfer-matrix method to obtain the
free energy from the largest eigenvalue of the transfer
matrix. Exploiting the anisotropy of the Hamiltonian
(1) we use two different implementations, a "horizontal"
(i.e. , column-to-column) and "vertical" (i.e. , row-to-row)
transfer matrix. These approaches yield results in reason-
able mutual agreement. From a finite-size scaling analy-
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sis of data for strips of widths up to 14 lattice spacings,
we have estimated the thermal exponent v, the exponent
g associated with the Ising-like order-order correlation
function, and the critical temperature T . In particular,
the result obtained for v is quite insensitive of the esti-
mate of T, as will be discussed in more detail below. We
summarize our estimates (with error estimates in paren-
theses): v = 0.80(4), q = 0.38(3), and T, = 0.454(4).
'Within the errors, these numbers are in agreement, with
a Monte Carlo simulation using similar finite-size scaling
analysis and they are also consistent with other Monte
Carlo simulations. However, our value of v disagrees
with the estimate of v = 1 by Thijssen and Knops, who
also used the Monte Carlo transfer-matrix method, but a
different method to estimate v; their deviating estimate
is likely to be an artifact of their fitting procedure. On
the other hand, our value of g is in very good agreement
with their estimate. Moreover, our results appear to sup-
port the identi6cation of the critical behavior of the fully
frustrated XY model with the line of single transitions
in the XY-Ising model studied recently.

II. MONTE CARLO TRANSFER MATRIX

The Monte Carlo transfer-matrix method. introduced
by Nightingale and Blote, is particularly useful when,
as is the case in the model under consideration, the con-
tinuous nature of the spin variables does not allow a nu-
merically exact diagonalization of the transfer matrix.
The method is a stochastic version of the well-known
power method of calculating the dominant eigenvalue
of a matrix or integral kernel. More specifically, the
dominant eigenvector go is approximated by a Monte
Carlo time average over weighted. walkers representing
row (or column) configurations. The basic idea is that
the (weighted) frequency of occurrence of a particular
row (or column) configuration, say S = (si, s2, . . . , sl, ),
is proportional to the magnitude of the corresponding
component gs of the dominant eigenvector.

The key elements of the algorithm are the follow-
ing. Walkers are generated in subsequent genera-
tions labeled by an index t. The generation at time
t consists of a sequence of a number of rt walkers
[(Si „xiii q), (S2,i, iU2 i), . . . , (S„~,m„, ,)], where the S, t,

are row (or column) configurations of the form S intro-
duced above, and the m; t & 0 are statistical weights.
This sequence represents a (generally extremely) sparse
vector g with components

@s = ) ~ss ~', t. ,

where b is the Kronecker b function. One can write

@'s = ).&(S'IS)@s = ).P(S'IS)Dsys,

where Ds = ps &(S'lS) and P(S'lS) = T(S IS)/Ds.
Since by construction P is a stochastic matrix, multipli-
cation by the transfer matrix of a vector of the form g

can be implemented as a stochastic process with tran-
sitions from S to S' with probability P(S'lS). That
is, to update generation t to t + 1, new walker states
are sampled with probability P(St+ilSt), while in each
transition the weight of walker i is updated to m; t+q ——

Dsw; q/et~i. For reasons of efficiency the weights are
kept close to unity by duplicating walkers with great
statistical weights and by eliminating walkers with low
weights. To ensure that rt+q remains close to its initial
value ro, one can choose et+i ——Aqri/ro, where At, is a
moving or cumulative average estimate of the dominant
transfer-matrix eigenvalue. Assuming that the genera-
tion counter t is reset to unity upon equilibration, the
largest eigenvalue can be estimated from a sequence of T
generations as

T
A = ) cg+iW~+i

t=1
(4)

where Wq ——P,. io; q denotes the total statistical weight
of all walkers of generation t'. It should be noted that
this estimator of the dominant eigenvalue suffers from
a bias due to the correlations of the population con-
trol constants ct with the weights Wt. These correla-
tions have the effect of suppressing large contributions
to the estimator (4) and enhancing small ones. " As a
result, the estimator tends to underestimate the exact
transfer-matrix eigenvalue, but this effect can be reduced
by choosing a large target number of walkers, ro. Fur-
ther algorithmic details, such as how to correct for this
bias without increasing the average population size, and
an alternative, sometimes better choice of the popula-
tion control constant ct can be found in Refs. 18—20. In
applying this method to the fully &ustrated XY model,
we have performed extensive calculations using, typically,
ro ——30 000 walkers and 150 000 Monte Carlo steps which
corresponds to 4.5 x 10 attempts per site.

To apply this Monte Carlo method it is necessary to
sample configurations S' from the distribution P(S'l S)
for arbitrary S and to evaluate the quantity Dp at each
elementary Monte Carlo step. One way to do this is
to factor the transfer matrix in a way that amounts to
building up the square lattice by, e.g. , first adding bonds
perpendicular to the transfer direction and then adding
new sites and bonds along the transfer direction. The
algorithm given above is then applied to both factors in
succession. The first of these operations corresponds to
multiplication by a diagonal matrix. This leaves the row
(or column) configurations unchanged while the weight
factors are calculated trivially: they consist of one term
each. The second matrix factor, which adds L new sites,
has a direct product form. Sampling and reweighting
problems in this case reduce to simple one-site problems.
In principle, this method works, but it yields an ineK-
cient Monte Carlo process: the simple factorization gen-
erates row (or column) configurations with variables that
are too weakly correlated in the sense that, as it is added
to the lattice, each variable is sampled independently
from a distribution with direct correlations only to one
other nearest-neighbor variable. True many-site corre-
lations are subsequently recovered via multiplication by
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strongly fluctuating weight factors. This, however, causes
strong fluctuations in the number of walkers, which re-
sults in frequent elimination and duplication of walkers
and enhances correlations between walkers within each
generation, which reduces the overall Monte Carlo sam-
pling efficiency.

The alternative we have used in this paper requires
helical boundary conditions. In that case the lattice
can be constructed by repetition of identical elementary
steps, each of which adds one site at a time. This implies
that the states S' and S in the transition matrix P(S'lS)
consist of lattice sites all of which coincide with the ex-
ception of one site. Consequently only a small number
of states S' can be reached from any given state S, i.e.,
P is sparse in this case. The degrees of freedom that
are added will have direct correlations with those at taboo

neighboring lattice sites, one in the horizontal and one
in the vertical direction for the square lattice. In princi-
ple, given an approximate dominant eigenvector, one can
transform the transfer matrix and incorporate even more
correlations from the onset, and thus reduce the fluctu-
ations of the weights and eigenvalue estimates. We
will return to this later on.

Use of helical boundary yields a more efficient Monte
Carlo process, but the method has the disadvantage of
producing a lattice with a surface that has a step defect,
as is unavoidable when one cuts across a screw. One
would expect the presence of this defect to lead to unnec-
essary corrections to scaling, which may adversely afFect
finite-size convergence, but in practice this appears not
to be a serious problem.

In fact, the method used in this paper requires use of
a transfer matrix of somewhat more complicated form
than the one of Eq. (3), in that this equation has to be
replaced by

eters p, . These are optimized by minimization of the vari-
ance over S of P&, p~ T(S'lS)/ps with states selected
with probability proportional to p&. This minimization is
accomplished approximately by minimizing the variance
over a relatively small set of states S generated by Monte
Carlo. For a transfer matrix of the form of Eq. 5 the
same process is still possible in principle, but it is more
complicated. In fact there are two alternatives. One can
define a Kronecker-product-like, two-site transfer matrix
Tl l(S",S'lS', S) = Ti l(S"lS')T~ l(S'lS) and base the
Monte Carlo process on the derived stochastic matrix
P(S",S'lS', S) oc ps'„~, Ti &(S",S'lS', S)/p~, s, where

ideally p~ ~ is the dominant left eigenvector of T~ ~. We
note that the pairs (S",S') and (S', S) difFer at two lat-
tice sites, and therefore this approach requires simultane-
ous sampling of two site variables, which renders the algo-
rithm unnecessarily slow. The alternative is to employ-
as we have done in this paper —a matrix product of two
single-site transfer matrices rather than a single two-
site transfer matrix, but this approach requires two trial
vectors. In terms of these, one defines T~ l(S'lS)
p&, T& &( S'l S)/p&, and T&, s ——ps, Ti &( S'l S)/p s. It
is straightforward to construct a transformed process
which again has a zero variance principle. This time
it requires that p~ ~ be the dominant left eigenvector of
the product matrix T ~ ~ T~ ~ and that p~ ~ be the dom-
inant left eigenvector of T~ ~T~ ~. Again adjustable pa-
rameters of p~ ~ and p~ ~ can be chosen by minimization
of the (appropriately weighted) sum of the variances of
P&, ps T(S'lS)/ps and g&, ps T(S'lS)/ps. In contrast
with the alternative of a two-site transfer matrix, the
presence of two matrices slows down the algorithm only
in the initial stage of parameter optimization with this
approach.

S',S
III. CHIRAL DOMAIN WALL FREE ENERGY

Although this is no real complication —one can simply
devise a stochastic process with steps alternating in cor-
respondence to the two matrices T~ ~ and T~ &—it has
prevented our use of approximate trial eigenvectors to
reduce the noise of the stochastic process. In principle,
this variance reduction scheme works as follows. Equa-
tion (3) can be replaced by the equivalent equation

where T(S'lS) = ps T(S'lS)/ps and @ and g' are simi-
larly similarity transformed. As long as the components
of p are all of one sign and do not vanish, the same Monte
Carlo method can be applied to T instead of T. This ap-
proach satisfies the following zero-variance principle: in
the ideal limit where p is the dominant left eigenvector
of T, the largest eigenvalue of T can be estimated with
vanishing statistical error. More realistically, as this limit
is approached the variance of the Monte Carlo process
decreases. In practical applications, one chooses a trial
vector p(pi, p2, . . .) which depends on variational param-

For an infinite strip of width L, the reduced free energy
f per lattice site can be obtained from the largest trans-
fer matrix eigenvalue, A(L, K), via the relation f = —1nA,
where K = J/knT is the reduced coupling constant. For
any given I this quantity, f, depends on the choice of
boundary conditions. By suitable choice of the latter,
as specified in detail below, the chiral domain wall free
energy can be obtained from the free energy difference,
denoted by Af For finite-s. ize analysis, a convenient
quantity is the domain wall energy per L lattice units
of length:

AF(K, L) = L Af(K, L).

Since the fully frustrated XY model is spatially
anisotropic, one can devise two different types of bound-
ary conditions to compute the domain wall free energy.
These two types are associated with two different transfer
matrices obtained by choosing the transfer direction to
be either horizontal or vertical, as shown in Fig. 1. If the
transfer direction is horizontal [Fig. 1(a)), one is forced
to use helical boundary conditions with a pitch of two
measured in lattice units, so as to match up the vertical
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FIG. 1. Schematic of the process of building up the infinite
strip using a transfer matrix. This can be implemented using
a Monte Carlo transfer matrix along the horizontal direction
with double helical boundary conditions (a) or along the ver-
tical direction with single (b) or double (c) helical boundary
conditions. At each step a new configuration is obtained from
the previous one, indicated by ~, by adding a new spin x
through a Monte Carlo process and relabeling the sites. The
+ indicates the antiferromagnetic pattern of the chirality in
the ground state.

antiferromagnetic bonds, which have a periodicity of two
in the transfer direction. This is the construction used
in Ref. 10. As indicated in Fig. 1(a), only strips with L
even will match the antiferromagnetic pattern of the lo-
cal chiralities y„ in the ground state; for strips with odd
L the boundary conditions will introduce a chiral domain
wall along the infinite horizontal direction. Calculation
of the domain wall energy requires that the boundary
conditions be varied at constant L. With the horizontal
transfer matrix this can be done approximately only, and
we chose to use the di6'erence of the &ee energy computed
directly for L, and the free energy obtained. by linear in-
terpolation between sizes L —1 and I + 1. This still

FIG. 3. Chiral domain wall free energy b, Ii (K, I ), obtained
from vertical Monte Carlo transfer matrix calculations, for the
same couplings K of Fig. 2.

leaves two possibilities, depending on whether I is odd.
or even. As an alternative we also performed calculations
using a vertical transfer matrix illustrated in Fig. 1. In
this case one has a choice between helical boundary con-
ditions with a pitch of one or two lattice units. For each
value of L precisely one of these two boundary condi-
tions will force the presence of a domain wall and this
ofFers a convenient way to determine the chiral domain
free energy without interpolation.

Calculations of the free energy using the horizontal
and vertical transfer matrices were performed as a func-
tion of strip width in a very narrow range of couplings
AK = 0.04 around the estimate of the critical coupling
obtained by Monte Carlo simulations of Lee, Kosterlitz,
and Granato. Note that the range we use is about ten
times smaller than the range used in Ref. 10. The data
for the chiral domain wall &ee energy using both imple-
mentations of the transfer matrix are shown in Figs. 2
and. 3.
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IV. FINITE-SIZE SCALING ANALYSIS

To determine the critical temperature and critical ex-
ponents, we make use of the following finite-size scaling
relation for the domain wall free energy

where A is a scaling function and LK = K —K is the
deviation of the coupling constant &om its critical value
K . For suKciently small values of its argument, the
scaling function can be expanded as

10 12 13

FIG. 2. Data for the chiral domain wall free energy
b.Ii (K, L), obtained from horizontal Monte Carlo trans-
fer-matrix calculations, in a small range around T, .

which shows that b, I"(K, L) is constant as as function of
L for K = K, but for that value of the coupling con-
stant only. This behavior is apparent in Figs. 2 and 3 for
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at least I & 8 if we attribute the deviations for smaller
system sizes to corrections to scaling. To the extent that
the quadratic and higher-order terms in Eq. (9) can be
neglected, the critical exponent v can be obtained from
the condition that b,F(K, L) be linear in I /" for fixed
AK. In fact, in this approximation, v can be obtained
from the slope of a log-log plot of S = OAF(K, L)/BK
vs L, which gives 1/v . From the data of Figs. 2 and
3, we have obtained S as a function of I for the hori-
zontal and vertical transfer matrix using this procedure.
The results are indicated in Fig. 4. The slopes of the
straight lines in the log-log plot, corresponding to the re-
sults for vertical and horizontal transfer matrices, agree
within the errors, as one would expect, providing a check
to the consistency of our data. Prom this plot we can es-
timate v = 0.80(4). It is interesting to note that within
the linear approximation —as is the case for the free en-
ergy barrier in the histogram of chirality in the Monte
Carlo simulations, where a similar finite-size scaling
is possible —the estimate of the critical temperature
T, = 1/K, and the estimate of the thermal exponent v
are in fact independent, but this property is preserved
only approximately in our generalized finite-size analy-
sis, where we fitted the domain wall energies to the form
of Eq. (9) with as fitting paraineters K„v, and a; with
i = 0, 1, and 2, as obtained by truncation of the scaling
function beyond second order. Note that the correlation
function exponent g can be obtained from the universal
amplitude ao in Eq. (9) using the results of conformal
invariance in two dimensions, ao ——7t g.

The results of the finite-size scaling based on Eq. (9)
fits are summarized in Table I and the corresponding
scaling plots are shown in Figs. 5 and 6. The table con-
tains estimates of the statistical errors associated with
the least-squares procedure. In some cases the y2 were
too large to be attributable to chance and as consequence
these statistical error estimates are to be treated with
suspicion. This is also evident from the discrepancies

T. V 7l L
0.4544(3) 0.77(5) 0.378(3) 10, 14 (2)
0.4555(2) 0.83(4) 0.369(2) 8, 14 (2)
0.4538(2) 0.83(5) 0.394(1) 8, 12 (2)

Transfer x'
11
14
1

between the various independent estimates. Under the
circumstances all we can do is to take the mutual dif-
ferences of various estimates as (admittedly unsatisfac-
tory) error estimates. Thus we obtain our estimates:
T, = 0.454(3), v = 0.80(5), and q = 0.38(2). This result
for v is inconsistent with the pure Ising value of v = 1,
but it is in agreement with the result v = 0.85(3) from a
similar finite-size scaling analysis of the free energy bar-
rier in the histogram of chirality from other Monte Carlo
simulations. Our estimate also agrees with a recent esti-
mate v = 0.875(35) based on a finite-size scaling analysis
of correlation functions. We therefore conclude that the
estimate of v = 1 obtained by Thijssen and Knops is
likely to be an artifact of their fitting procedure.

Recently, the phase diagram of the two-dimensional
XY-Ising model defined by the Hamiltonian

TABLE I. Results for critical temperature and critical ex-
ponents, obtained from finite-size scaling analysis of domain
wall energies. Standard errors are indicated parenthetically.
As explained in the text, these standard errors reBect only
statistical uncertainties, which are presumably considerably
smaller than the errors due to corrections to scaling. The col-
umn labeled L indicates which system sizes were used in the
Bts: Ii, L2 (AL) stands for sizes from Li to I2 in steps of
AI. Horizontal and vertical transfer matrices are indicated
by v and h under the heading transfer. The last column is
the y per degree of freedom.

10
9
8—

1.45

1.4
DF

1.35

1.25

1.15

10 11 12 13 14 15

1.1 I

-0.4 -0.2 0.2 0.4
vAk

I I

0.6 0.8

FIG. 4. S = BEE(K,L)/BK obtained from Monte Carlo
transfer-matrix data of Figs. 2 and 3. The exponent 1/v is
obtained from the slopes of the linear fit of horizontal (thin
line) and vertical (thick line) Monte Carlo transfer-matrix cal-
culations.

FIG. 5. Scaling plot of domain wall free energy data ob-
tained for the horizontal transfer matrix: AI" vs L "AK.
The solid curve is the fitted scaling function A, as given by
the expansion in Eq. 9. The data for L = 6 were not used for
the fit.
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-0.4 -0.2 0.2 0.4 0.6 0.8

FIC. 6. Same as Fig. 5 for the vertical transfer matrix.

PH = —) [A(l + 0 o„~)cos(0, —e„i) + Co„o i], (10)
(v v')

where o = +1, has been studied in some detail. ' This
model is expected to describe the critical behavior of a
class of systems in which U(1) and Z2 symmetries play
a simultaneous role, a class of which the fully frustrated
XY model is a special case. The critical behavior of the
square lattice fully &ustrated XY model is represented
by the behavior of a particular (unknown) point in the
parameter space (A, C) of this model. The phase dia-
gram of the model defined in Eq. (10) consists of three
branches, in the ferromagnetic region, joining at C = 0.
Along one of these branches (C & 0) the transition takes
place at a critical point with simultaneous criticality of
U(1) and Z2 order parameters. Along this line, the crit-
ical behavior appears to be nonuniversal with v varying
from 0.76 to 0.84 and g varying &om 0.25 to 0.5 along a
segment of the line. Further away from the branch point,
this line of single transition appears to become first order.
Our results for the chiral critical exponents of the square
lattice fully frustrated XY obtained by the Monte Carlo
transfer-matrix method do in fact appear to be consistent
with the critical exponents of a particular point along
the line of continuous, single transitions of the XY-Ising
model. Once this notion is accepted, it implies that the
fully &ustrated XY has a single nonuniversal transition.
The nonuniversality of this transition in turn suggests
that the critical exponents of the square and triangular
lattice fully frustrated XY models may differ from each
other, although they may be quite close. 2

Besides critical exponents, another important quan-
tity that can be inferred &om Monte Carlo transfer ma-
trix calculations, is the central charge c, which classifies
the possible conformally invariant critical theories. The
central charge is related to the amplitude of the singu-
lar part of the &ee energy per site, at criticality, in the
infinite strip by

f(K„L) = f +

which is valid asymptotically for large L. Fitting the data
for f(K, L) closest to the estimated critical temperature
T„we obtain c = 1.61(3) from the strips of 8 & L & 14
using both horizontal and vertical Monte Carlo data.
This result agrees with the estimate of the central charge
first obtained by Thijssen and Knops, also using Monte
Carlo transfer-matrix calculations, and appears to be sig-
nificantly larger than c = 3/2, which would be expected if
the transition was single, but decoupled. However, one
cannot be certain of this value unless calculations are
done at su%ciently large L such that small-L corrections
to the above asymptotic expression are negligible. Using
only the Monte Carlo transfer-matrix data for 6 & L & 14
may not allow us to extrapolate to the L large limit and
it is quite likely that this estimate of c is subject to sys-
tematic errors. In fact, recent large I calculations for the
related XY-Ising model show a significant decrease of
c with increasing L. Unfortunately, our data for the fully
frustrated XY model for I ) 14 turn out to be rather
noisy. This problem can be remedied in principle by us-
ing variance reductions techniques, but as discussed
this is complicated in the case of the square lattice fully
frustrated XY model because of the presence of both fer-
romagnetic and antiferromagnetic bonds. The case of the
triangular lattice is more straightforward in this respect.

V. CONCLUSION

We have studied the finite-size behavior of the chiral
domain wall free energy of the square lattice fully frus-
trated XY model on an infinite strip, using the Monte
Carlo transfer matrix. From a finite-size scaling analysis
of data for strip widths up to 14 lattice spacing, we have
estimated the critical temperature and chiral critical ex-
ponents. The latter appear to be significantly difFerent
from the pure Ising values and in agreement with other
recent Monte Carlo simulations. The results are also con-
sistent with the identification of the critical behavior of
the fully frustrated XY model with that of a point of the
line of single transitions in the XY-Ising model studied
recently. The value of the central charge c = 1.61(3) is
found to be consistent with the estimate first obtained by
Thijssen and Knops, but we cannot rule out the possibil-
ity that all results obtained for this and similar models
are skewed by large, slowly decaying corrections to scal-
ing.
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