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ABSTRACT

This dissertation describes an interdisciplinary research project that spans

computer-vision, imaging of biological nanoparticles via cryogenic transmission

electron microscopy (cryo-tem), and bio-informatics / proteomics. This research

introduces a new method for reconstructing individual biological particles imaged

via cryo-tem with typical accuracies of 88% to 98%. This individual particle re-

construction (IPR) technique is based on a hidden Markov model derived from

the underlying biological structure. The processing presented in this dissertation

reconstructs each individual particle from a single image, which is in contrast to

current approaches that can require tens of thousands of images to create an en-

semble representation of a particle class. The presented approach also has an

internal intermediate result structure that provides confidence measures and can

lead to updates of the model based upon further statistical analysis. As this in-

terdisciplinary research represents a new area of reconstruction processing, this

abstract serves as both an executive summary of the research and as an introduc-

tion to concepts that may be unfamiliar to practitioners of one (or more) of the

disciplines.

The main computer-vision focus of this dissertation presents the IPR algo-

rithm, which is a new model-based technique for reconstructing a transparent

object from a single image. Model-based 3-D object reconstruction algorithms

operating on 2-D projection images require a model that provides the basis for un-

derstanding the representation of the imaged object in the scene. Existing cryo-tem

reconstruction approaches rely upon averaging of classified images to reduce noise.

Improvements in these iterative approaches occur by omitting those images that

do not meet the latest reconstruction classification constraints. Another approach

uses statistical methods in order to determine a most probable fit to averaged



images of a particle class’ members. But, again, this processing reconstructs an

ensemble representation. The IPR processing presented here uses a higher-order

hidden Markov model schema, with levels of states and durations in the states, to

define relationships between the image and the candidate reconstruction object in

three dimensions without the need for image averaging. IPR processing also allows

for a non-iterative solution that grows only linearly in time with reconstruction res-

olution. Experiments on projection images of simulated transparent objects, with

added noise modeled from actual cryo-tem images, allowed for reconstruction of

each object from a single image. These reconstructions matched the original voxel

space up to 98% when compared on a voxel-by-voxel basis.

The imaging modality used for this research is cryo-tem, which is a mainstream

method for molecular level analysis in nanotechnology and proteomics. Cryo-tem

has achieved this status because flash-vitrification can capture the physical state

and phase of unstained target particles in the projection imagery. Transparent

imaging modalities (e.g. cryo-tem) can offer more reconstruction options than

imaging of opaque objects since both the external shell and the internal particle

structure contribute to the overall projection image. The cryo-tem reconstruc-

tion problem previously has been solved by various methods that average images.

These strategies can utilize up to 50, 000 distinct images of the same type of par-

ticle. While these methods provide a detailed ensemble representation for a single

particle class, the resulting depiction is not a reconstruction of an individual par-

ticle. Besides the desire for reconstruction of individual particles, the cryo-tem

imaging technique itself has constraints that drive the selected processing goals of

this research. The electron beam used in cryo-tem leads to time-dependent sample

damage that escalates as the electron-beam energy is increased to provide higher

and higher resolutions of the particles in the image. The presented approach meets



the goal of requiring only a single high-resolution image of each particle in order

to reconstruct each individual particle.

The bio-informatics / proteomics component of this research provides insights

into the requirements for models used in the IPR processing. Features of the

model arise from the underlying biological structure of the object of interest. These

biological structure features include items such as information about the molecular

composition, which is obtained by orthogonal and routine analytical techniques.

Given their importance to health issues and their basic 3-part composition, low

density lipoprotein (LDL) particles were used as the basis family of transparent

nanoparticles. The processing approach at the core of this research uses a current

biological hypothesis of the details of the LDL macroassembly structure to derive

the higher-order HMM schema. A simplified initial approach to modeling the

composition of the LDL particles used the three distinct states {phospholipid head

groups, lipids/cholesterol, and protein} as well as a fourth state for the buffer

solution. These states were used because it is well known that these components

exist in quite different electron density and/or localization regimes. After initial

trials, the algorithm was further refined by including the duration that each of

the multiple parallel Markov chains stayed in each state as each chain traversed

through the particle model. IPR processing of model sizes versus target sizes

was performed over the expected radius range for LDL particles. These trials

resulted in voxel to voxel matching accuracies greater than 88% from a single 2-D

image, even with typical cryo-tem image noise added to each target’s simulated

projection image. More importantly, these reconstructions matched the actual

target geometry parameters within a pixel of the actual values. This accuracy

implies that a histogram of these parameters (e.g. radius, height, etc.) could

be generated to glean a better understanding of the particle structures. It is



expected that the results of this research can be used to help produce statistical

data for a population of real images of LDL particles. The ultimate goal for

this research is that correlations of these LDL sizes and shapes to related known

health markers could lead to an improved diagnostic strategy to predict the risk

of coronary heart disease / arteriosclerosis. And, while not directly addressed, the

innovative method described here could have other uses for analyzing orthographic

projection images of transparent objects. These uses range from general proteomic

studies and quality assurance for drug delivery nanoparticles to dental x-rays and

other medical and manufacturing inspection imaging opportunities.
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CHAPTER 1

Introduction

The research presented in this dissertation studied the problem of 3-

Dimensional (3-D) reconstruction of an individual transparent object from a single

2-Dimensional (2-D) image. The term “individual” is used instead of “single” to

prevent confusion with the existing “single particle reconstruction” (SPR) method

name. In IPR processing, only a single orthographic projection image of the trans-

parent object is available to be used in the reconstruction of the original object.

Since the expected cryo-tem imaging modality results in increased damage to the

target on each successive image acquisition, it is very desirable to perform the

reconstruction with just a single image.

This single projection approach is in contrast to the currently available 3-D

reconstruction techniques for transparent objects. These methods include acquisi-

tion and processing of many thousands [2, 3] of images of an ensemble of assumed

similar targets taken at varying spherical angles. These techniques allow for a

blended representation of all the targets to be reconstructed via methods such as

SPR or tomography. In these methods, the abundance of images allows for noise

reduction through traditional image processing means such as averaging. For av-

eraging to work, however, a statistically significant sample is required of the same

or similar targets. The research presented in this dissertation was directed towards

the special case where only a single image of the same individual target is available.

The availability of just a single projection image may be due to image ac-

quisition and/or processing needs. The limit to one image can come from issues

such as damage to the target from the imaging modality or an inability to control

the range of available projection imaging angles. Besides limiting the number of

1



images to one, beam damage may also lead to increased noise in successive images

if the target and the surrounding medium are deformed by the act of imaging.

Another significant reason for the limit of one image is when the non-uniformity

of the targets does not allow for acquisition of an appropriate set of randomly ori-

ented images. In all of these scenarios, the requisite thousands of images are not

available or processing such as averaging may result in an improper understanding

if discrete measurements such as a histogram of geometric parameters for these

objects are required.

The single image of each target, however, does not mean that useful informa-

tion is unavailable. The transparent nature of the targets means that each image

can contain details about the internal structure of the target. The ability to see

into and through the target makes this method of analysis more useful than simple

sparse methods such as stereo imaging of opaque objects. This reconstruction also

may allow for more detailed information to be gleaned from the samples. These

additional parameters of individual particles can be more useful than ensemble

metrics from other analysis methods such as light scattering or computer vision

processing such as particle analysis. Thus, 3-D reconstruction of transparent ob-

jects from a single image can provide useful information.

The transparent nature of the object and the imaging acquisition technique

can make other processing techniques intractable. Even if multiple images are

available, simple registration processing becomes much more difficult since the

image acquisition damage to the target, that increases with each image, leads to

differing similarity measures in each successive image. If a single image is used

for the reconstruction processing, the V 3 transparent voxels, the N state choices

for each voxel, and the M possible values for each pixel in the projection image

allow for many combinations that of states that result in the same observation

2



value. However, with just a single image, there are no extra variables against

which to solve the under-determined equation. Existing approaches also expect

noise reduction through averaging and other processing that is unavailable with

just a single image.

This dissertation is organized in the following manner. The remainder of this

chapter provides a more detailed introduction to the research described in this

dissertation. The discussion begins with an overview of model-based vision pro-

cessing in Section 1.1. Since there is a strong biological impetus for this research,

Section 1.2 provides additional information regarding the nature of the underly-

ing image acquisition and its uses. The chapter concludes in Section 1.3 with a

formal statement of the transparent object reconstruction problem to be solved

and the expected parameters to be gleaned from the reconstruction. Chapter 2 re-

views related literature. Chapter 3 presents the algorithm developed for this effort.

Chapter 4 discusses the finding of this research. Chapter 5 provides concluding

remarks and lists possible next steps for continuing the research.

1.1 Model-Based Vision Processing

Generally speaking, the information gathering and processing performed by

the human visual system in order to perceive the world in three dimensions has

not been matched yet by digital machine processing that is known as computer

vision. In human and computer vision, the reception of images and the processing

of the information embedded in the images leads to a 3-D reconstruction of the

scene. This 3-D reconstruction provides both relative location information for the

objects and an understanding of the objects themselves. The complexity of 3-D

reconstruction is further affected by both the viewer’s innate understanding of the

scene and the objects in the scene as well as by the “optics” through which the

scene is observed.
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3-D reconstruction relies on an understanding of the world being viewed and

of the imaging system being used to view the world. Many people remember

the narrowing of train tracks from a first art class in perspective, or the road and

characters disappearing into the distance in a Saturday morning cartoon. But how

this works in human vision has been very hard to implement in computers. Human

brains implicitly “know” the size of objects from a given range of distances based

on a learned set of rules. When the view of “known” objects appear smaller, the

brain “understands” that they are farther away than when the appear larger. By

using a model of the items in the image, the human visual processing system infers

size, shape, and distance information from just the two images received through

our eyes.

A second reason for the complexity of 3-D reconstruction via computer vision

is the manner in which the image is received by the processor. As noted by

Trumbull [4], directors of 3-D movies must take into account the fact that humans

are forced to focus on a flat plane when viewing a movie. Since this is contrary to

the expected depth of focusing that normal human vision enjoys, the movie maker

must adjust the objects in the image so that when the eye focuses on the flat

screen, objects appear in the correct location, with the correct scale, and proper

proportions so that the human vision processing system “sees” the scene as it would

in the real 3-D world. This adjustment in movies can be accomplished through a

combination of both sensors and processing. Note that this processing, which can

cost hundreds of millions of dollars and can take decades of computer processing

time is, in fact a form of 3-D reconstruction. 3-D systems such as this often use a

pair of cameras to capture two simultaneous images of the scene. The scene is then

reconstructed into three dimensions within the computer so that it can then be

projected back on the screen. This level of processing in humans is more amazing

4



when one considers that the human vision system absorbs all the 3-D information

through the eyes and performs all of this processing in the brain in real-time.

The culmination of 3-D reconstruction requirements is the need for a model

against which the vision processor can process its observed data. In human vision

processing, the brain stores the models of known artifacts in the real world. In

computer vision, the processor must be presented with models of the artifacts or

the algorithm must be based upon a model by which the observed data can be

analyzed so that the reconstruction processing can occur. For computer vision

processing, this equates to a nearly infinite set of tests to determine the distance

based on the geometric calculations while the human vision system “just does it.”

1.1.1 Transparent Objects

There are, however, some areas in which computer vision can match, or even

exceed human vision. By taking advantage of imaging means other than visible

light, non-human sensors can see through objects that are normally opaque. For

example, X-rays and electron beams can penetrate many objects of interest to cap-

ture the internal structure of those objects. Humans and computers can view the

2-D projection images but computers hold an advantage for this type of processing.

Since generally there is no model of the object in the brain, humans cannot “see”

the 3-D structure of these transparent objects.

Computers also have no innate understanding of the internal structure but

they are better suited for the intense and repetitive analysis required for this type

of 3-D reconstruction. Computers can execute algorithms on a training data set

that generate the model of the transparent object. This generated model can then

be applied in order to preform a 3-D reconstruction of the transparent object.

Or, many different supplied models can be tested against the observed structure

in order to provide for a “best fit” reconstruction. In a recent paper [5], over
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50,000 2-D projection images were analyzed in order to create a representative 3-D

reconstruction of a biological particle. Clearly humans are not suited for this level

of repetitive vision processing so there are amble opportunities for computer vision

to perform 3-D reconstruction of transparent objects. The problem then becomes

one of finding the best model for the reconstruction and an efficient means of

computing and applying the model.

1.1.2 Associated Problems

There are many problems that fall into this category of processing. Most

any imaging regime that results in a small number of images (e.g. mammograms,

dental X rays, nanoparticle studies, or proteomics) is a candidate. But, since a

model is expected, certain examples may not be as suitable. Mammograms, while

offering a view into a transparent region, may rely more on the cells detected rather

than the mammary mass itself as the target of interest. If a model of cancer cells is

known, then the tissue mass could be considered the suspension medium and the

parameters of the cancerous region could be reconstructed. Dental x-rays would

follow the same model with air serving as the solution. Or, with a proper model,

caries could be suspended in the enamel. The use of a model based approach for

providing geometric parameters for an ensemble of particles is the thrust of the

research. Biological particles can be considered a sub-class of nanoparticles, so the

focus of the research is directed towards assisting in this arena.

1.2 Biological Impetus

Since the motivation for this research has its basis in proteomics, an under-

standing of the biological underpinnings provides an appreciation of the constraints

on the solution space. This section summarizes the biological basis for this research.

These constraints are used in Section 1.3 to present the generalized problem.
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1.2.1 Cryogenic Transmission Electron Microscopy

A classic example of the reconstruction of non-uniform transparent objects is

imaging of biological and nanoparticles via cryogenic electron microscopy (cryo-

tem). See [6] for a historical and theoretical review of cryo-tem. (Note that this

dissertation uses the term cryo-tem instead of the alternative cryo-em in order to

emphasize the transparent nature of transmission electron microscope imaging.) In

this processing, the targets are flash-frozen from their natural state so that struc-

ture may be preserved. An example from [7] of cryo-tem of low-density lipoprotein

(LDL) particles is shown in Figure 1. In this example, a single LDL particle was

Figure 1. Example LDL Cryo-tem Image (from [7])

imaged at relatively large rotation angles. To acquire this set of images, the target

was identified and imaged at multiple rotation angles. A diagram of this scenario,

but with smaller rotation angles, is shown in Figure 2. Note the requirement to

keep the target(s) within the focus region of the apparatus may require translation

of the sample in order to preserve focus.

In the small angle case, the cryo-tem sample holder is rotated through a

limited range of angles. These small angles allow for a reduction in the damage to

the biological sample by the electron beam since refocusing may not be required.

The small rotation angles, however, limit the amount of information that may be

extracted from the orthographic projections of the particles in order to determine
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the geometric parameters of the particles. This constraint leads to a natural trade-

off between sample integrity and processing requirements. Starting from images

acquired with the small-angle rotations, processing can be applied in order to

obtain an improved mapping between geometric parameters of a 3-D model and

the rotated 2-D projection images. This mapping can be used for the extraction of

pertinent geometric information that can lead to an understanding of the internal

structure. An obvious desire from this observation is a processing scheme that can

use but a single image of the particle so that refocusing is eliminated and varying

beam damage between images is eliminated.

1.2.2 LDL Particles

The biologic targets of interest are lipoprotein particles. Lipoprotein particles

are a combination of lipids (fat and cholesterol) and proteins. Together, the lipids

and proteins assemble into a macromolecular vesicle that acts as a carrier for the

distribution of insoluble cholesterol in serum (blood plasma) throughout the bodies

of all animals. (LDL) macromolecules serve to carry cholesterol to the body so that

the cholesterol can serve its many essential functions. High-density lipoprotein

(HDL) acts as a scavenger of cholesterol from the body, providing transport back

to the liver and intestines for processing and elimination.

As coronary heart disease (CHD) is the single largest killer of Americans [8],

improved means of detecting risk factors before arterial obstructions appear could

lead to a improvement in quality of life with a reduced cost. It is generally accepted

that HDL particles are smaller in average diameter (than LDL) with more protein

than fat content while LDL particles are quite a bit larger in diameter (than HDL)

with much more fat than protein. Current medical thinking is that large numbers

of LDL correlate with poorer cardiovascular health while larger numbers of HDL

are considered as a marker for lower risk of arteriosclerosis.
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Research over the past decade, however, has suggested that geometric param-

eters of lipoprotein macromolecules may better correlate with cardiovascular risk

than just the particle counts and the associated density of particles in the serum.

Newer tests [9] that are based upon Nuclear Magnetic Resonance (NMR) spec-

troscopy can provide a count of the number of LDL particles in size bins but not

actual LDL particle sizes. In general, LDL particles that fall on the large end of the

LDL particle size spectrum are tied to better health while smaller LDL particles

correlate to worse health. In a study of diabetics [10], changes in the LDL sizes and

plasma lipid levels accounted for part of the antiatherogenic effect of fenofibrate in

type-2 diabetes. In this study, increases of only 0.98nm in average LDL diameters

(which is in the range of %5 to %10 of expected particle size) showed a detectable

change in atherogensis. LDL packages that are at the small end of the overall LDL

size spectrum are considered to be an important cause of arterial plaque initiation

that can eventually lead to heart attacks and stroke. And somewhat surprisingly,

even though conventional wisdom states that HDL is “good” cholesterol, another

study [11] showed that high concentrations of smaller sized HDL particles resulted

in a 15-fold increase in the risk of heart disease. These studies lead to the conclu-

sion that more is at play than just the size of the particles: shape and/or other

geometric properties may be important.

The characteristic parameters of LDL and HDL packages are important to a

better understanding and prediction of heart disease risk. Geometric parameters

other than average diameters or density measurements may one day prove more

important to achieving a better understanding of and prediction of heart disease

risk. By allowing for efficient generation of a histogram of parameters from LDL

and HDL particles found in blood samples, information derived from cryo-tem

images may be correlated to observed cardiovascular state in order to assist in the
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determination of essential relationships between lipoprotein geometry and overall

cardiovascular health. Tools that can provide these parameters can also be used

for other proteomic studies as well.

1.3 Problem Statement

The problem can be described as performing a 3-D reconstruction of an indi-

vidual 3-D target in a volume of real space that is imaged via a single orthographic

projection through the object, with the object at a random orientation relative to

the image plane. The target is not opaque to the imaging technology being used so

that the pixels of the projection image are created by passing the imaging energy

through the target sample. A representation of this scenario is shown in Figure 3.

In this example, the target (blue discoid object) is completely contained in the

v0× v0× v0 volume space. The orthographic projections give rise to an image that

also completely contains the target projection that is m0 ×m0 pixels in size.

Figure 3 shows the target as fixed and the image planes of separate projection

images as not being co-planar but this is not an important issue in the problem

definition. In some cases (e.g. cryo-tem) the image plane is fixed and the object

is rotated and translated in free space. In other cases (such as dental x-rays), the

image plane may move around a fixed target (i.e. a tooth). Thus, the target origin

can be considered to be fixed in space and the projection plane can move or the

converse where the image plane is fixed and the object is free to rotate around its

center.

1.3.1 Geometry Orientation

The geometry to be used for the reconstruction, which is shown in Figure 4,

is a standard right-handed x, y, z graphics co-ordinate system. The positive x axis

extends to the right and the positive y axis points upwards so the positive z axis
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points out of the x−y plane towards the viewer. The 3-D target, shown generically

as a discoid, is centered at the origin. Due to the rotation and translation symmetry

noted above, this is the same problem as shown in Figure 3. Figure 4 shows a single

instance of the same discoid target without the associated reconstruction space.

As will be seen, the reconstruction space can be rotated as well so it is removed

here for simplicity.

1.3.2 Parameters

The desired solution is a set of densities for the v0 × v0 × v0 volume space. It

is assumed that the density of the non-target portion of the volume is sufficiently

different from the target so that the boundary of the target can be distinguished.

For some targets, such as dental x-rays, the difference in tooth to air is substantially

different. For the cryo-tem case, this means that the electron density of the buffer

differs from the target, or at least the outer shell of the target. As is seen in

Figure 1, this is a fairly reasonable assumption, but care needs to be taken in

sample preparation to ensure this constraint is obeyed.
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Figure 2. Small Angle Cryo-tem Image Acquisition
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Figure 3. Problem Definition Examples
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Figure 4. Geometry Orientation
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CHAPTER 2

Review of Literature

This chapter discusses the current state of 3-D reconstruction and related

technologies. The vision community typically assumes that 3-D reconstruction

problems fall into 2 classes : 1) objects can be represented as completely opaque,

and the effects both of transparency and aliasing can be ignored, or 2) volumes

contain only semi-transparent tissue and the effects of occlusion can be ignored [12].

The research discussed in this dissertation follows the latter class, so the review

of prior studies will concentrate on issues related to the semi-transparent schema.

However, due to the nature of the reconstruction goals of this project, only the

non-occluded class will be considered.

The remainder of this chapter is organized as follows. The review begins

in Section 2.1 with more generalized 3-D reconstruction methods for opaque and

transparent objects. Since there is a specific imaging technique for the targets of

interest, the discussion continues with a review of standard practice cryo-tem re-

construction techniques in Section 2.2. Specific studies of the LDL particles them-

selves are then discussed in Section 2.3. Section 2.4 contains information relating

computer vision and model matching in the context of the stated problem. The

final section, 2.5, provides a review of statistical reconstruction methods, includ-

ing hidden Markov models, as required for some of the reconstruction techniques

discussed in Chapter 3.

2.1 General 3-D Reconstruction Techniques

When there is but a single larger item (or scene) to be rendered, 3-D represen-

tations can be created from many different algorithms. Brief descriptions of many

approaches are provided by Ihrke, et al. [13]. This section provides an overview
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of a few of the approaches more closely related to having a limited set of images

such as starting with two pictures (stereo) and progressing to methodologies with

more images. An overarching consideration of these approaches is that a prior

understanding of the target is not always known. In these cases, measurements

from the projections of the object are used to create a representation of the ob-

ject from mathematical considerations rather than from a model-based approach.

Still, it is important to understand these approaches to understand constraints and

assumptions that can be used in the model approach.

2.1.1 Stereographic Reconstruction

The conceptually simplest 3-D reconstruction uses only two images. Brains of

many living creatures utilize only a pair of eyes through which their world is viewed.

Thus, evolution has caused neuron connections that can process the two images

to reconstruct (understand) the scene at hand. But, as reported by Freeman [14],

electrical activation of these regions can bias an observer’s depth estimates. So,

as good as animal vision is, the processing can have biases that cause improper

localization and shape recognition due to localization estimate errors. Luckily,

other processing regions of the brain may handle the distortions to allow for a

relatively good level of functionality from just the two images.

The goal of computer vision is to mimic, or exceed, the human processing

capabilities without introducing biases from the processing and by correcting errors

introduced by the optics. Stereoscopic reconstruction instruments, such as that

described in [15], estimate 3-D (x, y, z) objects viewed by a single pair of digital

cameras with optics that can change focus and zoom much as human eyes can

do. The positions, shapes, and sizes of the objects are generally determined by

processing the images. The resultant scene reconstruction can then be considered

the computer vision similar to human vision processing.
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There are many methods for performing stereographic computer vision pro-

cessing. In general, stereoscopic depth perception is based on the differences be-

tween the left and right half-images of a stereogram [16]. But, difference (or dispar-

ity) processing can actually be considered to be a matching function. See [17, 18]

for a survey of computer vision matching methods. Sabater [19] discusses mean-

ingful matches in stereo vision and provides a theorem that guarantees an upper

bound on wrong matches by building a “faithful statistical background model” for

image blocks from the images themselves. The statistical approach helps account

for noise and other distortions in the two stereographic images by seeking an an-

swer to the query “What is the probability that given two images and two similar

patches in these images, this similarity arises just by chance?” [19]. But, in the

end, this method uses a final disparity map across sets of image pairs. As with

human vision, this involves a time series of image pairs, which is not available in

the cryo-tem imaging paradigm.

2.1.2 Reconstruction From Multiple Views

An obvious next step in scene reconstruction is to utilize more than two im-

ages. It is believed that humans tend to represent known objects by sets of 2-D

views rather than by single 3-D descriptions [20, 21]. Thus, one approach is to use

sets of stereographs. Computers can store large numbers of image pairs but even

the most powerful computers are somewhat limited by processing time so there

is a practical limit to the number of image pairs that can be processed by com-

puter vision techniques. Human physiology is limited to two eyes but computer

vision systems do not share this limitation. In a still scene, a single camera can be

moved to record many images of the target or multiple synchronized cameras can

record simultaneous images of the target from varied viewpoints. Thus, images

from multiple viewpoints is a natural approach to be tried in computer vision.
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As with general stereo processing, there are many approaches to reconstruction

from multiple views. See Seitz et al. [22] for a review of algorithms for dense multi-

view stereo algorithms and Labatut [23] for a list of multi-view approaches. The

following sections describe multiple view techniques that are more applicable to

the cryo-tem problem.

2.1.2.1 Shape From Surface Properties

A common way to estimate the shape of a 3-D solid object is to use surface

properties of the object. These methods involve using measurements derived from

2-D images of the object to create an estimate of the physical 3-D object shape.

Common techniques of surface-based methods are estimation of shape from con-

tour, also called shape from silhouette and contour disparities. Related methods

utilize slices of the solid object to estimate the shape by connecting the contours

(surfaces) of the slices. In all cases, multiple images are required in order to provide

a “good” estimate of the original shape.

The idea of shape from silhouette, which is credited to Baumgart [24], involves

estimating the visual hull of the original object. The visual hull is defined as the

maximal volume consistent with an object’s silhouettes as seen from some set of

viewpoints [24, 25]. The visual hull is created by intersecting the solid visual

cones formed by back-projecting the target’s silhouette from each camera’s image

plane [24]. See Figure 2 in [24] for an example diagram. In 1974, Baumgart

estimated 3-D shapes of toys from four silhouette images. As can be seen from

Figure 0.1 in [26], the 3-D representations are polygon meshes that show only the

basic outline and very little real 3-D depth information. Additional research into

shape from contour has been performed since these initial efforts.

A related method for estimating shape from surface properties is to use dispar-

ity in the projected contours. Marr and Poggio used the cooperative phenomenon
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of the human brain as the basis for a stereo vision processing algorithm [27]. As

such, they condensed the solution to the stereo vision problem (also see Section 1.1)

to the fusing of two images by finding common points and using those points to

find associations between other points in the image [28]. That is, these algorithms

work by finding along the outline contour “bumps” (control vertices) or regions

that are similar. Since these efforts are directed towards solid objects, only the

contours can be utilized since concavities elsewhere in the projection are masked

by the overall “shadow” of the projection image. It is only when a concave region

is captured in the projection contour that it can be used to help in the reconstruc-

tion. This requires an inordinate number of images to ensure that all such features

are captured. As such, a highly cooperative processing engine (such as parallel

neurons in a brain) is needed to fully solve the stereo vision problem by utilizing

just the contours of the projections.

Other methods of shape from contour rely on slices of data. In some cases,

true tomography is used to produce image slices of the target then reconstruct the

shape from the tomography slice edges stacked edge to edge. In other cases, vir-

tual slices are used. Dong and Hillman [29] incorporated a curve matching process

when producing the vertical contours for the object. This approach uses re-sampled

B-spline interpolation of the contours to increase the resolution of the curves con-

necting the layers of the slices. Giblin and Weiss [30] used multiple views from a

known camera motion but with a restriction of co-planar viewpoints in order to

induce a correspondence between the two profiles. Where as the standard “bumps

on the profile” processing assumes similarity, this approach uses a minimization

in depth to resolve the ambiguity. This reduces the envelope of planes problem to

that of computing the envelope of a family of lines in a single plane.
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2.1.2.2 Space Carving

An extension of surface-based estimation techniques is to look at the photo-

graphic and lighting nature of the object surface. Kutulakos and Seitz [31] provide

an analysis that provides the tightest possible bound on the shape. Space carving

starts by using the visual hull as a basis when there is no information available

regarding the scene’s radiance. A family of all shapes that are photo-consistent

with the photographs is used to define the ambiguity that exists in recovering the

3-D shape from the images. The union of all photo-consistent shapes defines the

photo-hull of the object. The photo-hull can be computed by a simple algorithm

that “carves” space until the remaining voxels represent the photo-hull.

The basic algorithm consists of carving away voxels that are not consistent

with the images. An initial volume that contains the true scene is initialized.

Each photograph is projected and the colors and optical rays from each voxel to

the sensors are compared via a consistency function. The number of consistency

checks is bounded by N ·M where N is the number of photographs and M is the

number of voxels, but as the number of removed voxels increases, the number of

voxels remaining to be checked is reduced fromM , so improvements in computation

speed from the upper bound are to be expected. This approach, however, is based

on consistency of the voxels based on the illumination of the object in the images.

Pixels in the photographs, which are generated by reflected light, are used to

determine which voxels remain in the solid volume of the reconstruction object.

More recent efforts utilized a probabilistic approach to space carving. Yao

and Calway [32] used likelihoods of either opaque or free space to generate a depth

mapping. Broadhurst et al. [33] used a plane by plane approach to carve pixels

from series of 16 and 63 images in order to recreate 3-D reconstructions of highly

textured houses that do not have holes in the reconstruction. These approaches
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still require many images but the concept of consistency and probabilistic decisions

could be useful tools in the reconstruction of particles from cryo-tem images.

2.1.2.3 Tomography

A major methodology for reconstructing “solid” objects is to use multiple

images that consist of a series of 2-D “slices” of the target. By adjusting the slice

depth of field and the focus plane, this computerized tomography (CT) can also be

used to provide scans of the scene or object. Classic computer-vision techniques

can be used to “find the edges” of the slices so that a 3-D model of the object

can be constructed from the 2-D slices joined at the related edges. In this process,

volumetric rendering utilizes the edges of each slice in order to connect them on a

grid or mesh so that a composite 3-D representation is generated. This technique

works well when the target is fairly large with respect to the imaging technology

resolution. CT also requires that the target can be held fairly stationary with

respect to the imaging device or there must be a registration mechanism so that

the slice offsets are known with a degree of accuracy. Since nanoparticles are

already thin, this method of generating slices is not applicable.

Another way of performing tomography involves slices that are not co-planar.

Electron tomography is a means by which a three-dimensional structure can be

reconstructed from a series of images or projections, taken at regular tilt inter-

vals [34]. In their paper, Midgley and Weyland describe the use of the “projection

requirement,” which states that the projection is, in principle, a monotonically

varying function of some feature of the target. In the case of a bright field trans-

mission electron microscope, the assumption is made that the mass-thickness con-

trast due to elastic (atomic) scattering is dominant [34]. Another recent effort in

tomographic reconstruction of transparent objects [35] utilizes hundreds of images

and requires the immersion of the object in an index-matched material in order
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to reduce surface scattering and refractions. Clearly, biological samples will not

be index-matched to the buffer solution. But these examples of transmission elec-

tron microscope tomography show what can be done with sufficient images of an

individual target object.

2.2 Existing Cryo-tem Transparency Reconstruction Techniques

The 3-D reconstruction techniques in electron microscopy have led to what is

called “single particle reconstruction” (SPR). As noted by Frank [36], this nomen-

clature can be confusing since the reconstruction process traditionally uses many

thousands of projection images. The name is derived from the fact that a single

particle class (e.g. a specific virus) is reconstructed and not that pictures of just

a single item, are used to perform the reconstruction. It is a set of distinct im-

ages, however, that are used to reconstruct a class average from a representative

ensemble of distinct particles that represent the class.

Regardless of the lineage of the nomenclature, the problem of solving a SPR

is a complex procedure. “The problem of reconstructing a 3-D object from a set

of 2-D projections was in principle solved analytically by Radon at the begin-

ning of the twentieth century (Radon, 1917). The principles of 3-D reconstruction

were re-invented in the late 1960s and early 1970s, with the introduction of com-

puterized tomography in medicine and 3-D reconstruction techniques in electron

microscopy.” [37]. SPR utilizes many aspects of Radon’s principles in order to re-

construct biological particles. See [34] for a treatment of the Radon transform and

its application to electron microscopy processing. As is seen, the complexity is not

so much in the math, per se, but in the alignment and filtering of all the images

that are required to provide coverage of the entire object 3-D spatial extent.

Most research in the area of visualization of biological macromolecules via

SPR has utilized a uniformity assumption in order to achieve high-fidelity render-
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ing of 3-D representations from multiple 2-D projection images. By assuming a

uniform shape and a relatively small range of sizes amongst the target objects,

these algorithms convert 2-D images into a 3-D model that is based on sampling

many thousands of individual images taken at varying spherical angles around a

large population of targets [2, 3]. In essence, these techniques align sample images

and average out the imaging noise and variations in the population samples by

processing the various pictures of the “same” object into a single result space. See

Figure 12 in [37] for a graphical map between the 3-D, 2-D, and 1-D real and Fourier

spaces. This technique works well for self-consistent objects such as viruses and

other biological constructs, where a single composite image may represent many

instances of the same object imaged from many differing view angles.

The following subsections provide details for many of the underlying technolo-

gies used in current techniques with an eye towards gleaning issues and ideas that

are applicable to the dissimilar target problem. Reviews of many of these topics

are provided in [6, 37, 36]. The following sections delve into aspects that are re-

lated to the non-uniform target problem. Section 2.2.1 discusses two basic issues

in many reconstruction techniques. Section 2.2.2 then cover the most common

reconstruction techniques. Section 2.2.3 concludes with a discussion of available

software tools that are applicable to 3-D reconstruction from cryo-tem.

2.2.1 Underlying SPR Issues

Because all of the methods in this section use transmission electron micro-

scope as the imaging method, there are several common issues across all processing

methodologies. Two of these common issues are important to research related to

a single image: the Fourier central slice theorem and Contrast transfer function.

This section provides details of these issues as background for discussion of related

reconstruction methods.
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2.2.1.1 Fourier Slice Theorem

A first consideration when processing images of a multitude of particles is

alignment of the images based on the particle projections within the images. This

alignment can be used in many ways but two main objectives are orientation

classification for averaging and angular coverage. Averaging is used to reduce the

tens of thousands of images to a subset that has reduced noise characteristics.

Angular coverage is necessary to prevent “holes” in the reconstruction analysis by

ensuring that samples provide coverage across a suitable portion of the full range

of spherical angle space.

Alignment of such images can be handled via the Fourier slice theorem. A

complete description of the underlying mathematics can be found in [38] and other

descriptions can be found in resources such as [39]. The basic idea is that the

central section of the Fourier Transform (FT) is a thin slice of the 2-D FT of the

orthographic projection image. If the FT is extended toward infinity in length,

the central slice in real space collapses to a single line. These slices (the line) can

be used to determine the alignment of the images by determining the angle of the

slices that match. These slices, with appropriate filtering to limit the oversampled

low frequency contribution, can also be used to reconstruct the base image by

creating a new FT from the central slices based on alignment angles. By having

many thousands of such projections, a suitable reconstruction can be created.

2.2.1.2 Contrast Transfer Function

Images generated via a transmission electron microscope, regardless of whether

or not the sample is frozen, are not true 2-D projections of the 3-D sample space.

Various artifacts and noise are present that degrade the information in the pro-

jection images. Noises are induced from many sources but with appropriate care,

these can be ignored in the presence of other factors. The two largest contributors

24



to distortion are the Contrast transfer function (CTF) and the envelope function of

the microscope [40, 41]. While the CTF shape (see, e.g., Figure 1 in [42]) depends

on several parameters [43] such as defocus, spherical aberration coefficient, source

size, and defocus spread, only defocus is a parameter that changes between images.

Despite the fact that information is lost at the CTF’s zero crossings, there are

ways to overcome this effect. A simple correction method is to truncate the data

at the first zero crossing. More robust techniques have been developed [42, 44]

to estimate the CTF so that the true projection image can be recovered. Thus,

for the study at hand, acquisition of the proper defocus images should allow for

recovery of the underlying projections to be used in the reconstruction processing.

2.2.2 SPR Algorithms

Many algorithms have been developed to perform the basic SPR processing.

This section discusses three of the most applicable methodologies.

2.2.2.1 Angular Reconstitution

The angular reconstitution (AR) method, which is summarized in [6], uses

the random nature of particles in suspension (which may be frozen) in order to

glean the requisite FT slices across a range of spherical angles without requiring

a physical tilting of the cryo-tem sample. Common line processing, which looks

for similar central slice lines, is used in order to align, classify, and average the

thousands of projection images. This data is then used to perform a 3-D recon-

struction. An iteration step is performed where the reconstructed volume is used

to create a new “anchor” set of projection images. Since these anchor images are

created from a single 3-D volume, they represent a better frame of reference for

assigning rotation angles. The original images are reprocessed against the new

reference angles and a new 3-D reconstruction is generated.
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Of course the overall angular reconstitution process is not applicable to the

single image problem. The projection regeneration processing, however, may have

value in the generation of 2-D projections based on our expected sample model.

2.2.2.2 Single particle tilt series

Single particle tilt series (SPTS) often do use just a single particle as a target.

By utilizing a much lower electron beam energy, the SPTS method allows for

capture of 60 to 280 images of the same particle [45]. The number of images is

limited by the stage mechanism, so small angle rotations are used to increase the

number of images. In some cases, a 90° flip is performed in order to allow for more

images to be acquired. But in all cases, the 60° to 70° span still creates a major

hole in the spherical angle coverage of the 3-D FT space.

The SPTS algorithm has other limitations when compared to the larger image

set techniques. The large number of rotations also induces rotation and alignment

errors due to the mechanical slop in the stage rotation mechanisms. Since achiev-

able resolution is proportional to the electron energy, the lower electron beam

energy reduces the detail in the reconstruction. And, even at low dosages, the

cryo-tem imparts a contrast transfer function (CTF) artifact from aberrations in

the focusing lenses and from the defocus used in imaging. Having multiple images

with low signal-to-noise (SNR) characteristics makes “seeing” the CTF oscilla-

tions hard. Due to all these issues, SPTS provides limited resolution tomographic

results.

2.2.2.3 Random Conical Tilt

The random conical tilt (RCT) process takes advantage of the target’s pre-

ferred orientation in the sample holder [46]. RCT only takes two images of the

sample space: one at some desired rotation angle and the second one at a nom-
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inally untilted angle. Since the particles are in the same basic orientation in the

untilted image, this image provides a “known” orientation angle for alignment

processing. With only two exposures, the electron beam can be more energetic to

achieve higher resolutions. In fact, only the rotated image, which has but a single

exposure, is used for reconstruction so sample damage is vastly minimized as an

input into the reconstruction process.

An alternate version of this is the Albany Zero Tilt (AZT), which uses but a

single image of the sample. The alignment and further processing is performed via

a series of post processing steps. As with all of the above approaches, the AZT

needs images of targets that are basically the same. Thus, targets that do not

meet the uniformity requirement are not suitable for these approaches.

2.2.3 Available Software

There is a plethora of image processing software and applications. A leader in

the field of cryo-tem imaging and reconstruction is the “Baker” research group at

UCSD. Besides an introduction to TEM [47], the group also lists several programs

on the website that can be used for cryo-tem image processing [48]. Most of

this software, however, is geared towards to 3-D single particle reconstruction

of identical viruses from multiple images. Since many samples of a given virus

are considered to be essentially the same structure, this technique acquires many

projection images from many angles. From these images, this software can build

3-D models. This technique, however, can provide only an average representation

for a single class of non-uniform macroasemblies such as LDL particles.

2.2.3.1 EMAN

The EMAN (Electron Micrograph ANalysis) software was introduced in 1999.

The goals of the EMAN project [44] were to improve processing efficiency, make
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SPR more accessible, and introduce a robust method of performing the CTF cor-

rection. EMAN makes SPR more accessible by providing the software as a free

download. To meet the processing goals, EMAN uses a three-stage approach to

performing the final reconstruction.

The first stage in an EMAN reconstruction is particle selection. Given that

tens of thousands of particles are required for the reconstruction, a means of se-

lecting the particles from the micrographs is provided. The boxer program is used

for manual or semiautomatic selection. The utility has support for manually lo-

cating particles in low-contrast images and for handling high-resolution images by

breaking them into smaller, more memory friendly, pieces. boxer includes options

for threshold adjustments for each particle. The processing also has support for

projection-rotational orientation of the particles.

The second stage of EMAN processing is the preliminary model generation.

The EMAN refinement stage is model based so EMAN needs a starting model. If

the images have sufficient SNR, then the refinement loop will converge, but the

convergence will occur faster with a better initial model [44]. EMAN provides

support for many symmetry cases. These can be used when there is some a priori

understanding of the particle being reconstructed. Models for asymmetric particles

are supported by generating class averages then aligning them via the Fourier

common-lines. In addition, EMAN can read in initial models from other sources;

this is a possible use for the results of this research.

The final stage of EMAN processing is to refine the model based on the im-

ages. The refinement loop uses the current model to create a uniform distribution

of projections. Each particle (2-D image from boxer) is associated with one of

the projections. The particles are checked for consistency against the reference

projection to ensure that they are suitable based on issues such as beam damage,
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functional state, or just in a bad region of the sample. This check ensures that

a minimum number of projections is available for each reference projection angle.

A class average is then created for each projection angle. Since the orientation of

each class is known (the reference images were created from the model) the class

averages simply can be inserted into the Fourier volume in the correct orientation.

Convergence of the modeling is based on the Fourier shell correlation (FSC), which

is the normalized cross-correlation coefficient between two 3-D volumes over cor-

responding shells in Fourier space [49]. EMAN seeks a refinement where the FSC

ceases to improve without requiring a specific value.

2.2.3.2 IMAGIC

IMAGIC is a high end environment for the analysis of images, spectra and

other multi-dimensional data-sets that is aimed at processing (huge) data sets

from (cryo-) electron microscopy, especially in the field of single particle analyses in

Structural Biology [50]. IMAGIC is mainly a for-fee set of software costing upwards

of €26,300 . IMAGIC, does provide two tools as freeware: em2em converts images

between typical transmission electron microscope formats and FSC calculates the

FSC of two 2-D images or two 3-D volumes.

2.3 Prior LDL Shape Studies

With a background understanding of cryo-tem and its associated processing,

a review of some pertinent LDL shape studies can be presented. These studies

show how the science of analysis has progressed and how reconstruction from a

single image can support the overall science of cryo-tem analysis of LDL particles

specifically and heterogeneous particles in general.

Initial cryo-tem micrograph studies [51] reported that the LDL particles may

be more discoid in shape than spherical as previously assumed. Figure 1 shows
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example cryo-tem images of an LDL particle at rotations of +45°, 0°, and −45°.

This study measured the diameter and height of the discs but did not present a

thickness of the wall as seen in the projection at 0° in Frame A of Figure 1. These

studies, however, were difficult to carry out, and did not apply computer vision

processing to provide a way to perform measurements on samples from a large

number of objects from each image. A mechanized study on multiple images is

necessary to evaluate the effect of geometric shape parameters on overall health in

a statistically significant patient sample.

Additional efforts by this research group [52, 7] extended their previous results

to indicate that LDL was actually divided into sub-classes based on size. Again,

simple projections at +45°, 0°, and −45° were used to measure the pertinent dimen-

sions. These measurements were done using commercially available software tools

on digitally-scanned images of photographs from the cryo-tem equipment. These

later and more quantitative studies, however, did yield a more clearly defined set

of images that showed size ranges.

Other studies have been performed in an attempt to resolve the LDL shape

question, but these did not provide actual metrics on the shapes. In one study [53],

computer-based analytical methods were applied to cryo-tem images by applying

a homogeneity requirement on subclasses of LDL particles. In this analysis, ap-

proximately 5600 individual LDL particles were manually divided into subclasses.

Further classification reduced the data to approximately 4000 particles. These

particles were further analyzed and were determined to be generally ellipsoidal in

shape. A later study [54] used volume/mass ratios of High Performance Gel Chro-

matography (HPGC) to indirectly determine LDL shape. This study fitted data

based on a geometric model of a discoid object with varying heights rather than

directly from images of the macromolecules.
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One of the most recent full-featured reconstructions of LDL particles was

reported in 2010 [5]. This study reported a reconstructed 3-D volume that shows

the shape of LDL particles to be somewhat like a flattened walnut with a slight

bump on the narrow end. In this analysis, 8, 500 particle images were selected

from a pool of 48, 000 particle images to be processed. The resultant reconstructed

shape is a slightly flattened ellipsoid and a size of approximately 250 Å by 240

Å by 166 Å. The detailed reconstruction from [5] (See Figure 5) also shows 4

internal layers of alternating cholesterol esters (CE) and fatty acyl chains. The

Figure 5. 2010 LDL Cryo-tem Reconstruction (from [5])

reconstruction shows a very advanced model of LDL that can be used to understand

the structure of the particle. But, this study is a demonstration of a major concern

with heterogeneous sample sets: about 40,000 of the particles were not included

since they were of different size or shape. These studies all used large numbers of

images but resulted in but a single class average description of the biological target

of interest. These heterogeneous studies do not provide a pathway to understanding

the individual parameters of a large sample of proteomic particles.
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2.4 Computer Vision and Models

While one objective of computer vision is to mimic the functional requirements

of the human vision system, there is no requirement that the algorithm match that

used in the brain. The methods presented above are mathematical algorithms that

strive to reconstruct the original as closely as possible by performing processing

in some closed form. In general, such approaches do not include any a priori

information about the target other than general size constraints. Even the initial

model used in EMAN is really a first guess rather than an a priori model.

Human vision processing, however, has been described as a two-stage process :

concatenated filters followed by a sampling operation [55]. Thus, the images “seen”

by the human brain for processing effectively have been digitized by the rods and

cones in the eye. While we cannot be sure exactly what happens after the data has

been received by the eyes, models can be proposed and tested to help explain the

processing. In one example [56], the speed at which objects can be recognized, the

timing constraints of neuron firings, and data transmission rates lead to a model of

encoded data being processed in a multi-layer network where recognition of certain

face parts are merged to provide a recognition capability for human faces. Thus,

underlying knowledge of the human vision system is used to create a model of the

processing that “simulates” human vision processing capability.

There are many processing model types that can be employed to perform

computer vision. See, for example, Prince’s book from 2012 [57] for information

about computer vision and machine learning. In general, model-based approaches

to object recognition use a database (a library) of modeled objects; for a given set

of sensed data, the problem of model-based recognition is to identify and locate

the objects from the library that are present in the data [58]. In this approach,

information about the target is used to determine if the object in an image is
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the search object. Even when there is but a single search object, model-based

recognition is NP-complete [58]. The following sections provide information about

model approaches that may be useful to the cryo-tem reconstruction problem.

2.4.1 Solid Model Matching

A basic idea behind model matching is to measure the correlation of the ob-

served image with projections of possible sample objects. In a one-dimensional

sense, this can be accomplished by performing the correlation function between

the measured data and the representative function. In a two-dimensional case, as

with projection images, a 2-D correlation can be performed between the observed

and reference images. This 2-D correlation processing, however, results in a signif-

icant processing challenge. The processing itself is performed via some fashion of

multiplication of Fourier transforms of the reference and measured images. This

computation load increases both as the targets get larger and larger and as the

resolution of the images gets higher and higher. But the unbounded portion of the

processing burden comes from the need to examine a significant set of reference

images to ensure that a positive match is found.

The NP-complete nature of model matching is an issue due to the need to

examine many images. Even if the first reference sample matches perfectly, other

references must be processed in order to rule out all other possible choices. In

general, a 2-D surface of correlation values must be generated in order to determine

a best fit for all the reference images. The dimensions of the surface are based upon

the number of parameters to be considered. For example, if a simple 3-D reference

shape is correlated against a sample image then reference images from multiple

spherical angles may be needed in order to help determine what the actual shape

is. The number of angles can be limited by any symmetry considerations of the

reference target. But, if a detailed estimate of the size, or some other parameter,
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is required then the reference images must also range over the desired parameter.

By having a range of sizes, reference angles, and other parameters (say coloring),

the surface can be constructed over the parameters. The more simple constraints

can be correlated in a straightforward manner such as over a range of sizes. The

more complicated parameters, such as coloring, may require 16 million attempts

for a solid color object described in eight bits for each red, green, and blue sub-

color, if an exact match is desired. Thus, the significant complexity comes not

from the number of calculations for each image, but rather from all the variants

to be considered.

The end result of “simple” model matching (correlation matching) is to de-

termine the best match from the correlation surface. The surface is confined by

the search parameters. Thus, a range of sizes, shapes, colors, and other pertinent

parameters define the search space. The surface is constructed from the correla-

tion results of each correlation reference image to the sample image. Samples that

more closely match will have a higher correlation “score”, samples that do not

match as closely will have lower scores. The surface must then be searched from

local maximum points. These peaks must then be run through additional levels of

processing in order to determine the best fit. Since the correlation processing is a

“blind” method, no a priori information is used, so a local peak may, in fact, be

a false peak due to the nature of the image juxtapositions and parameters. The

post-processing needs to weed out such false peaks. The final output of such pro-

cessing is then considered a best match, but it is not a definitive statement that

the original shape has been determined.

2.4.2 Geons and Superquadrics

As previously noted, study of the human visual system has affected devel-

opment of many computer vision and reconstruction algorithms. Following the
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example of speech perception, where only 55 phonemes lead to coding of tens of

thousands of words, Biederman [59] proposed recognition-by-components (RBC) as

a way to use just 36 geometrical ions (geons) as the building blocks for generating

all complex shapes. The RBC theory poses that geons can be derived from con-

trasts of five readily detectable properties (curvature, co-linearity, symmetry, par-

allelism, and co-termination) of edges in a two-dimensional image. Understanding

the known occlusions when geons combine to build larger objects helps computer

vision identify complex shapes from their constituent geons. The RBC theory is

in contrast with the Gestalt theory of human perception in the entirety [60] since

RBC leads to a hierarchical identification of the whole from its parts.

The hierarchical RBC construction approach, however, is more in line with

how computers solve problems via human programming. Figure 2 in [59] shows

the stages of object perception. After edge extraction, detection of nonaccidental

properties of the edges and parsing of regions of concavity occur in parallel. These

results feed into determination of components, which is followed by matching of

components to object representations. The final step is to use all of the preceding

information to perform object identification. These steps constitute an algorithm

that can be coded for computer execution.

A major factor in RBC is the use of edges. According to RBC, human percep-

tion uses discontinuities in the 2-D image to segment the image “painted” on the

retina. (An important note is that RBC does not depend on human stereo vision,

which is sensible given that stereo vision is not required for identification of objects

by humans.) These edges are then used to recognize the objects based on expected

transformations back to the 3-D space. Figure 4 of [59] lists the properties that

are expected to hold from the 2-D projection back into the original 3-D space. In

general, contours are important; noise along the contour (e.g. camouflaging some,
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but not too many, of the edge points) is not. Thus, human perception only needs

line drawings for edge and object recognition; surface texture and color are not

important. If too much of the contour is deleted then the component becomes

unrecoverable. Nonrecoverability can also be caused by misleading symmetry or

parallelism from the edges.

Geons provide the basis components for hierarchical identification of a whole

from its parts. The basis set of 36 geons gives rise to an almost infinite combina-

tion of items. Simple shapes constructed from just 3 geons give rise to 154 million

combinations [59], but this search is not insurmountable in today’s computer tech-

nology. The challenge is to find a method of finding the edges in such a way that

the geons can be localized regardless of the viewing angle.

Superquadric models [61, 62, 63] have received significant attention in the

vision and robotics community because of their compact representation and robust

methods of recovery of individual models [64]. A superquadric surface is defined

by a relationship of the form shown in Equation 2.4.1
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((
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) 2
ǫ2

+

(
y

a2

) 2
ǫ2

) ǫ2
ǫ1

+

(
z

a3

) 2
ǫ1

= 1 (2.4.1)

where a1, a2, a3 define the size and ǫ1 and ǫ2 define the shape. The parameters

for the superquadric are recovered by use of an expression of the form shown in

Equation 2.4.2

F (x, y, z,Λ) = f(x, y, z, a1, a2, a3, ǫ1, ǫ2, φ, θ, ψ, px, py, pz) (2.4.2)

where the Λ terms represent the model parameters, rotation, and position of the

shape. Since all sides are not visible, processing must account for this self-occlusion

as well as nonaccidental occlusions from other geons in the scene.

Several variants of superquadric processing allow for determination of geons

from 2-D images of 3-D scenes. See Biederman [65] for a review of recent research
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in recognition of depth rotated objects. The superquadric algorithm introduced by

Solina and Bajcsy [63] supports parametric deformations of the recovery target. In

this approach, three-dimensional range points (distances from points in the scene

to a common point such as a sensor) are input to a cost function. The cost func-

tion is minimized via least squares minimization. An initial estimate of the rough

position, orientation, and size of the object is required to begin the gradient de-

scent minimization process. Of course there can be multiple local minima so their

approach limited the search space to handle the ambiguity of superquadric mod-

els (the same shape can be described with different parameters). Kriegman and

Ponce [66] use surfaces to recover objects in monocular images of precisely definable

geometric models. Terzopoulis and Metaxas [67] use superquadrics and physical

force modeling then use the parameters to look up the shape in a database. Dick-

inson (et als.) [68] build a database of surface projections with conditional prob-

abilities based on aspects. These probabilities are used to limit the search space.

This database can be aided by precisely defining and computing view likelihoods

as was done by Weinshall and Werman [69]. Dickinson (et als.) [70], Leonardis

(et als.) [64], and Zhang (et als.) [71] all use range data to help determine the su-

perquadric parameters. All of these approaches have merits and constraints when

applied to opaque objects in 2-D images.

It is not apparent, however, that geons and superquadrics can be applied

to transparent objects imaged via cryo-tem. One constraint arises from the algo-

rithms that are used for determining the superquadric parameters via minimization

of range data. Since cryo-tem utilizes beams that are effectively parallel at the tar-

get, there is no common point from which the range data can be based. Other

constraints of the RBC approach with cryo-tem imaging of transparent objects

come from the need for understanding nonaccidental occlusions and by having
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symmetry or parallelism that is not misleading. The cryo-tem images shown in

Figure 1 show several examples of violations. Panel A shows what looks like a

circle, which will be interpreted as an infinitely tall cylinder. Panel C shows what

looks like two parallel lines that could be construed to be a rectangle, or an in-

finitely tall box of some kind. Panel B is also misleading. While an edge can be

found around the overall shape, this blob has no obvious nonaccidental occlusions

and the nature of the image does not lead to obvious internal edges. For this simple

case of an expected discoid shape, there are issues. Other shapes are expected to

give similar concerns due to the projection imaging of transparent objects.

While the physical geons could be determined from the underlying biological

representation, another issue arises from line edges derived from the image that

are not expected to be functionally correct. Incorrect edge representations, of

course, will affect the RBC approach. A simple model derived from Figure 1

that consists of three solid discs representing the phospholipid head group (red

top and bottom plates) with the third disc representing the center fat mixture

(green) and a hollow cylinder (blue) representing the protein wrapped around the

outside is shown in Figure 6a. The resulting simulated projection image is shown

in Figure 6b. While the model structure can be easily seen by the human eye due

to the colors, the projection image has ambiguity for the edges. The regularized

solution using superquadrics is expected to be a larger cylinder wrapped around

the inner cylinder; the true tri-layer stack in the middle would most likely be lost.

The more complicated model shown in Figure 5 could be presented as either

stacks of trapezoidal discs or some other more complex shape. The issue with RBC

representation is the line edge presentation. Other than the overall boundary,

the cryo-tem image leads to neither nonaccidental occlusions nor symmetry or

parallelism that are not misleading.
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(a) (b)

Figure 6. Simple disc model (a) model and (b) projection image.

A final note is that even if superquadrics could find the overall shape, a goal

of this research is to glean a representation of the internal density structure. While

superquadrics have been used to generate shapes for creating simulated MMM im-

ages [72], the RBC approach only supports reconstruction of the bounding surface.

2.4.3 Transparent Model Matching

The match processing gets more complicated when transparent objects are

imaged. This is more complex than simple color processing because there are

many ways in which a density set could be aligned to create the same density

value. Color and lighting could result in a similar complexity but the achievable

color levels for each pixel can be constrained by illumination and other consistency

metrics. A standard 10-bit camera image could have 1024 possible values so a 3-D

reconstruction depth of 128 voxels could have up to 1024128 possible combinations.

Some combinations may be eliminated from the search space (for example the

all zero case), but this generally results in a small reduction of overall possible
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combinations. The image matching also cannot, in general, tell the order of the

densities when there is a single sample image. Thus, the reference image set may

be greatly reduced for a single projection angle since all the combinations collapse

because a given set of density values along the projection line may be the same

regardless of the order. But this relaxation depends on the physical mechanism

of the imaging technology. If the 2-D projection does depend on the order of the

voxels of the 3-D transparent object, then this reduction cannot be taken and the

complexity remains large.

A final consideration of the model matching complexity is the number of

sample images. Reconstruction by graphical models involves comparing projection

images to possible shapes that could have made the projection image. This leads to

finding the most probable shape, or combination of shapes, that could lead to the

outline(s) of the images. The basic goal of multi-view model matching is to look for

consistency between the 2-D matching surfaces. This generally requires knowledge

of the relative view angles so that the reference images can be generated from the

same view point, otherwise, the complete spherical space must be searched as well

as the other parameters such as size, shape, etc. Once the surfaces from each view

angle have been computed, the correlation peaks must be examined to determine

the reference shape that best matches the sample images. One such example would

be a 3-D cylinder object. When viewed from the end, the projection would be a

circle and when viewed from the side, the projection would be a rectangle. Simple

and unique objects may have a unique 3-D shape solution from just a few images.

Transparent images, however, return to the combinatoric growth in possible targets

since the order of voxel densities now have constraints in 3-D reconstruction space.

For example, a projection ray in one view is formed by the physical manifestations

of the voxels traversed by the imaging beam through that set of voxels. But, each
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voxel in that ray is a fixed value so that relationship must be preserved when

each of those voxels is imaged in projections at different rotation angles. This

additional level of matching adds to the complexity when transparent objects are

reconstructed.

Previous approaches to reconstruction of transparent objects in a non-

tomographic method utilizes several images to determine the best match. The

probabilistic voxelized volume reconstruction (Poxel) method [12] uses the final

color of each pixel in the projection images to determine the weights of the voxel

colors. A binary responsibility matrix is generated and an iterative approach is

followed to account for colors and opaque voxel. But this approach requires tens

of images so the small number of images, much less a single image, that are avail-

able for approaching the LDL shape problem will result in a severely under deter-

mined linear system. The authors of the Density Sheet Decomposition method [73]

have recognized that using as few as two images is equivalent to a severely under-

constrained problem. But, their method was developed for visually realistic mod-

eling of gaseous masses such as flame and smoke rather than more physical objects.

This technique was demonstrated for large separation angles of the individual views

which also is not supported by the cryo-tem imaging technique. Therefore, these

existing approaches are not suitable to the cryo-tem problem with a limited image

set.

2.5 Statistical Models

Statistical modeling methods of reconstructing 3-D offer techniques that may

not require the exponentially scaled computations of correlation processing nor the

extensive collection of images required for averaging methods such as single par-

ticle reconstruction. If a relationship can be established between the observables

(pixels in a projection image) and the underlying 3-D object configuration (voxels)
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then it may be possible to estimate the 3-D structure utilizing the relationship.

Some methods, such as Bayesian methods seek to determine the most probable

“explanation” of the observations given a physical model of how the observed im-

ages are created. An example of this is discussed in Section 2.5.1. Other methods,

such as hidden Markov models, utilize a prior understanding (model) of the 3-D

target to help find the most probable set of states that explain the observations.

This processing is discussed in Section 2.5.2.

2.5.1 Bayesian Method

A recent paper [74] utilizes a Bayesian method for inferring macromolecu-

lar structure from SPR microscopy. Rather than modeling the target itself, this

method creates an estimation of the 3-D space by modeling how the observed

image pixels are created by the electron beam passing through the material. The

vertices of the voxels are used as the definition points of the coulomb density of the

3-D space. A tri-lateral interpolation of the vertices along each ray to the pixels

is used as a means of connecting the pixel values to the voxels. A probabilistic

model for the pixel values from the line integration along the rays is then used to

feed an iterative process for maximizing the probability that the vertices give rise

to the given pixel values.

The images used for this processing are averaged images, much like those used

for standard single particle reconstruction processing. As with SPR, the averaging

of the images implies a uniformity of all the particles in the ensemble class. And

again, as with SPR, this method assumes that the alignment of the particles is

sufficiently accurate to not unduly influence the estimate of the 3-D space. The

averaging can also affect the statistics of the pixel values.

A pure Bayesian approach needs to understand the standard deviation of the

pixel values in the images so that the probabilities of the voxels can be estimated.
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The paper makes an assumption that the standard deviation of the noise is the

same for all pixels. As with the rotational alignment, an assumption of images

corrected for microscope issues such as CTF makes sense since these are well un-

derstood. But, an assumption of constant sigma across all pixels does not seem

plausible since the number of electrons received for each pixel changes based on

the voxels involved in the pixel. The electron flux will clearly have an effect on the

variance of the pixel values. As can be easily measured, and was shown in [75], the

variance of the pixel values is not constant. In this study, the sigma of cryo-tem

pixel images was shown to range from 1 to 14 for a 3 × 3 region when the mean

ranged from 50 to 200. As with the size of the region over which the variance is

computed, the number of images in the average also plays an important role in

the measured variance. In [74] differing numbers of images used for averaging at

various rotation angles was cited as a possible cause of errors in the estimates.

The presented approach also had other constraints that limited its applicabil-

ity to the problem studied in this dissertation. The paper [74] uses a constraint

about there only being small changes in intensity between neighboring grid points.

From biological inference, we know that there can be significant changes in coulomb

density from voxel to voxel as atoms and molecules with various densities exist side

by side. Independence is a primary concern in simplifying statistical computations.

While the results shown [74] were fairly good approximate reconstructions, from

the above constraints, it is not clear if this method can be used in general practice.

And, as with SPR techniques, it does not provide details of individual particles.

2.5.2 Hidden Markov Models

While many real-world processes provide measurable outputs, there are also

many classes of processing where the direct measurement of the characteristics are

not possible. This is comparable to the problem of 3-D reconstruction of trans-
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parent objects in that the exact internal structure may not be directly discernible

from the images. The underlying information of these systems is hidden from the

observation process. In these situations, the goal is to estimate the unmeasurable

metrics (or structure) via a model based on things that are observable. Stamp [76]

provides an example where past weather is estimated by the size of tree rings.

In this scenario, the goal is to ascertain if the average temperatures of winters

long ago were either hot or cold. While the average winter temperature cannot be

measured in the past, we can measure tree rings from the past. Since the recent

weather is known, we can inspect a few recently felled trees and correlate the sizes

of the rings (denoted as either small, medium, or large) to the average tempera-

tures (denoted as either hot or cold) in the corresponding recent winters. One can

then use a state-machine model that relates tree ring size and weather to estimate

the weather as a series of states in the past from tree rings from the past.

A state machine, called a discrete finite automaton (DFA), is defined [77] as

a 5-tuple (S,Σ, δ, s0, F ) where

• S is a finite set called the states,

• Σ is a finite set of inputs to the machine called the alphabet,

• δ is the transition function,

• s0 ∈ S is the initial state, and

• F ⊆ S is the set of accept states.

Using the formal definition of a DFA, the parts of the machine can be mapped

to the tree ring example. The states are the weather values hot and cold so for

simplicity we can define S = {H,C}. The alphabet of inputs to the machine, Σ, is

simply the set of years over which the weather is to be estimated. The transition
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function δ is defined by the transitions between the states when an input signal is

received. For this example δ = {H → C,C → H}. The initial state, s0, is unknown

since we want to estimate the entire sequence. For this example, however, the set

of accept states is empty since we are not computing an answer per se but a series

of states.

The DFA notation gives rise to a state machine that can take on any of the

allowable states in S but we actually want to estimate the series of states that is a

best fit to the observations in some statistical way. Note that the observations, the

sizes of the tree rings, do not enter into the definition of the DFA so modifications

to the basic DFA are needed in order to include them. One statistical model of such

systems is called a Markov process; when the states cannot be directly observed,

the process can be represented by a hidden Markov model (HMM).

A HMM is a form of a Bayesian network that has been in use since the late

1960’s for a variety of state-machine modeling applications. See [78] for a seminal

paper that provides a tutorial on HMMs and their use in speech recognition. In a

HMM, the system is modeled as a state machine that gives rise to a set of observed

measurements. An representation of an HMM system is shown in Figure 7. The

Figure 7. Representative Hidden Markov System
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Markov process is denoted by the sequence of unknown states st and the corre-

sponding T observations are denoted by Ot. While the representation of a Markov

system is shown as states and observations versus time, this could just as easily

be a spatial relationship so the T subscript could be K, a traditional spatial or

wave number index. The probabilities of the process transitioning from state to

state are denoted by Asi,sj and the probability of a given state giving rise to an

observation is shown as Bsi,Ot
. The full notation for the HMM is given in Table 1.

For the simple case where only the prior state and the next state are considered,

T = length of the observation sequence
N = number of states in the model
M = number of observation symbols
S = distinct states of the Markov model {s1, s2, . . . , sN}
V = set of possible observations {v1, v2, . . . , vM}
A = state transition probability matrix
B = observation probability matrix
π = initial state distribution
O = the observation sequence {O1,O2, . . . ,OT}

Table 1. Hidden Markov Model Notation

the HMM can be considered a first order HMM (FOHMM).

The first order HMM must also satisfy additional requirements.

current state only depends on prior state One could expect that existence

in a state is dependent upon several (or all) prior states. The special case

of a first order Markov chain is defined as transition to a given state only

depends on the prior state. Higher order Markov chains can be defined but

the chain of dependencies makes finding a solution harder.

time independence The Markov process probabilities must be stationary over

time. Obviously the state machine changes state but the probabilities of

changing from state to state do not vary with time.
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observation independence The observations of the process are independent.

This constraint is also directed towards the tractability of the solution.

The state machine used in the tree ring example can also be considered a

hidden Markov process with a few changes to the problem configuration. First,

the only signal in the alphabet is a clock whereby a change in state occurs. We can

consider the changing of the year for which the weather is estimated as our clock.

All other items in the 5-tuple are as defined above. Second, some probability

metrics need to be added to account for the probabilistic nature of the HMM.

Hidden Markov models utilize the probability of the system transitioning from

state to state and the probabilities of each state giving rise to a discrete observation

value to estimate the unobservable states. The state machine is stationary but the

state of the machine is expected to change as a function of time. In the tree ring

example, the unobservable (hidden) states are the weather conditions of long-ago

winters and the observations are the tree rings from the same period.

The HMM state machine would be used in the following way to estimate

the weather in years long ago. Known weather states (from more recent years

when records exist) can be examined to determine the probability of transitioning

from state to state. Tree ring sizes for the same period as well as the known

weather states can be studied to provide the probability of a given observation

(ring size ∈ S,M,L) for a given weather state (average temperature ∈ H,C). A

formal description of a HMM using the notation provided by [76] denotes the state

transition matrix A by

A =

[
P{H → H} P{H → C}
P{C → H} P{C → C}

]
. (2.5.1)

The observation matrix contains the probabilities of each observation based on the
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states such that

B =

[
P{H → S} P{H →M} P{H → L}
P{C → S} P{C →M} P{C → L}

]
. (2.5.2)

The initial state distribution is

π =
[
P{initial state = C} P{initial state = H}

]
. (2.5.3)

Each of these matrices is row stochastic since the sum of the probabilities from a

given state in each row sums to 1.

Note that the model as given does not account for all things that could affect

the rings. For example, the tree ring sizes could be affected by the density of the

forest, or rainfall, or cloudiness. While this could be a limitation of the technique,

it can also be an asset. By ignoring the other factors, the most probable state

sequence is the sequence that is best explained by the factors of concern. Stamp [76]

alludes to this in the example he presents based on [79]. In this example, a set of

characters from the English language is modeled with just two states. As may be

expected, a 50,000 character sample of text is divided into vowels and consonants.

But, the work in [79] was able to decipher results for models with up to 12 hidden

states. Thus, other factors do not necessarily affect the results when a smaller

number of factors are considered.

Given a notation and statement of the use of the technique, the HMM can be

used in three ways [78].

1. Given an observation sequence O = O1,O2, . . . ,OT and a model λ =

(A,B, π), determine the probability of observing the sequence O given the

model λ.

2. Given an observation sequence O and the model λ, determine the state se-

quence S = s1, s2, . . . , sT that is optimal in some way that best explains the

observations.
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3. Adjust the model parameters λ = (A,B, π) to maximize P (O|λ), the prob-

ability of observing the sequence O given the model λ.

The three problems all have computationally simple computation methods.

Problem 1 conceptually is somewhat trivial to solve (See Stamp [76] for a dis-

cussion of this and dynamic programming approaches). The obvious approach of

summing over all possible state sequences involves on the O
(
2TNT

)
calculations

but the standard HMM approach is N2T computations [78]. In problem 2, we

want to uncover the hidden part of the Hidden Markov Model [76]. This requires

knowledge of the model and a set of observations. Problem 3 is classically called

“the training problem” which is not a concern since we expect an existing model

from another method such as EMAN or from the biology. Fortunately, all three

problems have tractable solutions that are interrelated. We follow the terminol-

ogy provided by Stamp [76] for solutions to the first two problems but with state

indexing as 1 ≤ i ≤ N and observation indexing as 1 ≤ t ≤ T as shown in the

diagrams from [78]. See [78, 76] for details on the solution method for problem

three.

2.5.2.1 HMM Problem 1

The common solution to problem one is called the forward procedure. The

algorithm is based on a lattice mesh [78] diagram shown in Figure 8 that helps

visual the computations.

The rows of the mesh are based on the possible states and the columns of the

mesh are the observations. Part (a) shows the probabilities of transitioning from

each state, si, at time t to a new state sj at time t + 1. Each cell in a column in

the mesh represents a state at an observation time. Part (b) shows how all the

states are interconnected across all observations. Each state has a probability of

transitioning to each other state, including itself, so there is a graph edge from
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(a)

(b)

Figure 8. Forward Algorithm Lattice Mesh (after [78]) (a) all from states to just
one next state and (b) all from states to all next states.
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each node in the given column in the mesh to each node in the next column in the

mesh. This lattice allows for a computationally effective algorithm to compute the

probability of the observation sequence O given the model λ.

The procedure solves for P (O|λ) with a 3-phase process. This procedure

defines the probability of a given partial sequence of observations as

αt(i) = P (O1,O2, . . . ,Ot, st = Si|λ). (2.5.4)

This represents the probability of the given partial sequence of length t ending

in the defined state Si with the HMM model λ. The initialization step in equa-

tion 2.5.5 sets the initial column of nodes in the mesh at observation time t = 1 in

the mesh.

α1(i) = πibi(O1), 1 ≤ i ≤ N. (2.5.5)

Thus, the partial probability is initialized for each of N possible states Si as the

probability of the initial state πi being Si times the probability of first observation

being O1 given the first state is Si. The middle induction step computes αt+1(j)

for each possible state. For each portion of the lattice, as shown in part (a) of

Figure 8, equation 2.5.6 computes the joint probability that the prior states (at

time t) reach the given state at time t+1. The probability that the hidden process

partial sequence takes on state Si at time t+ 1, given Ot+1 is

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N, (2.5.6)

where a is indexed by i, j since the summation is over all possible previous states

i for the next state j. The final probability of an observation sequence O is then

given by

P (O|λ) =
N∑

i=1

αT (i), (2.5.7)

which is the summation of the final joint probabilities for each of the N states at

time T .
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The forward procedure is a very computable algorithm. The forward proce-

dure requires on the order of T ·N2 calculations as opposed to the 2T ·NT required

by direct calculation. For N = 5 and T = 100, the forward method needs about

2500 computations instead of the 1072 needed for direct computation.

2.5.2.2 HMM Problem 2

The solution to problem 2 is not a simple closed form calculation as was

the problem 1 solution. The “optimal” state sequence associated with the given

observation sequence O and the model λ can be defined in more ways than just a

single closed form solution.

Some solutions to the second HMM problem (estimation of most probable

states) require a helper variable for the backwards version of α. We define βt(i) as

βt(i) = P (Ot+1,Ot+2, . . . ,OT |st = Si, λ). (2.5.8)

Following a similar approach as was used to compute α, we perform the initializa-

tion step as

βT (i) = 1, 1 ≤ i ≤ N. (2.5.9)

The induction step is given by

βt(i) =
N∑

j=1

aijbj(Ot+1)βt+1(j), T − 1 ≥ t ≥ 1, 1 ≤ i ≤ N, (2.5.10)

where it is noted that a indexed by (i, j) since the summation is over all possible

current states j to the previous states i.

If the best estimate is defined by choosing the states that are individually

most likely (at each observation time t), then the variable

γt(i) = P (st = Si|O, λ) (2.5.11)

denotes the probability of being in state Si at time t. Equation 2.5.11 can be
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expressed in terms of the forward and backwards variables as

γt(i) =
αt(i)βt(i)

P (O|λ) =
αt(i)βt(i)∑N

k=1 αt(k)βt(k)
(2.5.12)

where αt(k) accounts for the partial observations up to and including time t and

βt(k) accounts for the partial observations after time t. Division by P (O|λ) makes

γt(i) a probability measure by normalizing over the possible set of states at time

t. As such, we can solve for the most likely state st at time t by taking the

maximum value of γt(i) for all states at time t. The resulting set of states is

therefore the more probable set of states from a purely statistical definition. But,

there could be problems with the computed states since some states could have

a zero probability of being selected from the previous state. Other methods of

defining the “optimum” state sequence are needed.

Some possible definitions of the most likely sequence could be based on sub-

sequences. For example, a sequence that maximizes the number of correct pairs or

triples could be used. This option, however, could lead to gaps if the states are not

mapped in some overlapped way. Or, if the states are overlapped, other discontinu-

ities in the solution could arise. The best way is to maximize the entire sequence of

states. Luckily, the Viterbi algorithm [80, 81] provides a well documented solution

based on dynamic programming techniques. Rabiner [78] provides an overview of

the Viterbi algorithm using the same notation as above; his derivation is presented

below.

To find the single best state sequence, S = {s1, s2, . . . , sT}, for the given

observation sequence O = {O1,O2, . . . ,OT}, we need to define the quantity

δt(i) = max
s1,s2,...,st−1

P [s1s2 . . . st = i,O1O2 . . .Ot|λ] (2.5.13)

i.e. δt(i) is the best score (has the highest probability) along a single path, at time

t, which accounts for the first t observations and ends in state Si. By induction
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we have

δt+1(j) =
[
max

i
δt(i)aij

]
· bj(Ot+1). (2.5.14)

To actually retrieve the state sequence, we need to keep track of the argument

which maximized (2.5.14), for each t and j. We do this via the array ψt(j). The

complete procedure for finding the best state sequence can now be stated as follows.

The initialization steps are:

δ1(i) = πibi(O1), 1 ≤ i ≤ N (2.5.15)

and

ψ1(i) = 0. (2.5.16)

The recursion steps are

δt(j) = max
1≤i≤N

[δt−1(i)aij]bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N (2.5.17)

and

ψt(j) = argmax
1≤i≤N

[δt−1(i)aij], 2 ≤ t ≤ T, 1 ≤ j ≤ N. (2.5.18)

The termination steps are:

p∗ = max
1≤i≤N

[δT (i)] (2.5.19)

and

q∗T = argmax
1≤i≤N

[δT (i)]. (2.5.20)

The state sequence path backtracking step is:

s∗t = ψt+1(s
∗
t+1), T − 1 ≥ t ≥ 1. (2.5.21)

It should be noted that the Viterbi algorithm is similar (except for the back-

tracking step) in implementation to the forward calculation of (2.5.5)-(2.5.7). The

major difference is the maximization in (2.5.17) over previous states which is used

in place of the summing procedure in (2.5.6). It also should be clear that the trellis

structure efficiently implements the computation of the Viterbi procedure.
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2.5.2.3 HMM Problem 3

While there are fairly straight-forward approaches to solving the first two

problems, the “training” problem solution is not of closed form. See Rabiner [78]

for more details on the solution to problem 3. In [78], the Baum-Welch method is

presented as one possible technique. Other possible approaches are also discussed.

And since we expect to have a model based on biological or other reconstruction

techniques, training is not expected to be an issue in the reconstruction of trans-

parent objects from a single image. In fact, “training” may yet prove to be a useful

tool if many images are considered but this is beyond the scope of this research.

2.5.2.4 Other Types of HMM

The above discussion is in regards to a special (but commonly used) case

of a HMM. The above HMM models a discrete first order Markov chain where

each state only depends on the prior state and the observations take on discrete

values. There are other, more complex models available, with correspondingly

more complicated solutions.

A common constraint to the model is to limit the states that can be reached

from a given state as a function of the state or time. A one-step ergodic (or fully

connected) model has the property that each state can be reached from every other

state. The simplest constraint is to reduce the number of possible state transitions

from each state. Thus, some of the A matrix coefficients will be zero. Models such

as the Bakis or left-right model [82, 83] only have state indexes that increase with

observation time. These models have an A matrix that is upper triangular, which

leads to additional constraints to the most probable state sequence.

Another extension of HMMs is to allow for multiple observations. This seems

to be a natural extension to the problem at hand given the desire to use multiple

images. However, much research in this area, see for example [84, 85, 86, 87], was
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directed towards training of the HMM engine (problem 3). As noted above, the

training is beyond the scope of this research.

Other research investigated use of state sub-sequence length to aid in the

modeling. Zaki et al. [88] present a variable order HMM that includes duration

periods for states. This extension of prior states leading to the next state means

that the simple first order HMM techniques do not hold. In this work, very long

sequences such as protein amino acid chains were modeled in order to perform

protein classification. While Figure 5 shows some repeating structure, the voxel

sequence lengths are not expected to be long enough to provide suitable repeats

for the VOGUE algorithm. Thede [89] provides a second order HMM for speech

use. This HMM uses statistics for the two prior states to determine probabilities

for speech recognition. In this work, the standard HMM A matrix is extended

to a third dimension to account for the additional prior state. However, the A

elements are weighted based on the number of occurrences of triples. The voxel

sizes of the 3-D reconstruction problem would need to be carefully selected so

that the weighting factors would make biological sense. du Preez [90] provides

a method of reformulating any higher order HMM to a first order model. The

ORED algorithm makes unnecessary the extending of specific HMM algorithms to

specific higher orders. This will certainly have value if a higher order HMM can

be formulated that solves the current problem. Each of the preceding ideas has

issues that prevent its direct use to the individual particle reconstruction problem,

they all have nuggets that may be exploited. Lee [91] used Higher Order HMMs

to recognize Mandarin Digits. While in the acoustic space, Lee constrains the

beginning and end states to be non-utterances, which is similar to our expected

constraint of sequences beginning and ending in suspension buffer material rather

than target matter. This paper derives recursive formulas for the log-likelihood of
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partial paths. Dewar et al. [92] extend the concept of HMMs to include not only

a probabilistic state value but also a duration variable. This method was used to

estimate distributions from Monte Carlo simulations but the use seems promising

given the repeating structure in Figure 5.
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CHAPTER 3

Methodology

The purpose of this research was to seek a method of performing a 3-D recon-

struction of an individual transparent particle, preferably from a single cryo-tem

2-D image. Having only a single image leads to an obvious question as to whether

any meaningful data can be gleaned from the single image. Support vector ma-

chines (SVM) were applied [75] in an attempt to create a mathematical model

that could be used in the reconstruction processing. This SVM processing pro-

vided valuable insights into the cryo-tem imagery and processing. However, the

attempted SVM approaches resulted in classifying pixels associated with either the

particles or the background based on the mean of the pixel data. No obvious sup-

port was found for determining the 3-D structure in small angle rotation images.

Additional processing performed in this research [93, 94] looked at the ability to

use standard correlation processing to separate images of simulated targets when

rotated at small angles. The preliminary research concluded by establishing achiev-

able accuracies of computing the particle height and diameter from real data [95].

While searching via correlation processing requires an inordinate number of basis

models, these early results showed that it may be possible to perform reconstruc-

tion of individual transparent particles from a single projection image if enough

a priori information can be deduced. That is, the information to perform a 3-D

reconstruction seems to be there, how to glean it is the question. As is shown be-

low, higher order HMM (HOHMM) processing was successfully used as the basis

for reconstruction of a transparent object from a single image.

A software framework was developed to generate simulated projection images

and to test various reconstruction methods. The software suite is called ARTEMIS
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(A priori Reconstruction from Transmission Electron Microscope Image Sets).

This software is outlined in Section A.1 while the details of the processing are

provided in the remainder of Appendix A. With this software, a reconstruction

technique that utilized a single projection image was developed. The remainder of

this chapter describes the processing that was performed to provide reconstruction

of a transparent object from a single image. Underlying concepts of HMM process-

ing for reconstruction are discussed in Section 3.1. The extended HMM processing

that is the major product of this research is detailed in Section 3.2.

3.1 HMM Reconstruction Processing Concepts

The reconstruction of density voxels in 3-D space can be considered to be a

HMM problem. HMM processing is well suited to finding the most probable chain

of hidden states from an associated set of observations. The reconstruction of a

transparent object problem becomes one of determining the most probable 3-D

voxel space such that the chains of states (where the voxel densities represent the

unobservable states) can be deduced from the observables that are the pixels in

the cryo-tem imagery.

The geometry for this reconstruction problem is depicted in Figure 9. The 3-D

voxel space represents a 3-D matrix of density values for the target of interest (blue

discoid object) and the background buffer solution (empty voxels) in which the

target rests. The red arrow follows the contributions of the voxels that contribute to

the center pixel in the projection image. All of the projection pixels are generated

in a similar fashion. The image is assumed to have been generated from parallel

rays (as is the case in cryo-tem) so the rays that create the projection image pixels

follow projection paths that are orthographic to the image plane.

The remainder of this section provides background information regarding the

use of HMM processing to reconstruct transparent objects from a single projection
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Figure 9. Single Image Reconstruction Geometry
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image. Section 3.1.1 discusses basic FOHMM reconstruction processing. Simple

HOHMM processing is described in Section 3.1.2. Section 3.1.3 details the training

of the HMM processing model with respect to noise. The complete HOHMM

processing steps are detailed in Section 3.2.

3.1.1 Basic FOHMM Reconstruction Processing

Determination of the most probable states in a hidden Markov chain involves

traversing the states and applying the a priori state-to-state statistics as well as

the a priori state-to-observation statistics in order to determine the chain of most

probable state (density) values. The 3-D view of the problem statement in Figure 9

can be considered in two dimensions to understand the construction needed for

HMM processing. Figure 10 shows a 2-D slice (in the {x, y} plane) of the 3-D voxel

space and associated observation (pixel) values. The three colors {red, green, blue}

represent different density levels of the target and white represents the suspension

buffer material. The density is considered to be consistent throughout each voxel

so each of the yellow dots along the black lines represents a state in the given

Markov chains. The voxel size can be set arbitrarily small to ensure this consistency

constraint with only a linear computational penalty. The gray-levels at the bottom

represent the observed pixel values associated with this slice of the reconstruction

space. Pixels created from just the lower density biological buffer material have

larger gray-level values since more of the electron beam particles pass through this

sample area. Likewise, regions of the more dense target have varying but generally

lower gray-level projection pixel values.

The HMM model probabilities can easily be deduced from the input model.

The A matrix is computed by traversing the base model states and tracking the

from and to state transitions. For example, there are 3 white-to-white, 1 white-

to-blue, 1 blue-to-green, 8 green-to-green, 1 green-to-blue, 1 blue-to-white, and 3
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Figure 10. First Order HMM Statistics Generation

62



additional white-to-white transitions along the black horizontal line. All of these

transitions are totaled for each direction (e.g. left-to-right) or for some combi-

nation of directions and then are normalized to be row-stochastic (the sum of

probabilities from each individual state to all states equals 1). The B matrix is

computed in a similar fashion by tracking the observation that is seen for each

of the available states. For an 8-bit gray-level image this means that each state

can be mapped to one of 256 possible observations (pixel values). Again, the B

matrix is normalized so that the sum of all probabilities for each individual state

to all possible observations equals 1. The B matrix construction is not direction

dependent. The π vector of initial probabilities is deduced from the first element

of each stack in the voxel space. An assumption is made that the Markov chains

are initially in the buffer state since we do not want target particles touching the

edge of the reconstruction space so π always forces the initial state of each chain

to be the buffer {white} density state.

The basic HMM processing occurs as noted in section 2.5.2 for each Markov

chain (stack through the reconstruction space). The black lines with yellow dots

represent two orthogonal stacks (or chains) With a single model, λ = {π,A,B}

constructed as shown above, each new set of observations (projection image pixels)

is processed to determine the most probable chain of states (densities). The trellis

computations are made based on the λmodel statistics and new observation values.

There are two basic approaches for computing the most probable state chain.

One approach is to generate the statistics in a single direction; that is from a single

face of the voxel cube. The other approach is to generate the combined statistics

from all 6 faces of the voxel cube. The former gives six separate sets of statistics

against which the target can be processed while the latter gives a single set that

includes directional dependencies. Both methods assume a single projection image.
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The processing for this research is performed based on six directional sets

of statistics that creates six separate reconstructions that have to be merged in

order to have a final reconstruction result. For each voxel, the state that wins

a simple majority vote is selected. For votes that have a tie, the state with the

highest probability as computed by the trellis is selected. The results of this simple

FOHMM processing are shown in Section 4.1.1. This approach is obviously not

viable so other variations of HMM processing were explored.

3.1.2 Simple HOHMM Processing

As noted in Section 2.5.2.4, there are several variants of HMM processing.

HOHMM processing generally relies on additional state to state information while

FOHMM processing only uses the prior state and the observation statistics.

The HMM problem 2 processing was modified to include the previous and

from state information as well as the next state. The from and previous data

was tracked so that the appropriate statistics were applied as a part of the A

matrix part of the α-pass. The β and γ passes were not altered. The determination

of the most probable sequence (equation 2.5.17) used the extended HMM model

information from the A matrix results in the most probable state determination

step. As was shown in Section 4.1.2, the additional state information provided

suitable results for only the vertical direction, but it showed that additional state

information could provide a suitable reconstruction method.

3.1.3 Training the HMM

The basic concepts in this research include the training of the HMM model.

This training is applicable for all variants of the HMM reconstruction use. The

“training” aspect of a HMM as defined here is not the same as determining the

underlying HMM as defined in Problem 3 of [78]. In our use, training means show-
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ing the HMM one or more images in order to glean an accurate understanding of

the state-to-observation statistics. That is, enough images must be examined to

ensure that the B-matrix properly represents the actual state-to-observation statis-

tics. Therefore, our training is performed by building up the state-to-observation

statistics across a necessary set of images then normalizing to make the B-matrix

row-stochastic as required for the HMM processing.

From the above discussion, it should be obvious that with no noise added and

a perfectly separable target with N states, the state-to-observation probabilities

results in N non-zero regions across the gray level(s) representing each state. This

case (for N = 4) is shown in Figure 11. The four state-to-observation probabilities

Figure 11. Example State-to-Observation Statistics

for the separable states are shown in blue, red, green, and black. Of course this

is the resulting set of statistics since no matter how many images are viewed, the

states all pile up in the shown relative bins and are normalized to 100%.

Training therefore means showing sufficient images so that the probabilities

are filled in around the delta functions for each state. In effect, a histogram of

the noise is built around each center value. With background noise following

a Gaussian distribution, the delta functions normalize to normal distributions if

sufficient images are examined.
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Since the noise of the images (whether simulated or real) is known, the HMM

state-to-observation statistics (B-Matrix) can be computed as well. The unnormal-

ized version of the occurrence histogram shown in Figure 11 is simply the count

of voxels in each state. If the adjacent zero values are incremented by the nor-

mal distribution value of the offset from the center value times the center value

sum then the resulting distribution for each state represents the perfect state-to-

observation statistics. This is repeated for all such non-zero values for each state,

then the B-matrix is made row-stochastic. The resulting B-matrix represents the

complete state-to-observation probabilities while only needing a single noise-free

image simulated from the model target states.

3.2 Extended HMM Reconstruction Processing

This section provides a formalism that allows the HOHMM processing to

extract the structure of a transparent object from a single projection image based

on the HOHMM model of the target. This research uses a HOHMM schema based

on both multiple prior states and duration in each of the prior states. A HOHMM

that includes two prior states and duration in each of the prior states is effective

in reconstructing the simple discoid target. The schema is easily extended to more

than two prior states for more complex structures. The following sections detail

the extension of HOHMM processing with L multiple levels and durations in each

prior level.

3.2.1 Initial State Statistics

The probability of the initial state is extended by including L levels before

the first actual state in the reconstruction zone. The initial probability matrix,

πl, is defined as a set of (L+1)-tuples based on an imaginary set of states {ψi}

that exist outside of the 3-D reconstruction voxel space. These imaginary states
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are not part of the reconstructed space but are used to help the extended HMM

processing get started from its initial state. Given that the initial state is assumed

to be the buffer state, the π2 vector is simply P{ψ1, 1, ψ0, 1,W} = 1.

3.2.2 State to State Statistics

In this extended reconstruction schema, the elements of the extended Amatrix

follow the convention of the FOHMM A matrix which defines A(f, n) = P{sf →

sn}. Here the states are defined as from = f and next = n is used instead of the

traditional to = t in order to prevent confusion with the observation step t. For

the extended schema, the state-to-state statistics are defined as

A′
(sf ′ ,sn)

= P{sp, dp, sf , df → sn}, (3.2.1)

where sf ′ is the from state node that is defined as the 4-tuple of sp, the previous

state, dp, the duration for which the chain was in the previous state, sf , the most

recent from state, df , the duration for which the chain was in the from state, and

sn, which is the next state.

The new a(sf ′ = {sp, dp, sf , df}, sn) values can be easily computed from the

model voxel space as shown in Figure 12. The circled regions denote states and

durations. Not shown are two “pseudo” states {ψ0,ψ1} at the beginning of each

chain that are used to start the process. The extended states denoted by the

horizontal black line in Figure 12 are summarized in Table 2. Note that the

transition from a given density to itself is still considered a true state transition

because the from state is defined as density and the duration in that density. Thus,

a transition from green to green counts as a new transition because the new next

state-tuple has a duration of one more than the from state-tuple.

As with the original A matrix, the elements of A′ are normalized so that the

probability of transitions from each prior-state tuple state is row-stochastic. In the

horizontal example shown in Figure 12, the tuple {ψ1(1),W (4)} transitions 6 times
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Figure 12. Higher Order HMM Statistics Generation
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previous Dp from Df next

ψ0 (1) ψ1 (1) W

ψ1 (1) W (1) W
ψ1 (1) W (2) W
ψ1 (1) W (3) W

ψ1 (1) W (4) B

W (4) B (1) G

B (1) G (1) G
B (1) G (2) G
B (1) G (3) G
B (1) G (4) G
B (1) G (5) G
B (1) G (6) G
B (1) G (7) G
B (1) G (8) G

B (1) G (9) B

G (9) B (1) W

B (1) W (1) W
B (1) W (2) W
B (1) W (3) W

Table 2. Extended HMM state example where {W ,R,G,B} represent the nor-
mal density states and {ψ0,ψ1} represents the “pseudo” states. The number in
parenthesis following each state represents the duration the chain has been in the
associated state. No number is required for the next state since its duration is
always 1.

to theW state, twice to the R state and 5 times to the B state. When normalized,

P{ψ1, 1,W, 4 → W} = 6/13, P{ψ1, 1,W, 4 → R} = 2/13, and P{ψ1, 1,W, 4 →

B} = 5/13.

This expanded trellis node structure is shown in Figure 13. The left side of the

single trellis fan shows example previous, from nodes. Note that some 4-tuples

cannot coexist at each step in the overall trellis. For example, the first state-tuple

shown cannot occur concurrently with the second state-tuple since S2 cannot be of

length 1 and 2 at the same time step. However, the A probability may exist since in

one area of the voxel space the (S1, 1, S2, 1) → (S1, 1) transition may occur and in
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Figure 13. Expanded HOHMM Trellis Structure

another area the (S1, 1, S2, 2) → (S1, 1) transition may happen. This information

can be utilized to minimize memory and processing requirements.

Of note in this scheme is the fact that a given state symbol can be in both the

from and next tuples. Specifically, the next state is always of duration 1 since

it has just been reached. But, the construction allows for the chain to transition

from a state symbol s′ with a duration d′ to the same state symbol s′. While the

overall duration of the symbol s′ at this locale in the chain is now d′ + 1, we only

care about the from duration d′ since the next duration by necessity is d′ + 1. In

general, the states can be expressed as tuples in the form < SfL−1
; . . . ;Sf0 ;Sn >,

where Sfi represent a series of states and durations and the Sn is either the same

as the last from state Sf0 or is a new state. This feature not only handles state

to state statistics of < Sfi ; di > to < sn; 1 > but it also allows for treatment of

70



< Sfi ; d
′ > to < Sfi ; d

′ + 1 >. This provides for a more full-bodied set of statistics

that can better model the reconstruction space. From Figure 13 it also can be seen

that all of the next states for each of the sub-trellises become the from states for

the next step in the overall chain processing.

3.2.3 Flattening the HOHMM

The HOHMM structure presented above can have a very large state to state

probability structure. For the simple FOHMM case, the A matrix is dimensioned

as N × N , where N is the number of states. For our HOHMM structure, each

“state” is now defined by the list of from tuples of state and duration as well as

the next state. With L levels of history in the from state and T possible duration

values, there can be O
(
(TN)L

)
possible from states. And in the general case,

there are the same number of next states. For our example case where N = 4,

T = 65, and L = 2, this equates to an A matrix that is approximately 216 × 216

elements in size. Since the processing for the HMM runs as N2T and the number

of states is large, the processing may become untenable.

A first step to increase the usability of this extended HOHMM is to flatten

it into a FOHMM. This compression occurs easily by traversal of the original

model in order to build the list of the possible states-duration to state transitions.

Even when flattened, a completely random voxel space would result in nearly the

same N(TN)L possible from state-duration to next state combinations. But, any

reasonably expected state pattern will result in significantly less elements in the

list; the number of combinations for the simple model presented above is only

O
(
TN2

)
.

The flattened extended FOHMM provides a way to optimize the processing for

computational efficiency. If the modeled object does not completely fill the voxel

space, there are at most two paths through the voxel space: one that misses the
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object and one that intersects the object. The state chain that misses the object

obviously has T tuples. Each of the chains that does intersect the object will add

less than T elements since the first elements before the intersection will just add to

the statistics of the non-intersecting chain. For a reasonable small number of states,

and an object height of H, the total number of list elements will be approximately

T +N((T −H)/2+H). For our example case (T = 65, N = 4, H = 20) we expect

about 320 elements. Given the simple model, there are only 128 state elements so

the computational and memory savings are significant.

The state chains that miss the object start with the initial tuple that includes

the external imaginary states and ends with the T − 1 tuples for each step along

the non-target chain. For two levels, L = 2, a non-object state denoted as X,

the from tuples denoted with single brackets < state; duration >, and the next

tuple(s) denoted with double brackets, the chain that does not intersect the object

contains the state tuples

• {< N + 1; 0 >,< N ; 0 >,<< X; 0 >>},

• {< N ; 0 >,< X; 0 >,<< X; 0 >>},

• {< N ; 0 >,< X; 1 >,<< X; 0 >>},

• . . .

• {< N ; 0 >,< X;T − 3 >,<< X; 0 >>}, and

• {< N ; 0 >,< X;T − 2 >,<< X; 0 >>},

which has T members. Note that a duration of 1 is denoted as 0 for coding

convenience.

When the state chain does intersect the object, elements numbering less than

T are added to the state list. If the object is of height H with a single state Y ,
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then there are only H additional states added to the overall list where the state

chains do intersect the object. In this case, additional states such as

• {< N ; 0 >,< X; (T −H)/2 >,<< Y ; 0 >>}, // first intersecting voxel

• {< X; (T −H)/2 >,< Y ; 0 >,<< Y ; 0 >>}, // second intersecting voxel

• . . .

• {< X; (T −H)/2 >,< Y,H − 2 >,<< Y ; 0 >>}, and // last intersecting voxel

• {< X; (T −H)/2 >,< Y,H − 1 >,<< X; 0 >>} // first voxel back into non object

are added to the overall list of transition elements. Once the chain leaves the

object, the object state becomes the oldest from tuple and the remaining states

are added in the form {< Y,H−1 >,< X;n >,<< X; 0 >>} until the voxel space

is traversed. It should be obvious that with a small number of expected states, the

growth in list elements will be limited as more next states gets added to existing

elements rather than adding new elements.

These new next states just change the stochastic results without adding to

the computational burden. Since each list item consists of from tuples and the

probability of the from tuples transitioning to each of the internal states, the state

tuple {< N ; 0 >,< X; ((T−H)/2)−1 >,<< Y ; 0 >>,<< X, 0 >>} does not add

an additional item to the overall count. The list of to states in that element just

grows to handle the second possible destination state from the given from tuples.

And, since the next states are always duration = 1, the storage for the next tuples

can be reduced to a simple array of next states.

This construct allows for a simple data structure to describe the state to state

statistics for the extended HMM. The list elements can be described as an array

of L tuples describing the from states and associated durations and an array
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of N states that represent the probabilities of the from tuple transitioning to

each of those states. The requirement that A be row-stochastic is satisfied by

normalization across all of the next states within each list element. The total

number of list elements obviously depends on the structure of the object, but the

total number of state tuples provides a much smaller basis set of “states” for all

subsequent processing.

The state to state statistics can be generated by walking through the model

definition voxels. This algorithm follows the discussion in Section 3.2.2. This

process can be performed from any of the 6 voxel space cube faces in order to

generate 6 different sets of statistics.

3.2.4 State to Observation Statistics

The state to observation statistics are generated by traversal through the

model voxel space in the same general fashion as the state to state statistics.

The state for each voxel was recorded for each direction during the state to state

processing so it can be used for the observation to state processing. Remember

that the simulated projection images are created by tracing from the pixel centers

through the voxel space (see section A.2.1). In general, the voxel observations

are not the same as the pixel values and thus cannot be used for the observation

values. Thus, the observation for each voxel is determined by back-projecting from

the voxel center to the image surface. The state to observation statistics are then

tabulated and normalized so that the probability of a given state tuple gives rise

to an observation.

Figure 10 shows the ray used for the observations for vertical stack. The

density is consistent throughout each voxel so each of the yellow dots along the

black line represents a state in the given Markov chain. Since a single observation

is used for all of the states, the independence condition of the HMM is violated.
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The independence problem can be solved with a single rotation of the recon-

struction voxel space. As is shown in Figure 14, rotation of the space by 45° allows

for 6 independent state chains to be reconstructed. These are shown by the bi-

direction arrows and the head and tail symbols into and out of the front and back

faces. The yellow spots represent the state centers and the dashed blue lines are

Figure 14. Extended HOHMM Processing Directions

the projection rays through the reconstruction space resulting in the projection

image of the transparent object. As can be seen, the 45° rotation of the recon-

struction space causes the rays denoting the observations for each state in a chain

to not intersect the voxel space of adjacent states. This condition holds as long as

the pixel sizes do not grow too large so that the same individual pixel value is used

as the observation value for two state neighbors. For the case where the pixel size

and the voxel face size are the same, the state centers are offset by
√
(2)/2 while

the pixel centers are offset by 1. While the imaging generates a physical 50% over-

lap between adjacent voxels at 45°, the variations between the pixel center offsets
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and the state center offsets allows for enough variation between the observations

to allow the HMM processing to work as expected. Smaller pixels can be used to

increase the independence. The constraint on pixel size versus voxel size can be

relaxed further by using multiple pixel values to generate the observation value.

Each observation is determined by the intersection with the projection image

of the orthographic ray from a state to the image. When the ray from each state

center intersects the image surface, the intersection point lies in a subset of pixels

in the image. Since the voxel centers generally do not align with the projection

pixel centers, bilateral interpolation is used to determine the observation value.

Figure 15 shows the intersection point in a field F of 4 arbitrary pixels

(F = {(r, c), (r, c+ 1), (r + 1, c), (r + 1, c+ 1)}). The large black dot represents

Figure 15. Bilateral Interpolation for HMM Observation Generation

the orthographic intersection of the projection line from the voxel centroid to the
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image plane. The four smaller boxes represent regions where the current pixel

value will be used as the observation value. These boxes are defined to prevent

underflow for intersection points near the true pixel centers. Likewise, the dashed

boxes represent areas in which a linear interpolation between just two pixel val-

ues will be used. All points that fall within the inner hashed area are computed

according to Equation 3.2.2 [96].

O(x, y, z, θ, ψ) = [1− x x]

[
Pixel(r, c) Pixel(r, c+ 1)

Pixel(r + 1, c) Pixel(r + 1, c+ 1)

] [
1− y
y

]
(3.2.2)

All other intersection points are handled through the corresponding set of adjacent

image pixels in a similar fashion. If the intersection is outside of the shown con-

straints, then an adjacent set of pixels are used. This leads to the need for an outer

ring of extra pixels to support the observation generation. Thus, M0 must account

for this extra two rows and columns of pixels in the reconstruction geometry.

Deriving most probable sequences from the six cube faces leads to limits in

the reconstruction of shapes that vary from the model target. If the target is held

“square” to the voxel grid, then all state sequences from the +Y or −Y direction

will all have the same statistics of length and state. This limits the shapes that

can be reconstructed since the only height available is the one that matches the

training target. If the target is placed at an angle in the voxel space grid, then a

range of heights are included in the statistics. However, these statistics still have

constraints. The reason for this limitation can be seen in Figure 16. If the target

is rotated at an angle (around an axis) then the sloped top creates a range of state

durations. However, there are only a few at the shortest length as the first wave

hit the target top. As shown, the discoid has an increasing number of stacks at

each duration value. The black line across the top represents the stacks that have

the given length. As the line walks down the slope, more and more, then less and

less voxel stacks end at the specified duration length.
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Figure 16. Model State Limitations
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These state-to-state statistics are biased by the excessive longer durations.

For each length that does intercept the target, there are W stacks that end at the

target tangent line but many more advance to the next length. While there are

W stacks that transition to the target, almost all other stacks (except those to

the left that do intercept the target) transition to the buffer state. This drives

the statistics to encourage a most probable state of buffer for those lengths. The

statistics average out to about 98% for buffer and the rest for the target top layer.

If the target is a larger percentage of the entire voxel space, this will decrease, but

when the HMM problem two processing is performed, the buffer state will almost

always be the winner.

This paradigm also has an effect when the target is held square to the grid

space and the grid space is rotated to allow for independence of the observations

(as is shown in Figure 14). When the most probable state direction is along the

rotation axis, an effect similar to the one noted above occurs. Generally, only a

few of the stacks register non-buffer states; all the others register buffer.

These effects can be handled by rotating the reconstruction space in the other

direction (around the y-axis) so that the effective target tilt does not lead to this

arrangement along the same physical axis of the target for each rotation. As is

shown in Figure 17b, the original reconstruction cube is rotated around the z-axis

that comes out of the screen. Four useful and two unusable reconstructions are

created in this orientation. By rotating the reconstruction space around the y-axis

three more times as shown, an additional 18 total and 12 useful reconstructions

can be generated. The resulting reconstructed voxel spaces are then rotated to

align it with the original space for the first four passes. This rotation schema is

easy to implement by simply rotating the single projection image 90° around its

center point for each processing set.
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(a) (b)

(c) (d) (e)

Figure 17. The original (a) unrotated reconstruction space and the rotated recon-
struction spaces for the four cases of rotation around (b) Z-axis at 45°, (c) Y-axis
at 90°, (d) Y-axis at 180°, and (e) Y-axis at 270°.

3.2.5 Alpha Pass

Recalling that the α-pass describes the partial probability that the state-chain

is at a given value for each state-chain step in the forward direction, the extended

HMM processing can be described in terms of the list of possible states. Figure 18

shows a single fan of the overall α-pass trellis between state chain steps t and

t+1. The prime notation for the states and the hat notation for the state-to-state

probabilities represents the list nature of the possible transitions. There are N

elements in the list of possible states so αt+1(n
′) is created in the forward direction

from all of those states and the corresponding transition probabilities. Using the

state list identifiers of next state = n′, the probability of a given partial sequence

of observations at step t+ 1 is

αt+1(n
′) = P (O0,O1, . . . ,Ot, st+1 = Sn′ |λ). (3.2.3)
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Figure 18. Single Fan of Forward α-Pass Trellis

The α-pass processing can be generalized for the list of transitions. The

induction phase is given by

α0(f
′) = π(f ′)bf ′(O0), (3.2.4)

where f ′ ∈ {list of states}. The general iterative expression for the alpha-pass

from equation 2.5.6 can be rewritten as

αt+1(n
′) = bn′(Ot+1)

[
N−1∑

f ′=0

αt(f
′)a(f ′, n′)

]
, (3.2.5)

for 0 ≤ t ≤ T − 2 and 0 ≤ n′ ≤ N − 1. The summation part of the equation

processes all of the edges of the (n′)th trellis sub-structure and the iteration over

the set of n′ states computes all of the fans in the trellis to the next step. Stepping

over t computes the α values for all steps along the state chain, using the t = 0

results from the induction step. Thus, the α term for each possible state at the

next step in the chain (αt+1(n
′)) is given by the probability that the possible state

at the next step in the chain gives rise to the observation at the next step in the

chain (bn′(Ot+1)) times the sum of all the α terms from the prior step in the chain

multiplied by the probability that the chain can transition from state Sf ′ to the

possible state at the next step in the chain, Sn′ .
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With the state-duration list generated above, a much simpler description can

be provided. Note from the sample code provided by Stamp [76], the α-pass is just

an outer loop over all next states and an inner loop over all from states. From our

state-to-state construction, the α-pass is computed as shown below.

c0 = 0

∀ Sn′ ∈ {state-duration-elements list}
α0(Sn′) = π[Sn′ ] ∗B[Sn′ ][O0]

c0+ = α0(Sn′)

end loop over Sn′

∀ Sn′ ∈ {state-duration-elements list}
α0(Sn′)/ = c0

end loop over Sn′

∀ t ∈ rest({state-chain-steps list})
ct = 0

∀ Sn′ ∈ {state-duration-elements list}′
αt(Sn′) = 0

∀ Sf ′ ∈ {state-duration-elements list}
αt[Sn′ ]+ = αt−1[Sf ′ ] ∗ A[Sf ′ ][Sn′ ]

end loop over Sf ′

αt[Sn′ ]∗ = B[Sn′ ][Ot]

ct+ = αt[Sn′ ]

end loop over Sn′

∀ Sn′ ∈ {state-duration-elements list}
αt[Sn′ ]/ = ct

end loop over Sn′

end loop over t

Sf ′ and Sn′ represent the elements in the list of state-durations, A[][] repre-

sents the probabilities from the state-duration list, and B[] represents the state

to observation probabilities. The {list}’ notation used for the to state sets repre-

sents the fact that there is a limited set of possible to state values based on the

duration constraint. Note that while matrix notation is used for α, A and B, the
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data are maintained in lists for storage efficiency. Also noted is that while the

loop over the to states only needs to cover the N modeled states, the results must

be placed in the correct α element based on the appropriate from state duration.

This treatment allows for normalization as shown by Stamp [76].

3.2.6 Beta Pass

Similarly to the α-pass processing, the β pass can be rewritten in terms of

the list of states with duration. Figure 19 shows a single fan of the overall β-pass

trellis between state chain steps t+1 and t. The same notations used in Figure 18

Figure 19. Single Fan of Backwards β-Pass Trellis

are reused for the states and probabilities. The same N elements in the list of

possible states are used here so βt(f ′) is created in the backwards direction from

all of those states and the corresponding transition probabilities. Using the state

list identifiers of from state :: f ′ = i, the probability of a given partial sequence

of observations at step t is

βt(f
′) = P (Ot+1,Ot+2, . . . ,OT−1|st = Sf ′ , λ). (3.2.6)

The β-pass processing also can be generalized for the list of transitions. The

induction phase is given by

βT−1(n
′) = 1, (3.2.7)
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where n′ ∈ {list of states}. The general iterative expression for the β-pass from

equation 2.5.8 can be rewritten as

βt(f
′) =

N−1∑

n′=0

a(f ′, n′)bn′(Ot+1)βt+1(n
′), (3.2.8)

for T − 2 ≥ t ≥ 0 and 0 ≤ f ′ ≤ N − 1. As expected from the trellis structure, this

computes the partial probability that each of the possible f ′ states at step t gives

rise to each of the possible n′ states at step t+ 1.

From our given state-to-state list construction, the β-pass is computed as

shown below.

∀ Sn′ ∈ {state-duration-elements list}
βT−1(Sn′) = 1/cT−1

end loop over Sn′

∀ t = T − 2 to 0 by − 1

∀ Sf ′ ∈ {state-duration-elements list}′
βt(Sf ′) = 0

∀ Sn′ ∈ {state-duration-elements list}
βt[Sf ′ ]+ = A[Sf ′ ][Sn′ ]B[Sn′ ][Ot+1]βt+1[Sn′ ]

end loop over Sn′

βt[Sf ′ ]/ = ct

end loop over Sf ′

end loop over t

3.2.7 Gamma Pass

With the above formulations for α and β, a list of allowable states, and again

following the structure provided by [76] , the γ pass then becomes
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∀ t = 0 to T − 2

denom = 0

∀ Sf ′ ∈ {state-duration-elements list}′
∀ Sn′ ∈ {state-duration-elements list}
denom+ = αt(Sf ′)A[Sf ′ ][Sn′ ]B[Sn′ ][Ot+1]βt+1[Sn′ ]

end loop over Sn′

end loop over Sf ′

∀ Sf ′ ∈ {state-duration-elements list}′
γt(Sf ′) = 0

∀ Sn′ ∈ {state-duration-elements list}
γt[Sf ′ ][Sn′ ] = (αt(Sf ′)A[Sf ′ ][Sn′ ]B[Sn′ ][Ot+1]βt+1[Sn′ ])/denom

γt(Sf ′)+ = γt[Sf ′ ][Sn′ ]

end loop over Sn′

end loop over Sf ′

end loop over t

Note, however, that the loop over t only extends to T − 2 so there are only

T −1 di-γ terms. This is due to the βt+1 term. The effect is to shift the γ terms to

the left with respect to the indexing t subscript. Thus, γ0 represents the connection

between step 0 and step 1, γ1 connects t = 1 and t = 2, and so forth. Since the π

terms are used to determine the first most probable state, the only affect of this

scheme is in the indexing for the rest of the steps in the most probable state chain.

3.2.8 Most Probable State Sequence

The most probable state sequence can be deduced from the γ values computed

above, the initial state probabilities, π, and the probabilities of the initial observa-

tions, B[S0][O0], Recall that each γ value is computed between steps in the chain.

The α term provides the value to the left of the step. A gives the transition proba-

bility and B gives the probability that the next state gives rise to the observation.

Finally, the β term provides the probability for the right side of the chain. Thus,
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γt(Sn′) is really the step from t to t + 1 so these values give the final T − 1 state

probabilities. The initial state probabilities and observation probabilities give the

initial chain states. The processing to determine the most probable state sequence

is provided below.

MostProb(0) = −1

∀ Sn′ ∈ {state-duration-elements list}
if(π(Sn′)B[Sn′ ][O0] > MostProb(0))

MostProb(0) = Sn′

endif

end loop over Sn′

∀ t = 0 to T − 2

MostProb(t) = −1

∀ Sn′ ∈ {state-duration-elements list}′
if(γt(Sn′) > MostProb(t))

MostProb(t) = Sn′

endif

end loop over Sn′

end loop over t

Note that the comparisons offer a chance for multiple equal options. The

probabilities are saved to help with the merger processing and to help determine

the overall confidence of a state in the chain.

3.2.9 Merging State Sequences

Given the extended HMM processing can be performed from 6 sides of the

cube, but only 4 are “useable” and the cube can be rotated 4 times, the 16 re-

sulting reconstructions must be merged in order to deduce the best fit for the

reconstruction space. Given the directional nature of the generation of the most

probable state sequence, the generation direction can be considered a separable

process. Thus, the multiple state sequences can be merged in order to produce
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a single reconstruction space. The directional reconstructions are combined as

shown below.

foreach voxel index

select the state representing the majority of amongst all voxels

if a majority tie exists

select the state representing the majority

with the highest probability amongst all copies of that state

end if a majority tie exists

end foreach voxel index

foreach Voxel index

check selected state and replace if a FOHMM error exists

end foreach voxel index

The final step of FOHMM cleanup involves testing each voxel against its

neighbors to ensure that the first order state-to-state statistics are not violated.

In general, there should be few voxels that need cleanup since the extended state-

to-state statistics are derived from the actual voxel density values, but the merger

process can cause unallowable state-to-state transitions to be created. By checking

each voxel against the allowable transitions that are derived from the underlying

physical or biological model, the final reconstruction space is guaranteed to accu-

rately represent the allowable state-to-state transitions of the original model. The

processing for this final check is shown below.

foreach Voxel in the reconstruction space

check selected state against all neighbors

if a FOHMM error exists

replace the voxel with the highest probability allowable state

decide ties with majority of next nearest neighbors

end if a FOHMM error exists

end foreach voxel
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CHAPTER 4

Findings

This chapter describes the findings of the studies conducted for this research.

Section 4.1 discusses the basic hidden Markov modeling efforts. Section 4.2 pro-

vides results from the use of the higher order HMM model with various noise

models. Section 4.3 details the results when various geometric shapes and sizes of

training and test targets are considered.

4.1 Hidden Markov Modeling

HMM processing was investigated because of the inherent match between

the requirements of the HMM processing and the desired goals of the individual

particle reconstruction. These models are based on an underlying state to state

relationship and the nature of biological particles implies some sort of order. For

the example target particle, the well-known “states” of phosphate head group

{red}, lipid {green}, protein {blue}, and buffer {white} were chosen as a first set

of states. The shape was deduced from the original images in [7] and is shown in

Figure A.43. Assuming the sample is not imaged to the point where damage occurs,

the frozen nature of the imaged samples ensures that the states do not change. Due

to the structure of HMM processing, state and observation independence is needed.

The construction of the problem space can guarantee the necessary constraints

while the efficient nature of HMM processing leads to a computationally tractable

solution for reconstructing individual particles.

This section discusses the processing with a FOHMM and effects of state

chain direction as motivation for the ensuing HOHMM results. This is followed by

results of basic extended HOHMM processing and includes the effects of merging

the directional results.
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4.1.1 First Order HMM

FOHMM results can be skewed by the direction in which the statistics are

gleaned and processed. For example, a reconstruction in the vertical direction

from the basic model provided in Figure 10 leads to an extended reconstruction

result. The reconstruction from a vertical direction looks like a tall cylinder as

shown in Figure 20. This is simply a result of the model statistics and the reuse

Figure 20. First Order Vertical HMM Reconstruction

of observations. For the vertical stack (black line with yellow dots representing

the state locations), the initial state is destined to be buffer (white) due to the

π statistic. Immediately, however, the chain wants to change to red since the A
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statistics only allow a white-to-red transition and the B statistics desire a target

{red, green, or blue} voxel for the lower gray level observations associated with the

voxel state subtending the target region of the reconstruction space. The chain

then selects blue since there are more blue than red voxels in the model upon which

the statistics were generated, so for the given observation, blue is more probable.

As there is no driving force to change states, the stack stays in the blue state until

the end of the chain. Likewise, the middle stacks stay in the green state since this

is most probable for the given observation. The reconstruction from a horizontal

direction looks like a tall cylinder as shown in Figure 21. The more probable blue

Figure 21. First Order Horizontal HMM Reconstruction
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state is selected (over the less probable red) as soon as the observations reach the

target levels. The allowed blue-to-green transition happens when the first green

observation is reached. Likewise, the green-to-blue transition happens at the edge

of the target when the blue observation is reached.

Several tests of the FOHMM were performed; however, none of these methods

worked well. All gave reconstruction results for the target particle that spanned

the entire vertical space of the reconstruction area. Figure 22a shows the results

(sliced open to reveal inner densities) when an angle of 0° was used as the rotation

amount. This is as expected since the probabilities only have the flat projection

(a) (b)

Figure 22. Simple HMM reconstruction results when viewed at a) 0° and b) 45°.

image (Figure A.43c) from which observations can be gleaned. In regions where

the observations were from all buffer (white) regions, the HMM processing gave

rise to the buffer as the only possible solution since the probabilities of the white

pixel observations were only possible when all the voxels from which the pixel

was derived were all buffer density. Likewise, the blue outer ring and the middle

red and green voxels mostly gave rise to single states. The resulting shape was

a cylinder for all voxels except the top slice of the voxel space, which was forced

to be the buffer state by the π statistics. The cylinder itself was a blue edge

region and a green center area except for the top layer which was red as dictated

by the white-to-red statistics (the white to green transition was prohibited by the
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A-matrix statistics). The expected red bottom layer was not enforced since there

was nothing in the model to cause the chains to revert back to buffer (white), and

thus through the red state to prevent green touching white. The cylinder simply

extends to the bottom of the reconstruction space. When a non-zero rotation was

applied, the cylinder was smeared but with the same basic results, as is shown in

Figure 22b.

While the FOHMM processing results were as expected, the results are not

what is desired in that the basic shape of the particle is not reproduced. However,

there are a few things to note about the results of this experiment. First, the 0°

case and the 45° case gave basically the same results. The case with no rotation was

not expected to give sensible results since the observations were not independent.

However, the base state-to-observation statistics ignored the lack of observational

independence; all states in those columns expected the same observation so they

were by default not independent. Second, the directionality of the HMM processing

did matter. The reconstruction result from the x and z directions did not include

the red top layer as expected but still resulted in a cylinder that spanned the

non-buffer-only pixels in the image. Since the Markov chain was horizontal (in

the x − z plane) the π constraint of first voxels being buffer were met but the

observation probability drove the voxels to stay white until the darker bands of

the target were reached. Similarly, the middle of the cylinder was all green, again

as expected by the fact that there were more green than red states for the middle

gray region observations so the green state was most probable. The directionality

in y did cause the red top layer to alternate between the top and the bottom as

expected.

From these results, it can be concluded that basic first order Markov sequences

are not useful for this 3-D reconstruction. The single pass with merged statistics
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approach does not seem to make sense as a processing schema because while the

directionality of the most probable state sequence does provide additional infor-

mation, the first order Markov chain is overly biased by the state-to-projection

statistics while seemingly ignoring the observational dependencies as well as the

state-to-state probabilities. The greedy statistical nature of a FOHMM means

that, in general, the voxel state that fills the majority of voxels in a stack will most

likely dominate for a given observation even if the projection image is at an angle

to the voxel stack. As can be seen in Figure 5, a current model of the LDL particle

consists of several layers of alternating fat and cholesterol encased in the phospho-

lipid head group shell. Which ever density prevails in a voxel stack will dominate

the simple first order statistics processing. This results in a reconstruction that

cannot determine the height of the particle. The reconstruction is simply a tower

(in this case a cylinder) where the top slice is red then the remaining slices of the

middle region are green since the green statistics dominate. It is this internal

structure, however, that should help make use of HOHMM processing feasible.

4.1.2 Simple Extended HOHMM Processing

A test of extended processing shown in Section 3.1.2 was performed that

reconstructed the example target (with no noise) exactly when viewed directly

from the top (down the Y axis). Figure 23 shows the original model (rotated at

45° and zoomed in to show the internal structure) in the left panel, the simulated

projection image (not rotated) in the center panel, and the reconstructed particle

(also rotated and zoomed) in the right panel.

The HMM statistics for matrix A modeled the fact that the white buffer

region (see figure A.43a) was of length T , Ttop, or Tbottom states. These statistics

also captured the effect that the sequence of unknown states followed by a buffer

(white) region of length Ttop gave rise to a transition to the red state. Likewise, a
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(a) (b) (c)

Figure 23. a) Original discoid model, rotated to 45° and sliced to show internal
structure, b) Resulting projection image taken along the Y axis, and c) HMM
reconstruction results, also rotated to 45° and sliced.

sequence of white to red with appropriate lengths predicted a transition to either

blue or green, where the selected state depended upon the associated observation

value. Similarly the blue or green regions transitioned back to red then white

based on the modeled sequence lengths.

This simple processing, however, only works well for the vertical case because

only the state-to-state statistics are used, not the complete statistical basis. With

the flat top of the model, all of the transitions were at the same length paradigm.

When processing from an angled approach was tried, the results did not work

nearly as well since the statistics varied for the chains hitting the rounded edges

of the target. Figure 24 shows the original model rotated to 45° with the same

perspectives as shown in Figure 23 above. As can be seen, while the basic shape

is recovered, the contents are not correct since the statistics did not include the

angled approach details. The fuzzy regions to the top and bottom are all fused to

a single state in the state to observation statistics so the reconstructed object is

smeared accordingly. To account for this, the π and B statistics must also utilize

extended state information and the HMM processing in section 2.5.2 must function

so the α, β, and γ passes include the new information.
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(a) (b) (c)

Figure 24. a) Original Discoid model sliced to show internal structure, b) Resulting
projection image taken along the Y axis, and c) HMM reconstruction results.

4.1.3 Extended HOHMM Processing

The complete extended HOHMM processing detailed in Section 3.2 provided

extremely good reconstruction results. A test of this processing was performed that

reconstructed the example target exactly. In this example, the simple target shown

in figure A.42 was changed so that the entire top and bottom sections were red

and the blue protein band was sandwiched between the red top and bottom layers.

Figure 25 shows the original model (rotated at 45° and zoomed in to show the

internal structure) in the left panel, the simulated projection image (not rotated)

in the center panel, and the reconstructed particle (also rotated and zoomed) in

the right panel. The HMM statistics for matrix A modeled the fact that the white

buffer region was of length T , Ttop, or Tbottom states. These statistics also captured

the effect that the sequence of unknown of length 1 followed by a white buffer

region of length Ttop gave rise to a transition to the red state. Likewise, a sequence

of white to red with appropriate lengths predicted a transition to either blue or

green, where the selected state depended upon the associated observation value.

Similarly the blue or green regions transitioned back to red then white based on

the modeled sequence lengths.
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(a) (b) (c)

Figure 25. a) Original Discoid model, rotated to 45° and sliced to show internal
structure, b) Resulting projection image taken at −45° along the X axis, and c)
HMM reconstruction results, also sliced open to show internal structure.

This test shows that the basic processing is functioning but it does not provide

any significant insights into the overall reconstruction issue for arbitrary angles.

This single-pass reconstruction relies on the fact that the target was square to the

reconstruction voxel space. The statistics match exactly “from the top” and there

is no ambiguity of observations and states.

4.1.4 Sequence Direction

The above discussion makes it clear that the direction of the most probable

state sequence generation plays a role in the model results. While the Viterbi

algorithm [80, 81] draws its efficiencies from computing in both the forward and

backwards directions, ultimately, the resulting state sequence is directional in na-

ture. Since the model of the target of interest may have features that reflect this

directionality, an understanding of the directional nature is needed.

One example of a directional constraint can be seen from the simple model

shown in Figure A.42. In this example model, a simple model of phospholipid head

groups, fat, and protein (red, green, and blue respectively) for the LDL particle are

used to represent the major electron density regions of the macro-assembly. Notice

that if the statistics are generated from the top (or bottom) then the probability
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of a transition from the surrounding buffer region (white) to either the red or blue

regions is possible. Of course the hydrophobic fat (green) is not allowed to touch

the water-based buffer (white) so there is zero probability that white voxels can

transition to green or vice-versus. But, if the statistics are generated from any of

the four sides of the voxel space then a white-to-red and red-to-white transitions

are also forbidden.

Another directional effect arises from the nature of the higher order HMM

model that is used. Additional reconstruction results were obtained by performing

the HMM processing in four orthogonal directions as depicted in Figure 14. In

effect, the reconstruction space was rotated around the z axis. The reconstruction

voxel space was constructed at ±45° to the orientation of the modeled target in

order to produce independent observations for each step in the chains (yellow

boxes). The directions were chosen so as to keep the reconstruction space aligned

to the rows and columns of the projection images. This artificial constraint was

chosen to help with analysis; a rotation around the y axis could have also been

performed. The same HMM model parameters, which were deduced from the +y

to −y direction for all 4 images, were used for the 4 reconstruction passes. Thus,

the HMM state chains followed the directions of the black arrows.

The results of these 4 reconstructions are shown in Figure 26. As is shown, the

basic particle shape is also reconstructed but with a “tail” in the trailing direction

of the HMM chain. There is no “tail” on the leading edge since the statistics of the

“white space” say that there can be no particle states until at least the minimum

distance from the edge has been traversed by the state chain. In addition, there

are many cases where longer stretches of white buffer are traversed before hitting

the target so these drive the leading edge to stay as buffer for as long as possible.

On the trailing edge, however, the state to state probabilities can result in particle
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states with longer durations, up to the maximum supported length across the

target, thus the tails appear when the observations support them. As with the

(a) (b)

(c) (d)

Figure 26. Reconstruction results for the four rotated cases of a) X +45°, b) X
−45°, c) Z +45°, and d) Z −45° as viewed from the +y axis.

external tails, the internals are also subject to distortion since the view is at an

angle to the direction of the state-to-state probabilities. These can be seen where

the reconstructions have been sliced open to reveal the internal structure.
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The detailed voxel to voxel comparison is provided in Table 3. As is shown, the

reconstruction space matches the original space to 98.76%. This calculation utilizes

Original / Recon Blue Green Red White By Color
Blue 7770 420 0 30 94.53%
Green 150 10365 0 0 98.57%
Red 0 0 12470 20 99.84%
White 1665 0 1110 240625 98.86%

Table 3. 45° Reconstruction Voxel Accuracy

the entire voxel reconstruction space so it may appear that the overall accuracy is

skewed by the abundance of buffer (white) voxels. Computing the reconstruction

accuracy by color results in nearly similar results except for the blue voxels. For

simplicity, the overall metric will be used to compare reconstruction accuracy. But

an eye will be kept open for distortions since this may indicate useful information

regarding the overall processing.

The directional HMM processing did not produce any useful results at the 0°

case. As expected, the four reconstructions from the x and z directions resulted

in the same answer while the y directions provided the same basic answer as did

the x and z cases except with the red top and bottom regions as before. Several

combination methods were tried but in general, the x and z reconstructions won

since a majority was biased by the 4 vs. 1 vs. 1 voting. Given the symmetric

sample target, and the overriding observations, this was expected.

4.1.5 State Sequence Merging

Since the directional reconstructions share the same aligned voxel space, the

separate results can be easily combined without the need for state interpolation

or other schemes. Given the orthogonal method by which the reconstructions

were generated, a simple majority scheme can be employed to deduce the final

reconstruction. Since, for the most part, the tails extend along the trailing edge,
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each voxel is defined by the images that are not being affected by the trailing

effect. Figure 27 shows an example projection image with noise. Figure 28 shows

Figure 27. Projection Image at 45° with Noise Added .

the case of 4 directional reconstructions merged with a simple majority scheme.

This reconstruction also matches the original model better than 98% but the tail

Figure 28. Merged reconstruction results shown at 45° and sliced open to show the
internals.

artifacts have been reduced.
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4.2 Noise

This section describes the effect of noise on the HMM processing. The results

range from processing with no noise in the observation image to multiple runs to

build up the effects of the noise on the state-to-observation statistics. A final result

describes the results of using a model of the noise during training and compares

this to the other cases.

4.2.1 No Noise

Runs with no noise consisted of training the HMM statistics against images

with no noise added in. That is, a single simulated image without noise was gen-

erated for use as both the training image and the reconstruction image. As was

shown above in Figure 23, the processing works very well but with the tails. Good

results are expected because the training image was also used as the processing im-

age. Therefore, there were no variations between the training state-to-observation

statistics and those from the processing image.

4.2.2 Single Training Run

Single training runs with noise consisted of training the HMM statistics against

images with noise added in. That is, a single simulated image with noise was

generated for use as both the training image and the reconstruction image. The

addition of noise simply changed the gray-level values of the statistics and not the

distribution since the same image was used for both training and processing. As

expected, the processing was good due to the lack of variation between the training

and processing statistics. As with the no noise case, the use of a single image with

noise added has very good results of98% as discussed in Section 4.1.5.
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4.2.3 Multiple Training Runs

Performing several training runs to build up the state-to-observation his-

tograms actually performs very poorly, unless a significant number of runs are

taken. This is seen from the prior discussion in Section 3.1.3. The state-to-

observations statistics are simply a reflection of the noise statistics applied to

the δ-functions shown in Figure 11. If a single training run is used to set these

statistics, then there is an almost 0% chance that the processing run will match

the statistics. This means that the B term will be zero so no transition will be

selected. As more and more training runs, are added in, the results get better but

there still may be holes in the reconstruction. Thus, for images with larger sigma

values, more and more training runs must be performed to more fully represent

the true state-to-observation statistics.

4.2.4 Modeled Training

While the very good results without the use of reducing noise by averaging

images may seem counter-intuitive, a look at the state-to-observation statistics

gives insight into why HMM processing works. Figure 29 shows the state-to-

observation probabilities. The left side shows the base statistics for no rotation of

the voxel space. The peak at the right is for the pure buffer case; all buffer-only

observations are at high levels in the gray level space. The lower two peaks are

for the combined projection pixels. Thus, only a handful of observation values

are allowed. The spread denotes the noise level added. The right side of the

figure shows the effects of rotating the voxel space. The buffer region stays clearly

separated but the two peaks for the particle voxels start to merge, which follows

the smearing shown in Figure 27. The extended HMM processing, however, uses

both the state-to-state and state-to-observation statistics so the effect of noise is

minimized. As long as the contrast level of the image is sufficient to prevent
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(a) (b)

Figure 29. State (color) to observation probabilities for a) aligned voxel space and
b) rotated voxel space.

destructive overlap of the observations, the state-to-state portion of the HMM

processing reasonably is able to determine the correct next state in each sequence.

The above discussion leads to the understanding that if there was no noise,

the allowable regions would be pseudo-δ functions at the resulting projection gray

levels. This is shown in Figure 30. This data shows an occurrence histogram of 131

state tuples for each of the 255 observation symbols. There is a preponderance of

occurrences near gray level value 100 and a majority of values near 200. The spikes

near gray level 100 represent the smeared values of the target; the larger values

are for the buffer-only regions where there is no interfering target. When noise is

(a) (b)

Figure 30. Probability of a) 131 state-tuples with no noise and b) Sum of Gaussian
distributions for all target observations (blue) and sum of all observations (brown),
including the majority of buffer only observations near gray-level 200.
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included in the training image each histogram entry will be shifted by the noise at

that observation location. If a sufficiently large number of images is used to train

the HMM, then it should be obvious that the pseudo-δ functions will grow into

representations of the noise statistics. With proper normalization, the histogram

will follow the underlying noise statistics, for example as shown in Figure A.44b.

Figure 30b shows the distributions for two cases for a single state tuple. The

first (blue) graph shows the sum of Gaussian distributions (σ = 25) centered at

each pseudo-δ function location near 100 gray level which include the target region.

The second (brown) graph shows the sum of Gaussian distributions for all pseudo-δ

function locations, including the majority of buffer-only tuples. This brown graph

dominates the ultimate probability distribution, as is expected, since most of the

observations are for buffer-only. Figure 31 shows the row-stochastic probability

distributions for all 131 state-tuples. The single peak graphs (lighter gray centered

Figure 31. Simulated HMM Observation Probabilities

near 100) represent those tuples that are entirely involved in the target area. The

double peak graphs (darker colors) show various state-tuples that do include the

effects of the large number of buffer-only tuples.

104



Three features regarding image acquisition and preparation can be gleaned

from this understanding of the state-tuple to observation probability distributions.

First, the noise variance can impact the smearing of the probabilities. Care should

be taken during the sample preparation and imaging to help minimize this variance.

Second, the ratio of target and non-target observations can affect the probabili-

ties. As is seen in Figure 30a, the preponderance of buffer-only pixels drives the

state to observation distributions, and thus, the overall probability separations.

The extremely high ratio of buffer to target observations causes the simulated

probabilities to spread since the height of the central pseudo-δ function drives the

total energy under the Gaussian distribution. Finally, the overall contrast level

of the image has an effect on the separability of the state-tuple to observation

probabilities.

As seen in Figure 30a reductions in the confluence of these factors causes

ambiguity of the probabilities for many state-tuples. Obviously the variance could

be reduced by a factor of 1/
√
N if N images were averaged, but this defeats the

purpose of using a single image from the cryo-tem system. Thus, increasing the

overall contrast ratio of the image and cropping the image to increase the ratio

of target to non-target observations can serve to enhance the state-to-observation

probability resolution. An example of the same target but with an increased ratio

of target to buffer-only observations and contrast ratio is provided in Figure 32.

As is seen, there is much better separation between the two distributions.

Since the training images are deduced from simulated images, there is no

need to generate multiple images to accumulate the state tuple to observation

probabilities. This approach has an obvious benefit of reduced setup time since

the observations are only based on the target model and the observed or expected

noise statistics rather than having to perform multiple runs in order to determine
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Figure 32. Enhanced Simulated HMM Observation Probabilities

the state-to-observation statistics.

4.3 Geometry Parameters

This section describes results obtained by varying the geometric parameters

of the target. This testing altered geometric parameters of the actual target versus

the training parameters.

4.3.1 Size Changes

This section describes the effects of changing the size of the modeled LDL tri-

layer discoid. To perform this testing, the processing was trained with a given set

of size parameters. Modeled noise (as shown in Section 4.2.4) was used to reduce

the effect of noise on the understanding of the effect of size changes.

A test of size changes was performed by deducing the HMM model at a fixed

radius and then processing simulated targets over a range of radius values. Fig-

ure 33 shows the voxel to voxel match percentage for training and processing radii
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ranging from 15 to 28 voxels. As can be seen, the basic match percentage is around

90% regardless of the radius mismatch.

Figure 33. Different Training vs. Processing Radii Matching

The higher match percentage with decreasing actual radius is a result of having

a fixed voxel space. As the actual target gets smaller, more and more voxels are

correctly decided to be the “white” buffer since their is no target in those voxel

stacks. For example, when the target radius is 30 voxels, there were 185, 785

“buffer” voxels but when the radius drops to 15, there are 238, 700 “buffer” voxels.

If we assume that all errors are in the target voxels, the 10% error rate means

there are approximately 8, 884 and 3, 392 incorrect pixels. With 653 = 274, 625

voxels in all, this leaves 88, 840 and 33, 925 target voxels respectively. Since these

are almost always correctly identified due to the obviously brighter observations,

the error drops accordingly.

The general trend is that for a given actual target radius, the matching error

remains fairly constant regardless of the training radius. The radius, of course,

affects the internal structure. Since the outer blue “protein” band was held con-
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stant, the inner “fat” region becomes smaller with a decrease in radius. Thus, the

extended HMM reconstruction shows very good immunity to training particle size

versus actual particle size.

4.3.2 Density Changes

Since the reconstruction is in state space and not actual density space, the

effects of slight differences in actual voxel densities are not pronounced. Changes

in density of the target simply slide the peak of the observation histograms shown

in Figure 31. As long as the distributions do not overlap too badly, and the means

do not shift too dramatically, the IPR algorithm can still reconstruct the targets.

4.3.3 Shape Changes

A final geometry issue that can affect the IPR is the overall shape. In general,

model-based reconstruction techniques have separate models for different shapes.

For example, squares are not used to represent circles. Even the RBC method

decomposes the shapes into geons for the sub-parts. The superquadric method

can morph the single equation into various shapes, but boxes and rounded shapes

have fundamental variations of the superquadric parameters based on the shape.

Thus, understanding how the IPR handles shapes that are different than the model

helps compare it to other methods.

Understanding how the IPR method handles shapes can be found by attempt-

ing to reconstruct an extremely distorted target. Such a shape is shown in Fig-

ure 34. This is the standard target but with one side “bent” down at a 45° angle.

When viewed from the +X axis, towards the −X axis, the target is seen as bend-

ing down along the +Z axis. A view of the target rotated 45° around the Z axis

is shown in Figure 35a.
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Figure 34. Warped Disc Model

Training images for each of the six directions with no noise added were used

so that the simulated statistics could be generated for training. The HMM model

parameters are built from the flat discoid that lies along the X − Z plane. In

addition, the HMM parameters were built in voxel stacks that are either parallel

or orthogonal to the edges of the discoid target. The training image is shown in

Figure 35b and an example projection image is shown in Figure 35c.

(a) (b) (c)

Figure 35. a) Modeled warped target, rotated 45°, b) Training image with no noise,
and c) Processing image with noise.

The reconstructions with this setup provides insights into the capabilities of

the IPR to find targets of shapes that differ from the model target. The approach

for geons and superquadrics allows for decomposition of objects with “detectable”

surfaces to be decomposed into smaller geometric ions. Identification of deformed
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geons can be handled with extra processing to handle additional minimization

constraints. Likewise, it appears that the IPR will need additional states (and thus

more processing time) to capture variations of modeled shapes. Further research

into constraining this problem to keep it out of the NP-complete regime are needed.
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CHAPTER 5

Conclusion

This chapter provides a concluding discussion about the technology presented

in this dissertation, directions for continuing this project, and its impact. Besides

this dissertation, some of the results of this research have been published in [94,

95, 97]. Additional information regarding this research may be found in technical

reports [93, 75].

5.1 Technology Remarks

This dissertation introduces a new approach to the reconstruction of trans-

parent objects. The basis imaging modality is cryo-tem. Existing SPR methods

of reconstructing biological nanoparticles from cryo-tem images require significant

numbers of images, averaged together to reduce noise, and significant computa-

tional processing to produce a reconstruction that represents the ensemble average

particle. The approach presented in this dissertation requires only a single image

and a reasonable computational engine to provide a true individual particle recon-

struction (IPR). While the SPR methods produce a “best fit” of the voxels from a

mathematical perspective, the IPR uses an a priori model from biological and/or

physical constraints to deduce the voxel to voxel statistics, and thus, to determine

the most probable voxel states. A further promise of this technique is that the

internal structure contains information that can lead to a better understanding

of the model. The IPR approach offers all of these enhancements with a much

simpler approach to solving the transparent object reconstruction problem than

required by existing SPR methods.

The IPR method presented in this dissertation provides it’s effectiveness due to

its innovative construction. The presented approach offers a simple reconstruction
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method that requires significantly less computational processing than the current

state-of-practice methods. By utilizing the HMM problem-two paradigm, a non-

iterative solution is found in O
(
N2T

)
deterministic steps instead of the iterative

approach of SPR. The use of a rotated reconstruction space allows for 16 different

HMM solutions to be found from a single image in a co-aligned reconstruction

space. Selection based on majority and most probable states allows merging of

the HMM solutions; the first order state-to-state statistics are used to decide ties.

The inherent state-to-state and state-to-observation statistics and the rotated re-

construction space also allow for scalability based on the desired reconstruction

resolution with only a linear processing cost. The IPR processing shown requires

on the order of a minute of processing on a modest laptop computer versus the

hours of computations with heavy duty workstations for existing SPR methods.

The construction also allows for massive parallelization where each chain, or small

groups of chains, can be computed concurrently.

The method described in this dissertation can provide reconstruction results

that match the original target better than 98% on a voxel to voxel basis. The

IPR shown here also has an ability to work regardless of the noise found in non-

averaged images as long as the noise statistics are known. With care in setting the

contrast range of the images, it is expected that even better performance can be

achieved in even more general use cases. The merging process helps increase the

usability of the solutions. Eliminating errors arising from the HMM directional

processing allows the core target structure to be reconstructed more accurately.

Taken together, these features of the IPR approach provide for a very robust

methodology for reconstructing transparent objects imaged via cryo-tem.
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5.2 Future Efforts

Despite the encouraging results shown in this research so far, there are ad-

ditional areas in which this technology can be studied for further advancements.

These areas, however, are mainly directed towards specific targets. The basic pa-

rameters of the IPR method are defined by the process so understanding how these

parameters are affected by specific targets would be the goal of these new studies.

For example, one model of LDL particles shows multiple internal layers. Should

this model be found to be biologically correct, then additional levels of extension

of the HMM state levels may be needed. The algorithm as presented easily accepts

more levels than the two presently used. More spherical objects are expected to

follow the same regime as the sides of discoids but other shapes may require ad-

ditional study. Since a physical model is needed, simulations can be run for any

new shape that needs to be processed before actual data is studied.

The resolution of differences between the actual and modeled shape are also

an area ripe for future study. While the IPR in its current representation can

provide useful information for “stable” shapes, the ability to recognize outliers

in the shape schema would certainly be useful in studies such as LDL; finding

rogue individual LDL particles would certainly be useful. The data provided in the

internal statistical results is expected to play an important role in this area. Having

assurance levels based on the statistical model can allow for a better understanding

of where the present model of a particle has higher and lower confidence metrics.

Once actual cryo-tem data is available for a well characterized object, one

area that could offer more insights is to use the real image to try solving the HMM

problem-three. This approach is an iterative solution and as such, a solution is not

assured, but it can possibly offer insights into how to set up the HMM states and

levels.
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5.3 Impact

The IPR approach presented in this dissertation has a significant impact from

a technology perspective. The presented method has an obvious significance as

a new algorithm for solving the transparent object reconstruction problem. The

results from this study, however, also have an impact on the image acquisition

parameters. Maximizing the contrast ratio of an image is generally important,

but this research shows how widening the gray level range of particles and the

surrounding non-target region can have a positive impact on the IPR processing.

The desire to minimize the variation in IPR images leads to the need to understand

how the cryo-tem electron voltage affects pixel to pixel deviation. Resolving power

increases with electron voltage so studies will be needed to see how various buffer

solutions and other image acquisition parameters affect sigma. While defocus is one

of the important factors in SPR processing, the IPR images may need a different

set of concerns to be addressed.

There are many classes of problems that need individual particle reconstruc-

tion; the IPR offers a way to advance the state of the art in these areas. Example

particles based on LDL were used as a basis problem but drug quality assurance,

general proteomic studies, and other cryo-tem imaging of transparent particles can

use IPR. Any problem where a histogram of geometry and density parameters are

needed can use the IPR. The approach also supports problems where damage re-

sults from excessive exposure to the imaging beam. One possible use would be

for analysis of dental x-rays. The general structure of teeth is known so a single

x-ray could possible be processed to look for cavities, root issues, or other defects.

General X-ray inspection for manufacturing is also a candidate use for the IPR

technology. Here the overall tact time, and thus minimizing the number of images,

is probably of more importance than exposure damage. As there had been no
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similar methodology until now, there are many other opportunities for use of the

IPR to solve reconstruction problems for transparent objects.
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APPENDIX A

Processing Details

This appendix provides details of the overall processing software. Section A.1

outlines the basic ARTEMIS framework. Details of the simulated projection images

are provided in section A.2. A linear representation of the reconstruction space is

provided in section A.3.

A.1 ARTEMIS Software Framework

The ARTEMIS processing structure is shown in Figure A.36. Each of the pro-

cesses is summarized here with more details in the appropriate section of Chapter 3.

genMRC creates a 3-D voxel space programmatically and stores the results in a

.MRC file.

cvt2MRC allows for generation of .MRC file from various other program file formats

(e.g. PDB).

genProjections creates a set of projection images and associated transmission

ray information and statistics from a voxel space based on a model of the

transmission electron microscope transmission through the voxel space.

linSolver generates a 3-D voxel space from the model statistics and observations

via linear algebra processing.

genObservations generates observations for use in the hidden Markov model

from the images created by simulation or from Cryo-tem.

hmmSolver generates a 3-D voxel space from the model statistics and observations

via hidden Markov Model processing.
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Figure A.36. Artemis Processing Flow
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modelCompare compares the models in order to determine convergence of various

reconstruction methods.

A.1.1 genMRC

The genMRC program allows for creation and visualization of a transparent

voxel space programmatically and parametrically. The simulated target is created

in a 3-D space that is v0 × v0 × v0 voxels in size, where v0 is usually odd so that

the center pixel is at location {0, 0, 0}. Each voxel is given a unique density based

on the target to be modeled. The density is treated as a transmission coefficient

where a value of 1 means full transmission and 0 means no transmission (opaque).

The voxel parameters are defined in a subroutine so that exact definition of the 3-D

volume may be defined by the programmer. This utility is useful for generating

simple density shapes for testing and algorithm validation.

A.1.2 cvt2MRC

The cvt2MRC program follows the genMRC functionality except this is a con-

version utility that is programmed to read in various file formats so that a .MRC

file can be created for further processing. As with the genMRC utility, the cvt2MRC

utility allows for programmatic conversion from various formats to the .MRC file.

A.1.3 genProjections

The genProjections utility reads a 3-D voxel space from the .MRC file to

create projection images and some of the associated statistics that are used in en-

suing voxel space reconstruction processing. The 2-D projection images are created

by treating the density specifications in the file as transmission coefficients. The

voxel densities also used used to tabulate statistics about the density relationships

between adjacent voxels and between voxels the pixels in the projections images.

The genProjections utility also tabulates statistics of voxel to voxel transi-
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tions along each intersecting ray. This provides data for a model of the target and

surrounding buffer region based on the transitions from density to density. In the

HMM paradigm, this corresponds to the A matrix of probabilities of state to state

transitions.

PI, A, and B are created from the voxel intersections used to create the pro-

jection images.

1 p i==0;a==0;b==0 // de f i n e t h e s e again

2 for each i n t e r s e c t i o n i=0 to N−1

3 {

4 i f ( i==0)

5 {

6 p i [ dens i ty o f this voxe l ] += i n t e r s e c t i o n l ength L i ;

7 }

8 else

9 {

10 A[ l a s t i n t e r s e c t i o n ] [ t h i s d e n s i t y ] += i n t e r s e c t i o n l ength L i ;

11 }

12

13 B[ t h i s d e n s i t y ] [ p i x e l v a l u e ] += i n t e r s e c t i o n l ength L i ;

14

15 l a s t d e n s i t y = t h i s d e n s i t y ;

16 }

17

18 normal ize pi , A, and B to be row s t o c h a s t i c .

A.1.4 genObservations

The genObservations utility reads in projection images and reference data

created by the genProjections program and generates the sequence of observa-

tions required for reconstruction of the 3-D voxel space via the HMM approach.

By convention, vertical stacks of the voxel space are used as the state sequences
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for the HMM. The voxel space can be rotated such that any one of the 6 cube

faces points downward and the target can be oriented at any angle within the

voxel space so this does not create a restriction on possible model estimates. Ob-

servation generation follows the same basic idea as projection image creation but

the rays are based on the voxel centers rather than the pixel centers. Once the

intersection with the image is determined, the observation is created from the pixel

values neighboring the intersection point. This operation can be repeated for any

number of projection images to support multiple observation regimes. A synopsis

of the software processing for this utility is provided in Table A.4.

Inputs

• voxel base spacing

• image angle

• sub-voxel information
Processing • generate observations

Outputs
• header

• observations

Table A.4. genObservations Software Specification Synopsis

Sub-voxelization may be used in the observation generation processing to en-

sure observation independence. Since most cryo-tem images are taken in the −45°

to +45° range, and the problem can be symmetric beyond the 45° boundary, only

the −45° to +45° case for sub-voxels is considered. For angles smaller than 45°,

each voxel can be divided into an integral number of sub-voxels. For larger angles,

each voxel is divided into 8 (2× 2× 2) sub-voxels. As the angle gets smaller, the

voxels are divided into (3 × 3 × 3) sub-voxels, and so on. If every sub-voxel in a

stack is used, the number of sub-voxels needed to preserve pure independence of

the observations can be seen from Figure A.37. The number of sub-voxels required

for pure independence is give by Equation A.1.1.

Nsv = (ceiling(1/ tan(θ)))3. (A.1.1)
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Figure A.37. Sub-voxels Needed for Observation Independence
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Note that as the projection angle gets small, the number of sub-voxels can grow to

∞ since all traces are within the same voxel stack. With cubic sub-voxelization,

this constraint places a lower bound on the rotation angle that can be used for the

HMM reconstruction.

This number of sub-voxels coupled with the expectation of small angles may

be too much of a constraint for tractable modeling. A rotation of approximately

5° would need (12× 12× 12) sub-voxels, an increase of 1728 over the base number

of voxels, which means a corresponding increase in observations since each voxel

(or sub-voxel) gives rise to a single observation. The processing is linear with the

number of observations, this is not an insurmountable computation increase. But

with an expected basis voxel size of (303 × 303 × 101) the memory requirements

of 1.6× 1010 sub-voxels make this doable but unattractive for implementation.

The sub-voxels have some degrees of flexibility in order to accommodate the

tractability issues. Hidden Markov models only need independence of observations

and a series of states so the sub-voxels do not have to be uniform in all dimensions.

And since the basis voxels are divided into the sub-voxels, some sort of recombi-

nation of sub-voxels to voxels will need to be performed so this can be used to

help with the independence constraint. Figure A.38 shows a possible sub-voxel

partitioning for an expected rotation of 5.2°. Figure A.38a shows (in 2-D) voxels

divided into (12× 12× 1) sub-voxels so that the observations are completely inde-

pendent. Figure A.38b shows (in 2-D) voxels divided into (12× 6× 1) sub-voxels

so that the observations are almost independent. As can be seen, simple geometric

calculations can be performed to determine the expected independence. Testing

with actual models and data can be performed to ascertain the effect of such voxel

partitioning. These adaptations reduce the total observation count by over an

order of magnitude so the problem becomes much less resource intensive.
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(a) (b)

Figure A.38. Observation independence with thin voxel stacks a) 5° with single
sub-voxels and b) 5° with double wide but taller stacks.
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The small rotation angle also gives rise to a limited spatial extent of the state

columns. For example, the 5.2° case shown only spans 101/12 columns in the {x, z}

directions. When computing the projections, only those voxels contributing to the

pixel need be considered. And since the rotation of the cryo-tem is generally along

a single axis, only a slice of the voxel space affects the reconstruction process. Thus,

the memory space required can be significantly reduced as only the 9× 101 voxels

need be considered for generation of each observation. With the same voxel value

used for each of the 144 sub-voxels, only the sub-voxel centers need be accessed

for the ray processing.

A.1.5 hmmSolver

The hmmSolver utility reads in data created by the genProjections and

genObservations programs and reconstructs a 3-D voxel space that approximates

the original data via a HMM approach. The processing updates an estimate (Vhat

or V̂ ) for each voxel in a Markov chain (gray stack) by applying the beta pass as

described in Section 2.5.2.2. A list of voxel estimates is kept based on the image

used for observations and any prior estimates. When the observations from all the

images have been processed, the voxel estimates are combined to determine the

final voxel estimate. The following pseudo code shows the basic processing for the

45° case where sub-voxels are not needed.

1 Loop i over images

2 {

3 Compute Vhat (x , y , z , i ) in each stack in Y with BetaPass

4 i f 1 s t p i c tu r e

5 {

6 Voxel (x , y , z ) = Vhat (x , y , z , 0 )

7 }

8 else
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9 {

10 i f ( a l l Vhat are the same )

11 {

12 V(x , y , z ) = Vhat (x , y , z , 0 )

13 }

14 else i f the re i s a major i ty in the s e t o f Vhat (x , y , z , i )

15 {

16 V(x , y , z ) = major i ty ( Vhat (x , y , z , i ) )

17 }

18 else

19 {

20 V(x , y , z ) = s t a t e ( element o f Vhat (x , y , z , i ) ) that minimizes

21 | p i x e l (x , z ) − computed p r o j e c t i o n value o f cur r ent s tack |

22 }

23 }

24 loop over x , z

25 {

26 compute l og (P( 0 | lambda ) ) for this s tack

27 // maybe do some o v e r a l l s t a t s as w e l l to l ook f o r convergence

?

28 }

29 }

When sub-voxels are needed, the above processing is still used, but with slight

changes. As expected, the loops are over the sub-voxels rather than the whole

voxels. The estimated values Ŝ are computed for the small thin sub-voxel regions

rather than the whole voxel. All of the Ŝs can be used to against the vertical pixel

value voxel to compute the V̂ but this leads to an explosion of possibilities so the

Ŝs need to be combined. A simple voting process can be used to generate V̂ from

the Ŝ’s. The V̂ ’s can then be combined across images as above.
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A.2 Simulation of Projection Images

The ARTEMIS framework can be used to generate simulated projection images

in order to facilitate reconstruction algorithm studies. An example simulated target

and associated geometry is depicted in Figure A.39. A simple disc, which emulates

the expected LDL shape, is shown in the figure but this simulated shape can be set

to any configuration programmatically. The 3-D space is filled with the expected

Figure A.39. Simulated Target, Voxel Space, and Geometry Orientation

density (transmission coefficient) for each voxel based on the simulated target.

Orthographic projections through the target space can be used to generate a

base image of m0 ×m0 pixels in size. The number of pixels (m0) is usually set to

match the number of voxels (v0) but these parameters are not constrained to be

equal. The physical overall size of the m0 × m0 image, however, does represent

the same physical extent as the v0 × v0 face of the voxel cube. Since the image

resolution can vary to match the needed reconstruction dimensions, the mapping

of the v0 to m0 defines the reconstruction resolution.

For reconstruction purposes, however, projection images are expected to be
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needed at more than the normal angle. The 3-D voxel space must be extended (to

V0×V0×v0) so that all transmission rays oriented at an angle to the y axis will pass

through the same vertical dimension. Figure A.40 shows the same example target

from Figure A.39 but with the voxel space extended in the x and z axes. The dark

outlined cube is the original v0 dimension voxel space, the larger parallelepiped

denotes the extended voxel space. The new x and z dimension V0 is determined

by the maximum rotation angle of 45° around either the x (left-right) or z (front-

back) axes. The 45° case gives rise to V0 = 3v0 from the geometric reconstruction

shown in Figure A.40. These extreme cases mean that a 3× 3 grid of v0 × v0 × v0

cubes is needed in order to allow the intersecting rays to traverse the same vertical

dimension of voxels. For computational simplicity, v0 is generally odd, resulting in

there being (v0 − 1)/2 voxels on each side of the center voxel, so V0 = 3v0 is also

odd.

2-D projections generated from the V0×V0×v0 voxel space require more pixels

than do the orthographic projections of size m0×m0. The dimension of each image

is defined as Mo×Mo to follow the convention of square images from the cryo-tem

camera. The mapping of v0 to m0 still defines the reconstruction resolution but

for real data, M0 is set to match the camera image output size so the allowable

reconstruction resolutions may be limited by the number of pixels in the images.

Likewise, additional pixels may be included in the images in order to specify the

reconstruction resolution. For simulated data M0 is also defined by the maximum

rotation at 45° in the front-back and left-right directions. The ARTEMIS software

utilizes 6 compute regions corresponding to the voxel space cube faces so the 45°

limit holds.

An image that is larger than the normal m0 × m0 size is needed to provide

total coverage for computation of the HMM observations. A construction using
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Figure A.40. Generation of Projection Images from a Simulated Target
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Figure A.41 defines the extensions needed to the projection images beyond what

may be generated from the normal image. The black dots represent the extreme

Figure A.41. Extension of m0 to M0

intersections so the longest intersecting ray at a −45° angle in the original voxel

space goes from the back-upper-right corner to the front-lower-left corner. The

construction gives |M0| = |m0|
√
3. Since the camera images are generally square,

the largest image size needs to be M0×M0 regardless of the actual image rotation

angle. Care is taken in that the linear extent of the m0 pixels is equal to the linear

extent of v0 but since the number of pixels m0 and number of voxels v0 do not

have to be equivalent, the lengths are matched, not the pixel and voxel counts.

M0 may also need adjustment to round up to an integer since fractional pixels are

nonsensical. AndM0 must be large enough so that the bilateral interpolation used

in the observation processing has an extra row and column along all four edges.

This construction implies some constraints on the physical setup but these are

handled easily. The extent of the voxel space implies that the vertical thickness of
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the voxel space is flat over the region of interest. This technically is not true but

the vertical variation due to the meniscus effect of the voxel space containing each

individual particle is expected to be very small relative to the overall vertical size of

the sample space. And, since the RCT approach discussed in section 2.2.2.3 is not

being followed for these images, the overall voxel space vertical extent is assumed

to be much thicker than the target of interest so that any particle orientation can

be obtained.

A.2.1 Orthographic Projections

The 2-D projections of the simulated 3-D targets are generated as orthographic

projections of the voxel space onto the images. The center of the voxel space is

mapped to the center of the projection image as is shown by the red rays in

Figure A.40. Similarly, each pixel center location is projected through the target

voxel space. The projection ray for each pixel is used to compute intersection

lengths for each voxel that contributes to the given pixel. This process is repeated

for each desired pixel in the projection image.

The algorithm for this processing is based on the location of the projection

image pixels relative to the voxel space. The voxel space is held fixed and the pro-

jection plane is rotated. This rotation is used to locate each pixel in the projection

image relative to the target center based on the desired rotation of the target.

The simulated value for each pixel in the projection image is generated with the

following steps:

1. Compute the location (rotation and translation) of pixel(i,j) in 3-D space

based on the rotation angle and the projection center.

2. Compute the endpoints for the segment for use in the voxel intersection

processing at a fixed distance above and below the voxel space to conserve
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accuracy across the image.

3. Find the intersection of the line with the top (+y) of the voxel space.

4. Determine the voxel that contains the top intersection.

5. While the intersected voxel is contained in the voxel space:

(a) Find the intersection of the line and the remaining sides of the current

voxel.

(b) Determine and record the length of the line segment that passes through

the current voxel.

(c) Determine the next voxel to be processed.

6. Compute the pixel value by computing the product.

A.2.2 Projection Image Pixel Values

The passage of the electron beam through the target leads to orthographic

projection images where each pixel represents the energy that passes through the

voxel space along a ray. This makes an assumption that the energy of the electrons

used in the cryo-tem process is high enough so that the resolving distance of the

electron beam is small compared to the voxel size. Typical cryo-tem processing

meets this criterion since the electron beam energy is set such that a resolution

on the order of angstroms is achieved; reconstruction voxels are on the order of

nanometers. The density of the target causes scattering of the electron beam

along each ray such that electrons are either transmitted through the voxel or are

deflected away and do not contribute to the electron flux through the remaining

voxels. This results in a multiplicative loss, where the value at the exit point

from each voxel of the ray may be described as the entry flux times a transmission
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coefficient. Totally opaque voxels have a transmission coefficient of zero, completely

transparent voxels have a transmission coefficient of one.

The computation of the simulated pixels accounts for the voxel intersection

lengths, e-beam energy / camera gain, and camera DC offset. The value at the

jth pixel, pj, of each image may be described as shown in Equation A.2.1.

pj = Ej

I∏

i=0

(T
(Li/Lmax)
i ) + Cj, (A.2.1)

where I represents the number of voxel intersections for pj. The effect of each

voxel must account for the length Li that the ray travels through voxel i where the

length is known from the construction. The length Li is normalized such that each

voxel’s contribution is weighted by the maximum path length Lmax through a single

voxel. The density (or transmission coefficient) Ti is given by the reconstruction

model (e.g. as supplied by the model shown in Figure 5). This approach follows

the physics of cryo-tem where an intersection length that approaches 0 through

a region of constant density results in a transmission coefficient approaching 1 so

that there is very little loss. And when the intersection length nears the maximum

intersection length, a value nearer to the base transmission coefficient of the voxel

is used. The constants Ej and Cj provide the camera scale and offset adjustments.

These constants are expected to be the same for all pixels in a projection image

but are provided on a per-pixel basis in case camera distortions are to be included

in the projection images. Given the transmission coefficients are all less than or

equal to 1, the initial energy coefficient, Ej, also helps prevent underflow from the

product of many small numbers.

A reference example of the simulated target is shown in Figure A.42 at 90°,

45°, and 0° rotations. This target has three different constant density regions,

which are shown in red, green, and blue. The overall shape is a stack of three discs

(red and green layers shown in Figure A.42a) that is surrounded by a wrapper
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(a) (b) (c)

Figure A.42. Symmetric discoidal density targets at (a) 90° (Looking to the -Z
direction) (b) 45° and (c) 0° (Looking to the -Y direction) rotations.

region (blue band shown in Figure A.42c). The target rotated to 45° relative to

the other positions is shown in Figure A.42b. Each unit-sized cube represents a

voxel with a density that is set to match the expected target; in this example, all

similarly colored voxels represent the same density value.

The above processing leads to high-fidelity simulated projection images. These

images take into account the orientation as well voxel densities and noise. The

simulated projection images for the 90°, 45°, and 0° rotation cases with no noise

are provided in Figure A.43. It has been shown [75] that the background variation

(a) (b) (c)

Figure A.43. Simulated projection images of symmetric discoidal density targets
at (a) 90° (Looking to the -Z direction) (b) 45° and (c) 0° (Looking to the -Y
direction) rotations.

does not depend on the presence or absence of particles. Thus, a background
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variation that matches the camera settings and other image parameters can be

added to the simulated images to produce realistic projection images. Figure A.44

shows an example image and the resulting background statistics that match a

Gaussian distribution. Figure A.44c shows an example simulated projection image

with Gaussian noise added.

(a) (b) (c)

Figure A.44. (a) Example Cryo-tem image with artifact-free region highlighted (b)
Statistics of the highlighted region and (c) 0° simulated projection image (Looking
to the -Y direction) with Gaussian noise added.

The above examples provide for “perfect” simulated image but real-life im-

agery is never perfect. In fact, it is well known that each image acquisition degrades

the sample. The generation of multiple simulated images must provide a means

for degrading the images in a similar way. Beer [98] provides a model to simulating

beam damage should it be needed.

A.3 Linear Reconstruction Representation

Given the construction of the simulated projection images, a straightforward

approach is to build linear equations from the reconstruction space to solve for the

individual voxel density values. Intuition tells us that this will be a sparse matrix

and intuition is correct. However, mapping the problem leads to insights that are

helpful when visualizing the other solutions so it is presented.

Linear equations for each pixel in terms of the unknown transmission coef-

143



ficients can be formed by swapping sides and taking logarithms of both sides of

Equation A.2.1 as shown in Equation A.3.1.

L0 ln(T0) + L1 ln(T1) + . . .+ LI ln(TI) = Lmax

(
ln(pj − Cj)− ln(Ej)

)
. (A.3.1)

Thus, the ray traces through the voxel space generate a set of linear equations as

shown in Equation A.3.2.

A(M,N)x(N,1) = b(M,1). (A.3.2)

Matrix A(M,N) represents the voxel traversal length contributions Li to each pixel

pj in a set of P images. Vector x(N,1) represents the voxel transmittance values

(ln(Ti) from Equation A.3.1) to be solved. The right hand side of Equation A.3.2,

b(M,1), represents the values of the pixel and camera constants from all of the P

images.

The dimensions of the reconstruction problem come from the constraints of

the input data. Matrix A is of dimension M × N . M = Pm2 where P is the

number of images and m is the number of pixels along each edge of the image

region that is used in the reconstruction. N = v30 where v0 is the dimension of the

voxel space (shown as 5 in Figure A.40).

Am,n =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n


 (A.3.3)

A is a highly sparse matrix. The slots defined by Equation A.3.1 are filled

with non-zero values only when a voxel contributes to a pixel. Each pixel ray

trace can transverse at most
√
2v2 + v2 =

√
3v voxels so the fill factor is at most

√
3v/v3 =

√
3/v2. The voxel dimension, v, is expected to be at least 25 so for this

case, the fill factor has an upper bound of
√
3/210 ≈ 2−8 or 0.4%.

The dimensions of A, and thus its solution potential, are strongly influenced by

the image acquisition constraints. The goal is to achieve the maximum resolution
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in the reconstruction. For cryo-tem imagery, the number of pixels in the images

and the number of images both lead to sample degradation. Pixel count equates

to magnification, which means more energy per unit area in the acquisition for

each image. The number of images leads to more total exposure for the sample

region. Both issues lead to sample degradation so a balance must be struck between

the physical limitations of the cryo-tem technique and the desired reconstruction

resolution.

The goal of maximizing reconstruction resolution leads to the desire of having

a square system of linear equations to solve. Many of the sparse matrix solvers

require a square system and efficiencies can also be found with square systems.

Other solvers place constraints on the dimensions of A (e.g. for singular value

decomposition (SVD), M ≥ N). Thus, the size of the image m and the voxel

space v can be selected to help optimize the solution computational load. A set

of sizes is shown in Table A.5. It is impractical to achieve more than 5 or 6

cryo-tem images of a single target and the later rows in Table A.5 show that the

achievable reconstruction resolution does not increase with more images. Thus, the

reconstruction resolution for 4 images represents an achievable trade-off between

magnification and images taken.

P m M = Pm2 v N = v3 Methods
2 27 215 25 215 Square
3 27 3

2
215 25 215 M > N

4 28 218 26 218 Square
5 27 5

4
216 25 215 M > N

6 27 6
4
216 25 215 M > N

7 27 7
4
216 25 215 M > N

8 27 219 26 218 M > N

Table A.5. Matrix Solution Parameters

As was noted above, preliminary research indicates that the information is

available, how to glean the information is the question. Stability with such sparse
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matrices implies that this is not the way. While it may be more tractable than

NP-complete correlation searching, this method is not expected to provide any

meaningful results. The idea that does arise from this discussion, however, is that

a way of “walking” through the voxels should provide the means by which the

voxel densities could be found. Hidden Markov modeling is such a way to traverse

the voxels and determine the densities.
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APPENDIX B

Constructions

This appendix provides details of applicable constructions and derivations.

B.1 Image Rotation Limits

The construction diagram that shows the projection image rotation limits

is shown in Figure B.45. This construction follows the generation of projection

images as shown in Figure A.40. The dashed orange line represents the diagonal

Figure B.45. Image Rotation Limits

along the bottom of the extended voxel space from Figure A.40 and the solid

orange line represents the diagonal from the M0 ×M0 extended projection image.

Each segment of the dashed line is
√
2v0 long so the first part r1 of the rotation
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radius from the center of the projection image to the center of the voxel space is

given by B.1.1 as

r1 =

√

(
v0
2
)2 + (

√
2v0
2

)2 =

√
3

2
v0. (B.1.1)

The common angle, Θ is arctan(v0
2
/
√
2v0
2

) = arctan( 1√
2
) ≈ 35°, which, of course, is

not 45° since the sides of the triangle of the center voxel region are not congruent.

The lower part of the radius is given by B.1.2 as

r2 =

√
(
√
2v0)2 − (

M0√
2)2

=
v0√
2
, (B.1.2)

where M0 is replaced by
√
3v0 which also equals

√
3m0 since |m0| ≡ |v0|. The

minimum allowed radial distance, Rm, that the center of the projection image can

be from the center of the voxel space so that the edge pixels do not interfere with

the extended voxel space, there are given by B.1.3 as

Rm = r1 + r2 =

√
3

2
v0 +

v0√
2
= vo

(√
3

2
+

1√
2

)
. (B.1.3)

But Rm is a minimum value which is ≈ v01.573 so any value larger than this will

push the projection image far enough away so that the edge pixels do not interfere

with the edge voxels.

B.2 Tuple To Tuple Probabilities

The tuples in the lists become the states in the HOHMM processing. The

transition probabilities need to be determined in order for the extended HMM

processing to follow the standard α, β, andγ operations. When the tuples are

determined, the probabilities were calculated and normalized. But, since the tuple

order does not determine tuple to tuple state changes, they must be determined

separately based on how the tuples were determined, in order to provide the overall

A matrix for the extended HMM processing. An example set of states and tuples

is provided in Table B.6. The left side of the table shows a continuous stream of
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ID Tuple State State Tuple
1 - 5 5 -
2 - 4 4 -
3 5,0 - 4,0 : 3 3 3 5,0 - 4,0 : 3
4 4,0 - 3,0 : 3 3 3 4,0 - 3,0 : 3
5 4,0 - 3,1 : 3 3 3 4,0 - 3,1 : 3
6 4,0 - 3,2 : 3 3 3 4,0 - 3,2 : 3
7 4,0 - 3,3 : 3 3 3 4,0 - 3,3 : 3
8 4,0 - 3,4 : 3 3 2 4,0 - 3,4 : 2
9 4,0 - 3,5 : 3 3 2 3,4 - 2,0 : 2
10 4,0 - 3,6 : 3 3 2 3,4 - 2,1 : 2
11 4,0 - 3,7 : 3 3 1 3,4 - 2,2 : 1
12 4,0 - 3,8 : 3 3 1 2,2 - 1,0 : 1
13 4,0 - 3,9 : 3 3 2 2,2 - 1,1 : 2
14 4,0 - 3,10 : 3 3 2 1,1 - 2,0 : 2
15 4,0 - 3,11 : 3 3 2 1,1 - 2,1 : 2
16 4,0 - 3,12 : 3 3 3 1,1 - 2,2 : 3
17 4,0 - 3,13 : 3 3 3 2,2 - 3,0 : 3
18 4,0 - 3,14 : 3 3 3 2,2 - 3,1 : 3
19 4,0 - 3,15 : 3 3 3 2,2 - 3,2 : 3
20 4,0 - 3,16 : 3 3 3 2,2 - 3,3 : 3

Table B.6. Example Tuple to Tuple Chains
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state = 3 tuples while the right side shows a chain with some changing states. The

first two rows show the imaginary states outside of the reconstruction space. This

example shows two levels of history. The tuples are denoted by state-length tuples

and the current state of the form {state,length - state,length : state}.

For the A matrix generation, only states that can occur from the model are

allowed. For example, tuple 5 cannot follow tuple 3 even though they are the same

state. The from tuples do not align so the transition cannot occur. Similarly, tuple

9 cannot follow tuple 7 for the same reason. Tuple 8, however, can follow tuple 7

in either of the state chains. In the left chain, the state remains the same but the

length-state tuples are consistent. In the right chain, the tuples are also consistent

even though the state changes. By checking the allowable tuple transitions, and by

using the computed probabilities, the A matrix that describes the tuple to tuple

transition probabilities can be created.

The probabilities computed for the tuples give rise to the tuple to tuple prob-

abilities. The allowable transitions between tuples determines the probabilities for

the A matrix for the extended processing. This algorithm is shown below.

dReturnProbability = 0.0;

if (nFromTupleIndex == nToTupleIndex)

{

dReturnProbability = 0.0;

}

else if ( From.state == To.State)

{

if (To.Level[0].Length>0)

{

if ( (From.Level[0].State == To.Level[0].State) &&

(((From.Level[0...L-2] == To.Level[1...L-1]) &&

(To.Level[0].State == To.State)) ||

((From.Level[1...L-1] == To.Level[1...L-1]) &&

(From.Level[0].Length+1 == To.Level[0].Length) )))

{

dReturnProbability = To.dProbability

}
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}

else // To.Level[0].Length==0

{

if ( ((From.Level[0...L-2] == To.Level[1...L-1]) &&

(To.Level[0].State == To.State)) ||

((From.Level[1...L-1] == To.Level[1...L-1]) &&

(From.Level[0].Length+1 == To.Level[0].Length) ))

{

dReturnProbability = To.dProbability

}

}

}

else // state change

{

if ( (From.Level[1...L-1] == To.Level[1...L-1]) &&

(To.Level.[0].State == From.Level[0].State) &&

(To.Level[0].Length + 1 == From.Level[0].Length) )

{

dReturnProbability = To.dProbability

}

}

return dReturnProbability;

This function returns a previously computed and stochastic probability value or

zero if the tuple to tuple transition is not possible.
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HDL, 8, 9

higher order HMM, 58, 61, 64, 66, 70,
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97, 99, 101–104, 106, 108, 109,
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LDL, iv, v, 8, 9, 15, 27, 29, 31, 41, 93,
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lipoprotein, 8–10

Markov chain, 61, 63, 92

random conical tilt, 26, 139

recognition-by-components, 35, 37–39,
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signal-to-noise, 26, 28

singular value decomposition, 145
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SVM, 58
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