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ABSTRACT 

Inverse Photoemission Spectroscopy (IPES) performed on clean Ni(110) reveals an 

unoccupied electronic surface state with energy ~2.5 eV above the Fermi level for emission near 

the Ȳ point of the Surface Brillouin Zone.  Ion bombardment of the sample creates defects that 

reduce the intensity of the peak in IPES spectra.  Sharp, intense diffraction spots in Low Energy 

Electron Diffraction (LEED) patterns taken of the clean surface become dimmer after 

bombardment.  Results of these measurements are compared to Monte Carlo simulations of the 

sputtering process to ascertain the approximate size of clean patches on the sample necessary to 

sustain the IPES and LEED features.  At 170 K, the IPES surface state peak appears closely 

associated with the population of surface atomic sites contained in clean circular patches of about 

50 atoms. The LEED patterns persist to greater degrees of sputtering and are associated with 

smaller clean patches.  Both measurements performed at 300 K indicate significant self-

annealing of the sputtering damage. 

Keywords: Inverse Photoemission; Low Energy Electron Diffraction; surface state; ion 

bombardment; Ni(110) 

1. INTRODUCTION 

 Surface electronic states on metals have been of interest since their observation by 

Gartland and Slagsvold [1] almost 40 years ago due to their roles in determining electronic and 

chemical properties of the surface and how they differ from bulk properties [2] [3] [4] [5] [6].  

Also of interest, for fundamental understanding as well as for development of technologies on 

controlled systems which more closely approximate real-life surfaces, investigations into defects 

and adsorbed species at surfaces have been studied extensively [7] [8] [9] [10] [11] [12] [13] 

[14]. 



Ion bombardment, or sputtering, in itself is a topic of considerable importance.  In addition to 

being the first step in many surface characterization techniques, sputtering can induce 

nanopatterning of surfaces and is a powerful tool for creating novel materials [13] [14] [15] [16] 

[17] [18].  Additionally, low energy sputtering may be considered as an inverted layer-by-layer 

growth (see [15] and references therein).  

Morgenstern and coworkers [19] showed surface state depopulation through the 

disappearance of its characteristic signal in a Scanning Tunneling Microscopy (STM) 

/Spectroscopy (STS) study of Ag(111) for terraces less than 3.2 nm wide.  Pons et al. [20] 

studied the effect of surface state confinement to monatomic step wells on the surface of 

Ni(111).  In that work, the authors characterized differences in STM data due to the surface state 

expressed in triangular patches created by indenting the surface with the triangular STM tip (12.5 

nm on a side).  More recently, Ruggiero et al. [21] used STM to discover that Cu2N islands 

grown on Cu(100) support two surface states for large islands.  One state disappeared on islands 

of less than ~50 atoms and the other persisted down to islands of 12 atoms. 

While the size of nanostructures clearly plays a role in the intensity of surface states, 

temperature is also a factor.  In Reflection Anisotropy Spectroscopy (RAS) investigations of 

clean Cu(110) under low energy noble gas ion bombardment, Martin et al. [22] witnessed 

significantly reduced intensity of the signal due to the ~2 eV surface state at the Ȳ point for 

increasing sample temperatures, but Bremer et al. [18] observed no changes in its intensity for 

sputtering at room temperature.  Heskett et al. [12] reported, through Inverse Photoemission 

Spectroscopy (IPES) measurements, that although no change in the surface state intensity was 

observed for sputtering by 1 keV Ne+ at room temperature, it decreased monotonically for 

similar sputtering at 170 K and suggested a room temperature self-annealing effect.  



Furthermore, through simulations of the sputtering process, they predicted that the existence of a 

well-defined surface state signal in the IPES spectra would require unsputtered square surface 

patches of about 150 atoms.   

RAS experiments can simultaneously observe occupied and unoccupied surface states by 

measuring transitions between them, and this feature has prompted other explanations for 

quenching of the unoccupied surface state.  Sun et al. have observed in multiple studies that the 

RAS signal indicating transitions between occupied and unoccupied surface states on Cu(110) 

was strongly attenuated by adsorbates and ascribed this to isotropic scattering-induced 

depolarization of the occupied state [23] [24] [25].  Martin and coworkers [26] observed a 

similar reduction in the RAS signal on Ni(110) after adsorption of CO and Na, and noted that the 

signal was sensitive to the specific sample cleaning procedures before treatment with adsorbates.  

Furthermore, they identified a broader RAS signal for Ni(110) than was seen in earlier work on 

Cu(110).  Recently, Isted, et al. [27] investigated Cu(110) under ion bombardment at normal 

incidence with RAS, STM and a version of the scattering model developed by Poelsema and 

Comsa [28].  In that study, the authors find close agreement between their integrated RAS signal 

intensity at various sputtering doses and the simulated fraction of surface cells not contained in 

circular patches of about 19 unit cells surrounding defects.  This is supported by other studies 

[29] [30] on the same system with adsorbates and a variety of defects where cells not within ~20 

unit cell patches were proposed to support the measurement signal.   

In this study we present Low Energy Electron Diffraction (LEED) and Inverse 

Photoemission investigations carried out at room temperature and 170K on ion-bombarded 

Ni(110) to further elucidate the process of sputtering at low doses and to understand how 

sputtering modifies structural and electronic properties of the clean surface.  We also compare 



these results to Monte Carlo simulations of a sputtered crystal to estimate the size of circular, 

unsputtered patches of the sample surface associated with the LEED and IPES features.  

 

2. EXPERIMENTAL 

All experiments were conducted in an ultra-high vacuum chamber with a base pressure ~7 x 

10-11 Torr.  The chamber is equipped with a home-built angle-resolved inverse photoemission 

spectrometer and Physical Electronics’ Low-Energy Electron Diffraction (LEED) system. 

The clean Ni(110) surface was prepared by sputtering incident at 70° relative to the sample 

normal with 500 eV Ar+ ions for 30 min. at an Ar pressure of 5 x 10-5 Torr and an emission 

current of 20 mA, followed by annealing to 750 K for 5 min.  The sample holder was constructed 

from tantalum foil folded around tungsten wires that are coupled to copper posts fed through a 

dewar which could be filled with liquid nitrogen for cooling.  Sample heating was accomplished 

by passing a high current through the wires that suspend the sample holder and was monitored by 

a type-K thermocouple spot-welded to the sample holder. 

Ion bombardment of the sample for IPES and LEED measurements was performed by back-

filling the chamber with high-purity argon to various pressures in the 10-7 or 10-6 Torr range, 

followed by sputtering with 500 eV ions at 70° off-normal incidence and 20 mA emission 

current.  For sputtering at 300K and 170K, the bombardment-induced ion current measured 

between the sample and ground was 0.23 and 0.035μA cm-2, respectively.  The ion current 

dropped by less than 10% in all cases during sputtering and was recorded for use in the 

sputtering simulations. 

 

2.1. LEED measurements 



LEED measurements were performed immediately following each sputtering event, initiated 

as soon as the sputter gas had been evacuated and the chamber pressure recovered to below 2 x 

10-10 Torr.  For all measurements in this study, a 120 eV beam energy was used with an emission 

current of 1 mA, and the phosphor screen voltage was fixed at 5 keV.  LEED images were 

acquired with a home-built CCD camera apparatus affixed to the viewport directly opposite the 

LEED screen.   

Analysis software written in-house was used to analyze the LEED images using a procedure 

similar to Roučka et al.[31] and develop spot intensity profiles.  Taking rough locations of the 

diffraction spots in the clean sample LEED pattern image as input from the user, the software is 

capable of correcting the spot center pixel values and tracking the slight variations of the centers 

through the whole progression of images.  Once the centers are located, the software calculates 

data pairs of the average intensity value in each set of nearest neighbor pixels with the radius of 

the nearest neighbor set.  The intensity of a given spot is then computed as the midpoint Reimann 

sum, above the background level, of the average pixel intensity vs. radius from the center pixel. 

 

2.2. IPES measurements 

Immediately following collection of the LEED images, Inverse Photoemission Spectroscopy 

(IPES) measurements were performed.  The IPES instrument is operated in isochromat mode and 

is comprised of an electron gun of the Erdman-Zipf design [32] to provide electrons over a range 

of incident energies and a Geiger-Müller Tube to detect photons emitted from the crystal.  The 

detector is filled with helium to 18 Torr (uncorrected pressure read by an N2-calibrated 

Convectron gauge), before opening a valve to iodine crystals that are allowed to equilibrate.  The 

entrance window of the detector is a 2.5 mm-thick SrF2 disc with a diameter of 1”.  This 



arrangement permits detection of photons with 9.5 eV with a bandpass of approximately 0.5 eV 

as the difference between the photoionization threshold of iodine and the energy cutoff for 

transmission through the end window [33]. 

The detector signal was conditioned by a fast-pulse counting circuit, delay line amplifier, and 

single channel analyzer before being recorded as count rate vs. the energy of electrons incident 

on the sample from the electron gun.  For all spectra taken in this study, the end window of the 

detector was positioned by a linear manipulator to within 2 cm of the sample surface at 45° 

relative to the sample normal.  The electron gun was aimed 45° off the sample normal direction, 

which corresponds to the Ȳ point of the Ni(110) Surface Brillouin Zone.  The electron energies 

were scanned in steps of 100 meV and held for 250 ms before proceeding to the next energy 

step.  The spectra collected for this study are sums of 50 scans, normalized to the average current 

developed on the sample at each energy step.  IPES spectra of the clean sample showed no 

changes in feature intensities or locations over a period of a few hours.  

 

2.3. Simulations 

A clean 1000 x 1000 atom surface was modeled as an array of zeroes and array elements 

corresponding to Monte Carlo selected ion impact sites were incremented by one to simulate the 

sputtering process.  To determine the number of ion collisions, we obtained an analytic 

expression for the ion flux from fits to the sample current data collected during sputtering, an 

estimation of the ratio of nickel sample area to the total current collection area by image analysis, 

and the area of the surface unit cell.  From this we obtained an average number of collisions per 

surface atom during an event by integrating over the time range of the event.  We assumed each 

collision with the surface removed, on average, two atoms.  This is supported by the conclusions 



of Vasylyev and coworkers in their study of low-energy Ar ion bombardment on low index 

nickel surfaces [34], where it was suggested that low-dose sputtering on this system likely 

produces vacancy point defects and adatoms with mean damage area per ion collision of about 5 

unit cells.  We note, however, that other authors have reported various higher estimates for the 

yield and damaged area per ion impact [27] [34] [35]. 

For each collision in the simulation, 1-3 atoms were removed from the simulated crystal with 

equal probability.  If one atom was chosen, only the primary atom was removed.  If two or three 

atoms were removed, atoms adjacent to the primary location were also removed with probability 

based on the geometry of the Ni(110) surface unit cell.  The simulated crystal was analyzed to 

determine the number of atomic sites in the crystal contained in unsputtered patches of radius r, 

where r was varied.  The analysis was run over each subsequent sputtering increment to develop 

curves corresponding to each value of r to define f(θ)r, the relative population of surface atoms in 

patches of unsputtered atomic radius r, as a function of θ (equivalent monolayers removed).  We 

also calculated θ values for the IPES and LEED experiments. 

 

3. RESULTS 

3.1. LEED measurements 

Images taken of characteristic LEED patterns during a progression of sputtering, up to a 

cumulative bombardment time of 26 minutes, by 500 eV Ar+ ions at 170K were analyzed to 

produce the plot in Figure 3.  The integrated intensity of the (1,-1) diffraction spot, normalized to 

the intensity of the clean image is displayed relative to the sputtering dose as equivalent 

monolayers removed.  

 



3.2 IPES measurements 

Characteristic spectra from the IPES measurements are displayed in Figure 1.  Data were 

collected when the sample was sputtered by 500 eV ions at an argon pressure of 2 x 10-7 Torr 

while cooled with liquid nitrogen in (a) and for room temperature sputtering with argon  p = 1 x 

10-6 in (b).  The count rate is plotted on the y-axis as intensity and the scale of the electron 

kinetic energy on the x-axis has been shifted to align 0 eV with the half-rise location of the Fermi 

edge energy, EF.  The traces correspond to IPES spectra taken after the cleaning procedure and 

then after each subsequent sputtering event, and are offset vertically for display purposes.  The 

intensity of the surface state feature decreases monotonically with cumulative sputtering damage 

and appears to (nearly) reach a steady state by 0.05 ML removal of the surface.  The total 

intensity of the surface state feature was calculated relative to a linear background for each 

spectrum.  We observed no broadening of the surface state peak under ion bombardment, which 

we also noted to be the case within the resolution limit of our analyzer in an earlier study on 

sputtering of Cu(110) [12].  

 

3.3. Simulations 

Selected results of the sputtering model on small areas of the larger simulated crystal are 

shown in Figure 2.  Each panel is labeled with the θ value (equivalent monolayer removed) 

appropriate to the larger simulated crystal.  Sites where sputtering has removed a surface atom 

are shown as greyscale disturbances on the otherwise white background representing areas 

untouched by the bombardment process.  Black represents the site(s) in each simulated crystal 

where the largest number of atoms has been removed from a single site (usually 2 or less).  

Because the second layer atoms of a face-centered cubic (110) surface are not directly beneath 



those of the first layer, the analysis considers only the top layer.  Curves corresponding to the 

relative population of surface atoms in clean patches of atomic radius r, as a function of θ, are 

displayed in Figure 3.  One trace is displayed per integer value of r.  For all values of r the 

intensity function decreases with apparent exponential behavior in θ and the decrease is faster for 

successively higher values of r.  This behavior is different from that observed in [12], where 

square clean patches were used as the search criteria, indicating there is some dependence of the 

model on the shape of the search criterion at low-doses.  While the intensity of the simulated 

curves also decreased monotonically there, the shape resembled a half-Gaussian.  Our present 

simulation yields curves similar to the ones reported in [12] if square patches are used to search 

the simulated crystal.  It is also worth noting that the simulation in [12] assumed the ion flux to 

be constant during sputtering and did not account for the portion of the measured ion current due 

to collisions with the sample mounting.  We have accounted for these factors in the present 

model and believe it better represents the observed trends.   

 

4. DISCUSSION 

A summary of the results from techniques applied in this study is displayed in Figure 3 for 

the experiment conducted at 170 K.  The IPES surface state peak intensity appears to decrease 

along with the prevalence of untouched circular patches of radius 4 atoms.  From this we 

estimate that the minimum circular patch size necessary to sustain the surface state in these 

measurements is approximately 50 atoms.  This agrees very well with the work of Ruggiero et 

al., who reported that a surface state observed for nanoscale Cu2N islands on Cu(100) disappears 

on islands with fewer than ~50 atoms at 5.3 K [21].  Investigations of surface states on terraces 

and in confinement regions have produced comparable or higher estimates for necessary areas 



[19] [20].  It should be noted that these experiments were conducted at lower temperatures than 

we are able to achieve in our current setup. 

In our previous study [12], we found no obvious change in the intensity of the IPES surface 

state peak observed on Cu(110) for sputtering at room temperature, but performed at 170 K, the 

sputtering process did reduce its intensity to near zero.  For the present work, we were able to 

decrease the intensity of the Ni(110) surface state by room temperature sputtering, as displayed 

in Figure 1b indicating that thermal self-annealing at room temperature is less effective for 

Ni(110) than was true for Cu(110), consistent with the higher Debye temperature for Ni versus 

Cu.  Analysis of the intensity decrease relative to the amount of sputtering damage using the 

yield estimates described above indicate that the surface state feature in the IPES spectra requires 

approximately 10 times the sputtering dose to achieve comparable intensity reduction at room 

temperature as when the experiment is performed at 170 K.  The model does not account for the 

self-annealing effect, so we expect it to underestimate the necessary patch size for experiments 

performed at temperatures where self-annealing occurs faster than data collection can be 

accomplished.  This is obviously the case for the room temperature measurement, though it is 

unclear whether 170 K is a sufficiently low temperature to eliminate the effect.  

Given the relatively low sputtering dose observed to quench the IPES signal, we believe this 

simple model gives reliable results.  The larger effective defect radius for a single ion impact 

revealed in other studies [27] [34] [35] would cause the simulated curves to decrease in intensity 

for lower sputter doses, and would more quickly approach zero intensity, but these effects do not 

change our results for the range of sputtering and necessary patch size presented.  To verify this, 

the simulation was also performed assuming 0-2 atom removal per ion collision, effectively 

decreasing the mean ion damage area in the simulation with little change to the results displayed.  



Similarly subtle results follow for small increases to the mean damage area.  Thus, we believe 

the estimate that the IPES surface state feature requires clean patches of ~50 atoms to represent a 

reasonable result. 

The LEED spots appear to more quickly approach an asymptotic intensity level (~40% 

relative to clean) than the IPES feature, and when compared to the Monte Carlo results, behave 

most similarly to curves for simulated clean patches of atomic radius 2-3 at 170 K.  It is not 

surprising that the LEED spots’ intensity is tied to smaller clean patches than the IPES surface 

state intensity.  The LEED measurement takes information from deeper than IPES [34] and the 

simulation concerns only the top layer of the surface.  Thus, it is to be expected that the LEED 

features are less sensitive to the order of the topmost layer, which our analysis indicates.  

An important question remains, however, as to the nature of the quenching observed for the 

surface state in the IPES spectra.  Our analysis supports the conclusion that the intensity of the 

surface state is tied to the existence of clean patches of about 50 atoms.  A competing, though not 

necessarily conflicting view is described chiefly by the RAS studies dealing with adsorbates and 

defects on Cu(110)  [22] [23] [24] [25] [26] [27].  The reduced RAS signal these authors observe 

may be due to destruction of the unoccupied state as we suggest.  If vacancy defects essentially 

remove the ability of the surface to sustain the unoccupied state, any measured intensity of 

transitions between it and occupied states would be reduced.  It is also possible, as they argue, 

that isotropic scattering from defects (adsorbates) may be the mechanism responsible for 

quenching the RAS signal as an occupied state effect.  Because neither RAS nor IPES can 

independently measure both the unoccupied and the occupied state intensity simultaneously, it is 

not clear whether the decreased RAS and IPES signals may be ascribed to either proposed 

mechanism or a combination of the two.   



From the sample drain current during sputtering, we estimate an ion flux of 6.5 x 10-5 

ions/unit cell/s for the experiment performed at 170 K.  This is roughly 20 times less than what 

was reported by Isted et al. [27] for 145K sputtering of Cu(110).  In that study, the authors 

showed approximately 90% reduction of the clean sample RAS signal for 12s of sputtering at the 

higher ion flux.  The sputtering time necessary to reduce our IPES signal on clean Ni(110) by 

90% is greater than this by a factor of about 75, in excess of what might be expected for the 

difference in ion flux alone.  We believe this comparison supports the conclusion that the RAS 

signal may be quenched more quickly than the IPES signal for comparable sputtering amounts. 

 

5. CONCLUSIONS 

Argon ion bombardment of Ni(110) has been investigated at room temperature and at 170 

K by IPES, LEED, and computer simulations.  Bombardment-associated effects on the intensity 

of the unoccupied surface electronic state near the Ȳ point of the Surface Brillouin Zone in IPES 

spectra, as well as on the intensity profiles of diffraction spots in LEED patterns have been 

obtained.  Monotonic reduction of the intensities of the features in both IPES and LEED results 

are compared to the simulations of sputtering to determine 50 atoms as the size of clean surface 

patches necessary to sustain the surface state in IPES spectra.  Both the LEED and IPES 

measurements exhibit thermal self-annealing effects at room temperature that are reduced at 170 

K.   
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8. FIGURES 

 

 

FIG. 1. Inverse Photoemission spectra of the Ni(110) surface sputtered by 500 eV in an Ar 

atmosphere for various sputtering times at 70° degree incidence from the sample normal.  

The spectra were recorded for a geometry corresponding to emission from the Ȳ point.  

The sample was held at; (a) T~170 K and sputtering performed at p=2x10-7 or; (b) T~300 K 

and sputtering performed at , p=1x10-6 Torr. 

 

 

 

 



 

FIG. 2. Simulated sputtered crystal representations for θ= {0.005, 0.02, 0.03, 0.05} ML 

removed.  White areas represent patches of unsputtered atoms and sites where atoms have 

been removed are darker. 



 

 
FIG. 3. LEED (green squares) and IPES (black circles) overlaid on the simulation results.  

Simulation results corresponding to clean patch radii of N atoms are labeled “r N.”  The 

LEED and IPES intensities have been normalized to those of the clean sample. 
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