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Phase Transitions in Coupled A Y-Ising Systems

IEnzo Granato, "' 3. M. Kosterlitz, and 3ooyoung Lee
Department of Physics, Brown University, Providence, Rhode Island 029I2

M. P. Nightingale
Department of PhysicsU, ni versi ty of Rhode Island, Kingston, Rhode Island 0288l

(Received 24 October 1990)

We study the critical behavior of fully frustrated XY and Josephson-junction systems by means of a

coupled XY-Ising model. From Monte Carlo and transfer-matrix calculations, we find separate XY and

Ising and first-order transitions, depending on the parameters. In addition, a line of continuous transi-
tions is found, with simultaneous loss of' AY and Ising order and novel critical behavior. This result is

supported by Monte Carlo simulations of frustrated A Y models on square and triangular lattices.

PACS numbers: 75.40.Mg, 64.60.Cn

Models containing both continuous U(1) and discrete
Z2 symmetry can give rise to interesting and unusual
critical behavior. In general, one expects one of three
scenarios: Transitions of the Ising and 4 V types occur at
diferent temperatures or at the same temperature in a
decoupled fashion, or else, in the case of strongly coupled
excitations, a single transition in a difrerent universality
class. The nature of this single transition is one of the
most important issues but is also less amenable to nu-

merical or analytical approaches. A prototype of this
system is a fully frustrated (FF) A V model on a triangu-
lar or a square lattice. This system has attracted great
attention in recent years, ' ' as it can be physically real-
ized as a 3osephson-junction array of large capacitance
in a perpendicular magnetic field corresponding to a
half-Aux quantum per plaquette. The model is defined

by the Hamiltonian

0/kT = —g J;, cos(0; —0, ),
where 1;~ = +' J (J)0) for i,j nearest neighbors subject
to the constraint that the gauge-invariant product of J;j
around a plaquette is negative. For the square lattice,
this can be accomplished by ferromagnetic horizontal
rows and alternating ferromagnetic and antiferromag-
netic columns and for the triangular lattice by isotropic
antiferromagnetic couplings. This leads one to frustra-
tion and a double degeneracy in addition to the degen-
eracy due to the continuous symmetry.

From renormalization-group ideas and universality, it
is quite natural to expect that the critica~ behavior of the
FF XV model, arising from the interplay between LV
and Ising-like excitations, could be described by a cou-
pled AV-Ising model. In fact, a Ginzburg-Landau free
energy of the FF A V models" and renormalization-
group analysis leads one to consider a coupled LV-Ising
model of the form '

H—= —g [(2+Bcr; a, )cos(0; —0, ) + Ccr;tT, ], (2)
&ij )

~here 2, 8, and C are eAective couplings depending on

the initial values of the parameters in the Ginzburg-
Landau free energy. ' As a consequence, the square and
triangular FF XV models' can be considered to be at
different initial points in the parameter space of the same
model of Eq. (2). The isotropic FF XV models corre-
spond to 2 =8, but a generalized version of the FF LV
model on a square lattice, where the antiferromagnetic
couplings have difterent magnitudes compared to the fer-
romagnetic ones, corresponds to A&8. An early study
of this model revealed a bifurcation point close to C =0
in the subspace 2 =B. For larger positive t' there is a
double transition with an LV followed by an Ising as
temperature is increased, while if t" & 0 there is a single
transition with simultaneous loss of A V and Ising order.
An identical topology of the phase diagram has also been
found in a generalized Coulomb-gas representation of
the FF LV model containing fractional charges. ' An

important feature of the phase structure when Al =8 is

that Ising disorder induces LV disorder. In the model of
Eq. (2) this can be seen as arising from the special
coupling between the variables since a domain wall in

the Ising variables leaves the LV spins uncoupled as
1+a;n j =0 at a wall. Although physically difTerent, this
is similar to the mechanism for a single transition in the
FF LV model. The role played by the fractional corner
charges in that model, which, when the walls melt,
trigger an unbinding of integer charges destroying LV
order, is played here by the domain wall itself. Our
claim is that, in spite of the apparent discrepancies
between the FF A Y models ' of Eq. (1) and the
Coulomb-gas representation ' ' ' of frustrated junction
arrays, both can be accommodated in the 8 =8 subspace
of Eq. (2). Changing the temperature in either corre-
sponds to diAerent paths through the same phase dia-
gram. In experiments, positional disorder can lead to a
double transition if there is a single one in the ideal sys-
tem. These transitions, however, will be in different
universality classes, as this kind of disorder acts as a ran-
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FIG. 1. Phase diagram obtained from MC simulations.
Lines through the data points (x) are guides to the eyes. Solid
and dotted lines indicate continuous and first-order transitions.
Arrows indicate the known critical couplings for the Ising and
XV models. Inset on left: Finite-size scaling of free-energy
barrier hFI= at a first-order point.

dom bond for the Ising and random dipoles for integer
charges in the Coulomb-gas representation. '

In this work we report the results of a detailed study
by Monte Carlo (MC) simulations of the critical behav-
ior of the coupled XY-Ising model in Eq. (2) along the
line of single transitions. We have also performed MC
simulations of the original FF XY models of Eq. (1) to
compare the critical exponents. The phase diagram ob-
tained by MC simulation is indicated in Fig. 1. We
monitor only the Ising variables and find a segment of
continuous non-Ising phase transitions starting at P
which eventually becomes first order for C«0 at a tri-
critical point T. The results suggest a nonuniversal be-
havior as the exponents associated with the Ising order
parameter vary systematically along the line PT. In ad-
dition, an evaluation of the central charge c using a
Monte Carlo transfer matrix' gives a rather surprising
result: c is found to vary from c = 1.5 near P to c = 2
near T. For the FF AV model on a square and a tri-
angular lattice, using the same methods to evaluate the
critical exponents, we find these exponents to be in fair
agreement with the corresponding ones obtained for the
coupled XY-Ising model near P. The central charge of
the FF XY model evaluated recently by Thijssen and
Knops, ' c=1.66(4), is consistent with the correspond-
ing result for the coupled XV-Ising model near the bifur-
cation point.

The simulations were performed employing the stan-
dard Metropolis algorithm using small system sizes L to
achieve good statistics. Critical exponents and the loca-
tion of first-order transitions were obtained from long
simulations, typically of 5&10 MC steps, by means

of the histogram method and the finite-size scaling
analysis of Lee and Kosterlitz (LK). ' We also com-
pared our results with those derived by applying the cu-
mulant method and found fair agreement.

The LK method is particularly suited to studying tem-
perature and field-driven first-order transitions by a
finite-size scaling analysis of the barriers between difrer-
ent phases at the transition. At a temperature-driven
first-order transition, the free-energy barrier hFE be-
tween ordered and disordered states is obtained from the
energy histogram N(E;A, C,I.) as the height of the peak
in —lnN(E). At a first-order transition d,FF is a mono-
tonically increasing function of L and we show the re-
sults for A =6.5 in an inset of Fig. 1. As we move along
the transition line towards P, this peak becomes lower
and disappears at T. We identify this as a tricritical
point but this may overestimate the range of continuous
transitions since the absence of a peak in systems of lim-
ited size does not exclude a very weak first-order transi-
tion.

Along the segment TP, we assume that the transition
is continuous and, in principle, there are two sets of ex-
ponents to be determined since there are both Ising and
LY variables. We are able to estimate only those associ-
ated with the former to any degree of accuracy and they
are obtained from the histogram of Ising magnetization
m. The corresponding Free-energy barrier hF between
the bulk states ~ m increases as L '~' for L ( g in the or-
dered state and decreases to zero in the disordered state.
This change of behavior can be used to accurately de-
termine the critical values of 2 and C. More impor-
tantly, the exponent v can be determined from 5
=BAF„,/BC= L '~' without a precise determination of
the critical parameters. This is a strength of the LK
method as it yields v from a one-parameter fit in con-
trast to most earlier MC analyses' which involve fitting
at least two. We identify v~1 as a single transition
since, if the Ising and XY transitions are separate or
decoupled, v=1 at the Ising transition. We were unable
to obtain meaningful results for the helicity modulus
near the transition so the line XYP in Fig. 1 is an inter-
polation from the known position in the phase with

m =1. We identify P as the bifurcation point but cannot
exclude the possibility of a short segment of single
decoupled transition with v=1 to the left of P. The ex-
ponent 2P/v is obtained from the L dependence of the
peak separation in the histogram of rn which scales as
L ~~' at criticality, although this is subject to larger un-

certainties than v. Our estimates of the Ising exponents
v and 2P/v are plotted in Fig. 2 along the line PT. It is
clear that these difI'er from the pure Ising values and
seem to vary systematically on the transition line indicat-
ing nonuniversal behavior. We have also made an in-

dependent study using the curnulant method and find

consistency. '

In order to compare the result for the critical ex-
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FIG. 2. Critical exponents obtained from a finite-size scal-
ing of AF„, on lattices of size 10(I( 30. Horizontal arrows
correspond to known results and the vertical arrow indicates
the estimated location of the bifurcation point in Fig. 1.

FIG. 3. Finite-size scaling of the peak position g and

S =OAF~/BJ from the histogram of the chirality z for the
square (0) and the triangular (&) FF XY models. Solid lines

are least-squares fits to L ) 10 data.

ponents of the coupled LY-Ising model near the bifurca-
tion point with those of the FF LY model, we used the
same methods to evaluate the Ising-like critical ex-
ponents for the triangular and the square lattices. Fig-
ure 3 shows the result of a finite-size scaling analysis of
S =BAFz/BJ for both cases. hF» was obtained from his-

tograms of the staggered chirality order parameter g.
A small curvature is still observed even for the
largest system sizes, indicating that correction to scaling
is still important. However, if one estimates the ex-
ponents from the largest sizes, one obtains v=0.83(4),
2P/v =0.28 (4) (triangular) and v =0.85(3), 2P/v
=0.31(3) (square). Considering the curvature in the
data, these can be considered to be upper bounds
to the asymptotic result. Even so, they do difter sig-
nificantly from the pure Ising exponents and seem to be
consistent with the values obtained near the bifurcation
point in Fig. 1. Note that the correlation lengths probed
in the simulations of the FF XY models are much small-
er than the ones in the coupled LY-Ising model since the
size of the unit cell is larger. Although the exponents for
the triangular and the square lattices also seem to agree
with each other within the estimated uncertainties, it is

perfectly possible that they may eventually difrer if simu-
lations are carried out in suSciently large systems. This
nonuniversal behavior of the FF LY model would be in

complete agreement with our findings for the coupled
XY-Ising models.

Additional information on the nature of the critical
behavior on the line PT is provided by the central charge
c which, to be consistent with varying exponents,
must obey c~ 1. Preliminary investigations, using MC

transfer-matrix methods' on infinite strips of width Up

to L, =16, yield the very surprising result that c seems to
vary continuously from c = 1.5 at P to c = 2 at T. This
implies that the line PT cannot be described as a super-
position of critical LY and Ising lines with c =1.5, as

suggested by Foda, but this is a completely new eAect.
The only models where c is known to vary are models
that do not have a symmetric transfer matrix, e.g. , the
q-state Potts and O(n) models with a continuously vary-

ing number of states q and n. Unlike in those models, on

the line PT a parameter is changing that does not affect
the symmetry. It seems to us that there are three possi-
ble explanations: (i) The system is not conformally in-

variant on the line PT; (ii) the result is an artifact of
limited strip widths; and (iii) it is a real and interesting
eftect. Further investigation is under way.

We note that this variation of c is entirely consistent
with the Zamolodchikov c theorem which states that
there exists a quantity c(l) such that dc(l)/dl (0 along
a renormalization-group trajectory and tends to c at a
fixed point. The model of Eq. (2) may be obtained by
adding a relevant term hqcos2(0; —p;) to two coupled
XY models which implies c ~ 2. If, on the other hand,
we start from decoupled critical AY and Ising mod-

els and add a term Bo; o~[1 —cos(0; —0~)], we obtain
c ~ —'. since such a term is irrelevant about the decou-

pled fixed point for 8 small. ' Since the true model is

at A =8, this yields the allowed range of &
~ c ~ 2.

We finally note that the value of c =1.66 of Thijssen and
Knops' for the FF LY model using the same methods is

within the allowed range.
We thank R. M. Marinho, 3r. , R. H. Swendsen, K.
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