
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2014 

NEW RESULTS AND IMPROVEMENTS RELATED TO THE STUDY NEW RESULTS AND IMPROVEMENTS RELATED TO THE STUDY 

OF MULTI-SPECIALIZATION WHIST TOURNAMENT DESIGNS OF MULTI-SPECIALIZATION WHIST TOURNAMENT DESIGNS 

W. Kent Rudasill 
University of Rhode Island, krudasill@portsmouthabbey.org 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Rudasill, W. Kent, "NEW RESULTS AND IMPROVEMENTS RELATED TO THE STUDY OF MULTI-
SPECIALIZATION WHIST TOURNAMENT DESIGNS" (2014). Open Access Dissertations. Paper 243. 
https://digitalcommons.uri.edu/oa_diss/243 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/243?utm_source=digitalcommons.uri.edu%2Foa_diss%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


NEW RESULTS AND IMPROVEMENTS RELATED TO THE STUDY OF

MULTI-SPECIALIZATION WHIST TOURNAMENT DESIGNS

BY

W. KENT RUDASILL

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

MATHEMATICS

UNIVERSITY OF RHODE ISLAND

2014



DOCTOR OF PHILOSOPHY DISSERTATION

OF

W. KENT RUDASILL

APPROVED:

Dissertation Committee:
Major Professor Norman J. Finizio

Mustafa R. S. Kulenovic

Edmund A. Lamagna

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2014



ABSTRACT

In this thesis we introduce a new whist construction which we refer to as The

Liaw Variant. This construction is shown to be versatile in that, under appropriate

conditions, it can produce every known whist design specialization. No other whist

construction in the existing literature can do this.

Furthermore, The Liaw Variant is shown to be more powerful than previously

published constructions, in that it improves upon the known results related to each

of the whist specializations. In particular, under certain applications, we have been

able to dramatically reduce previously published asymptotic bounds related to the

construction of Z-cyclic directed-triplewhist and ordered-triplewhist designs.

This thesis also introduces a new whist specialization, Z-cyclic whist designs

that are balanced, directed and ordered but whose initial round partner pairs do

not form a patterned starter. We give a new construction capable of producing

such designs, and investigate its ability. In some cases, this construction was found

to give significant improvements when compared with prior known results.

Finally, this thesis introduces a new generalized whist specialization, defining

the property of balance on (h, 2h) GWhD(v). A number of existing whist design

constructions are shown to either automatically possess the property of balance,

or to be modifiable such that balanced designs can be easily obtained. We also

show how a modification of another construction will produce balanced (h, 2h)

GWhD(v) for certain primes v.
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PREFACE
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The second paper, “Results Related to the Existence of Non ZCPS-

BDOWh(p) For Primes of the Form p = 4u+ 1,” was submitted for publication in

the journal, Congressus Numerantium in 2014.

The third paper, “Balance in Whist and Generalized Whist Designs: Some
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Abstract

In this paper we introduce, for primes p ≡ 1 (mod 4), a whist construction which

we refer to as The Liaw Variant. This construction is shown to be versatile in that,

for such p and under appropriate conditions, it can produce every known whist de-

sign specialization. Indeed, it can produce a variety of multi-specialization whist

designs. In fact, any whist design produced by The Liaw Variant is automatically

a Z-cyclic balanced whist design.That is to say, every whist design produced by

The Liaw Variant exhibits at least two whist specializations. Additionally, for

the production of directed-triplewhist and ordered-triplewhist designs on p play-

ers, The Liaw Variant is shown to be more powerful than previously published

constructions. It is also demonstrated that applications of the methodology of M.

Buratti and A. Posatti [1] to The Liaw Variant enable us to dramatically reduce

previously published asymptotic bounds related to the construction of Z-cyclic

directed-triplewhist and ordered-triplewhist designs on p players.

keywords: Whist Tournaments; Z-Cyclic Designs; Triplewhist Designs, Direct-

edwhist Designs; Orderedwhist Designs; Three Person Whist Designs; Balanced

Whist Designs; Splittable Whist Designs.

1.1 Introduction

A whist tournament on v players, denoted Wh(v), is a (v, 4, 3) (near) re-

solvable BIBD. A whist game (alt. table) is a block, (a, b, c, d), of the BIBD and

denotes that the partnership {a, c} opposes the partnership {b, d}. The design

is subject to the (whist) conditions that every player is a partner of every other

player exactly once and is an opponent of every other player exactly twice. The

(near) resolution classes of the BIBD are called the rounds of the Wh(v). It has

2



been known since the 1970s that Wh(v) exist for all v ≡ 0, 1 (mod 4) [2, 3]. For an

interesting and informative account of the early history of the whist tournament

problem see the recent paper of I. Anderson and T. Crilly [4].

If v = 4u then the Wh(v) consists of 4u− 1 rounds and if v = 4u + 1, the Wh(v)

consists of 4u + 1 rounds. In the former case every player plays in exactly one

game of each round whereas in the latter case every player plays in exactly one

game in each round with the exception of one round in which the player sits out.

Throughout this paper we consider, exclusively, that v is an odd prime. Hence

all subsequent discussion relates to v = 4u + 1. For such whist designs we are

primarily interested in those that possess, simultaneously, more than one special

whist property. These special properties are now defined. For existence results

regarding these specializations see [5, 6].

Definition 1.1.1 A whist design on 4u + 1 players is said to be Z-cyclic if the

players are elements in Z4u+1. It is also required that the set of rounds be cyclic.

That is to say, the rounds can be labeled, R1, R2, . . ., in such a way that Rj+1 is

obtained by adding +1 (mod (4u+ 1)) to every element in Rj.

Although most of the whist specializations to be introduced here relate to non

Z-cyclic whist designs as well as Z-cyclic whist designs the considerations of this

study relate, exclusively to Z-cyclic whist designs. Since the collection of rounds

of a Z-cyclic Wh(v) form a cyclic set it follows that the entire design can be given

by any one of its rounds. This representative round is called the initial round. For

our purposes, however, it is convenient to define the initial round.

Definition 1.1.2 For v = 4u+1 the initial round is defined to be the unique round

for which 0 sits out.

The method of symmetric differences [2] is the primary methodology to be used

for verification of the designs claimed in this study.
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In a whist game (a, b, c, d) the opponent pairs {a, b}, {c, d} are called first kind

opponents and the opponent pairs {a, d}, {b, c} are called second kind oppo-

nents.

Definition 1.1.3 [7] A whist tournament on v players is said to be a triplewhist

tournament, TWh(v), if every player opposes every other player exactly once as

an opponent of the first kind (and, hence, exactly once as an opponent of the second

kind).

In a whist game one can define left hand opponents and right hand oppo-

nents. These relationships are the obvious ones associated with the players seated

at a table with a at the North position, b at the East position, c at the South

position and d at the West position.

Definition 1.1.4 [3] A whist tournament on v players is said to be a directed-

whist tournament, DWh(v), if every player has every other player exactly once

as a left hand opponent (and, hence, exactly once as a right hand opponent).

Definition 1.1.5 [8] A whist tournament on v players is said to be an ordered-

whist tournament, OWh(v), if each player opposes every other player once at

North-South and once at East-West.

A necessary condition for the existence of OWh(v) is v ≡ 1 (mod 4) [9].

For any given round of a Wh(v) the set of all players sitting in the North and South

positions is referred to as the N-S line. Similarly the E-W line is the set of all

players sitting in the East and West positions. Let {x, y} be any pair of players

in a Wh(v). For any round of the Wh(v) for which x and y both play, but not at

the same table, x and y are said to be relative opponents if they belong to the

same line (either N-S or E-W) and relative partners if they belong to opposite

4



lines. For v = 4u + 1 there are exactly 4u − 4 rounds in which x and y play at

different tables.

Definition 1.1.6 [10] A whist tournament on v players is said to be a balanced

whist tournament, BWh(v), if every pair of players are relative opponents ex-

actly 2u− 2 times (and, hence, relative partners exactly 2u− 2 times).

Definition 1.1.7 [11] A whist tournament design on v players is said to be split-

table, denoted by SWh(v), if and only if the games in the design can be partitioned

into two sets A and B, called the partition sets, such that in each round half the

games are in A and the other half are in B in such a way that every player opposes

every other player exactly once in each partition set.

It is established in [11] that SWh(v) exist only if v ≡ 1 (mod 8). Sufficient con-

ditions that ensure that a Z-cyclic Wh(v), produced by The Liaw Variant, is

splittable are given below in Lemma 1.3.7.

Definition 1.1.8 Let G be an abelian group of order 2s+1. The collection of pairs

{{xi, yi} : xi, yi ∈ G \ {eG}, i = 1, . . . , s} is called a starter in G if and only if⋃s
i=1{xi, yi)} = G\{eG} and

⋃s
i=1{±(yi−xi)} = G\{eG}. If yi = −xi, i = 1, . . . , s

the starter is called the patterned starter in G.

Definition 1.1.9 [12] A Z-cyclic Wh(v), v = 4n + 1, is said to be a Z-cyclic

patterned starter whist tournament, denoted ZCPS-Wh(v), if the set of initial

round partner pairs form the patterned starter in Zv.

Definition 1.1.10 [13] A whist tournament on v players is said to be a three

person whist tournament, 3PWh(v), if the intersection of any two games is at

most 2.
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Definition 1.1.11 [14] Let (a, b, c, d) be a game in a Z-cyclic whist tournament

design such that ∞ /∈ {a, b, c, d}. The a-centered difference sets corresponding

to this game are the three sets {b−a, c−a}, {b−a, d−a}, {c−a, d−a}. Similarly one

defines b-centered, c-centered and d-centered difference sets. If (∞, a, b, c)

is a game in a Z-cyclic whist tournament design the a-centered difference sets are

defined to be {∞, b − a}, {∞, c − a}, {b − a, c − a}. Similarly for b-centered and

c-centered difference sets. ∞-centered difference sets are not formed.

Theorem 1.1.1 [14] A Z-cyclic Wh(v), v ≡ 0, 1 (mod 4), has the 3P property

if and only if all the (·)-centered difference sets formed from the u games in the

initial round are different.

It is possible that a Z-cyclic Wh(v) might satisfy more than one of the special-

izations listed above. In such cases the name and the notation of the design is a

concatenation of the component specializations. For example a Z-cyclic directed-

triplewhist design is denoted DTWh(v) (alt. TDWh(v)). It is to be noted, however,

that I. Anderson and L. H. M. Ellison [15] have proven that it is impossible for a

Z-cyclic Wh(4u+1) to simultaneously possess the properties of triplewhist, direct-

edwhist and orderedwhist. That is to say, there is no Z-cyclic DOTWh(4u+ 1).

1.2 Preliminaries

Previous studies [16, 15, 11, 17, 18, 19, 20, 21] utilized one or both of the

generalized Anderson - Ellison Constructions [22] to obtain solutions for the whist

designs of interest to the respective study. In each case an analytic asymptotic

bound was either obtained or approximated. Then, for those primes less than the

analytic asymptotic bound, the data generation involved finding, via the general-

ized Anderson - Ellison construction(s) being employed, as many solutions as the

construction would produce. In some cases these searches were limited by practical
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time considerations. In every case this data process resulted in a list of primes for

which the constructions did not produce the desired whist design. That is to say,

there was a list of exceptions. More often than not these studies then utilized the

version of Liaw’s Construction found in [23] to try to find solutions for the excep-

tions. Here we have modified Liaw’s construction so as to increase its capability to

produce whist designs that possess, simultaneously, more multiple specializations

than the earlier studies. Another goal of our approach is to demonstrate that our

modified construction is more powerful than the previously studied constructions.

The term powerful is meant in the sense of a smaller list of exceptions.

For the remainder of this study the primes p ≡ 1 (mod 4) are taken in the form

p = 2kt + 1 where k ≥ 2 and t is odd. Set d = 2k, m = 2k−1 and n = 2k−2.

Let r denote an arbitrary, but fixed, primitive root of p. For such p the following

facts regarding GF(p) = Zp are well known [2]: (1) x ∈ Z∗
p is a square if and only

if −x is a square; (2) −1 = rmt and (3) if S denotes the set of squares and N

denotes the set of non-squares then S, N form a (4u + 1, 2u, 2u − 1) difference

system where u = nt (see Theorem 2.2.5 in [2]). Let Cd denote the subgroup in the

multiplicative group of GF(p) consisting of the powers of rd. Note that |Cd| = t.

The cosets of Cd formed by riCd, i = 0, 1, . . . , d − 1 will be denoted by Cd
i and

are often referred to as the i-th cyclotomic class of order d. Let PS(r) denote the

set {rs : 0 ≤ s ≤ p − 2}. If x, y ∈ Z∗
p then there exist unique integers i and j

such that x = ri, y = rj and we shall say that x and y are |i − j| units apart

in PS(r). Thus, for example, if y = −x = rmtx we would say that x and y are

an odd multiple of m units apart in PS(r). Suppose that a quadruple of elements

in GF(p), say (a, b, c, d), can be partitioned into pairs such that one pair consists

of squares that are an odd multiple of m units apart in PS(r) and the other pair

consists of non-squares that are an odd multiple of m units apart in PS(r). Then

7



(a, b, c, d) ⊗ r2i, i = 0, 1, . . . , n − 1 is a complete system of representatives of the

cyclotomic classes of order d. Furthermore if this system of representatives is ex-

panded by the operation ⊗ rdj, j = 0, 1, . . . , t − 1 then one obtains every element

in Z∗
p exactly once. In the sequel, if a quadruple (a, b, c, d) can be partitioned into

pairs such that one pair consists of squares that are an odd multiple of m units

apart in PS(r) and the other pair consists of non-squares that are an odd multiple

of m units apart in PS(r) we shall say that the quadruple possesses the OMMA

property or, for short, OMMA.

1.3 The Liaw Variant

Definition 1.3.1 Let p = 2kt+ 1, t odd, denote a prime with k ≥ 2. Let r denote

an arbitrary, but fixed, primitive root of p and let x be a non-square in Z∗
p. Set

a ≡ m− 1 (mod d). The construction embodied by the collection of whist games

(1, x, x1+a,−x)⊗ rdj+2i, 0 ≤ j ≤ t− 1, 0 ≤ i ≤ n− 1, (3.1)

is called The Liaw Variant.

Note that 1 and x1+a are squares that are an odd multiple of m units apart in

PS(r). Likewise x and −x are non-squares that are an odd multiple of m units

apart in PS(r). It follows then (OMMA) that the union of the games in Eq.

3.1 equals Z∗
p . Thus it is possible that The Liaw Variant can serve as the initial

round of a Z-cyclic Wh(p). Under suitable conditions it will be demonstrated that,

for each specialization mentioned in Section 1, The Liaw Variant can produce a

Z-cyclic Wh(p) that satisfies the properties of the specialization. Indeed, it will

be further demonstrated that The Liaw Variant can produce Z-cyclic Wh(p) that

possess, simultaneously, several of the specialized properties. This versatility is

demonstrated in the theorems of this section. For convenience of notation the

operation ⊗rdj+2i, 0 ≤ j ≤ t − 1, 0 ≤ i ≤ n − 1 will be abbreviated to ⊗R.
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Occasionally, we will refer to the whist game (1, x, x1+a,−x) as the base game (alt.

base table) of The Liaw Variant.

Theorem 1.3.1 The Liaw Variant produces a Z-cyclic Wh(p) if the following two

conditions are satisfied: (1) 2(x1+a − 1) = � and (2) the set {±(x − 1),±x(xa +

1),±(x+ 1),±x(xa − 1)} ⊗R yields every element in Z∗
p exactly twice.

Proof: The partner differences for The Liaw Variant are ±2x ⊗ R and ±(x1+a −

1) ⊗ R. These differences yield every element in Z∗
p exactly once provided that

2x(x1+a − 1) 6= � (OMMA), that is if 2(x1+a − 1) = �. Clearly the differences

listed in Condition (2) are the opponent differences for The Liaw Variant.

Corollary 1.3.2 Any Z-cyclic Wh(p) produced by The Liaw Variant is a BWh(p).

Proof: The N-S line in The Liaw Variant is the set of squares in Z∗
p and the E-W line

is the set of non-squares in Z∗
p. Thus, via Theorem 2.2.5 in [2] these two sets form

a (4u+ 1, 2u, 2u− 1) difference family with u = nt. Thus each pair of elements in

Z∗
p, say {x, y}, occur together in the same line exactly 2u− 1 times. Removing the

occurrence when x and y are partners shows that x and y are relative opponents

exactly 2u − 2 times. Since x and y appear in the same round but at different

tables exactly 4u− 4 times they are relative partners exactly 2u− 2 times.

As a consequence of Theorem 1.3.1 we note that The Liaw Variant will

produce a Z-cyclic Wh(p) if (1) 2(x1+a − 1) = � and (2) the quadruple

(x + 1, x − 1, x(xa + 1), x(xa − 1)) has the OMMA property. As squares or

non-squares there are 16 possibilities for the four expressions in this quadruple

but only six of these possibilities allow for the quadruple to possibly have the

OMMA property. These six cases are given in the following chart and will be

referred to as Case (1), Case(2), ..., Case (6).
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x+ 1 x− 1 x(xa + 1) x(xa − 1) xa + 1 xa − 1
1 6 � 6 � � � 6 � 6 �
2 � 6 � � 6 � 6 � �
3 6 � � 6 � � � 6 �
4 � � 6 � 6 � � �
5 � 6 � 6 � � � 6 �
6 6 � � � 6 � 6 � �

In the subsequent discussion to say that a Z-cyclic Wh(p) is produced by The

Liaw Variant will automatically imply that the two conditions of Theorem 1.3.1

have been satisfied. Furthermore, by dint of Corollary 1.3.2, there is no further

need to prove the balance property in our subsequent designs. Note that from here

onward the designs associated with our theorems satisfy, simultaneously, several

whist specializations.

Theorem 1.3.3 A Z-cyclic Wh(p) produced by The Liaw Variant is a

BTWh(p) if (x− 1)(xa + 1) = �.

Proof: The opponent first kind differences in The Liaw Variant are ±(x− 1)⊗R

and ±x(xa + 1) ⊗ R. The quadruple of elements {±(x − 1),±x(xa + 1)} will

yield every element in Z∗
p exactly once if (x − 1)x(xa + 1) 6= � (OMMA), i.e.

(x− 1)(xa + 1) = �.

Certainly one could have used the opponents second kind differences as suffi-

cient conditions in this latter theorem.

Corollary 1.3.4 A Z-cyclic Wh(p) produced by The Liaw Variant is a

BTWh(p) if (x+ 1)(xa − 1) = �.

Theorem 1.3.5 A Z-cyclic Wh(p) produced by The Liaw Variant is a

BDWh(p) if the set {x− 1, x(xa− 1),−x(xa + 1), x+ 1)}⊗R yields every element

in Z∗
p exactly once.

Proof: The set offered as a sufficient condition represents the right hand opponents

(alt. the first forward) differences in The Liaw Variant.

10



Definition 1.3.2 [24] If (a, b, c, d) is a whist game in a Z-cyclic whist design, the

set of differences {a − b, a − d, c − b, c − d} is called the set of ordered opponent

differences for that game.

It is proven in [24] that if the union of the sets of ordered opponent differences for

the games in the initial round of a Z-cyclic whist design on v players covers the

non-zero elements in Zv exactly once then the whist design is an ordered whist

design.

Theorem 1.3.6 A Z-cyclic Wh(p) produced by The Liaw Variant is a

BOWh(P ) if the set {1 − x, 1 + x, x(xa − 1), x(xa + 1)} ⊗ R yields every element

in Z∗
p exactly once.

Proof: The set offered as a sufficient condition represents the ordered opponents

differences in The Liaw Variant.

Throughout the remainder of this paper any reference to splittable whist de-

signs produced by The Liaw Variant will assume that the initial round games in

the partition sets A and B are given by (1, x, x1+a,−x) ⊗ rdj+4i, 0 ≤ j ≤ t − 1,

0 ≤ i ≤ 2k−3 − 1 and (1, x, x1+a,−x) ⊗ rdj+4i+2, 0 ≤ j ≤ t − 1, 0 ≤ i ≤ 2k−3 − 1

respectively.

Definition 1.3.3 [11] Let (a, b, c, d) be a game in a Z-cyclic whist tournament on

p players. The differences a− b, c− d, a− d, b− c are called the split opponent

differences (alt. the split differences).

The following lemma is an application of materials found in [11] (see their Lemma

1.4 and Theorem 1.6).

Lemma 1.3.7 If the Liaw Variant produces a Z-cyclic BWh(p) then this design

will be splittable if the set of split opponent differences formed from the base table

constitute a complete set of representatives of the cyclotomic classes of order 4.
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Since k ≥ 3 for splittable designs [11] it follows that m ≥ 4. Consequently,

1,−1 ∈ C4
0 and it follows that if z ∈ C4

i then −z ∈ C4
i .

Theorem 1.3.8 A Z-cyclic Wh(p) produced by The Liaw Variant is splittable if

the following conditions are satisfied.

• x2 − 1 6= �

• x(xa+1)
x+1

∈ C4
2

• x(xa−1)
x−1

∈ C4
2

Proof: Note that exactly one of x+ 1, x− 1 is a square. Without loss of generality,

assume that x+1 = �. Thus either x+1 ∈ C4
0 or x+1 ∈ C4

2 . Utilizing the second

hypothesis it follows that xa+1+x ∈ C4
2 or xa+1+x ∈ C4

0 respectively. Furthermore

either x − 1 ∈ C4
1 or x − 1 ∈ C4

3 . Utilizing the third hypothesis it follows that

xa+1 − x ∈ C4
3 or xa+1 − x ∈ C4

1 respectively. Since z and −z are in the same

cyclotomic class of order 4 we conclude that the set of split opponent differences

{x+ 1, 1− x, x− xa+1, xa+1 + x} form a complete system of representatives of the

cosets of C4 in the multiplicative group of the Galois field Zp.

Theorem 1.3.9 A Z-cyclic Wh(p) produced by The Liaw Variant is a ZCPS-

BWh(P ) if (2w + 1)(a+ 1) ≡ mt (mod (p− 1)) and (x+ 1)(x− 1) 6= �. Here w

is defined by x = r2w+1.

Proof: Clearly xa+1 = −1 and it follows that the set of partner pairs in the initial

round of The Liaw Variant form the patterned starter in the additive group of the

12



Galois field Zp. Hence the partner condition is satisfied. The opponent differences

are ±(x + 1) and ±(x − 1) each occurring twice. Since (x + 1)(x − 1) 6= � the

opponent condition is satisfied (OMMA).

Example 1.3.1 The first entry for k = 4 in Appendix III indicates that for p = 17,

r = 3, x = 10 and a = 7 The Liaw Variant produces a ZCPS-Wh(17) whose base

table is (1, 10, 16, 7). The complete initial round of the corresponding whist design

is given by the four games:

(1, 10, 16, 7), (13, 11, 4, 6), (9, 5, 8, 12), (15, 14, 2, 3).

This design has the 3P property.

It is a well known fact that every ZCPS-Wh(4u+ 1) is a DOWh(4u+ 1) [9]. Thus

any ZCPS-Wh(p) produced by The Liaw Variant is a BDOWh(p).

The next few theorems illustrate that The Liaw Variant can produce additional

multi-specialization Wh(p) designs. For convenience we formulate an expanded

version of Theorem 1.3.3.

Theorem 1.3.10 The Liaw Variant produces a Z-cyclic BTWh(p) if the following

conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,

• (x− 1)(xa + 1) = �,

• (x+ 1)(xa − 1) = �.

One can easily see that if {x, a} are such that the conditions of Theorem 1.3.10

are satisfied then the pair {−x, a} also has this property (and vice-versa). Thus

the following corollary can be stated.
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Corollary 1.3.11 {x, a} is a pair for which The Liaw Variant produces a

BTWh(p) if and only if {−x, a} is a pair for which The Liaw Variant produces

a BTWh(p).

Note that Cases (1), (2), (3) and (4) are consistent with Theorem 1.3.10 but it is

impossible to obtain a BTWh(p) from Cases (5) and (6).

Theorem 1.3.12 The Liaw Variant produces a Z-cyclic BDTWh(p) if, in addition

to the hypotheses of Theorem 1.3.10, the following conditions are satisfied.

• x2 − 1 6= �,

• xa+2(xa−1)
x−1

∈ Cd
0 ,

• x(xa+1)
x+1

∈ Cd
0 ,

Proof: Without loss of generality, assume that x−1 = �. It follows, via Conditions

3 and 4 of Theorem 1.3.10, that xa + 1 = � and (xa − 1) 6= �. Thus the first

forward differences in the base table of The Liaw Variant can be grouped in the

pairs {x − 1, x(xa − 1)}, {x + 1,−x(xa + 1)}. Both members of the first pair are

squares and both members of the second pair are non-squares. If, in each pair,

the members are an odd multiple of m units apart in PS(r) it will follow that

the set of first forward differences equals Z∗
p (OMMA) and the design is directed.

Thus we impose the conditions: (1) x(xa−1)
x−1

∈ Cd
m and (2) −x(xa+1)

x+1
∈ Cd

m. Since

xa+1,−1 ∈ Cd
m Conditions 2 and 3 guarantee these latter requirements.

Lemma 1.3.13 Let x and a be as defined in The Liaw Variant. Then the condi-

tions (1) x2 − 1 6= �, (2) xa+2(xa−1)
x−1

∈ Cd
0 , and (3) x(xa+1)

x+1
∈ Cd

0 , imply that (1)∗

(x− 1)(xa + 1) = � and (2) ∗ (x+ 1)(xa − 1) = �.

Proof: Without loss of generality assume that x− 1 = �. It then follows from (3)

that (xa + 1) = �. Hence (1)∗. Similarly (2) implies that xa+2(xa− 1) = �. Since

xa+1 = � it follows that xa − 1 6= �. Thus (2)∗.
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As a consequence of Lemma 1.3.13, Theorem 1.3.12 can be replaced by the

following theorem.

Theorem 1.3.14 The Liaw Variant produces a Z-cyclic BDTWh(p) if the follow-

ing conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,

• x2 − 1 6= �,

• xa+2(xa−1)
x−1

∈ Cd
0 ,

• x(xa+1)
x+1

∈ Cd
0 ,

Example 1.3.2 For p = 29, r = 2, x = 19 and a = 21 one can determine that

x = r9, 2(x1+a − 1) = r6, x2 − 1 = r7, xa+2(xa−1)
x−1

= r4 and x(xa+1)
x+1

= r24. Thus the

sufficient conditions of Theorem 1.3.14 are satisfied and The Liaw Variant produces

a Z-cyclic BDTWh(p). The initial round of this design is given by the following

seven games. This design has the 3P property.

(1, 19, 4, 10), (16, 14, 6, 15), (24, 21, 9, 8), (7, 17, 28, 12),
(25, 11, 13, 18), (23, 2, 5, 27), (20, 3, 22, 26).

Similar to Corollary 1.3.11 the following corollary can be established.

Corollary 1.3.15 The pair {x, a} produces, via The Liaw Variant, a Z-cyclic

BDTWh(p) if and only if the pair {−x, a} does.

Proof: Since p ≡ 1 (mod 4) it is known that x is a non-square if and only if −x is

a non-square. If it is assumed that the conditions of the theorem are satisfied by

{x, a} then the mapping x → −x is such that Conditions 2 and 3 are unchanged

and Condition 4 maps to Condition 5 and vice-versa. Clearly the mapping −x→ x

has the same effect.
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We note that Cases (2) and (3) are consistent with the conditions of Theo-

rem 1.3.14. Cases (5) and (6) would be consistent with the existence of a BDWh(p)

as follows.

Theorem 1.3.16 The Liaw Variant produces a Z-cyclic BDWh(p) if the following

conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,

• x2 − 1 6= �,

• xa+2(xa−1)
x+1

∈ Cd
0 ,

• x(xa+1)
x−1

∈ Cd
0 ,

Proof: The quadruple of elements from the first forward differences have the

OMMA property.

In a similar fashion Cases (1) and (4) can be associated with a BDWh(p).

Theorem 1.3.17 The Liaw Variant produces a Z-cyclic BDWh(p) if the following

conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,

• (x− 1)(xa + 1) = �,

• xa+1(x−1)
x+1

∈ Cd
0 ,

• xa+1
xa−1

∈ Cd
0 ,

Proof: The quadruple of elements from the first forward differences have the

OMMA property.
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It easily follows from the conditions of Theorem 1.3.17 that (x+1)(xa−1) = �.

Consequently, the conditions of Theorem 1.3.17 imply those of Theorem 1.3.10 and

the whist design is actually a BDTWh(p).

Example 1.3.3 For p = 37, r = 2, x = 2 and a = 21 one can determine that

x = r1, 2(x1+a − 1) = r26, (x − 1)(xa + 1) = r14, xa+1(x−1)
x+1

= r32 and xa+1
xa−1

= r16.

Thus the sufficient conditions of Theorem 1.3.17 are satisfied and The Liaw Variant

produces a Z-cyclic BDTWh(p). The initial round of this design is given by the

following nine games. This design has the 3P property.

(1, 2, 21, 35), (16, 32, 3, 5), (34, 31, 11, 6), (26, 15, 28, 22),
(9, 18, 4, 19), (33, 29, 27, 8), (10, 20, 25, 17), (12, 24, 30, 13),
(7, 14, 36, 23).

Theorem 1.3.18 The Liaw Variant produces a Z-cyclic BOTWh(p) if, in addition

to the hypotheses of Theorem 1.3.10, the following conditions are satisfied.

• x2 − 1 6= �,

• x(xa−1)
x−1

∈ Cd
0 ,

• xa+2(xa+1)
x+1

∈ Cd
0 ,

Proof: Analogous to the proof of Theorem 1.3.12.

The proof of the following Lemma is analogous to that of Lemma 1.3.13.

Lemma 1.3.19 Let x and a be as defined in The Liaw Variant. Then the condi-

tions (1) x2 − 1 6= �, (2) xa+2(xa+1)
x+1

∈ Cd
0 , and (3) x(xa−1)

x−1
∈ Cd

0 , imply that (1)∗

(x− 1)(xa + 1) = � and (2) ∗ (x+ 1)(xa − 1) = �.

As a consequence of Lemma 1.3.19 Theorem 1.3.18 can be replaced by the following

theorem.

Theorem 1.3.20 The Liaw Variant produces a Z-cyclic BOTWh(p) if the follow-

ing conditions are satisfied.
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• x 6= �,

• 2(x1+a − 1) = �,

• x2 − 1 6= �,

• xa+2(xa+1)
x+1

∈ Cd
0 ,

• x(xa−1)
x−1

∈ Cd
0 ,

Example 1.3.4 For p = 29, r = 2, x = 26 and a = 21 one can determine that

x = r19, 2(x1+a− 1) = r18, x2− 1 = r3, xa+2(xa+1)
x+1

= r20 and x(xa−1)
x−1

= r0. Thus the

sufficient conditions of Theorem 1.3.20 are satisfied and The Liaw Variant produces

a Z-cyclic BOTWh(29). The initial round of this design is given by the following

seven games. This design has the 3P property.

(1, 26, 22, 3), (16, 10, 4, 19), (24, 15, 6, 14), (7, 8, 9, 21),
(25, 12, 28, 17), (23, 18, 13, 11), (20, 27, 5, 2).

We note that Cases (2) and (3) are consistent with the conditions of Theo-

rem 1.3.20. Cases (5) and (6) would be consistent with the existence of a BOWh(p)

as follows. It is to be noted that we have replaced the ordered difference 1− x by

−(x− 1) and then utilized that −1 ∈ Cd
m.

Theorem 1.3.21 The Liaw Variant produces a Z-cyclic BOWh(p) if the following

conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,

• x2 − 1 6= �,

• xa+2(xa−1)
x+1

∈ Cd
0 ,

• x(xa+1)
x−1

∈ Cd
0 ,
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Proof: The quadruple of elements from the ordered differences have the OMMA

property.

Observe that the conditions imposed in Theorem 1.3.16 are identical to those

of Theorem 1.3.21. Hence any Z-cyclic Wh(p) produced by either theorem is a

BDOWh(p).

Corollary 1.3.22 The Liaw Variant produces a Z-cyclic BDOWh(p) if the con-

ditions of Theorem 1.3.21 (alt. Theorem 1.3.16) are satisfied

Example 1.3.5 For p = 37, r = 2, x = 32 and a = 1 one can determine that

x = r5, 2(x1+a− 1) = r30, x2− 1 = r29, xa+2(xa−1)
x+1

= r4 and x(xa+1)
x−1

= r16. Thus the

sufficient conditions of Theorem 1.3.21 are satisfied and The Liaw Variant produces

a Z-cyclic BDOWh(37). The initial round of this design is given by the following

nine games. This design has the 3P property.

(1, 32, 25, 5), (16, 31, 30, 6), (34, 15, 36, 22), (26, 18, 21, 19),
(9, 29, 3, 8), (33, 20, 11, 17), (10, 24, 28, 13), (12, 14, 4, 23),
(7, 2, 27, 35).

In a similar fashion Cases (1) and (4) can be associated with a BOWh(p).

Theorem 1.3.23 The Liaw Variant produces a Z-cyclic BOWh(p) if the following

conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,

• (x− 1)(xa + 1) = �,

• x−1
x+1
∈ Cd

0 ,

• xa+1(xa+1)
xa−1

∈ Cd
0 ,

Proof: The quadruple of elements from the ordered differences have the OMMA

property.
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It easily follows from the conditions of Theorem 1.3.23 that (x+1)(xa−1) = �.

Consequently, the conditions of Theorem 1.3.23 imply those of Theorem 1.3.10 and

the whist design is actually a BOTWh(p).

Example 1.3.6 For p = 37, r = 2, x = 19 and a = 21 one can determine that

x = r35, 2(x1+a − 1) = r22, (x − 1)(xa + 1) = r10, x−1
x+1

= r28 and xa+1(xa+1)
xa−1

= r12.

Thus the sufficient conditions of Theorem 1.3.23 are satisfied and The Liaw Variant

produces a Z-cyclic BOTWh(37). The initial round of this design is given by the

following nine games. This design has the 3P property.

(1, 19, 30, 18), (16, 8, 36, 29), (34, 17, 21, 20), (26, 13, 3, 24),
(9, 23, 11, 14), (33, 35, 28, 2), (10, 5, 4, 32), (12, 6, 27, 31),
(7, 22, 25, 15).

Theorem 1.3.24 The Liaw Variant produces a Z-cyclic BSTWh(p) if, in addition

to the hypotheses of Theorem 1.3.10, the following conditions are satisfied.

• x2 − 1 6= �,

• x3(xa−1)
x−1

∈ C4
0 ,

• x3(xa+1)
x+1

∈ C4
0 ,

Proof: Taking into consideration Lemma 1.3.7, the proof is analogous to the proof

of Theorem 1.3.12.

Similar to Lemmas 1.3.13 and 1.3.19 we can state the following Lemma whose

proof follows in a fashion very similar to the proof of Lemma 1.3.13.

Lemma 1.3.25 Let x and a be as defined in The Liaw Variant. Then the con-

ditions (1) x2 − 1 6= �, (2) x3(xa−1)
x−1

∈ C4
0 , and (3) x3(xa+1)

x+1
∈ C4

0 , imply that (1)∗

(x− 1)(xa + 1) = � and (2) ∗ (x+ 1)(xa − 1) = �.

As a consequence of Lemma 1.3.25, Theorem 1.3.24 can be replaced by the following

theorem.
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Theorem 1.3.26 The Liaw Variant produces a Z-cyclic BSTWh(p) if the follow-

ing conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,

• x2 − 1 6= �,

• x3(xa−1)
x−1

∈ C4
0 ,

• x3(xa+1)
x+1

∈ C4
0 ,

Example 1.3.7 For p = 73, r = 5, x = 31 and a = 11 one can determine that

x = r11, 2(x1+a−1) = r56, x2−1 = r55, x3(xa−1)
x−1

= r36 and x3(xa+1)
x+1

= r28. Thus the

sufficient conditions of Theorem 1.3.26 are satisfied and The Liaw Variant produces

a Z-cyclic BSTWh(73). The initial round of this design is given by the following

18 games, the first 9 giving the partition set A and the second 9 give B. This

design does not have the 3P property.

(1, 31, 65, 42), (2, 62, 57, 11), (4, 51, 41, 22), (8, 29, 9, 44),
(16, 58, 18, 15), (32, 43, 36, 30), (64, 13, 72, 60), (55, 26, 71, 47),
(37, 52, 69, 21),
(25, 45, 19, 28), (50, 17, 38, 56), (27, 34, 3, 39), (54, 68, 6, 5),
(35, 63, 12, 10), (70, 53, 24, 20), (67, 33, 48, 40), (61, 66, 23, 7),
(49, 59, 46, 14).

Cases (2) and (3) are consistent with the conditions of Theorem 1.3.26. Cases (5)

and (6) would be consistent with the existence of a BSWh(p) as follows.

Theorem 1.3.27 The Liaw Variant produces a Z-cyclic BSWh(p) if the following

conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,
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• x2 − 1 6= �,

• x3(xa−1)
x+1

∈ C4
0 ,

• x3(xa+1)
x−1

∈ C4
0 ,

Proof: The quadruple of elements from the split differences have a property similar

to the OMMA property.

In a similar fashion Cases (1) and (4) can be associated with a BSWh(p).

Theorem 1.3.28 The Liaw Variant produces a Z-cyclic BSWh(p) if the following

conditions are satisfied.

• x 6= �,

• 2(x1+a − 1) = �,

• (x+ 1)(xa − 1) = �

• x2(x−1)
x+1

∈ C4
0 ,

• x2(xa+1)
xa−1

∈ C4
0 ,

Proof: The quadruple of elements from the split differences have a property similar

to the OMMA property. Condition 4 guarantees that the relationships associated

with Cases (1) and (4) are satisfied.

It is a fact that the conditions in Theorem 1.3.28 imply that (x−1)(xa+1) = �.

Thus the conditions of Theorem 1.3.28 imply those of Theorem 1.3.10 and the whist

design is actually a BSTWh(p).

Example 1.3.8 For p = 137, r = 3, x = 3 and a = 123 one can determine that

x = r1, 2(x1+a − 1) = r104, (x+ 1)(xa − 1) = r70, x2(x−1)
x+1

= r128 and x2(xa+1)
xa−1

= r0.
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Thus the sufficient conditions of Theorem 1.3.28 are satisfied and The Liaw Variant

produces a Z-cyclic BSTWh(137). The initial round of this design is given by the

following 34 games, the first 17 giving the partition set A and the second 17 B.

This design has the 3P property.

(1, 3, 99, 134), (122, 92, 22, 45), (88, 127, 81, 10),
(50, 13, 18, 124), (72, 79, 4, 58), (16, 48, 77, 89),
(34, 102, 78, 35), (38, 114, 63, 23), (115, 71, 14, 66),
(56, 31, 64, 106), (119, 83, 136, 54), (133, 125, 15, 12),
(60, 43, 49, 94), (59, 40, 87, 97), (74, 85, 65, 52),
(123, 95, 121, 42), (73, 82, 103, 55),
(9, 27, 69, 110), (2, 6, 61, 131), (107, 47, 44, 90),
(39, 117, 25, 20), (100, 26, 36, 111), (7, 21, 8, 116),
(32, 96, 17, 41), (68, 67, 19, 70), (76, 91, 126, 46),
(93, 5, 28, 132), (112, 62, 128, 75), (101, 29, 135, 108),
(129, 113, 30, 24), (120, 86, 98, 51), (118, 80, 37, 57),
(11, 33, 130, 104), (109, 53, 105, 84).

Scrutiny of the proof of Theorem 1.3.12 (alt. Theorem 1.3.18) leads to the fact

that one can place the first forward (alt. the ordered) differences in the base table

of The Liaw Variant into a pair of squares and a pair of non-squares. It then

becomes essential that the construction is achieved if one can guarantee that for

each pair the members are an odd multiple of m units apart in PS(r). Conditions

2 and 3 (in each theorem), that is Conditions 4 and 5 in Theorem 1.3.14, provide

such a guarantee. The following corollary and lemma demonstrate some obvious

alternative versions of these conditions.

Corollary 1.3.29 Condition 4 of Theorem 1.3.28 can be replaced by any one of

the following.

• (x− 1)(xa + 1) = �,

• (x+ 1)(xa − 1) = �,

• (x− 1)(xa − 1) = �
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Lemma 1.3.30 Condition 4 of Theorem 1.3.14 can be replaced by any one of the

following: (1)
1

x1+a
x(xa − 1)

x− 1
, (2) x1+a

x− 1

x(xa − 1)
, (3)

1

x1+a
x− 1

x(xa − 1)
. Condition

5 of Theorem 1.3.14 can be replaced by
x+ 1

x(xa + 1)
.

Statements very similar to those found in Lemma 1.3.30 can be formulated for

Conditions 4 and 5 of Theorem 1.3.20.

Lemma 1.3.31 Let z ∈ Z∗
p. (a) If z ∈ Cd

0 then z−1 ∈ Cd
0 . (b) If z ∈ Cd

m then

z−1 ∈ Cd
m.

Proof: (a) Since z = rsd, z−1 = rp−1−sd = r(t−s)d and z−1 ∈ Cd
0 . (b) Since z =

r(2s+1)m, z−1 = r(2t−2s−1)m and z−1 ∈ Cd
m.

Lemmas 1.3.30 and 1.3.31 are useful in the proof of the following theorem.

Theorem 1.3.32 The pair {x, a} satisfies the conditions for Theorem 1.3.14 if

and only if the pair {x−1, a} satisfies the conditions for Theorem 1.3.20.

Proof: “only if” For convenience the conditions listed in Theorem 1.3.14, in the

order given, will be denoted by 1, 2, 3, 4, 5 and those of Theorem 1.3.20 by 1∗, 2∗,

3∗, 4∗, 5∗. As a further convenience x−1 will be denoted by y. Since x is a non-

square x = rs with s odd. Therefore y = rp−1−s = rw, w odd and 1∗ is satisfied.

From 2 it follows that −x1+a(2(y1+a − 1)) = � and 2∗ follows since both −1 and

x1+a are squares. Similarly 3∗ follows since 3 yields −x2(y2 − 1). Since x satisfies

4 we can begin with Condition (2) of Lemma 1.3.30, i.e. x1+a
x− 1

x(xa − 1)
. This

latter expression can be manipulated into the form
y − 1

y(ya − 1)
and an application

of Lemma 1.3.31 establishes 4∗. Lastly we begin with the alternate version of 5

as given in Lemma 1.3.30, namely
x+ 1

x(xa + 1)
, and manipulate this expression to

obtain
ya+1(y + 1)

y(ya + 1)
∈ Cd

0 . That is to say
y + 1

y(ya + 1)
∈ Cd

m. Hence via Lemma 1.3.31

y(ya + 1)

y + 1
∈ Cd

m and
ya+2(ya + 1)

y + 1
∈ Cd

0 . Thus 5∗ holds and the “only if” part of
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the theorem is established.

Clearly manipulations similar to those presented in the “only if” part of this proof

can be employed to establish the “if” part.

In a similar, but simpler, fashion one can prove the following theorem.

Theorem 1.3.33 The pair {x, a} satisfies the conditions for Theorem 1.3.17 if

and only if the pair {x−1, a} satisfies the conditions for Theorem 1.3.23.

Theorems 1.3.32 and 1.3.33 enable us to state a powerful property of The Liaw

Variant.

Theorem 1.3.34 The Liaw Variant produces a Z-cyclic BDTWh(p) if and only

if The Liaw Variant produces a Z-cyclic BOTWh(p).

1.4 Asymptotics

In this section we will apply the “Buratti - Pasotti Asymptotic Technique”

(see Theorem 2.2 in [1]) to obtain asymptotic bounds for solutions obtained via The

Liaw Variant. The pertinent materials to be used are given here as Definition 1.4.1

and Theorem 1.4.1.

Definition 1.4.1 [1] Let s ≥ 2, w ≥ 1 and z ≥ 0 be arbitrary integers. Denote

by Q(s, w, z) the number defined by

Q =
1

4
(U +

√
U2 + 4sw−1(w + sz) )2,

where

U =
w∑
h=1

(
w
h

)
(s− 1)h(h− 1).

Theorem 1.4.1 [1] Let q ≡ 1 (mod s) be a prime power, let B =

{b1, b2, . . . , bw} be an arbitrary w-subset of GF(q) and let
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(β1, β2, . . . , βw) be an arbitrary element of Zws , where Zws = Zs × · · · × Zs. Set

X = {x ∈GF(q) : x ∈ Cs
βi
, 1 ≤ i ≤ w}. Then

|X| ≥
q − U√q − sw−1w

sw

and hence |X| > z as soon as q > Q(s, w, z). Thus, in particular, X is not empty

for q > Q(s, w, 0) = Q(s, w).

Theorem 1.4.2 Assume that k ≥ 3. Let α = x, β = xa and γ = xa+1. If α, β, γ

are such that

α ∈ Cd
1 , α + 1 ∈ Cd

1 , α− 1 ∈ Cd
m+2,

β ∈ Cd
m−1, β + 1 ∈ Cd

0 , β − 1 ∈ Cd
1 ,

γ ∈ Cd
m, γ − 1 ∈ Cd

2 .

then The Liaw Variant produces a Z-cyclic BDTWh(p) and a Z-cyclic

BOTWh(p).

Proof: For convenience the conditions listed above will be denoted by Cij,

1 ≤ i, j ≤ 3 with C33 = ∅ and the conditions of Theorem 1.3.14 will be denoted

Ci, 1 ≤ i ≤ 5. Thus C11 ⇒ C1. Since k ≥ 3, 2 is a square and C32 ⇒ C2.

Furthermore, (1) C12 ∧ C13 ⇒ C3, (2) C31 ∧ C11 ∧ C23 ∧ C13 ⇒ C4 and (3) C11 ∧

C22 ∧ C12 ⇒ C5. Consequently these conditions are sufficient to produce a Z-

cyclic BDTWh(p) via The Liaw Variant. The Z-cyclic BOTWh(p) follows from

Theorem 1.3.32 (alt. Theorem 1.3.34).

Theorem 1.4.3 Let k = 2 and define u by the condition 2 ∈ C4
u. If α, β, γ are

such that

α ∈ C4
1 , α + 1 ∈ C4

1 , α− 1 ∈ C4
0 ,

β ∈ C4
1 , β + 1 ∈ C4

0 , β − 1 ∈ C4
1 ,

γ ∈ C4
2 , γ − 1 ∈ C4

u.
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then The Liaw Variant produces a Z-cyclic BDTWh(p) and a Z-cyclic

BOTWh(p).

Proof: With the same notations as in the proof of Theorem 1.4.2 note that (2 ∈

C4
u)∧C32 ⇒ C2. The rest of the proof follows as in the proof of Theorem 1.4.2.

Theorem 1.4.4 Let p be prime such that p = 2kt + 1 with k ≥ 2 and t odd. The

Liaw Variant produces a Z-cyclic BDTWh(p) and a Z-cyclic

BOTWh(p) whenever p > Q(d, 3) where d = 2k.

Proof: Consider that k ≥ 3. Assume that p > Q(d, 3). Apply Theorem 1.4.1

with s = d, w = 3, B = {0, 1,−1} and (β1, β2, β3) = (1, 1,m + 2). Then the

set X1 = {α : α ∈ Cd
1 , α + 1 ∈ Cd

1 , α − 1 ∈ Cd
m+2} is not empty. Arbitrarily

fix α ∈ X1. Apply Theorem 1.4.1 with s = d, w = 3, B = {0,−1, 1} and

(β1, β2, β3) = (m− 1, 0, 1). Then the set X2 = {β : β ∈ Cd
m−1, β + 1 ∈ Cd

0 , β − 1 ∈

Cd
1} is not empty. Arbitrarily fix β ∈ X2. Apply Theorem 1.4.1 with s = d,

w = 2, B = {0, 1} and (β1, β2) = (m, 2). Then, since Q(d, 3) > Q(d, 2) the set

X3 = {γ : γ ∈ Cd
m, γ − 1 ∈ Cd

2} is not empty. Arbitrarily fix γ ∈ X3. Thus by

Theorem 1.4.2 the existence is established. The case k = 2 follows in a similar

fashion.

In the statement and proof of the following theorem we will use the same

assignments and the same notations as those given in Theorem 1.4.2 and its proof.

The exception here is that Ci, 1 ≤ i ≤ 5 are the conditions of Theorem 1.3.26.

Theorem 1.4.5 If α, β, γ are such that

α ∈ C4
1 , α + 1 ∈ C4

3 , α− 1 ∈ C4
0 ,

β ∈ C4
1 , β + 1 ∈ C4

0 , β − 1 ∈ C4
1 ,

γ ∈ C4
2 , γ − 1 ∈ C4

2 .

then The Liaw Variant produces a Z-cyclic BSTWh(p).
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Proof: Assume that k ≥ 3. Note that (1) C11 ⇒ C1, (2) C32 ⇒ C2, (3) C12∧C13 ⇒

C3, (4) C11 ∧ C23 ∧ C13 ⇒ C4, and (5) C11 ∧ C22 ∧ C12 ⇒ C5. For the case k = 2

replace C32 by γ − 1 ∈ C4
u where 2 ∈ C4

u.

Theorem 1.4.6 Let p be prime such that p = 2kt + 1 with k ≥ 2 and t odd. The

Liaw Variant produces a Z-cyclic BSTWh(p) whenever p > Q(d, 3) where d = 2k.

Proof: Analogous to that of Theorem 1.4.4.

It is clear from the theorems of this section that the number Q(d, 3) serves

as an analytic bound for The Liaw Variant. For 2 ≤ k ≤ 8 the following chart

compares this analytic bound with previously published analytic bounds for the

specializations involved in this study.

k Q(d, 3) Previous
2 6593 16384 [25]
3 694017 2111209 [15]
4 55131137 254370601 [13]
5 3901878273 21184511401 [21]
6 262145032193 1493628623881 [21]
7 17182293426177 102584081424400 [21]
8 1112744488861697 6798134420640000 [18]

1.5 The Data Study and Some Comparisons of the Results

This section is divided into four subsections wherein each subsection contains

a summary of the performance of The Liaw Variant as a producer of specific multi-

specialization whist designs. In the categories “Z-Cyclic (BDT/BOT)Wh(p)” and

in the category “Z-Cyclic BSTWh(p)” The Liaw Variant outperforms previously

published constructions. In the category “ZCPS-BDOWh(p)” The Liaw Variant

exhibited no exceptions. The one category in which we feel that The Liaw Variant

exhibited a larger than expected list of exceptions was the category “non-ZCPS-

BDOWh(p)”. Data samples for each category are given in the appendices.
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1.5.1 Data Related to Z-Cyclic (BDT/BOT)Wh(p)

As mentioned earlier, previous studies [15, 16, 20, 21, 18, 19, 11, 17] utilized

one or both of the generalized Anderson - Ellison Constructions [22] to obtain

solutions for the whist designs of interest to the respective study. In each case

an analytic asymptotic bound was obtained (or approximated). Then, for those

primes less than the analytic asymptotic bound, the data generation involved

finding, via the generalized Anderson - Ellison Construction being employed, as

many solutions as one could. Of course, in some cases these searches were limited

by practical time considerations. In every case case this data process resulted in

a list of primes for which the constructions did not produce the desired whist

design. That is to say, there was a list of exceptions. The chart below provides

a comparison of The Liaw Variant (denoted as LV) to the Generalized Anderson

- Ellison Construction (denoted Gen A-E) in terms of the number of primes

less than 1,000,000 for which the respective construction could not produce a

solution. It is to be noted that, with the exclusion of the OTWh(p) for the case

k = 2 [16], every exception to The Liaw Variant is also an exception to the

Generalized Anderson - Ellison Construction. A sampling of the results in this

case is presented in Appendix I.
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k Gen A-E LV LV Exceptions
2 7 [5], 1 [16] 0 ∅
3 15 [15] 2 {41, 73}
4 36 [20] 0 ∅
5 58 [21] 4 {97, 353, 673, 929}
6 75 [21] 6 {193, 449, 577, 1217, 1601, 2753}
7 58 [21] 6 {641, 1153, 1409, 2689, 3457, 4481}
8 184 [18] 5 {257, 769, 3329, 7937, 9473}
9 54 [19] 7 {7681, 10753, 11777, 17921, 23041, 26113, 36353}
10 76 [19] 15 {13313, 15361, 19457, 25601, 37889}

{39937, 50177, 58369, 70657, 76801}
{80897, 87041, 95233, 101377, 138241}

11 31 [19] 11 {18433, 59393, 83969, 120833, 133121, 301057}
{329729, 366593, 428033, 694273, 706561}

12 25 [19] 19 {12289, 61441, 86017, 151553, 176129}
{184321, 249857, 307201, 331777, 380929}
{430081, 471041, 495617, 577537, 643073}
{667649, 675841, 724993, 765953}

13 9 [19] 9 {40961, 188417, 270337, 286721, 319489}
{417793, 778241, 925697, 974849}

14 4 [19] 3 {114689, 147457, 737281}
15 2 [19] 2 {163841, 557057}
16 1 [19] 1 {65537}
17 ∅ [19] ∅ ∅
18 1 [19] 1 {786433}

1.5.2 Data Related to Z-Cyclic BSTWh(p)

In this subsection The Liaw Variant is compared to the construction used by

D.R. Berman and N. J. Finizio [17]. This latter study considered the case k = 3

only. The Liaw Variant exceptions listed below for k = 3 are also exceptions to

the construction employed in [17]. Our data study considered all primes (≡ 1

(mod 4)) less than 1,000,000. A sampling of the results in this case is presented

in Appendix II.
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k B-F LV LV Exceptions
3 6 2 {41, 89}
4 2 {17, 113}
5 1 {97}
6 0 ∅
7 1 {641}
8 1 {257}
9 0 ∅
10 0 ∅
11 0 ∅
12 0 ∅
13 0 ∅
14 0 ∅
15 1 {163841}
16 1 {65537}
17 ∅ ∅ ∅
18 0 ∅

1.5.3 Data Related to ZCPS-BDOWh(p)

In [10] it is noted that the classic construction of R. C. Bose and J. M.

Cameron [26] produces a ZCPS-BDOWh(p) for every prime p ≡ 1 (mod 4). Our

data study considered all primes (≡ 1 (mod 4)) less than 1,000,000. There were

no exceptions, that is to say, The Liaw Variant produced a ZCPS-BDOWh(p) for

all such primes. A sampling of the results in this case is presented in Appendix

III.

1.5.4 Data Related to non-ZCPS-BDOWh(p)

Since ZCPS-BDOWh(p) are known for all p ≡ 1 (mod 4) it was decided to

investigate, using The Liaw Variant, the existence of non ZCPS-BDOWh(p). A

construction for non-ZCPS-DOWh(p) was introduced in [27]. In that paper the

property of balance was not considered and no data was generated. Consequently

there are no comparisons to be made for this multi-specialization category. Our

data study considered all p = 4u + 1 less than 1,000,000 and related to the
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conditions associated with Corollary 1.3.22. A sampling of the results in this case

is presented in Appendix IV. However, a comparison of the data information in

the previous three subsections with the chart below shows that for non-ZCPS-

DOWh(p) The Liaw Variant has considerably more exceptional values in this

case. The specific exceptional values are presented in Appendix V.

k Number of LV Exceptions
2 4
3 4
4 6
5 6
6 11
7 15
8 15
9 21
10 27
11 14
12 20
13 9
14 4
15 2
16 1
17 ∅
18 1
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Appendix I

This appendix contains a sampling of the data related to the BDTWh(p)

and BOTWh(p) generated by The Liaw Variant. For each value of k the data

study was carried out for all primes less than 1,000,000. Consequently the data

sets are quite extensive. For efficiency of space we restrict our lists to the data

for the first 4 solutions. For k = 13, 15, 16, 17, 18 no solutions were obtained. The

complete data sets for p < 1, 000, 000 are available from either of the authors. For

k ≥ 10 a further attempt at conserving space is to abbreviate the BDT base table,

(1, x, x1+a,−x) and the BOT base table, (1, x−1, (x−1)1+a,−x−1, respectively, to

(x1+a) and (x−1, (x−1)1+a).
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{p, r, x, a} BDT base table BOT base table

k = 2
{29, 2, 19, 21} (1, 19, 4, 10) (1, 26, 22, 3)
{37, 2, 2, 21} (1, 2, 21, 35) (1, 19, 30, 18)
{53, 2, 34, 29} (1, 34, 6, 19) (1, 39, 9, 14)
{61, 2, 24, 17} (1, 24, 52, 37) (1, 28, 27, 33)
k = 3
{89, 3, 54, 51} (1, 54, 73, 35) (1, 61, 50, 28)
{137, 3, 27, 11} (1, 27, 78, 110) (1, 66, 65, 71)
{233, 3, 22, 139} (1, 22, 162, 211) (1, 53, 105, 180)
{281, 3, 194, 35} (1, 194, 119, 87) (1, 239, 196, 42)
k = 4
{113, 3, 39, 103} (1, 39, 83, 74) (1, 29, 64, 84)
{241, 7, 199, 135} (1, 199, 10, 42) (1, 109, 217, 132)
{337, 10, 257, 135} (1, 257, 324, 80) (1, 139, 311, 198)
{401, 3, 27, 135} (1, 27, 145, 374) (1, 104, 177, 297)
k = 5
{1249, 7, 636, 1199} (1, 636, 1103, 613) (1, 163, 1172, 1086)
{1697, 3, 344, 271} (1, 344, 93, 1353) (1, 74, 73, 1623)
{1889, 3, 1198, 1231} (1, 1198, 1230, 691) (1, 1427, 923, 462)
{2017, 5, 1897, 1487} (1, 1897, 175, 120) (1, 1227, 1118, 790)
k = 6
{2113, 5, 1895, 287} (1, 1895, 1857, 218) (1, 126, 1593, 1987)
{3137, 3, 1844, 1375} (1, 1844, 1732, 1293) (1, 427, 2005, 2710)
{4289, 3, 113, 543} (1, 113, 1732, 4176) (1, 2581, 2563, 1708)
{4673, 3, 2707, 159} (1, 2707, 1119, 1966) (1, 1091, 593, 3582)
k = 7
{4993, 5, 3704, 2623} (1, 3704, 2631, 1289) (1, 2328, 2116, 2665)
{6529, 7, 217, 5695} (1, 217, 3290, 6312) (1, 4122, 6273, 2407)
{7297, 5, 6977, 6079} (1, 6977, 3762, 320) (1, 4401, 3536, 2896)
{9601, 13, 6455, 703} (1, 6455, 8719, 3146) (1, 9012, 8175, 589)
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{p, r, x, a} BDT base table BOT base table

k = 8
{14081, 3, 10989, 11647} (1, 10989, 8039, 3092) (1, 9823, 8835, 4258)
{14593, 5, 9805, 7551} (1, 9805, 11409, 4788) (1, 7647, 10931, 6946)
{22273, 5, 2961, 1407} (1, 2961, 22065, 19312) (1, 850, 5247, 21423)
{23297, 3, 1494, 14207} (1, 1494, 21082, 21803) (1, 11898, 15335, 11399)
k = 9
{32257, 15, 5992, 4351} (1, 5992, 14199, 26265) (1, 24112, 14603, 8145)
{45569, 3, 33443, 38655} (1, 33443, 40272, 12126) (1, 32465, 41259, 13104)
{51713, 3, 22002, 45823} (1, 22002, 16347, 29711) (1, 48909, 28237, 2804)
{67073, 3, 49449, 19199} (1, 49449, 4952, 17624) (1, 5271, 25342, 61802)
k = 10
{64513, 5, 63789, 39423} (44846) (60325, 44815)
{187393, 7, 46601, 35327} (16832) (154045, 72666)
{119809, 11, 102828, 41471} (70695) (14372, 92856)
{136193, 3, 75113, 96767} (40405) (121247, 57767)
k = 11
{79873, 7, 67715, 19455} (34770) (75294, 65936)
{202753, 10, 78209, 136191} (10138) (122737, 86897)
{464897, 3, 408845, 5119} (206059) (89617, 109858)
{473089, 29, 243549, 308223} (297658) (59706, 392910)
k = 12
{520193, 3, 286952, 59391} (350610) (356051, 444055)
k = 14
{638977, 7, 236474, 335871} (262137) (396212, 276374)

Appendix II

This appendix contains data related to BSTWh(p) produced by The Liaw

Variant. For the partition cells see the comment prior to Theorem 1.3.28. As in

Appendix I the data for the first 4 solutions is presented. Complete data sets for

primes less than 1,000,000 can be obtained from either of the authors.

k {p, r, x, a} BST Base Table

3 {73, 5, 31, 11} (1, 31, 65, 42)
{137, 3, 12, 115} (1, 12, 99, 125)
{233, 3, 10, 211} (1, 10, 29, 223)
{281, 3, 27, 35} (1, 27, 126, 254)
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k {p, r, x, a} Base Table

4 {241, 7, 178, 39} (1, 178, 226, 63)
{337, 10, 195, 71} (1, 195, 42, 142)
{401, 3, 27, 263} (1, 27, 177, 374)
{433, 5, 94, 71} (1, 94, 235, 339)

5 {353, 3, 206, 111} (1, 206, 166, 147)
{673, 5, 306, 111} (1, 306, 418, 367)
{929, 3, 174, 239} (1, 174, 354, 755)
{1249, 7, 452, 399} (1, 452, 1233, 797)

6 {193, 5, 37, 31} (1, 37, 109, 156)
{449, 3, 241, 31} (1, 241, 90, 208)
{577, 5, 265, 415} (1, 265, 193, 312)
{1217, 3, 389, 415} (1, 389, 961, 828)

7 {1153, 5, 623, 191} (1, 623, 503, 530)
{1409, 3, 27, 63} (1, 27, 702, 1382)
{2689, 19, 2219, 575} (1, 2219, 308, 470)
{3457, 7, 343, 703} (1, 343, 1937, 3114)

8 {769, 11, 691, 639} (1, 691, 361, 78)
{3329, 3, 243, 383} (1, 243, 359, 3086)
{7937, 3, 2533, 6271} (1, 2533, 5543, 5404)
{9473, 3, 4227, 4479} (1, 4227, 7980, 5246)

9 {7681, 17, 2337, 3327} (1, 2337, 3119, 5344)
{10753, 11, 1331, 3327} (1, 1331, 2507, 9422)
{11777, 3, 492, 9471} (1, 492, 10944, 11285)
{17921, 3, 27, 4863} (1, 27, 2294, 17894)

10 {13313, 3, 4078, 4607} (1, 4078, 1411, 9235)
{15361, 7, 12740, 1535} (1, 12740, 9905, 2621)
{19457, 3, 243, 1535} (1, 243, 11208, 19214)
{25601, 3, 2187, 18943} (1, 2187, 2560, 23414)

11 {18433, 5, 1499, 15359} (1, 1499, 3785, 16934)
{59393, 5, 3125, 37887} (1, 3125, 49689, 56268)
{79873, 7, 24813, 35839} (1, 24813, 66681, 55060)
{83969, 3, 243, 80895} (1, 243, 10318, 83726)

12 {12289, 11, 5812, 2047} (1, 5812, 6241, 6477)
{61441, 17, 50953, 14335} (1, 50953, 54353, 10488)
{86017, 5, 59330, 38911} (1, 59330, 55326, 26687)
{151553, 3, 243, 38911} (1, 243, 126583, 151310)

13 {40961, 3, 13906, 4095} (1, 13906, 9110, 27055)
{188417, 3, 86987, 151551} (1, 86987, 181966, 101430)
{270337, 10, 23437, 61439} (1, 23437, 253665, 246900)
{286721, 11, 11, 217087} (1, 11, 251064, 286710)
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k {p, r, x, a} Base Table

14 {114689, 3, 31459, 40959} (1, 31459, 105801, 83230)
{147457, 10, 54340, 40959} (1, 54340, 22773, 93117)
{638977, 7, 128588, 155647} (1, 128588, 461375, 510389)
{737281, 11, 317865, 24575} (1, 317865, 39221, 419416)

15 {557057, 3, 365241, 376831} (1, 365241, 93279, 191816)
18 {786433, 10, 51897, 131071} (1, 51897, 392449, 734536)

Appendix III

This appendix contains a sampling of the ZCPS-Wh(p) generated by The

Liaw Variant. As in the previous appendices our data lists are for the first 4

solutions only. The complete data sets are available from either author.

k {p, r, x, a} ZCPS Base Table

2 {5, 2, 2, 1} (1, 2, 4, 3)
{13, 2, 8, 1} (1, 8, 12, 5)
{29, 2, 12, 1} (1, 12, 28, 17)
{37, 2, 31, 1} (1, 31, 36, 6)

3 {41, 6, 6, 19} (1, 6, 40, 35)
{73, 5, 10, 3} (1, 10, 72, 63)
{89, 3, 37, 3} (1, 37, 88, 52)
{137, 3, 27, 67} (1, 27, 136, 110)

4 {17, 3, 10, 7} (1, 10, 16, 7)
{113, 3, 40, 7} (1, 40, 112, 73)
{241, 7, 197, 7} (1, 197, 240, 44)
{337, 10, 199, 23} (1, 199, 336, 138)

5 {97, 5, 28, 15} (1, 28, 96, 69)
{353, 3, 67, 15} (1, 67, 352, 286)
{673, 5, 118, 15} (1, 118, 672, 555)
{929, 3, 701, 15} (1, 701, 928, 228)

6 {193, 5, 158, 31} (1, 158, 192, 35)
{449, 3, 412, 31} (1, 412, 448, 37)
{577, 5, 557, 31} (1, 557, 576, 20)
{1217, 3, 910, 31} (1, 910, 1216, 307)

7 {641, 3, 243, 63} (1, 243, 640, 398)
{1153, 5, 1096, 63} (1, 1096, 1152, 57)
{1409, 3, 261, 63} (1, 261, 1408, 1148)
{2689, 19, 1410, 63} (1, 1410, 2688, 1279)
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k {p, r, x, a} ZCPS Base Table

8 {257, 3, 27, 127} (1, 27, 256, 230)
{769, 11, 214, 127} (1, 214, 768, 555)
{3329, 3, 2775, 127} (1, 2775, 3328, 554)
{7937, 3, 2805, 127} (1, 2805, 7936, 5132)

9 {7681, 17, 5722, 255} (1, 5722, 7680, 1959)
{10753, 11, 4894, 255} (1, 4894, 10752, 5859)
{11777, 3, 7795, 255} (1, 7795, 11776, 3982)
{17921, 3, 12162, 255} (1, 12162, 17920, 5759)

10 {13313, 3, 10076, 511} (1, 10076, 13312, 3237)
{15361, 7, 11457, 511} (1, 11457, 15360, 3904)
{19457, 3, 15841, 511} (1, 15841, 19456, 3616)
{25601, 3, 12725, 511} (1, 12725, 25600, 12876)

11 {18433, 5, 17660, 1023} (1, 17660, 18432, 773)
{59393, 5, 2678, 1023} (1, 2678, 59392, 56715)
{79873, 7, 13725, 1023} (1, 13725, 79872, 66148)
{83969, 3, 27450, 1023} (1, 27450, 83968, 56519)

12 {12289, 11, 8105, 2047} (1, 8105, 12288, 4184)
{61441, 17, 39003, 2047} (1, 39003, 61440, 22438)
{86017, 5, 7923, 2047} (1, 7923, 86016, 78094)
{151553, 3, 52786, 2047} (1, 52786, 151552, 98767)

13 {40961, 3, 243, 4095} (1, 243, 40960, 40718)
{188417, 3, 3995, 4095} (1, 3995, 188416, 184422)
{270337, 10, 247085, 4095} (1, 247085, 270336, 23252)
{286721, 11, 53388, 4095} (1, 53388, 286720, 233333)

14 {114689, 3, 28269, 8191} (1, 28269, 114688, 86420)
{147457, 10, 91750, 8191} (1, 91750, 147456, 55707)
{638977, 7, 461405, 8191} (1, 461405, 638976, 177572)
{737281, 11, 667463, 8191} (1, 667463, 737280, 69818)

15 {163841, 3, 94740, 16383} (1, 94740, 163840, 69101)
{557057, 3, 459996, 16383} (1, 459996, 557056, 97061)
{1146881, 3, 1118503, 16383} (1, 1118503, 1146880, 28378)
{2654209, 11, 1985530, 16383} (1, 1985530, 2654208, 668679)

16 {65537, 3, 27, 32767} (1, 27, 65536, 65510)
{1376257, 5, 485685, 32767} (1, 485685, 1376256, 890572)
{1769473, 5, 418362, 32767} (1, 418362, 1769472, 1351111)
{2424833, 3, 2097965, 32767} (1, 2097965, 2424832, 326868)

17 {1179649, 19, 736781, 65535} (1, 736781, 1179648, 442868)
{2752513, 20, 2722767, 65535} (1, 2722767, 2752512, 29746)
{6684673, 5, 5291143, 65535} (1, 5291143, 6684672, 1393530)
{6946817, 3, 5033378, 65535} (1, 5033378, 6946816, 1913439)
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k {p, r, x, a} ZCPS Base Table

18 {786433, 10, 1000, 131071} (1, 1000, 786432, 785433)
{8650753, 10, 2518187, 131071} (1, 2518187, 8650752, 6132566)
{10223617, 5, 4568826, 131071} (1, 4568826, 10223616, 5654791)
{11272193, 3, 6233218, 131071} (1, 6233218, 11272192, 5038975)

Appendix IV

This appendix contains a sampling of the non-ZCPS-BDOWh(p) generated

by The Liaw Variant. As in the previous appendices our data lists are for the first

4 solutions only. The complete data sets are available from either author.

k {p, r, x, a} BDO Base Table

2 {37, 2, 32, 1} (1, 32, 25, 5)
{61, 2, 24, 1} (1, 24, 27, 37)
{101, 2, 8, 1} (1, 8, 64, 93)
{109, 6, 39, 65} (1, 39, 71, 70)

3 {137, 3, 12, 99} (1, 12, 64, 125)
{281, 3, 27, 219} (1, 27, 202, 254)
{313, 10, 47, 299} (1, 47, 210, 266)
{409, 21, 21, 75} (1, 21, 392, 388)

4 {593, 3, 114, 247} (1, 114, 194, 479)
{881, 3, 540, 599} (1, 540, 710, 341)
{977, 3, 685, 375} (1, 685, 396, 292)
{1009, 11, 228, 231} (1, 228, 418, 781)

5 {929, 3, 802, 399} (1, 802, 354, 127)
{1889, 3, 567, 1455} (1, 567, 985, 1322)
{2017, 5, 51, 1743} (1, 51, 1828, 1966)
{2273, 3, 325, 1487} (1, 325, 723, 1948)

6 {4673, 3, 3693, 2719} (1, 3693, 1674, 980)
{4801, 7, 2078, 2463} (1, 2078, 4268, 2723)
{5441, 3, 4016, 3807} (1, 4016, 3087, 1425)
{5569, 13, 2754, 4575} (1, 2754, 5410, 2815)

7 {7297, 5, 5305, 2623} (1, 5305, 626, 1992)
{9601, 13, 4336, 1599} (1, 4336, 4207, 5265)
{15233, 3, 4589, 8639} (1, 4589, 5313, 10644)
{16001, 3, 5663, 4543} (1, 5663, 6951, 10338)
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k {p, r, x, a} BDO Base Table

8 {36097, 5, 19573, 25727} (1, 19573, 21003, 16524)
{37633, 5, 21681, 6015} (1, 21681, 2619, 15952)
{41729, 3, 21, 15999} (1, 21, 11831, 41708)
{43777, 5, 4524, 17023} (1, 4524, 33873, 39253)

9 {102913, 5, 47335, 63231} (1, 47335, 75902, 55578)
{113153, 3, 103972, 26367} (1, 103972, 35774, 9181)
{118273, 5, 90700, 45823} (1, 90700, 79807, 27573)
{119297, 3, 112460, 3327} (1, 112460, 4481, 6837)

10 {240641, 3, 176388, 194047} (1, 176388, 143180, 64253)
{285697, 5, 250739, 183807} (1, 250739, 89592, 34958)
{295937, 3, 152158, 239103} (1, 152158, 9190, 143779)
{320513, 3, 46373, 303615} (1, 46373, 174204, 274140)

11 {329729, 3, 49091, 222207} (1, 49091, 256308, 280638)
{366593, 3, 171020, 111615} (1, 171020, 263382, 195573)
{534529, 11, 71332, 166911} (1, 71332, 71610, 463197)
{575489, 3, 55881, 373759} (1, 55881, 160351, 519608)

12 {921601, 11, 180200, 325631} (1, 180200, 614734, 741401)

Appendix V

This appendix contains the primes for which The Liaw Variant failed to

produce Z-cyclic BDOWh(p) designs. The data study was restricted to primes

less than 1,000,000.

k exceptions set
2 {5, 13, 29, 53}
3 {41, 73, 89, 233}
4 {17, 113, 241, 337, 401, 433, }
5 {97, 353, 673, 1249, 1697, 2081}
6 193, 449, 577, 1217, 1601, 2113, 2753, 3137, 4289, 6337, 8513}
7 {641, 1153, 1409, 2689, 3457, 4481, 4993, 6529, 9857, 10369, 11393,

12161, 13441, 13697, 20353}
8 {257, 769, 3329, 7937, 9473, 14081, 14593, 22273, 23297, 26881,

30977, 31489, 40193, 49921, 60161}
9 {7681, 10753, 11777, 17921, 23041, 26113, 32257, 36353, 45569,

51713, 67073, 76289, 81409, 84481, 87553, 96769, 112129, 115201,
125441, 133633, 161281}
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k exceptions set
10 {13313, 15361, 19457, 25601, 37889, 39937, 50177, 58369, 64513,

70657, 76801, 80897, 87041, 95233, 101377, 119809, 136193, 138241,
187393, 211969, 228353, 242689, 254977, 279553, 310273, 365569,

463873}
11 {18433, 59393, 79873, 83969, 120833, 133121, 202753, 301057,

428033, 464897, 473089, 514049, 649217, 878593}
12 {12289, 61441, 86017, 151553, 176129, 184321, 249857, 307201,

331777, 380929, 430081, 471041, 495617, 520193, 577537, 643073,
667649, 675841, 724993, 765953, 790529, 946177, 962561, 995329}

13 {40961, 188417, 270337, 286721, 319489, 417793, 778241,
925697, 974849}

14 {114689, 147457, 638977, 737281}
15 {163841, 557057}
16 {65537}
18 {786433}
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Abstract

The concept of balance is a relatively new specialization in the study of whist

designs, having been introduced in 2010 [1]. It was noted at that time that, for

primes of the form p = 4u+ 1, a classic whist construction of R. C. Bose and J. M.

Cameron produces whist designs that not only have the property of balance but

also two other whist specializations, that of being directed and ordered. The Bose

- Cameron construction is such that the set of initial round partner pairs form the

patterned starter in the additive group of the galois field Zp. For primes of the

form p = 4u + 1 = 2kt + 1, where k ≥ 2 and t is odd, this study addresses the

existence of whist designs that are balanced, directed and ordered but whose initial

round partner pairs do not form the patterned starter in Zp. We establish that

for 2 ≤ k ≤ 6 this new multi-specialization whist design exists for all such primes

except for p = 5, 13, 17 and possibly for p = 97, 193. For k > 6 and p < 1, 000, 000

these designs exist except, possibly, for p = 257, 769, 12289, 40961, 65537, 786433.

keywords: Balanced whist designs; Directed whist designs; Ordered whist designs;

Z-cyclic designs.

2.1 Introduction

For some history and interesting information related to the whist tournament

problem see the recent article by I. Anderson and T. Crilly [2]. Although whist

tournament designs are known to exist for all v ≡ 0, 1 (mod 4) [3] we restrict our

attention, here, to v ≡ 1 (mod 4).

Definition 2.1.1 A whist tournament design on v = 4u+ 1 players, denoted

Wh(v), is a (v, 4, 3) near resolvable BIBD. A whist game (alt. whist table) is a

block, (a, b, c, d), of the BIBD and denotes that the partnership {a, c} opposes

45



the partnership {b, d}. The design is subject to the whist conditions that every

player is a partner of every other player exactly once and is an opponent of

every other player exactly twice. The near resolution classes of the BIBD are

called the rounds of the Wh(v).

It follows that a Wh(4u + 1) consists of 4u + 1 rounds and every player plays in

exactly one game in each round except one round in which the player “sits out”.

For convenience we visualize the whist game (a, b, c, d) as representing four players

seated round a table with a seated at the North position, b at the East position,

c at the South position and d at the West position. Thus, for example, one can

speak of a as b’s right hand opponent and c as b’s left hand opponent.

Definition 2.1.2 A whist design is said to be Z-cyclic if the players are elements

in Z4u+1. It is also required that the rounds be cyclic. That is to say, the rounds

can be labeled, R1, R2, . . ., in such a way that Rj+1 is obtained by adding +1 (mod

4u+ 1) to every element in Rj.

Note that the entire set of 4u+1 rounds of a Z-cyclic Wh(4u+1) can be obtained by

development of any specific round of the design. The specific round is referred to

as the initial round. Conventionally, the initial round of a Z-cyclic Wh(4u+1)

is the round in which 0 sits out. Consequently the set of partner pairs for the

initial round of a Z-cyclic Wh(4u+ 1) forms a starter in Z4u+1 [3].

Definition 2.1.3 Let G be an abelian group of order 2k+ 1 and let eG denote the

identity element. The collection of pairs PS = {{x,−x} : x ∈ G, x 6= eG} is called

the patterned starter in G.

Definition 2.1.4 [4] A Z-cyclic Wh(4u + 1) is said to be a Z-cylic patterned

starter whist tournament, denoted by ZCPS-Wh(4u+ 1), if the set of initial

round partner pairs forms the patterned starter in Z4u+1.
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Definition 2.1.5 [5] A whist tournament on v players is said to be a directed-

whist tournament, DWh(v), if every player has every other player exactly once

as a left hand opponent (and, hence, exactly once as a right hand opponent).

Definition 2.1.6 [6] A whist tournament on v players is said to be an ordered-

whist tournament, OWh(v), if each player opposes every other player once at

North-South and once at East-West.

A necessary condition for the existence of an OWh(v) is v ≡ 1 (mod 4).

For any given round of a Wh(v) the set of all players sitting in the North and

South positions is referred to as the N-S line. Similarly the E-W line is the set

of all players sitting in the East and West positions. Let {x, y} be any pair of

players in a Wh(v). For any round of the Wh(v) for which x and y both play, but

not at the same table, x and y are said to be relative opponents if they belong

to the same line (either N-S or E-W) and relative partners if they belong to

opposite lines. For v = 4u+ 1 there are exactly 4u− 4 rounds in which x and y

play at different tables.

Definition 2.1.7 [1] A whist tournament on v players is said to be a balanced

whist tournament, BWh(v), if every pair of players are relative opponents ex-

actly 2u− 2 times (and, hence, relative partners exactly 2u− 2 times).

In 1965 R.C. Bose and J. M. Cameron [7] introduced a construction that pro-

duces ZCPS-Wh(p) for all primes p ≡ 1 (mod 4). It has been known since 2010

that these whist designs of Bose and Cameron are, simultaneously, a balanced

whist design, a directedwhist design and an orderedwhist design. That is to say,

a ZCPS - BDOWh(p). The goal of this paper is to produce Z-cyclic BDOWh(p)

that are NOT ZCPS designs and to discuss the existence of this new type of

multi-specialization whist design. It is a fact that Costa et al. [8] introduced a
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construction that was designed to produce non ZCPS-DOWh(p). In this latter

paper, however, there is no discussion of balance nor is there any information

regarding the existence of such designs. In [9] the present authors introduced a

versatile whist construction called The Liaw Variant and demonstrated that this

construction is capable of producing, under varying sets of sufficient conditions,

every known whist specialization. In particular The Liaw Variant is capable of

producing non ZCPS-BDOWh(p). It turned out, however, that for this one multi-

specialization (the non ZCPS-BDOWh(p)) the results of the data study were dis-

appointing in that there was a large set of primes for which The Liaw Variant was

not able to produce the desired design. In the next section a new construction is

introduced that produces much more satisfactory results.

2.2 The Main Construction

To facilitate our study the primes p ≡ 1 (mod 4) are taken in the form

p = 2kt + 1 where k ≥ 2 and t is odd. Furthermore, let d = 2k, m = 2k−1 and

n = 2k−2. r will denote an arbitrary, but fixed, primitive root of p.

Let p and r be as above and let x be a non-square, y a square in Z∗
p. Consider the

following collection of whist games.

(x, y, xm+1, yxm)⊗ rdj+2i, 0 ≤ j ≤ t− 1, 0 ≤ i ≤ n− 1. (2.2)

In the sequel this collection of whist games will be referred to as The Main Con-

struction and the game (x, y, xm+1, yxm) will be called the “base game”. When

convenient to do so the operation ⊗rdj+2i, 0 ≤ j ≤ t − 1, 0 ≤ i ≤ n − 1 will be

abbreviated to ⊗R. Theorem 2.2.5 below contains a set of sufficient conditions

that, when satisfied, guarantee that The Main Construction produces the initial

round of a Z-cyclic BDOWh(p). Note, however, that if x = rt the corresponding

design will be a ZCPS design. Thus x = rt is not a permissible choice given our
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goal.

Theorem 2.2.1 If The Main Construction produces the initial round of a whist

design then the design is automatically a Z-cyclic BWh(p).

Proof: Since x is a non-square and m is even it is clear that the N-S line is the set

of non-squares in Z∗
p. Likewise since y is a square it follows that the E-W line is the

set of squares in Z∗
p. It is well known that these two sets form a (4u+ 1, 2u, 2u−1)

difference family (see, e.g., Theorem 2.2.5 in [3]). Thus every pair of elements, say

{z, w}, appear in the same line exactly 2u− 1 times. Removal of the time that z

and w are partners shows that they are relative opponents exactly 2u − 2 times.

Hence they are relative partners exactly 2u− 2 times.

Definition 2.2.1 Given the games of The Main Construction the collection of

differences {y − x, xm+1 − y, yxm − xm+1, x− yxm} ⊗R is called the first forward

differences (alt. the right hand differences).

Observe that the right hand differences are obtained by computing “counter-

clockwise” differences around each initial round whist table. Correspondingly, the

left hand differences are obtained by computing “clockwise” differences. Clearly

the left hand differences are the additive inverses of the right hand differences. The

following theorem is well known [3].

Theorem 2.2.2 If the first forward differences in the initial round of a Z-cyclic

Wh(4u+1) cover Z∗
4u+1 exactly once then the Wh(4u+1) is a directed whist design.

Remark 2.2.3 This latter theorem is predicated on the fact that one begins with

the initial round of a Z-cyclic Wh(4u+ 1). If, however, we are testing whether or

not a collection of games forms an initial round for a directed whist design it is

enough to show that the partner whist condition is satisfied and that the right (alt.

left) hand differences cover the non-zero elements exactly once.
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Definition 2.2.2 Given the games of The Main Construction the collection of dif-

ferences {x−y, xm+1−y, xm+1−yxm, x−yxm}⊗R is called the ordered differences.

The following theorem is well known [10].

Theorem 2.2.4 If the ordered differences in the initial round of a Z-cyclic

Wh(4u + 1) cover Z∗
4u+1 exactly once then the Wh(4u + 1) is an ordered whist

design.

Definition 2.2.3 Let q be a power of a prime and let θ denote a primitive element

for the Galois Field GF(q). If f divides q − 1 then the set Cf = {θjf : j =

0, 1, . . . , h− 1} with q− 1 = fh is a subgroup in the multiplicative group of GF(q).

The cosets of Cf , Cf
i = θiCf , i ∈ {0, 1, . . . , f − 1}, are often called the cyclotomic

classes of order f and index i.

Theorem 2.2.5 The Main Construction produces the initial round of a Z-cyclic

BDOWh(p) if the following conditions are satisfied: (1) x is a non-square; (2) y

is a square; (3) y − x is a square; (4) xm+1 − y is a non-square; (5) x− yxm is a

non-square and (6)
xm+1 − y
x− yxm

∈ Cd
m.

Proof: The partner condition is automatically satisfied since the partner differences

from the base game are ±x(xm−1) and ±y(xm−1) with x non-square and y square.

Partition the first forward differences into the two sets {y−x, xm(y−x)}⊗R and

{xm+1 − y, x − yxm} ⊗ R. Clearly the first set covers the squares in Z∗
p exactly

once and the second set, using Hypotheses (4), (5) and (6) covers the non-squares

in Z∗
p exactly once. At this point we have established that The Main Construction

has produced the initial round of a Z-cyclic BDWh(p) (see the above Remark).

Next, partition the ordered differences into the two sets {x − y, xm(x − y)} ⊗ R

and {xm+1 − y, x− yxm} ⊗R. For the primes considered here it is well known [3]
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that z ∈ Z∗
p is a square if and only if −z is a square. Thus, once again, the first set

covers the squares in Z∗
p exactly once and the second set covers the non-squares in

Z∗
p exactly once. Hence the design is ordered.

Corollary 2.2.6 If x 6= rt then the Z-cyclic BDOWh(p) of Theorem 2.2.5 is non-

ZCPS.

Example 2.2.1 For p = 29 we have k = 2 and t = 7. Take r = 2, x = 10, and

y = 6 then x = r23, y = r6, y − x = r16, xm+1 − y = r3, x − yxm = r9, and

xm+1 − y
x− yxm

= r22. Thus the sufficient conditions of Theorem 2.2.5 are satisfied and

The Main Construction produces the initial round of a Z-cyclic BDOWh(29).

This initial round is given by the following 7 games.

(10, 6, 14, 20), (15, 9, 21, 1), (8, 28, 17, 16), (12, 13, 11, 24),
(18, 5, 2, 7), (27, 22, 3, 25), (26, 4, 19, 23).

Example 2.2.2 For p = 61 we have k = 2 and t = 15. Take r = 2, x = 2, and

y = 1 then x = r1, y = r0, y − x = r30, xm+1 − y = r49, x − yxm = r31, and

xm+1 − y
x− yxm

= r18. Thus the sufficient conditions of Theorem 2.2.5 are satisfied and

The Main Construction produces the initial round of a Z-cyclic BDOWh(61).

This initial round is given by the following 15 games.

(2, 1, 8, 4), (32, 16, 6, 3), (24, 12, 35, 48), (18, 9, 11, 36),
(44, 22, 54, 27), (33, 47, 10, 5), (40, 20, 38, 19), (30, 15, 59, 60),
(53, 57, 29, 45), (55, 58, 37, 49), (26, 13, 43, 52), (50, 25, 17, 39),
(7, 34, 28, 14), (51, 56, 21, 41), (23, 42, 31, 46).

Example 2.2.3 For p = 73 we have k = 3 and t = 9. Take r = 5, x = 47, and

y = 1 then x = r31, y = r0, y − x = r18, xm+1 − y = r15, x − yxm = r27, and

xm+1 − y
x− yxm

= r60. Thus the sufficient conditions of Theorem 2.2.5 are satisfied and

The Main Construction produces the initial round of a Z-cyclic BDOWh(73).
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This initial round is given by the following 18 games.
(47, 1, 31, 69), (21, 2, 62, 65), (42, 4, 51, 57), (11, 8, 29, 41),
(22, 16, 58, 9), (44, 32, 43, 18), (15, 64, 13, 36), (30, 55, 26, 72),
(60, 37, 52, 71), (7, 25, 45, 46), (14, 50, 17, 19), (28, 27, 34, 38),
(56, 54, 68, 3), (39, 35, 63, 6), (5, 70, 53, 12), (10, 67, 33, 24),
(20, 61, 66, 48), (40, 49, 59, 23).

2.3 Existence Results - Asymptotics
2.3.1 The Buratti-Pasotti Technique

In 2009 M. Buratti and A. Pasotti [11] produced a new asymptotic technique

that is useful for establishing existence of designs whose element set is a Galois

Field. The major ingredients of their technique that will be used here are contained

in Definition 2.3.1 and Theorem 2.3.1.

Definition 2.3.1 Let s ≥ 2, w ≥ 1 and z ≥ 0 be arbitrary integers. Denote by

Q(s, w, z) the number defined by

Q(s, w, z) =
1

4
(U +

√
U2 + 4sw−1(w + sz) )2,

where

U =
w∑
h=1

(
w
h

)
(s− 1)h(h− 1).

Theorem 2.3.1 Let q ≡ 1 (mod s) be a prime power, let B = {b1, b2, . . . , bw} be

an arbitrary w-subset of GF(q) and let (β1, β2, . . . , βw) be an arbitrary element of

Zws , where Zws = Zs × · · · × Zs. Set X = {x ∈GF(q) : x ∈ Cs
βi
, 1 ≤ i ≤ w}. Then

|X| ≥
q − U√q − sw−1w

sw

and hence |X| > z as soon as q > Q(s, w, z). Thus, in particular, X is not empty

for q > Q(s, w, 0) ≡ Q(s, w).

Theorem 2.3.2 Assume that p > Q(d, 2) and let i ∈ {0, 1, . . . , d− 1} be arbitrary

but fixed. Set α = x, β = y, γ = xm+1 and δ = yxm. There exists a Z-cyclic
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BDOWh(p) if the following conditions are satisfied.

α ∈ Cd
1

β ∈ Cd
0 , β − α ∈ Cd

m

γ ∈ Cd
m+1, γ − β ∈ Cd

m+i

δ ∈ Cd
m, δ − α ∈ Cd

mt+i

Proof: Arbitrarily fix α ∈ Cd
1 . Apply Theorem 2.3.1 with s = d, w = 2 B =

{0,−α}, (β1, β2) = (0,m). Note, then, that the set X0 = {x ∈ Zp : x ∈ Cd
0 , x−α ∈

Cd
m} is not empty since p > Q(d, 2). Arbitrarily fix an element β ∈ X0. Now, apply

Theorem 2.3.1 with s = d, w = 2 B = {0,−β}, (β1, β2) = (m + 1,m + i). It then

follows that the set X1 = {x ∈ Zp : x ∈ Cd
m+1, x − β ∈ Cd

m+i} is not empty since

p > Q(d, 2). Arbitrarily fix an element γ ∈ X1. Next, apply Theorem 2.3.1 with

s = d, w = 2 B = {0,−α}, (β1, β2) = (m,mt + i). Now, the set X2 = {x ∈ Zp :

x ∈ Cd
m, x− α ∈ Cd

mt+i} is not empty since p > Q(d, 2). Arbitrarily fix an element

δ ∈ X2. It is easy to show that the conditions stated in the theorem guarantee

that

xm(xm+1 − y)

x− yxm
∈ Cd

0 ,

which is an equivalent form of Condition (6) in Theorem 2.2.5. Consequently the

sufficient conditions for The Main Construction (see Theorem 2.2.5) are satisfied.

2.3.2 The Existence Results

Theorem 2.3.2 provides the basis for our existence results. Indeed, the follow-

ing Theorem is an immediate consequence of Theorem 2.3.2.

Theorem 2.3.3 Let p = 2kt+ 1 with k ≥ 2 and t odd. Set d = 2k. A non ZCPS

Z-cyclic BDOWh(p) exists whenever p > Q(d, 2).
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Thus if one wishes to show, for a specific value of k, that non ZCPS Z-cyclic

BDOWh(p) exist for all corresponding primes p it is enough to provide solutions

only for those p ≤ Q(d, 2). Certainly, then, we can study the existence question

for separate values of k. For each k ∈ {2, 3, 4, 5, 6, 7, 8}, the chart below indicates

the asymptotic bound Q(d, 2) and the results of our data study. All of the results

were computer generated. For k > 8 the data study was conducted for all primes

less than 1,000,000. A sampling of the data is given in the appendix. Complete

data sets are available from the authors. One can observe from this chart that

there is a very small set of primes for which The Main Construction was unable to

produce a non ZCPS Z-cyclic BDOWh(p). For k > 8 the only primes for which

The Main Construction was unable to produce a non ZCPS Z-cyclic BDOWh(p)

are p = 12289, 40961, 65537, 786433.

k Q(d, 2) Existence
2 97 ALL except 5, 13
3 2433 ALL
4 50689 ALL except 17
5 923649 ALL except 97
6 15573217 ALL except 193
7 260145153 ALL∗

8 4228251649 ALL∗ except 257, 769

ALL indicates that a non ZCPS Z-cyclic BDOWh(p) exists for all such primes.

ALL∗ indicates that a non ZCPS Z-cyclic BDOWh(p) exists for all such primes

less than 1,000,000.
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Appendix I
k {p, r, x, y} BDO Base Table

2 {29, 2, 8, 1} (8, 1, 19, 6)
{37, 2, 13, 1} (13, 1, 14, 21)
{53, 2, 12, 1} (12, 1, 32, 38)
{61, 2, 2, 1} (2, 1, 8, 4)
{101, 2, 2, 1} (2, 1, 8, 4)
{109, 6, 10, 1} (10, 1, 19, 100)
{149, 2, 126, 1} (126, 1, 51, 82)
{157, 5, 83, 1} (83, 1, 150, 138)
{173, 2, 32, 1} (32, 1, 71, 159)
{181, 2, 28, 1} (28, 1, 51, 60)

k {p, r, x, y} BDO Base Table

3 {41, 6, 6, 1} (6, 1, 27, 25)
{73, 5, 47, 1} (47, 1, 31, 69)
{89, 3, 61, 81} (61, 81, 7, 2)
{137, 3, 106, 1} (106, 1, 13, 4)
{233, 3, 160, 1} (160, 1, 6, 201)
{281, 3, 161, 1} (161, 1, 234, 265)
{313, 10, 153, 1} (153, 1, 91, 287)
{409, 21, 21, 1} (21, 1, 236, 206)
{457, 13, 356, 1} (356, 1, 123, 130)
{521, 3, 66, 1} (66, 1, 187, 437)

k {p, r, x, y} BDO Base Table

4 {113, 3, 23, 9} (23, 9, 84, 82)
{241, 7, 46, 1} (46, 1, 220, 141)
{337, 10, 130, 1} (130, 1, 77, 335)
{401, 3, 104, 1} (104, 1, 67, 205)
{433, 5, 302, 1} (302, 1, 195, 177)
{593, 3, 243, 1} (243, 1, 360, 287)
{881, 3, 504, 1} (504, 1, 92, 161)
{977, 3, 942, 1} (942, 1, 845, 255)
{1009, 11, 998, 1} (998, 1, 553, 867)
{1201, 11, 718, 1} (718, 1, 439, 755)
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k {p, r, x, y} BDO Base Table

5 {353, 3, 199, 1} (199, 1, 250, 168)
{673, 5, 22, 1} (22, 1, 476, 144)
{929, 3, 669, 1} (669, 1, 13, 418)
{1249, 7, 223, 1} (223, 1, 522, 372)
{1697, 3, 1516, 1} (1516, 1, 1372, 1080)
{1889, 3, 419, 1} (419, 1, 628, 272)
{2017, 5, 314, 1} (314, 1, 436, 1967)
{2081, 3, 1968, 1} (1968, 1, 312, 1802)
{2273, 3, 2049, 1} (2049, 1, 1563, 267)
{2593, 7, 689, 1} (689, 1, 2136, 816)

k {p, r, x, y} BDO Base Table

6 {449, 3, 430, 9} (430, 9, 319, 227)
{577, 5, 411, 25} (411, 25, 328, 326)
{1217, 3, 436, 1} (436, 1, 557, 1115)
{1601, 3, 1088, 1} (1088, 1, 584, 648)
{2113, 5, 30, 1} (30, 1, 1123, 2080)
{2753, 3, 551, 1} (551, 1, 1617, 2666)
{3137, 3, 2045, 1} (2045, 1, 2316, 1101)
{4289, 3, 1984, 1} (1984, 1, 2256, 2872)
{4673, 3, 3322, 1} (3322, 1, 2613, 593)
{4801, 7, 3302, 1} (3302, 1, 1496, 3426)

k {p, r, x, y} BDO Base Table

7 {641, 3, 362, 1} (362, 1, 248, 284)
{1153, 5, 205, 625} (205, 625, 860, 1019)
{1409, 3, 683, 1} (683, 1, 1015, 346)
{2689, 19, 2130, 1} (2130, 1, 213, 269)
{3457, 7, 1268, 1} (1268, 1, 1431, 909)
{4481, 3, 687, 1} (687, 1, 4324, 3535)
{4993, 5, 1353, 1} (1353, 1, 2201, 736)
{6529, 7, 4902, 1} (4902, 1, 2221, 3843)
{7297, 5, 5599, 1} (5599, 1, 4464, 281)
{9601, 13, 5411, 1} (5411, 1, 2981, 7357)
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k {p, r, x, y} BDO Base Table

8 {3329, 3, 1969, 9} (1969, 9, 1344, 2106)
{7937, 3, 1317, 1} (1317, 1, 5241, 6585)
{9473, 3, 2717, 1} (2717, 1, 3373, 8369)
{14081, 3, 4344, 1} (4344, 1, 5129, 9489)
{14593, 5, 5160, 1} (5160, 1, 6505, 6718)
{22273, 5, 20067, 1} (20067, 1, 9067, 21653)
{23297, 3, 21382, 1} (21382, 1, 19396, 7569)
{26881, 11, 11417, 1} (11417, 1, 16528, 8454)
{30977, 3, 23234, 1} (23234, 1, 16597, 19473)
{31489, 7, 10668, 1} (10668, 1, 3737, 6503)

k {p, r, x, y} BDO Base Table

9 {7681, 17, 1441, 1} (1441, 1, 4663, 2194)
{10753, 11, 7832, 1} (7832, 1, 6699, 3852)
{11777, 3, 4816, 1} (4816, 1, 9873, 8490)
{17921, 3, 2498, 1} (2498, 1, 8081, 6338)
{23041, 11, 12874, 1} (12874, 1, 16216, 19044)
{26113, 7, 9043, 1} (9043, 1, 25474, 14314)
{32257, 15, 6309, 1} (6309, 1, 14316, 1168)
{36353, 3, 32195, 1} (32195, 1, 18326, 1342)
{45569, 3, 24216, 1} (24216, 1, 32486, 39432)
{51713, 3, 28738, 1} (28738, 1, 44341, 34733)

k {p, r, x, y} BDO Base Table

10 {13313, 3, 13303, 1} (13303, 1, 12516, 1411)
{15361, 7, 3350, 1} (3350, 1, 12373, 8748)
{19457, 3, 17578, 1} (17578, 1, 15997, 7095)
{25601, 3, 25325, 1} (25325, 1, 2928, 7781)
{37889, 3, 33079, 1} (33079, 1, 23560, 10708)
{39937, 5, 3714, 1} (3714, 1, 36314, 26828)
{50177, 3, 16025, 1} (16025, 1, 873, 40317)
{58369, 7, 34031, 1} (34031, 1, 11392, 12907)
{64513, 5, 23138, 1} (23138, 1, 36633, 30390)
{70657, 7, 29243, 1} (29243, 1, 54618, 66503)
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k {p, r, x, y} BDO Base Table

11 {18433, 5, 2454, 1} (2454, 1, 4296, 14649)
{59393, 5, 49785, 1} (49785, 1, 59348, 51054)
{79873, 7, 73522, 1} (73522, 1, 15049, 66112)
{83969, 3, 82104, 1} (82104, 1, 79265, 63891)
{120833, 3, 101094, 1} (101094, 1, 18575, 5184)
{133121, 3, 105183, 1} (105183, 1, 34583, 1757)
{202753, 10, 166814, 1} (166814, 1, 194072, 41370)
{301057, 15, 258198, 1} (258198, 1, 21518, 117222)
{329729, 3, 246666, 1} (246666, 1, 59577, 66165)
{366593, 3, 127301, 1} (127301, 1, 295959, 132496)

k {p, r, x, y} BDO Base Table

12 {61441, 17, 40795, 1} (40795, 1, 27779, 18994)
{86017, 5, 76076, 1} (76076, 1, 65070, 39450)
{151553, 3, 79903, 1} (79903, 1, 77352, 27674)
{176129, 3, 128074, 1} (128074, 1, 159610, 124447)
{184321, 13, 107278, 1} (107278, 1, 75789, 86371)
{249857, 3, 96845, 1} (96845, 1, 32834, 223988)
{307201, 14, 291862, 1} (291862, 1, 146224, 155804)
{331777, 5, 308016, 1} (308016, 1, 242639, 213276)
{380929, 7, 62025, 1} (62025, 1, 120553, 233491)
{430081, 13, 299398, 1} (299398, 1, 307483, 253502)

k {p, r, x, y} BDO Base Table

13 {188417, 3, 164318, 1} (164318, 1, 176089, 145502)
{270337, 10, 91443, 1} (91443, 1, 80799, 8932)
{286721, 11, 26455, 1} (26455, 1, 231085, 41085)
{319489, 23, 295699, 1} (295699, 1, 186800, 31283)
{417793, 5, 312672, 1} (312672, 1, 13735, 223703)
{778241, 6, 638670, 1} (638670, 1, 541167, 623248)
{925697, 3, 568795, 1} (568795, 1, 613397, 329432)
{974849, 3, 396926, 1} (396926, 1, 957012, 499115)
{1073153, 3, 556424, 1} (556424, 1, 405088, 639884)

k {p, r, x, y} BDO Base Table

14 {114689, 3, 110252, 9} (110252, 9, 16969, 62777)
{147457, 10, 15336, 1} (15336, 1, 78906, 22216)
{638977, 7, 434751, 1} (434751, 1, 256450, 418)
{737281, 11, 546429, 1} (546429, 1, 473384, 512415)

k {p, r, x, y} BDO Base Table

15 {163841, 3, 91624, 1} (91624, 1, 49392, 89739)
{557057, 3, 201403, 1} (201403, 1, 497198, 440342)
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Abstract

The concept of balance is a relatively new specialization in the study of whist

designs, having been introduced in 2010 [1]. We demonstrate that a number of

previously introduced whist design constructions either automatically possess the

property of balance, or can be modified to obtain balanced designs. We also define

balance for (h, 2h) generalized whist tournament designs on v players, and show

how a modification of a construction due to Hanani [2] will produce balanced

(h, 2h) GWhD(v) for certain primes v.

keywords: Balanced whist designs; Generalized whist tournaments; Z-cyclic

designs.

3.1 Introduction

For some history and interesting information related to the whist tournament

problem see the recent article by I. Anderson and T. Crilly [3].

A whist tournament on v players, denoted Wh(v), is a (v, 4, 3) (near) re-

solvable BIBD. A whist game or ‘table’ is a block, (a, b, c, d), of the BIBD and

denotes that the partnership {a, c} opposes the partnership {b, d}. Conventionally,

the player listed first in a game, i.e. player a in the game (a, b, c, d), will be in the

‘North’ position. Player b above will be seated to the left of player a in the ‘East’

position, player c will be ‘South,’ and player d is ‘West.’ The design is subject to

the whist conditions that every player is a partner of every other player exactly

once and is an opponent of every other player exactly twice. The (near) resolution

classes of the BIBD are called the rounds of the Wh(v). If v = 4u then the

Wh(v) consists of v − 1 rounds and if v = 4u+ 1, the Wh(v) consists of v rounds.
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In the former case every player plays in exactly one game of each round, whereas

in the latter case every player plays in exactly one game in each round with the

exception of one round in which that player sits out. It has been known [4, 5]

since the 1970s that Wh(v) exist for all v ≡ 0, 1 (mod 4), but throughout this

paper, for reasons to be given shortly, we will consider exclusively that v is an

odd prime. Hence all subsequent discussion relates to v = 4u+ 1.

Definition 3.1.1 A Wh(v) for v = 4u + 1 is said to be Z-cyclic if the players

are elements in Zv. It is also required that the set of rounds be cyclic. That is to

say, the rounds can be labeled, R1, R2, . . ., in such a way that Rj+1 is obtained by

adding +1 (mod v) to every element in Rj.

Although most of the whist specializations to be introduced here relate to non

Z-cyclic whist designs as well as Z-cyclic whist designs the considerations of this

study relate primarily to Z-cyclic whist designs.

Since the collection of rounds of a Z-cyclic Wh(v) form a cyclic set it fol-

lows that the entire design can be given by any one of its rounds. This

representative round is called the initial round. For our purposes, however, it is

convenient to define the initial round for v = 4u + 1 players to be the unique

round for which player 0 sits out.

For any given round of a Wh(v) the set of all players sitting in the North

and South positions is referred to as the N-S line. Similarly the E-W line is the

set of all players sitting in the East and West positions. Let {x, y} be any pair of

players in a Wh(v). For any round of the Wh(v) for which x and y both play, but

not at the same table, x and y are said to be relative opponents if they belong
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to the same line (either N-S or E-W) and relative partners if they belong to

opposite lines. For v = 4u + 1 there are exactly 4u − 4 rounds in which x and y

play at different tables.

Definition 3.1.2 [1] A whist tournament on v players is said to be a balanced

whist tournament, BWh(v), if every pair of players are relative opponents ex-

actly 2u− 2 times (and, hence, relative partners exactly 2u− 2 times).

3.2 Recent Constructions

The whist designs generated by the following construction of Anderson and

Ellison [6], as generalized by Finizio [7], are automatically balanced.

Theorem 3.2.1 Consider a prime p = 2kt + 1 where t is odd and k ≥ 2. Let

d = 2k, m = 2k−1, and n = 2k−2. Let r be an arbitrary, but fixed, primitive root of

p and let x be a non-square in Z∗
p. When the following collection of games

(1, x, xm,−x)⊗ rdj+2i : 0 ≤ i ≤ n− 1, 0 ≤ j ≤ t− 1 (2.3)

constitutes the initial round of a Z-cyclic Wh(p), the design will possess the prop-

erty of balance.

Proof: Note that 1 (= rp−1) and xm are both even powers of r, since p is odd and m

is even. Because d is even, the N-S line in the initial round, namely {1, xm}⊗rdj+2i :

0 ≤ i ≤ n − 1, 0 ≤ j ≤ t − 1, is exactly the set of all squares in Z∗
p. Also, since x

is a non-square and −1 is a square [4], the E-W line in the initial round, namely

{x,−x} ⊗ rdj+2i : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ t − 1, is the set of all non-squares in

Z∗
p. These 2 sets form a (4u + 1, 2u, 2u − 1) difference system [4]. Therefore, as

the rounds of the design play out, every pair of elements, say {z, w}, will appear

in the same line exactly 2u− 1 times. Of course, precisely one of those times will

occur when they are seated at the same table as partners, meaning that z and w

will be relative opponents exactly 2u− 2 times.

63



Example 3.2.1 The initial round of a Z-cyclic BWh(13) is given by the following

three games. Note that k = 2, t = 3, d = 4,m = 2, n = 1, and r = 2. If we let

x = r3 = 8, the whist conditions are satisfied.

(1, 8, 12, 5), (3, 11, 10, 2), (9, 7, 4, 6).

A second recent construction due to Costa, Finizio and Teixeira [8], also pro-

duces designs that are automatically balanced, for the same reasons as the gener-

alized Anderson-Ellison construction above.

Theorem 3.2.2 Consider a prime p = 2kt + 1 where t is odd and k ≥ 2. Let

d = 2k, m = 2k−1, and n = 2k−2. Let r be a primitive root of p, and let y be a

square in Z∗
p. When the following collection of games

(r, y, rm+1, yrm)⊗ rdj+2i : 0 ≤ i ≤ n− 1, 0 ≤ j ≤ t− 1 (2.4)

constitutes the initial round of a Z-cyclic Wh(p), the design will possess the prop-

erty of balance.

Proof: Note that since m and d are even, rdj+2i will always be a square and

{r, rm+1} ⊗ rdj+2i : 0 ≤ i ≤ n− 1, 0 ≤ j ≤ t− 1 gives the set of all non-squares in

Z∗
p, while {y, yrm} ⊗ rdj+2i : 0 ≤ i ≤ n − 1, 0 ≤ j ≤ t − 1 is the set of all squares

in Z∗
p. The proof then follows the logic used to verify Theorem 3.2.1.

Example 3.2.2 The initial round of a Z-cyclic BWh(13) is given by the following

three games. Note that k = 2, t = 3, d = 4,m = 2, n = 1, and r = 2. If we let

y = 1, the whist conditions are satisfied, and the design is a different BWh(13)

than that given in Example 2.1.

(2, 1, 8, 4), (6, 3, 11, 12), (5, 9, 7, 10).
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Example 3.2.3 The initial round of a Z-cyclic BWh(41) is given by the following

ten games. Note that k = 3, t = 5, d = 8,m = 4, n = 2, and r = 6. If we let y = 1,

the whist conditions are satisfied.

(6, 1, 27, 25), (19, 10, 24, 4), (26, 18, 35, 40), (14, 16, 22, 31), (17, 37, 15, 23),
(11, 36, 29, 39), (28, 32, 3, 21), (34, 33, 30, 5), (12, 2, 13, 9), (38, 20, 7, 8).

3.3 Modifying A Classic Whist Construction to Achieve Balance

A classic whist construction for primes p = 4u+ 1 is due to Baker [5]. We will

slightly modify it to achieve balance. This construction is of particular interest,

because the modification shown here will be used again in the next section of this

paper for our primary result.

Theorem 3.3.1 Let p = 4u+ 1, u be an odd integer, and r be a primitive root of

p. Then there exists a BWh(p).

Proof: Baker’s construction [5] gives the following initial round games:

(1, ru, r2u, r3u)⊗ ri : 0 ≤ i ≤ u− 1. (3.5)

Note that if u is odd, then 1 and r2u and all even powers of r are squares, while

ru and r3u and all odd powers of r are non-squares. For i = 1, the i-th table

in the initial round is (r, ru+1, r2u+1, r3u+1). The odd and even powers of r have

all shifted seats, so the squares and non-squares in this game have shifted lines.

In fact, squares and non-squares will shift lines whenever i is odd in our initial

round collection of games. Hence for i odd, if one subjects the i-th initial round

game to a clockwise rotation of one seating position then the players in North

and South positions at every initial round table will consist exclusively of even

powers of r and all East-West players will be, exclusively, odd powers of r. The

game (r, ru+1, r2u+1, r3u+1) has now become (r3u+1, r, ru+1, r2u+1), the third table
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(r3, ru+3, r2u+3, r3u+3) has now become (r3u+3, r3, ru+3, r2u+3), and so on. As in the

previous cases, the squares and non-squares are now completely in separate lines,

hence they form the appropriate difference system. Our modified initial round

games therefore yield a Z-cyclic BWh(p).

Example 3.3.1 The initial round of a Z-cyclic BWh(29) is given by the following

seven games. Note that u = 7 and r = 2.

(1, 12, 28, 17), (5, 2, 24, 27), (4, 19, 25, 10), (20, 8, 9, 21),
(16, 18, 13, 11), (22, 3, 7, 26), (6, 14, 23, 15).

3.4 Balance in Generalized Whist Tournament Designs

Definition 3.4.1 [9] Let e, f, h, v be positive integers such that v ≡ 0, 1 (mod f)

and f = eh. Let a be a positive rational number. A (h, f) generalized whist

tournament design (or GWhD) on v players, having parameter a, is a (v, f, a(f −

1)) (N)RBIBD that satisfies the conditions indicated below. Each block of the

BIBD is considered to be a game in which e teams of h players each compete

simultaneously. Players on the same team are called partners and players in the

same game but not on the same team are called opponents. For each pair of players,

say {x, y}, x is to be a partner of y exactly a(h−1) times and x is to be an opponent

of y exactly a(f − h) times. Such a design is denoted by (h, f) GWhDa(v). The

parameter a is usually omitted if it equals 1, as it will be for most GWhDs in this

paper. When v ≡ 1 (mod f) consistency with the definition of a NRBIBD requires

that a be an integer. When v ≡ 0 (mod f), practical reasons require that each of

a(v − 1), a(f − 1), a(h− 1) and a(f − h) be an integer.

For the sequel we consider a = 1, e = 2 and v ≡ 1 (mod f). Games for a

corresponding (h, 2h) GWhD(v) will be expressed as a 2h - tuple (x1, x2, . . . , x2h)

in such a way that the odd subscripted elements belong to one team and the
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even subscripted players as the other team. One can visualize this latter game by

considering that the 2h players are seated at a round table with x1 sitting at the

North position and with xi+1 seated to the left of xi, i = 1, . . . , 2h− 1.

Definition 3.4.2 At each table of a (h, 2h) GWhD(v) the team whose player is

seated at the North position is designated as the ONE Team and the other team

is designated as the TWO Team. For any round of the (h, 2h) GWhD(v) the

collection of all the ONE Teams is called the ONE - Line for that round and

the collection of all the TWO Teams is called the TWO - Line for that round.

Players playing in the same round but at different tables are said to be relative

opponents if they belong to the same line (either the ONE - Line or the TWO -

Line) and are said to be relative partners if they belong to opposite lines.

Since v ≡ 1 (mod 2h) there exists a positive integer w such that v = 2hw + 1.

Consider an arbitrary pair of players in the (h, 2h)GWhD(v), say x and y. There

are exactly 2hw − 1 rounds in which both x and y play and exactly 2hw − 1 −

(2h− 1) = 2h(w − 1) rounds in which they both play but at different tables.

Definition 3.4.3 A (h, 2h)GWhD(v) is said to be balanced (alt. is said to have

the balance property) if for each pair of players, say x and y, x and y are relative

partners exactly h(w−1) times and relative opponents exactly h(w−1) times. Such

designs will be denoted (h, 2h) BGWhD(v).

Definition 3.4.4 Let G be an abelian group of order 2hw + 1. Let g0 = eG

denote the identity of G and arbitrarily order the remaining elements of G as

g1, g2, . . . , g2hw. A (h, 2h)GWhD(2hw + 1) is said to be G-cyclic if the player set

is G and if the rounds, say R0, R1, . . . , R2hw, are such that R0 is the round for

which eG sits out and Ri is obtained from R0 by adding gi to every element in R0.
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If v ≡ 1 (mod f) is a prime power it is shown in [9] that a construction due to H.

Hanani [2] can be used to construct the initial round of a GF-cyclic (h, f)GWhD(v).

Utilizing the approach associated with the Hanani Construction found in [9] one

obtains the following Theorem.

Theorem 3.4.1 Let p be a prime and s a positive integer such that ps = 2hw+ 1

where w is a positive integer. Let θ denote a primitive element for the Galois Field

GF(ps). Then the following collection of w games

(1, θw, θ2w, . . . , θ(2h−1)w)⊗ θi : 0 ≤ i ≤ w − 1. (4.6)

constitutes the initial round of a (h, 2h)GWhD(ps).

The game (1, θw, θ2w, . . . , θ(2h−1)w) is typically referred to as the base game (alt.

table) of the construction. As additional nomenclature the initial round game

obtained by multiplying the base game by θi is said to be the i-th initial round

game. If w is an odd integer then the ONE Team in the base game consists of all

even powers of θ and the TWO Team in the base game consists of all odd powers of

θ. For the next game (the 1-th game) the reverse situation occurs. That is to say,

the ONE Team in the 1-th game consists of all odd powers of θ and the TWO Team

in the 1-th game consists of all even powers of θ. Thus in an alternating fashion

one can describe the ONE Team in terms of even/odd powers of θ. Note, then,

that for i odd if one subjects the i-th initial round game to a clockwise rotation of

one seating position then the ONE Team at every initial round table will consist

of even powers of θ and the TWO Team at every initial round table will consist of

odd powers of θ. This rotation procedure together with the requirement that h be

an even positive integer leads to the following theorem.

Theorem 3.4.2 Let p be a prime and s a positive integer such that ps = 2hw+ 1

with h an even positive integer, say h = 2µ and w an odd positive integer. Then

there exists a (h, 2h)BGWhD(ps).
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Proof: Apply the rotation procedure to the initial round games of Theorem 3.4.1

and note that the ONE-Line consists of the squares in GF(ps)∗ and the TWO-

Line consists of the non-squares in GF(ps)∗. The conditions on h and w ensure

that ps = 4u + 1 with u = µw. We again use the fact [4] that if A denotes the

squares in GF(ps)∗ and B denotes the non-squares in GF(ps)∗, then {A,B} is a

(4u+ 1, 2u, 2u− 1) = (4µw + 1, 2µw, 2µw − 1) difference system. Hence, if x and

y are arbitrary elements in GF(ps)∗ then x and y appear in the same line exactly

2µw − 1 times. Subtracting the times that x and y are partners it follows that x

and y are relative opponents exactly h(w − 1) times. Consequently x and y are

relative partners exactly h(w − 1) times.

Example 3.4.1 The initial round of a (6, 12)BGWhD(37) is given by the

following three games. Note that θ = 2.
(1, 8, 27, 31, 26, 23, 36, 29, 10, 6, 11, 14),
(28, 2, 16, 17, 25, 15, 9, 35, 21, 20, 12, 22),
(4, 32, 34, 13, 30, 18, 33, 5, 3, 24, 7, 19).
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