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ABSTRACT 

Wireless sensor networks are an emerging field where a large number of cheap 

sensors are dispersed over an area in order to gather information. This paradigm of a 

large number of relatively low power platforms brings a number of challenges. 

Because the lack of physical security associated with traditional networking 

environments, sensor networks are much more likely to be taken over by insider 

attacks where the attacker gains access to all the information on the node and can 

perfectly emulate its behavior if they so choose. In addition the lack of computing 

resources means care must be taken due to the overhead introduced by additional 

protocols.  

This work elaborates on the dangers presented by insider attacks in wireless 

sensor networks. In particular, an adversary node that appears to be a legitimate 

member of the network can alter data that passes through it. This is a more dangerous 

attack than the traditional packet dropping models because standard networking 

models will not be able to tell which node altered the data. In this way, even a small 

number of insider’s nodes (even 1) can negate a large fraction of the network’s 

functionality because, even if the data alteration is detected, there is no way to 

determine the node responsible.  

The large spectrum of possible applications and behaviors for sensor networks 

makes it difficult come up with a single best solution. Because of that fact, this work 

introduces a number of different protocols to both detect malicious data alteration and 

attribute the malicious behavior to a specific node. It then describes what properties of 

a sensor network make specific solutions appealing as well as providing analysis of 



 

 

 

how the strengths and weaknesses of each interact with possible sensor network 

configurations.  
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CHAPTER 1 

 

INTRODUCTION 

1.1. Malicious Data Alteration in Wireless Sensor Networks 

The study of wireless sensor networks [1] is an emerging field with important 

applications such as remote tracking and monitoring. In these applications, large 

numbers of small sensors are distributed over an area in order to gather information. 

Sensor networks must deal with the possibility of an adversary gaining control of a 

node, because the nodes are placed in the environment. This means an adversary 

altering the function of the network is a concern. Due to the wide range of 

applications, there is considerable variability in network configurations. We start by 

describing a basic and common sensor network configuration and discuss additional 

aspects later. 

 Because sensors are embedded in the environment they are monitoring, an 

adversary may have physical access to the devices. Because of this and the wireless 

nature of the network, an adversary has more opportunity to gain control of a node. 

This is called an insider attack.   

We expand upon the implications of insider attacks in wireless sensor networks 

and explain how these allow data alteration attacks that are more dangerous than the 

traditional packet dropping models. We investigate methods of both detection and 

prevention of such attacks. 

1.1.1. Description of a Wireless Sensor Network 
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A basic sensor network consists of a base station or sink and a number of small 

sensors scattered throughout the environment called nodes or motes. The nodes sense 

the environment and send that information to the base station (BS) via wireless radio 

links. This information is called events. The node that generates a particular event is 

called the source. Data flows from the sensor nodes to the base station. Thus, we say 

the base station, and nodes closer to it, are downstream from a particular node, while 

nodes further from the base station than the current node are upstream. Because a 

sensor network is defined by its environment, all communication must be done 

wirelessly.  

There are several challenges that almost all sensor networks share due to their 

nature, applications and universal features of the architecture. Thus, almost all work in 

this area is concerned with these to some degree or another.    

The first challenge is scalability; many applications require large numbers 

(thousands to tens of thousands) of nodes (imagine monitoring a square mile with 

nodes with a 50 foot range). Another challenge is cost because supporting large 

numbers requires the nodes to be small and cheap (possibly even disposable). Another 

challenge is that all sensor network applications must deal with severe resource 

constraints. The fact that nodes have limited processing power, memory, and storage 

must be taken into account. The last challenge is that nodes are almost always battery 

powered, so energy efficiency (aka node lifetime, as recharging the nodes is rarely 

practical) is a concern. The largest source of energy consumption in sensor networks is 
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the wireless radio, so communication efficiency must be considered. Because of the 

limited power available to sensor nodes, nodes have limited radio range, making it 

unlikely all nodes can reach the base station. This means a routing tree is needed so 

nodes know which of their neighbors to send data to so that it moves closer to its 

destination. For a given event the data originates at the source node, and is transmitted 

through some number of routing nodes before arriving at a destination (often the base 

station).  

1.1.2. Security in Wireless Sensor Networks 

We assume an application where security [25] is important. For example, many 

military applications fall into this category. That is, we assume there is an adversary 

who wishes to impede the function of the network for their own gain. The adversary 

can listen in on the radio traffic of the network and will often have physical access to 

the nodes. We assume the adversary can send whatever transmissions they wish as 

well as arrange for known inputs to the network and coordinate their own activities. 

1.1.2.1. Basic Security Model 

  Encryption is required for security in a WSN, since without it, an adversary 

could easily access all the wireless communication. For applications with significant 

security requirements a single global key does not suffice; if any node is taken over, 

the key is compromised. Thus, we assume some sort of public key encryption [21] is 

in effect, i.e., a single node being taken over will not allow the adversary to read all 

communication in the network or impersonate other nodes.  
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Many WSN security systems are identity based [10][16]: the focus is on 

making it impossible for an adversary to add new nodes to the network or impersonate 

a node by sending a message that other nodes will think comes from the loyal node.  

Nodes are placed in the environment where, unlike most networking domains, 

the adversary often has physical access to the nodes. Physical attacks [6] can produce 

what is called an insider attack. This is where the adversary gains complete access to a 

node, including all of its information (e.g., keys). The important feature of an insider 

attack is that the attacker gains all information that the node had at the time it was 

taken over. These attacks can defeat identity based security as the adversary causes a 

loyal node to work for them.  

Identity based methods are ineffective against insider attacks, since the adversary 

has all the information from the corrupted node. The key feature of an insider attack is 

that they can perfectly impersonate the corrupted node. This means that an adversary 

can only be detected by their behavior, i.e., when they take malicious actions.  

1.1.2.2. Adversary Model – Malicious Data Alteration 

The goal of the adversary is to prevent the flow of events from the sensor network 

to the base station, while preventing the owner of the network from taking action to 

restore the flow. The fact that the data is encrypted means that an adversary who is 

trusted by the network cannot simply change data and pass it off as real. This means 

that traditionally, the adversary is restricted to dropping packets they don’t want to 

reach the base station. Dropping is effective, but since it can also happen naturally due 

to unreliable data transmissions, a large variety of mechanisms have been created [2] 
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to detect it and pinpoint unreliable nodes. These mechanisms generally work by 

noticing that data has not arrived when it should. The data can then be retransmitted.  

A more powerful attack for the adversary is data alteration. In this case, data is 

changed and sent along the network to the base station. This is a more powerful attack 

for several reasons. For one, data alteration wastes network resources processing and 

transmitting useless data. This is undesirable even if the false data does not fool the 

destination. Another is that without additional mechanisms, routing nodes cannot 

detect that data has been changed after leaving the source. Thus, even if the fact that 

data has been changed can be detected, the node that did it cannot be identified. This 

means steps to prevent the same thing happening in the future cannot be taken. It is as 

if the data was dropped, except the mechanisms that detect this do not work because 

incorrect data arrived. Since this is an attack on data that is routed through a node, a 

single compromised node can alter all data that is routed through it. Depending on 

where the adversary node is in the network topology, a significant fraction of the 

network may not give correct information. Even a single compromised node can have 

a devastating effect while being impossible to detect with standard security 

mechanisms. We believe the exceptional power and detection difficulty of these 

attacks makes methods of detecting them worth studying.  

Malicious data alteration by an adversary is different from the non-malicious data 

corruption caused by wireless physics [31], where transmitted data may randomly 

change due to physical effects (the same problem occurs in wired data transmission 

also, but the error rates for wireless are generally higher). We assume a standard 



 

 

13 

 

packet level checksum [31] is in place to catch these sorts of errors. Since these are 

based on well-known methods an adversary can easily fake them however. Our 

solutions focus on ways to detect data alteration outside of the checksums. This also 

means that if data is received that is detected to be altered but has a correct checksum, 

we know it is the result of malicious activity because it is highly improbable that data 

corruption produced a correct checksum. 

1.1.2.3. Adversary Goal 

We assume the goal of the attacker is to prevent data reaching the base station. 

We also assume the attacker is using an insider attack as mentioned before. Because of 

this, we assume the only way to discover an attack is by its effects. We detect the 

presence of an adversary by detecting the fact that the data changed. Since we assume 

the attacker completely controls nodes they have taken over, we do not make any 

effort to detect newly created forged data from a compromised node (we will mention 

ways of dealing with this as related work, but they are outside the scope of this 

project). We are concerned about the attacker having an effect beyond nodes they have 

taken over and altering data routed through them, so we focus on the detection of 

altered data.  

1.2. Goals 

In this dissertation we present several solutions to the data alteration problem. The 

goals of these solutions are to: 

Detect Malicious Data Alteration:  Specifically, we ensure that data comes from a 

single source node and is not altered after leaving the source. Detecting alterations 
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earlier in routing is better, due to less waste of resources on unproductive data, but 

what specific timeframes make sense depend on the application.  

Attribute Alteration to Adversary Nodes:  The detection of malicious data alteration 

is not useful if we cannot tell which node did it, as the attacker then can prevent data 

reaching the base station whenever they want. Attribution allows standardized 

mechanisms to be invoked to deal with adversary or unreliable nodes. In addition, they 

can detect, with a high probability, whether the alteration is natural data corruption in 

transmission or the result of an attack.  

Minimize Overhead: Since resource constraints are a fact of life in sensor networks, 

we must consider the impact our solutions have. Message overhead (per packet and 

extra messages), computational overhead and space overhead (storage and memory) 

will be considered.  
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CHAPTER 2 

 

BACKGROUND 

In this chapter we introduce several topics related to the detection of malicious 

data alteration in sensor networks. We also expand upon some details of wireless 

sensor network functioning that are important to this discussion.  

2.1. Encryption 

 Encryption is a mathematical process for controlling information. Here we 

provide general information on the process, while how it is applied to detect data 

alteration in wireless sensor networks will be described in later sections. 

Encryption  [21] is the process of turning usable data, known as plaintext (p) 

into a collection of bits that appears to be random, called cypher-text (c). The reverse 

of this process, turning cypher-text back into plaintext, is called decryption. 

Cryptography is the study of these two processes. Modern cryptography is based on 

one-way, trapdoor functions. A one-way function is one where f(p)=c is easily 

computable, but the inverse,  f
-1

(c)=p, is much more difficult. Generally, there is no 

known efficient algorithm to compute the inverse of a function used for cryptography. 

A trapdoor function is a function that has a piece of information called the key. If one 

does not have the key, it functions like a trapdoor function. In short, the most efficient 

way to compute the inverse of a trapdoor function without the key is to guess the key. 

The function f is used for encryption (f=E), while f
-1

 is used for decryption (f
--1

=D). In 

trapdoor functions the key is used in both f and f
--1

. Key sizes and key security are 
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generally talked about in terms of the number of bits in the key. The implication is that 

it takes approximately 2
|key| -1

 tries to correctly guess the key. If the number of bits is 

large enough then guessing the key in this manner will take so long that the 

information is worthless to the adversary.  

 A symmetric encryption algorithm [21], also called a private key algorithm, is 

one where the same key is used for encryption (E) and decryption (D). Thus, Ek(x1) = 

x2 and Dk(x2) = x1. The key (k) is commonly shown as a subscript. Keys will often be 

named after the parties that hold them. Two parties who have the same key, k, use this 

to communicate security by computing Ek(x1) = x2 and sending x2 to the other party. 

The receiver then computes Dk(x2) to read the original message, x1. An adversary can 

intercept x2, but without access to the key (k), they cannot compute Dk and cannot 

recover x1.  

 An asymmetric encryption algorithm (E) is one where there are two keys, k1 

and k2, k1 not equal to k2. If one key is used for encryption, the other key is used for 

decryption. That is to say, Ek1(x1) = x2 and Dk2(x2) = x1. With asymmetric encryption 

algorithms, generally one key is kept secret by the user A and called the private key 

(pri) and the other key is publicly available from a reliable source, called the 

certificate authority (CA) and is known as the public key (pub). For this reason, 

asymmetric encryption is also called public key encryption. Thus, anyone who wants 

to send a message (x1) to A can get A’s public key from the CA and send a message 

(x2) that only A can read by computing  Epub(x1) = x2. Then, only A can read it by 
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computing Dpri(x2) = x1. It is worth noting that public key encryption algorithms are 

generally much more computationally intensive than private key algorithms.  

 Hashing is a deterministic computational process that produces a fixed length 

hash from an arbitrary length input. The hash is generally much shorter than the input. 

The key feature of hashes is that it is very unlikely that two inputs produce the same 

hash (which is called a collision). This means they are used as a way of quickly doing 

comparisons. If two messages have different hashes, one knows they are not equal. 

Hashes used for cryptography, sometimes called cryptographic hashes, have the 

slightly stronger property of it being difficult, given a hash value, to find an input with 

the same hash value. With a cryptographic hash function, hashing data is somewhat 

analogous to encryption, although there is no analog to decryption.   

 Digital signatures, which we generally call signatures for simplicity, use a 

combination of these two concepts. In this case, A wants to sign some data (D) such 

that other users can be sure the data comes from A. To do this, one generally uses a 

well-known cryptographic hash function H to compute H(D), which is called a hash of 

D. A then computes the signature, S=Epri(H(D)). When talking about different nodes, 

we may show the signature as S=SigID(D). This refers to node ID encrypting a hash of 

data D with it’s private key. Suppose another user B gets D and S and wants to be sure 

D is from A. Since the signature is just an encrypted hash of the data, B can then get 

A’s public key from the CA and check Epub(S, ) = H(D). If this is true, then B can be 

sure that the hash of the data was encrypted with A’s private key and be sure that D 

and S must have come from an entity possessing A’s private key (i.e., A).  
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The motivating problem for group signatures [7] was to find a way that data 

could  be signed in such a way that it could be verified as coming from a member of a 

group, but there was no way to know which member of the group. The original 

problem was stated in the context of whistleblowers, so that information could be 

verified as coming from an official source, but the specific person’s identity was 

hidden. In a group signature scheme users are organized into groups, with all the keys 

in a group being created from a single source. Group signatures are created by the 

sources private key the same way they are in a public key encryption system. 

However, only a single key, known as the group key, is required to verify a signature 

from anyone in the group. The difference being that one cannot tell which member of 

the group created the signature, but one can be sure that it was a member of the group.  

2.2. Checksums 

Checksums are conceptually similar to hashes in that they create a fixed length output 

from a variable length input. The difference is that a checksum is focused on error 

detection as well as error correction. Specifically, it is highly unlikely that random 

changes to the data produce the same checksum. Since a checksum is a well known 

algorithm and easily computed, they can be easily forged by an adversary. Unlike a 

cryptographic hash, it is not necessarily difficult to find two pieces of data with the 

same checksum if one looks. It is just unlikely that random errors would change data 

in such a way the checksum is the same. Checksums tend to be slightly less 

computationally intensive than cryptographic hashes for this reason. Also, checksums 

tend to have shorter outputs (fewer bits) than cryptographic hashes for the same 
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reason. For both these reasons we use checksums rather than cryptographic hashes 

when we only care about data correctness, rather than security. We denote the 

checksum of data D as CHKD=CHK(D).  

2.3. Wireless Sensor Network Setup 

Many wireless sensor networks use what is called a secure setup phase. 

Essentially, an enemy is assumed to not be able to penetrate the network during setup. 

A simple way to secure the setup phase is to use a global key that is shared by all 

nodes and then discarded when setup is done. This phase is too short for an enemy to 

crack the global key. Also, due to the short duration of the setup phase, there are no 

insider attacks during it. For the rest of this work we assume distributing secret 

information (keys) during the setup phase does not present a security problem. It is 

much more difficult to distribute secret information after the setup phase, so we 

address that when it is required. In general, we do not need to distribute keys after 

setup.  

During this phase nodes figure out their neighbor set. The neighbors of a node 

are the nodes that a node can reach with its wireless signals. A single wireless link is 

called a hop, and consists of a single sender sending to a single receiver. Since not all 

nodes can directly communicate with the base station, multi-hop routing must be used 

to send packets to nodes that a node cannot communicate with directly. In this, a node 

sends a packet intended for a destination it cannot directly reach to one of its 

neighbors which then sends it to another node closer to the destination. By repeating 

this process the packet eventually reaches its destination. Routing is the process by 
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which a node knows which of its neighbors it should send a packet to based on the 

packet’s destination. This information is stored in a routing table at each node. The 

overall routing information for the network is called a routing tree. We assume that 

shortest-path routing is used, so that packets take the fewest hops to reach their 

destination. In a sensor network generally data flows downstream toward the base 

station. Nodes further from the base station than the current node are said to be 

upstream.  

Routing in sensor networks is often done relative to the base station because 

that is the direction of data flow. Thus, nodes usually only have routing information 

about how to send packets toward the base station and how to return 

acknowledgements to nodes upstream rather than having general routing information 

for all possible destinations as in a more general network. We will discuss other 

methods of routing in other sections as appropriate.  

 

2.4. Watchdogs 

 Most security work for sensor networks focuses on preventing intrusion in the 

first place rather than detection intruders or data alteration.  

Figure 1 -  Overhearing example 

A B C S 
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 One concept that does detect alteration is the watchdog, where nodes observe 

the behavior of their neighbors [19]. Consider Figure 1, where S is the source node, A, 

B and C are routing nodes and the arrows show the direction of data flow. The 

watchdog concept uses the fact that, since wireless nodes are often very similar to each 

other, the wireless links are usually (but not always) bidirectional. If the signal from A 

can reach B, then the signal from B can usually reach A. So, if A sends a packet to B, 

it can then listen and hear the packet that B sends to C. If A saved the packet that it 

sent to B, it can compare it to what B sent to C. The watchdog does not have to be a 

node on the events route to the base station, although that is the simplest case.  

 There are several limitations to this technique, simple as it is. One is the 

overhead. Memory is required to store packets for checking. More importantly, the 

node must use energy to listen at a time it might not otherwise be doing so. Another 

limitation is that only a single adversary node can be detected. If both a node and its 

watchdog are adversarial, then packets can be altered undetectably.  

Another limitation is collisions; a collision occurs when a node receives signals 

from multiple sources at the same time. The signals interfere with each other and the 

node cannot make sense of either signal. We will assume all the links in Figure 1 are 

bi-directional. Collisions are taken care of by how the wireless scheduling [26] works. 

The scheduling algorithm manages when nodes send and receive such that collisions 

do not occur.  

Normally, if B is sending to C, A can be sending to any node other than B or 

C, sending acknowledgements to S for example. If A wishes to watch what B is 
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sending to C, that means that no node that A can hear can be sending during that time. 

It is possible to take this into account in the scheduling algorithm, but it can reduce the 

utilization of the network because fewer nodes can be sending at the same time. 

Alternatively, we can allow these collisions to occur and accept that the watchdog 

misses some packets. This means the packets will be kept in memory until they are 

removed by a timeout mechanism, wasting space. If the network is busy enough, an 

adversary may be able to use the traffic to hide alterations behind collisions.  

 The watchdog concept is useful for dealing with the problem of data alteration, 

but it does not give a general solution to the problem. 
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CHAPTER 3 

 

DETECTION AND ATTRIBUTION OF MALICIOUS DATA ALTERATION 

 In this chapter we describe three solutions to the problem of detecting 

malicious data alteration and how to discover the source of it so that it can be 

prevented in the future. We first present a naïve solution that acts as a starting point. 

Most of our solutions are focused on removing the drawbacks from the naïve solution 

in different ways. We also present some methods that use a completely different 

approach in section 3.3. 

3.1. Solution Introduction 

To deal with the problem of data corruption caused by insider attacks we present 

a number of possible solutions. The contribution of this work is to elaborate on the 

problem of malicious data alteration in sensor networks. The wide variety of possible 

environments, applications and requirements seems to preclude a “one size fits all” 

solution, so we investigate a variety of approaches and compare them. Generally we 

try to force an attacker to choose between disrupting the network and being detected.  

Due to sensor nodes being small and subject to environmental effects, 

malfunctions are more common than in traditional networking environments. Because 

of this we assume basic reliable networking protocols are in place [31] [33], i.e., some 

sort of timeout and retry mechanism that is used to ensure eventual delivery of import 

information and correct operation of the system. Because of the unreliability both due 

to the small nature of the nodes themselves and their interactions with the 
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environment, wireless sensor network routing protocols have the ability to detect when 

nodes do not forward data they should and to route around them. Basically, we assume 

that an adversary or malfunctioning node that simply drops data will be discovered 

and removed from the network in an application appropriate time frame. Thus, 

dropped packets are not the concern of this work. 

Second, we assume each node shares a unique symmetric encryption key with the 

base station. We call this the source key. This key is only used to encrypt data that the 

node sends to the base station (i.e., when it is the source). This symmetric encryption 

algorithm is chosen for efficiency and the required level of security. What we call the 

“data” for the rest of this work is actually a few fields: D= {IDsrc, Esrc(SD, CHKSD)}. 

The source id (IDsrc) is the globally unique id of the source node. SD is the actual 

sensor data. The data checksum (CHKSD) checks the sensor data and source ID. When 

sending a new event, first, the sensor data itself and data checksum are encrypted with 

the source nodes key. The presence of the data checksum means the base station can 

always tell if the data decrypted correctly. The data checksum is checked when the 

data is decrypted at the base station. If this check fails, we know the recovered data is 

meaningless and we say the decryption has failed. Next, this encrypted data is paired 

with the source ID so the base station knows what source key to use to decrypt it. The 

source key does not need to change over the life of the system. Even if the source key 

is compromised, the attacker can only forge data from that single node, so the return 

relative to the effort is minimal. An insider attack will give the adversary the source 

key for the compromised node, but all this allows them to do is forge data from that 



 

 

25 

 

node. Also, the source key can easily be preloaded on nodes, perhaps even when the 

node is manufactured or initialized.  

The reason for encrypting the sensor data with the source key is so we can easily 

detect when data is changed by nodes that are routing the data back to the base station. 

A routing node does not have the source key for the source node, so any change to the 

data will result in a checksum failure and failed decryption at the base station. 

If the adversary alters the source field to refer to a node other than the 

compromised node or the source node, the base station will use the wrong key and not 

be able to decrypt the data. If the adversary alters the source field to refer to the 

compromised node and substitutes fake data encrypted with the compromised node’s 

key, then the reliability mechanism will detect that the packet from the original source 

has effectively gone missing. Thus, an alteration to the source field is the same as an 

alteration to the data from the base station’s perspective. In addition, the base station 

could simply try all the nodes keys if it suspects the source field is altered and possibly 

recover the data that way. For these reasons, it makes the most sense for an adversary 

to alter the data field itself.  

Since the attacker does not have the source key for any node other than the ones it  

takes over, a change to any data that is routed through a malicious node will be 

detected by the base station because the data will not be decryptable. This does not 

help us detect data alteration in the network, but it does help prevent false data being 

used and avoids the question of determining whether data has been altered. With this 
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precaution, since the base station knows what key was used to encrypt the data, it can 

always verify the source of good data.  

This does not fulfill our requirements as it does not provide a way to know the 

origin of the bad data or give a way to prevent it from happening, so the attacker can 

still prevent data from reaching the base station while avoiding detection. The only 

benefit is that the base station will not use bad data. 

We also use this node-base station key pair to assume that the base station can 

communicate securely with any single node. That is, messages from the base station to 

nodes (e.g., acknowledgements) also cannot be altered or forged. For systems that use 

public key encryption, we assume the base station also has a public-private key pair 

using the same encryption algorithm.  The base stations public key is  distributed to all 

nodes during  setup. We do not assume this in cases where the public key encryption 

algorithm  would  not otherwise be needed.  Asymmetric encryption is important in 

this  case, as a symmetric scheme  could be forged by an adversary.  

3.2. Naïve Solution-Public Key Cryptosystems 

To introduce our approaches to this problem we will first discuss a simple, if 

impractical, solution to the problem we put forth as a basis for further investigation. In 

the naïve solution we use a form of public key encryption [21] and each node has a 

private key known only to itself that is used to sign packets and a public key that other 

nodes use to verify its signature. 
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During the setup phase all nodes send their public key to the base station. 

Nodes then remember all keys that route through them and can use those public keys 

to verify signatures from their nodes. 

3.2.1. Detection and Attribution of the Data Alteration with Naïve Solution 

The source node computes the signature SD=Epri(H(D))  with its private key 

and sends it along with the data. Nodes along the way to the base station use the whole 

packet checksum to verify correct transmission (and ask for a retransmission if 

needed). If the packet is correct the node uses the public key specified by the source 

ID to verify the signature and sends it on if the signature is correct.  

 

 

 

Figure 2 shows this process via an example. S is the source node. It sends the 

rectangular data packet that consists of the data on the left and signature in italics on 

the right. The letter in the data and signature fields shows which node created them. 

Node A is loyal. It verifies the checksum and signature and then sends the packet to B. 

Node B has been taken over by an adversary. It alters the data and sends it onward. It 

can’t forge S’s signature because it doesn’t have S’s private key however. As 

A B C! S 

Figure 2 - Naïve solution example 

S:S S:S B:S 
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mentioned in section 3.1, B altering the signature field doesn’t change anything. Node 

C is the loyal node that detects the data alteration. After verifying correct data 

transmission it checks the signature using node S’s public key and realize it doesn’t 

match. This allows C to realize that the packet has been altered and that node B either 

altered the packet or passed the altered packet without checking it. Either way, C can 

conclude that node B is an adversary. The facts can then be passed to the security 

framework for appropriate action.  

We also use this system, along with the base stations public key to secure 

“important” transmissions from the  base station in all protocols that use public key 

cryptography. What is important varies by application, and we will note  the instances 

where the base stations public key is used in our protocols.  

If there are multiple adversary nodes, only the one immediately preceding the 

loyal node that detected the change will be detected. This is because we know that the 

previous node should have performed the same check, so the fact that it did not notice 

the change means it is an adversary. Since there is no way to tell if an already changed 

packet is changed again we can only detect one adversary node per data packet. This is 

a general property of our solutions. Since we detect adversaries by their actions, we 

can only detect a single adversary per action taken by them, since there is no way to 

attribute changed data to more than one node. It is hoped that this is a poor exchange 

for the adversary. 

Since every node has a unique public key, there are no additional actions 

needed if a node is removed from the network, as the key will not be used again. The 
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only difficulty is if the routing tree changes, in which case nodes may need  keys for 

nodes they did not before. The easiest solution is to have the base station send out the 

required public keys. If the number of nodes that need updates is small, the base 

station can send the keys  directly, encrypting them with the node’s  source key. For a 

larger number of nodes, the base station could do a limited broadcast of the new keys 

to nodes that need them. This transmission would be signed by base station’s own 

public key to prevent it being tampered with. Reconfiguration of the network requires 

an authenticated way of sending  out routing updates in any case. Due to having 

information on the entire topology, it is not difficult for the base station to figure out 

what nodes need what keys. 

3.2.2. Naive Solution Evaluation 

This solution fulfills our goals of detecting data alteration and being able to 

attribute the alteration to a specific node. We will now consider the overhead. We 

assume any application that cares about security and reliability would use encryption 

to prevent an adversary listening in on the data and checksums to detect transmission 

errors, so we ignore the symmetric key encryption done at the source and checksum 

computations at each hop as these would happen in almost all applications.  

Due to global key systems having a single point of failure in the global key, there 

has been a general research effort toward realizing public key cryptosystems in 

wireless sensor networks [10]. Both energy efficiency [32] and approaches such as 

coprocessors [24] have been studied. Mainly for reasons of efficiency, Elliptical Curve 

Cryptography has emerged as the preferred type of asymmetric cryptography for 
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wireless sensor networks [30]. In short, we believe using public key systems in sensor 

networks is practical for applications with high security requirements, while hardware 

advances will make it more accessible in the future. The computational requirements 

of public key cryptography do appear to present a not insurmountable barrier for 

applications with sufficient security requirements. 

To make this more concrete we will pick an implementation and use it as a basis 

for comparison. TinyECC is an elliptical curve based library targeting sensor network 

applications [16]; it was benchmarked on the common MicaZ[11] using the 

ATmega128 processor [4]. They used the standard SECG [9] recommended 

parameters for a 160 bit curve. This provides equivalent security [8] to the standard 

1024 bit RSA keys [27]. 

Setup Phase: The setup phase generates 1 additional message per node that is used to 

distribute that nodes public key. 

Message Overhead: No additional messages are generated by the naïve solution, so 

the message overhead is in packet sizes from the signature on each message. The 

signature has a size of 40 bytes.  

Computational Overhead: Data is signed at the source and the signature is verified at 

each hop downstream. Thus, the computational overhead varies by node, but is solely 

determined by the role a node plays for a particular packet. 

S(S) = Signature Generation Time: 2.00162s (source node) 

V(S) = Signature Verification Time: 2.43646s (routing nodes) 
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Memory Overhead: A node’s private key is 20 bytes. The main source of memory 

overhead consists of a table that maps an IDsrc to the corresponding public key for 

every upstream node. U is the number of upstream nodes. PK is the size of the public 

key, which is 20 bytes. Let I be the size of a node id. For I, 2 bytes gives 65535 

possible node IDs. This is probably sufficiently large for most cases. If more keys than 

65535 can be stored, it is likely that memory is less of an issue. We will treat node ids 

as two bytes in size from here on. The total memory overhead is (PK+I)*U, or 22 

bytes per upstream node plus 20 bytes for the private key. 

This is where the naïve solution fails our goal of minimizing overhead. To use 

this system a node must have the public key for any node that could send data through 

it on its way to the base station. For a node that is near the base station, this could be a 

very large number of nodes. For example, if there are 3 nodes that are a single hop 

from the base station, then one node would need keys from a third or more of the 

network (if one of the nodes serves less than a third of the network, then another must 

serve more than a third). Even 1000 keys would take 22KB of space, which is about 

1/6 of the 128K of program memory on a MicaZ mote and much larger than its 4K 

RAM size. 

Thus, this solution fails to provide a reasonable overhead cost, while fulfilling the 

other requirements. It does serve as a basis for the solutions we discuss in the 

following sections however.  

3.3. Topology based solutions 
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The problem with the naïve solution is that a node requires keys from any 

possible source node that could route through it. In this section we investigate a 

topology that reduces that problem by allowing a large number of nodes to be 

organized in a manner that effectively reduces the number of source nodes at the cost 

of requiring a specific network setup.  

3.3.1. Hierarchical Networks 

BS 

CH 

CH 

CH CH 

    … 

… … 

Figure 3 - Hierarchical Network 
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In a hierarchical network [28] [22], the network is organized into clusters as 

shown in Figure 3. Each cluster consists of a number of leaf nodes (small circles) and 

a cluster head. Data is sent to the cluster head and then routed to the base station 

through other cluster heads. Each leaf node is within a small number of hops, usually 

1, of its cluster head. Since the cluster heads route all data from their cluster, they 

transmit more data on average than a node in a more general topology. Because of 

this, cluster heads are often more powerful than the leaf nodes. Cluster heads may also 

execute other functions, such as data aggregation [17], where data is processed and 

combined in some way, such as computing an average, before transmission. 

3.3.2. Naïve Solution in Hierarchical Networks 

3.3.3. To utilize the naïve solution in a hierarchical network we treat a cluster the 

same way we would a single source node in a more general network. Leaf nodes send 

their data to their cluster head, called the source cluster head. The cluster head then 

signs it and sends the data to the base station. Other nodes that route the packet check 

the signature of the source cluster head against its public key to see if the data has 

been altered in the same way that routing nodes check the signature of the source node 

in the naïve solution. As in the naïve solution, a failed signature check indicates 

altered data. In addition, we can attribute the data alteration to the node (which must 

be another cluster head) that sent the packet. The detection and attribution goals are 

fulfilled in the same way as in the naïve solution. As in the naïve solution only a single 

adversary can be detected per changed packet. Topology changes are also dealt with in 
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the same way as in the naïve solution. Evaluation of the Naïve Solution in 

Hierarchical Networks  

The network topology has no effect on the individual public key computations 

themselves, so these are the same as in the naïve solution. The overhead that is 

different is the memory overhead required to store public keys. Like the naïve 

solution, a node requires the public key for any cluster head that could route data 

through it. Because the topology has clusters and most of the network is leaf nodes, 

the number of public keys a given node needs to store is much smaller. To check for 

data alteration, routing nodes only need to store the public key of any source cluster 

head that can route data through them, not any source node. Since each source cluster 

head can be linked to a number of leaf nodes, the number of keys a routing node needs 

to store is greatly reduced.  

If, say, the network is 90% leaves and 10% cluster heads, then since we only 

check the signatures of cluster heads, the number of potential sources is reduced by a 

factor of 10, and the number of public keys that need to be stored on average is 

reduced by the same amount. A hierarchal topology tends to have shorter paths to the 

base station than a more general layout with the same number of nodes due to most 

nodes being leaves. This reduces overall computational overhead also, but it remains 

the same per node.  

Since leaf nodes connect to the cluster head directly or by very short paths, a 

leaf node that becomes an adversary can only affect data from a small number of other 

nodes. Because of this we only worry about cluster heads altering data. The only effect 



 

 

35 

 

of the topology change is to reduce the number of public keys that need to be stored at 

routing nodes to check for data alteration. 

3.4. Extending to General Sensor Network Topologies 

The difficulty with the naïve solution is the number of public keys a node can 

be required to store in a large network. In this section we present a method to work 

within the storage limits of a node without requiring a specific topology. The basic 

approach is for each node to store as many keys as it can from upstream nodes and to 

use the naïve solution when a node has the key for a source node. We assume a node 

can store N public keys, where N is smaller than the number of possible upstream 

sources. So a node stores only a subset of the keys it would need to verify signatures 

from all possible sources. In this section we show how this subset can be used to 

protect data from alteration.  

We can think about the problem of having a node only able to store N keys in 

two ways. From the perspective of a source node, as data gets closer to the base 

station, the number of possible upstream sources increases and space required 

increases. Nodes allocate key space for nodes closer to them so that the range where a 

given nodes key can be verified remains contiguous. 

To protect data from alteration with a subset of the upstream keys, the general 

idea is to store as many keys as is practical from upstream nodes and re-sign the data 

when the distance from the source node is such that nodes did not want to allocate key 

space for that source node. 

3.4.1. Re-signing: Setup phase 
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For this section we concentrate on a simple, intuitive algorithm. The best way 

to allocate the public key space available to a node is a subject for future research. To 

set up the re-signing algorithm a node gathers all the public keys it can store. We 

assume for simplicity that all nodes can store the same number of public keys and that 

nodes store keys for nodes closest to them rather than far away. To start with, each 

node sends the IDs of its neighbors to the base station. This allows the base station to 

figure out the entire network topology. The base station then tells each node how 

many nodes are upstream for each neighbor it has and how it should split key space to 

each upstream branch. This information is then used to allocate the key storage space 

at each node. Generally, the base station tries to allocate each node’s key space so that 

nodes within a certain number of upstream hops can be verified.  
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We will consider the 

setup phase from the point 

of view of node A in Figure 

4. The node labeled X is in 

the direction of the base 

station relative to node A, 

i.e., it is downstream. We 

assume A has space to store 

9 public keys. Node A starts 

by creating 9 virtual tokens, one for each key it can store. Any node that receives a 

token from A sends its public key to A. A then splits its tokens proportionally to how 

many upstream nodes there are for each neighbor. It sends 4 to node C, 2 to node F 

and 3 to node B. Node C then takes a token and has 3 left and 3 upstream neighbors 

(G, H, I), so sends them each a token. The other nodes repeat this process until they 

have no more tokens from A to send. At the end, A has public keys from nodes B-J, so 

it can verify data signed by any of those nodes. Nodes that get a token count of 1 from 

a node include this fact when they send back their public key. Node A then notes that 

it has a re-sign flag for those nodes. The nodes for A where this happens are D, E, J, 

G, H and I.  

 Remember that other nodes are doing this protocol at the same time. When 

node A forwards keys to node X during setup, it notes which ones it forwards that have 

the re-sign flag set and unsets the flags for those nodes. At the end of the setup phase, 

Figure 4 – Re-signing Setup 
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node A only has the re-sign flag set for nodes for which it did not forward the public 

key to node X. These are the nodes’ keys that A knows X does not have the public keys 

for, because it did not send them, so it knows that A is a re-sign point for those keys. 

We call the nodes that can verify a particular key the key span for that key. 

 Each node is told how many tokens to send out by the base station. When a 

node has received public keys for all its tokens it notifies the base station. When all 

nodes have notified the base station the first phase of the setup is done. The base 

station then sends a broadcast message indicating the start of the second phase of the 

re-signing setup. In the second phase, all nodes send a single message to the base 

station. This message acts like a regular data message. However, each node simply 

places its node ID in place of the signature fields. When a node sees one of these fake 

messages it stores the IDsrc and the IDs for the two signatures into a table, called the 

source table. 

This allows each node to build up a table, called the source table, of all nodes that 

route through it toward the base station. This table tells the node, based on the IDsrc, 

what the signature on the packet is at the time it reaches that node. This table is needed 

for many routing schemes anyway in order to route acknowledgements back to source 

nodes from the base station. We also note that the adversary cannot perform an insider 

attack during the setup phase of the network. Another advantage of the source table is 

that, for a given source node, it fixes where the re-sign points are. If a signature is 

changed by a node that is not a re-sign point for that packet the next signature check 

will fail, even if the signature is valid, because the node checking the signature will 
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use the key from the node it is expecting to have signed it, rather than the node that 

did. This means an adversary node cannot pretend to be a re-sign point when it isn’t 

one.  

3.4.2. Re-signing: Operation 

The operation of the re-signing algorithm is very similar to the naïve solution 

on which it is based. Data is encrypted using the source key and signed with the 

source’s private key. The data packet that is sent looks like this:  packet = Sigsrc(D) 

where D is the data defined in Section 3.1.When a node gets a packet, it looks up what 
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Figure 5 - Re-signing 
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keys to use in the source table according to the IDsrc and uses the key specified by the 

source table to verify the signature on the packet. When we reach the point that the 

original source node’s signature can no longer be verified, that next node calculates a 

new signature with its private key and puts the new signature in the signature field. In 

Figure 5, U is the source node where the event occurs. The path the packet takes to the 

base station is marked by the striped nodes. Each striped node is labeled with its 

public keys in the bubble. Nodes can store up to 3 public keys in this example. The 

packet starts being signed by node U, but we run into a problem at node G, marked by 

an arrow. The problem is node C did not have the space to store U’s public key, so it 

does not have it and can’t verify U’s signature. G knows this because it has the re-sign 

flag set for U in the source table a node uses to look up public keys for signature 

verification. In this case, after verifying U’s signature, G then signs the packet with its 

private key. The next node, C, does have G’s public key so it can simply verify the 

signature before sending the data onward. In this way the packet makes its way to the 

base station, getting a new signature whenever needed to check that it has not been 

altered. As in the naïve solution, a failed signature check indicates altered data and 

that the preceding node is malicious.  

The difficulty with this approach is that, since G re-signs the data with its 

private key, there is no way for the downstream nodes to tell if G has altered the data. 

Using source keys the base station will still be able to detect that the data has been 

altered, but, except for one special case, it won’t be able to tell what node altered it. In 

the special case of data only being re-signed a single time, the base station can blame 
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the node specified in the signature ID field of the packet for the alteration. However, if 

data is re-signed multiple times on its trip there is no way to know which node did it.  

The solution to this attribution problem is to use two signatures, both from the 

same node. This means we only need the pair of signatures to be unique, rather than 

the individual signature. We also change the source table to point to two keys per 
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source node, rather than one. By using the source table, nodes know what keys to use 

to verify the signatures. Each node checks both signatures against the data; if either 

one fails, it indicates that the data was changed and the previous node altered it.  

Figure 6 shows the case where we use two keys in the packet. The key storage 

space and the keys at each node are the same as in Figure 5. At 

each hop, we show the names of the nodes that have signed the 

packet in the call-out box. For simplicity in this example, we will 

name the signature with the name of the node that signed it. U is 

still the source node. The packet that node S receives has U and U 

as its signatures. Since both are the same, S replaces one of them 

with its own signature. N then gets a packet with the signatures of 

U and S. In this example, as in the previous one, N is a re-sign 

point for U, so it signs the data with its private key, replacing the U 

signature with its own signature. N cannot take this opportunity to 

alter the data because the next hop, G, can verify S’s signature and 

will be able to tell that the data has been altered when that 

signature check fails.  

We note that this solution fails if there are two adversary 

nodes in a row that are both re-sign points. This is because two 

nodes can collaborate to change both signature fields, with the 

second node changing the data at the same time. Generally, M 
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signature fields can deal with M-1 adversary controlled re-sign points, as each re-sign 

point allows an adversary to replace one signature.  

Controlling nodes that are not re-sign points does not help the adversary as the 

downstream nodes expect the signatures to come from the re-sign points and only use 

the keys from those nodes to attempt verification, thus other keys are not helpful to the 

adversary. 

 

3.4.3. Re-signing Evaluation 

In the same way as the other solutions based on using public key cryptography, 

data alterations are detected by the first loyal node that can then conclude that the node 

that sent the data either altered it or knowingly passed bad data and is thus an 

adversary. We use the same cryptography system (TinyECC [18]) for the 

implementation as we did with the naïve solution in Section 3.2.2.  

Setup Phase: In the Setup Phase, each of the nodes send a single message with its 

public key and a list of nodes it got tokens from back to base station. Nodes that 

forward the message keep the public key, remove their ID from list and send it 

onward. The node that takes the last ID drops the message after storing the key. The 

only additional message in the setup phase is the list of IDs.  

Message Overhead: Like the naïve solution, there are no additional messages during 

normal operation. The packet size overhead is the two signature fields, which are 40 

bytes each, for a total message overhead of 80 bytes.  
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Computational Overhead: Data is signed at the source, at the next node and verified 

at each hop downstream. When it reaches a re-sign point, one of the signatures is 

updated. Costs for the various operations use the same  numbers as  in 3.2.2 and are as 

follows: 

S(S) = Signature Generation(also, the time at the source node): 2.00162s 

V(S) = Signature Verification: 2.43646s 

For routing nodes the total time is the two signature verifications, for a total time of 

4.87292s. Nodes that do a signing operation have a total time of 6.87454 seconds. 

Memory Overhead: The source of memory overhead is the source table, which stores 

the two signatures on a packet for a given source. As in the naïve solution, public and 

private keys are 20 bytes, node ID’s are two bytes. We assume 1 byte is needed to 

index into the table of keys. The size of the table of keys is 20 bytes times the number 

that are stored. This value can be selected based on the available memory and the 

needs of the application. Each entry in the source table maps a source node ID to a 

pair of indexes into the key table. Thus, each source table entry is (1 node ID + 2 key 

table indexes) = four bytes. There is one source node entry for each upstream node. If 

U is the number of upstream nodes and T is the size selected for the key table, then the 

total memory overhead is 4*U+T*20. This amount of overhead is a problem because 

of the resource constrained nature of sensor nodes. 

3.5. Tier Naïve  

In this section we present a different modification to the naïve solution that 

vastly reduces the number of keys a node needs to store. This is based on the 
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observation that we only need to keep the same key from being re-used along a path to 

the base station.  

3.5.1.  Tier Naïve Setup 

To set up this system, the base station figures out what the maximum depth (D) 

of the network is. Depth in this case refers to the number of hops a message takes to 

reach the base station. Messages from the node with the greatest depth take the most 

hops. The base station then sends D public-private key pairs out in a list. Each node 

then removes the top key off the list, stores all the rest of the keys in the list in its key 

table and sends the updated list to all of its upstream children. This ends with each 

node having the public keys of all nodes further from the base station. Also, all nodes 

at the same depth, or hop count from the base station, have the same public-private 

key pair.  

3.5.2. Tier Naïve Operation 

Consider the fragment of a network shown in Figure 8. The nodes labeled S1 – 

SI-1 and node A1 are all the same distance from the base station. This means they share 

the same public-private key pair. Note that no node that shares a key with node A1 

sends data through A1. This means that A1, by itself, cannot alter data from any node 

without being detected. It can alter data from any of the S* nodes, but they never send 

data through A1. Unlike the naïve solution, we run into a problem if there is more than 

one adversary node. Suppose A1 decides to send its key to another adversary node, A2. 

In this case, then A2 can alter data from any node that shares a key with A1 without 

being detected. In this case, this means any of the nodes with the box around them. 
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Thus, this solution fails to detect data alteration in a useful manner in the presence of 

more than one adversary node.  

 

 

Figure 8 – Tier Naive 

3.5.3. Tier Naïve Evaluation 

Setup Phase: The base station has to send out a message with the keys. Alternatively, 

one could send out the seed values used to randomly generate the keys and then send 

the public keys back to the base station as in the naïve solution. 

Message Overhead: The message overhead is exactly the same as the naïve solution, 

it’s just the size of the signature. 

Computational Overhead: The computational overhead is also exactly the same as 

the naïve solution because only a single signature verification is done at each hop. 
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Memory Overhead: The maximum number of keys any node has to store is equal to 

the maximum depth of the network, so it is considerably reduced from the naïve 

solution because the space is proportional to the depth of the network rather than the 

total size of the network. Space for the key table is exactly the same. 

3.6. Tier Plus 

In this section, we show how we can improve the tier solution to remove the 

problem with multiple adversary nodes. We do this by combining it with the resigning 

solution in a way that reduces the problems of both. The basic problem with the tier 

solution is, while the number of keys a node needs to store is reduced, the fact that a 

number of nodes that have the same key means that an adversary that acquires one key 

can use it to forge data from multiple nodes. Thus, we need a way to limit the damage 

an adversary can do while keeping the number of keys low. Basically, we would like 

the number of nodes an adversary can change data from to be proportional to the 

number of nodes taken over.  

3.6.1. Tier Plus Setup 

A solution here is to use two signatures, as in the re-signing solution. In this 

case, every node is given 2 sets of public and private keys. Since forging data from a 

node requires two keys, this means the number of unique combinations is large, while 

the number of actual keys needed is much smaller. The number of combinations for N 

keys is given by the binomial coefficient . If there are X nodes and we have N keys, we 

want to make sure (
 
 
)    . A value of N=142 would yield 10,011 combinations and 

is sufficient for a 10,000 node network. To set this up, the base station makes sure no 
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pair is reused when handing out the keys. The one drawback to this solution is that the 

enemy gets two keys for every node they take over.To reduce this problem we can go 

with a system similar to re-signing where there are two signatures on the packet but 

each node has a single key. Since a packet gains its two signatures from its source and 

first node and first hop after that, we make sure each such pair is unique. The same 

number of keys can be used, with one 

exception. To distinguish the two, we 

append the number of keys per node to the 

name to get Tier Plus1 and Tier Plus2. 

If we have N keys and X nodes, we 

run into a problem if a single node has N 

or more children. This is shown in Figure 9. 

We have four keys and six nodes since 

(
 
 
)   . In the figures we use letters to 

represent keys and numbers to represent the 

node ID’s in this case. While there are enough combinations to give each node a 

unique pair, we run into a problem because node 1 and key A is the first hop for all of 

the other nodes. We can solve this by giving node 1 two keys, A and B. It can then 

pick which key it uses to sign a packet depending on what the source is. If we don’t 

have this case, we just assign nodes keys that do not reuse an existing combination. 

 Once the keys are in place, this functions like the re-signing solution. Packets 

are signed at the source, then at the first hop, and signatures are checked at every hop 
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Figure 9 - Tier Plus Bad Case 1 
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after that. The fact that the number of keys is limited means we don’t need re-sign 

points. This solves the difficulty with the re-signing system. The use of two signatures 

and the number of combinations reduces the problem with the original tier system.  

In addition, we can allow a single re-sign point in order to further reduce the number 

of keys. A single point is not a problem because, if the data is changed, the base 

station knows which nodes to blame as the re-sign point is the only place it could have 

happened. This requires there be no more than one resign point on any path however.  

3.6.2. Tier Plus Operation 

The operational aspect of this protocol is the same as in the naïve solution. 

Data is signed by the source node and then the signature is verified at each hop. As  in 

the naïve solution  only a single attacker can be detected per changed packet.  

Reconfiguration of the Tier Plus2 protocol is simple, especially since nodes 

may be able to hold enough keys for the entire network. The base station can send out 

the required source table changes, signed by it’s private key.  

That fact that keys are re-used means that an attacker may gain the ability to 

alter data from more nodes than they physically control. We will examine this more 

closely now.  

In Tier Plus2, each node has two keys, so an adversary that takes over n nodes 

would have access to  (
  
 
) combinations. We can reduce this problem by adding 

additional keys to draw from a larger pool of combinations, thus reducing the number 

of combinations that use any one key. Also, we may be able to reduce vulnerability by 
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changing the spacial distribution of keys, i.e. by ensuring that the combinations used 

on a particular path are distinct in some way. This is an area for future work. 

The Tier Plus1 protocol addresses the problem of the adversary using  the keys 

acquired from insider attacks to generate the key combinations of loyal nodes  by 

having only one key per node rather than 2, which reduces the number of 

combinations an adversary who takes over n nodes has the ability to create to (
 
 
) 

because they only acquire one key per node that is successfully attacked.  

3.6.3. Tier Plus Evaluation 

Setup Phase: The base station has to send out a message with the keys. Alternatively, 

one could send out the seed values used to randomly generate the keys and then send 

the public keys back to the base station as in the naïve solution. 

Message Overhead: The message overhead is the same as in the resigning solution, 

there are two signature fields. 

Computational Overhead: The computational overhead is exactly the same as in the 

resigning solution, the difference being that resign points are not necessary. 

Memory Overhead: The number of keys needed is bounded by the binomial 

coefficient. For a network of N nodes, the number of keys, X, needed is the smallest 

value such that  (
 
 
)   . As we mentioned before, 142 keys gives 10,011 

combinations, which is sufficient for a fairly large network. Space for the key table is 

exactly the same as in the resigning solution. 

3.7. A cryptographic solution 



 

 

51 

 

In this section we present a way to modify the naïve solution using more recent 

cryptographic research to negate its disadvantages. We use what are called group 

signatures [7]. Group signatures are an anonymous version of public key 

cryptography. In most public key algorithms a user signs data with their private key. 

The user’s public key can then be used to verify the signature. In group signatures 

there are groups that, effectively, share the same public key, called the group key. The 

group key can be used to verify a signature from any member of the group, but it is 

impossible to tell which member of the group a signature is from using it. 

3.7.1. Group Signature Operation 

To utilize group signatures, we swap the group signature scheme for the public 

key signatures in the naïve solution. The base station is the group leader. No other 

changes are needed. Data is signed at the source with the source’s private key and the 

signature is verified at each hop using the group key rather than the public key of the 

source node. We do encounter one difficulty with this scheme. The anonymity 

property of group signatures means that an adversary can change the data and sign it 

using their own private key and other nodes will not be able to detect the change 

because they have no way of knowing the signature does not match the source.  

The fact that the base station is also the group leader presents a solution to this 

problem. If an adversary alters data and signs it with their own key, the base station 

will still be able to detect that the data has been altered, because the data was 

encrypted with the private source key of the original source node and therefore won’t 

decrypt as described in Section 3.1. Also, due to being the group leader, the base 
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station can extract the signature and discover the identity of the signer. Since we know 

the data was altered because of the failed decryption and we know the alteration was 

malicious due to the packet having correct checksums, the base station can then 

deduce that the signing node is an adversary and take appropriate action. This removes 

the last drawback of this scheme. 

3.7.2. Group Signatures Evaluation 

 Spreitzer and Schmidt examine several group signature schemes in the context 

of constrained devices [29]. Their work is invaluable to us here. The scheme that 

seems to be the most efficient and secure is HLCCN [14]. Signature size is 171 bytes 

[14]. They also performed benchmarking using a ATmega128 processor. This allows 

comparison with other algorithms.  

 Setup Phase: The base station, as group leader, sends a message to every node 

with their private key and the group key. So there is one setup message per node.  

 Message Overhead: There are now extra messages, so the overhead is the 

signature added to each message. The signature size is 171 bytes. 

 Computational Overhead: The signature is generated once at the source and 

checked at each node. For this scheme the signature generation time on an 

ATmega128 is 27 seconds while the signature verification time is ~ 29 seconds. Even 

using the faster 32 mhz ATxMega256 they suggest that signature generation would 

take 6 seconds and verification about 7. Hardware support or much faster hardware is 

needed for most practical applications. 
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 Memory Overhead: The main benefit of this scheme is the low memory 

overhead. All that nodes need to store is their private key and the group key. Group 

key size for this scheme is 342 bytes, private key size 86 bytes. Total storage needed is 

428 bytes.  

3.8. Recovery: A Non-Cryptographic Solution 

In this section we examine a solution to detecting data alteration that does not 

depend on encryption. While the encryption based solutions do provide timely 

detection of data alteration and can be used to attribute alteration to the attacker easily, 

public key encryption and the more advanced versions of encryption used have 

considerable computational loads. Thus, we examine a solution that is based on a 

different approach to the problem and has a different cost in overhead.  

Consider a system using the basic assumptions outlined in chapter 1, but no 

additional mechanism for detecting data alteration. In this case, the base station can 

detect that data has been altered, but has a problem detecting who did it. In this section 

we present an attribution mechanism that can be used once data alteration has been 

detected. 

A simple way to detect data alteration is to remember what you sent and 

compare that at various points in the network. To do this, we assume that nodes 

remember a hash of data they received and then sent onward. When they see an 

acknowledgement from the base station for that data they can forget the hash. If the 

base station detects that the data has been altered it can, instead of sending an 
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acknowledgement, ask for the hashes of the data received at each node along the path. 

In this way the origin of the alteration can be attributed to a specific node.   

 

3.8.1.1. Recovery Operation 

In Figure 11 we can see an example of how recovery would work. N is the 

adversary node. The solid lines represent the unaltered data, while the dashed lines 

represent the data that have been altered. The original data have the original hash 
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(HO), while the altered data have a different hash (HA). A cryptographically secure 

hash function is chosen so it is effectively impossible for the adversary to make HO = 

HA. Nodes remember the hashes of packets that they receive. If the base station 

detects that data has been changed, it asks that all nodes send their oldest 

unacknowledged hash for a given source node to the base station. Hashes are sent 

encrypted with the nodes’ source key, so they also cannot be altered by the adversary 

(and it will be detected if they fail to arrive).  We assume the original source node 

sends an acknowledgement that includes the SHA1 hash of the request of the call for 

hashes itself with it’s source key. This acknowledgement will be missed if the original 

request for nodes hashes from the base station does not arrive. This prevents the 

adversary from tampering with the request.  However, if the code space for the public 

key system is not an issue, it is simpler to include the ECC library and use the naïve 

system to protect these types of messages from the base station. Alternatively, nodes 

could send the hash of the call they get back along the path they received it from 

toward the base station. This would also prevent the adversary from tampering with it, 

as this would obvious  from the hashes from each node.  

 One difficulty is that the adversary can still alter packets sent during the 

recovery protocol. We note that the base station is able to tell that the data packet has 

been altered, but not which node did it. We will first consider the case where the 

adversary does not alter upstream packets. When looking at the hashes received at 

each node, there will be a point where one node received HO and the next received 

HA. Thus, we know the adversary node is one endpoint of that link. It is not easy to 
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say which one however. The problem here is that the adversary node (N) can send 

either HO or HA as the data they received, which makes it difficult to decide which 

end of the link with between HO and HA is the adversary. We consider the 3 node 

sequence S->N->G (where N is the true adversary) in Figure 11.If the adversary sends 

HA back as the hash it received then the base station gets HO from S, HA from N and 

HA from G. This means the adversary is either S or N. 

 If the adversary sends back HO, then the base station gets HO from S, HO 

from N and HA from G. This means the adversary is either N or G. And it is difficult 

to say which of these two cases is correct. A simple solution is to treat both nodes as 

guilty. The difficulty of insider attacks means that even being able to kick out an 

innocent node along with the one that was compromised is not much of a win for the 

adversary, since the adversary is discovered when it took action. Thus, the amount of 

damage is limited.  

 Next, we consider the case where the adversary alters the recovery packets in 

an attempt to confuse things. Recall that altered hash packets are detected as altered at 

the base station. The hash from S must be altered, as S will send HO otherwise and 

having altered packets from before S won’t change anything if S isn’t altered.  

 If the adversary alters upstream packets but sends HO as its hash then we get 

the case where the base station gets something like this:  S={altered}, N=HO, G=HA. 

In this case, we know the adversary node is N. We know “altered” packets come from 

nodes upstream of the adversary or the adversary itself, so the only way the original 

hash could be received from a node downstream of the altered packets is if that node is 
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the adversary. In short, if the adversary is going to alter the upstream packets, it makes 

no sense for them to send HO. The adversary would then either send HA or send their 

own packet as altered.  

To think of it another way: The adversary can only alter packets routed through 

itself. Thus, every packet the adversary could alter and come up as altered at the BS 

must have been HO because only nodes upstream of the adversary route through it. 

Thus, we can actually treat altered packets as though they contained HO. We then end 

up with a case where there is a link that has an altered hash on one side and HA on the 

other. As in the previous case there is no way to know which node is the adversary, so 

we treat both nodes as guilty.  

While more complicated than other protocols, the result is the same. Malicious 

data alteration is detected and it is possible to blame a pair of nodes and prevent it 

from happening again. As with our other  protocols, we can only detect a single  

adversary per changed packet. The first adversary on the retraced path that altered the 

packet is found.  

Reconfiguration of the network is relatively simple in the recovery protocol; 

there are no keys to distribute. The only requirement is that existing hash paths may no 

longer be valid. A simple solution would be to flush all hash lists on affected paths and 

have those sources, who need to keep the data anyway to allow for retransmission, 

resend them after the reconfiguration.  Since we cannot assume the the presence of a  

3.8.2. Recovery Evaluation 
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The overhead of the recovery protocol can be divided up by phase. Normal 

Operation Phase and Recovery Phase. During normal operation the computational 

overhead consists of the hash computations. The memory overhead is that required to 

store the hashes. The exact amount of memory overhead greatly depends on two 

factors. These are the following: 

The Hash Function: Most hash functions create a fixed sized value. Common sizes 

would be 160 bits (20 bytes) for SHA-1 or 224 bits (28 bytes) for the SHA-3 

algorithm selected as its replacement. SHA-1 is a common function used for 

applications such as SSL certificates.  

 We note that long term security may not be needed in this case. In order to 

alter the data undetectably the adversary must find a data value with the same hash as 

the existing data, which is called a collision. This is considered computationally 

infeasible for standard cryptographic hash functions. The amount of time they have to 

do this is until it is noticed that the packet is missing, at which point detection 

protocols will be triggered. They will be easily detected in this case as nodes before 

the adversary node will have the hash. In applications where missing packets will be 

detected relatively quickly we can get away with a slightly less secure hash function as 

there is still not sufficient time from the adversary to find a collision.  

Round Trip Time: Hash values must be stored until the acknowledgement or a call 

for the hash values comes from the base station.  

Depending on various factors, the memory overhead of this algorithm can be 

significant. There are several ways it can be reduced. 
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 One way to reduce the memory overhead would be to trigger the algorithm 

when an altered packet is detected. A message is sent out that tells nodes to start 

remembering hashes. This is appropriate if there will be more than 1 packet generated 

by a given event and losing the first one is not a big loss.  

Setup Overhead: There is no setup overhead in this case. 

 Message Overhead:  There is no change in packet sizes. There are also no 

extra messages during normal operation.  

When the recovery protocol is triggered an extra message from each node 

along the path from the source to the base station is sent with that nodes hash for the 

message.  

 Computational Overhead: The computational overhead consists of hash 

function chosen, 1 hash computation per packet. Ganesan et al analyzed various 

cryptographic primitives on a variety of common sensor network platforms. We use 

their results for the ATmega128 for our comparison [12]. While performance varies 

according to the size of the message, hash time was 7.7 ms on a 64 byte message, and 

about half of that for a 1 byte message.  

 Memory Overhead: The memory overhead is that required to store hashes 

until an acknowledgement can be gotten to discard them. If we assume each cycle 

includes an upstream and downstream transmission slot and messages are always 

coming and going at the maximum rate. For a node that is N hops from the base 

station then, a message will take N cycles to reach the bases station from a node and N 

more cycles for the acknowledgement to get back. The node must store the hash 



 

 

60 

 

during this time. During this time, new messages are also coming in. Thus, we expect 

the number of messages stored at any one time to be proportional to twice the hops 

from the base station, 2N. Each hash is 20 bytes(160 bits),  so the memory overhead is 

40 bytes * N. 

3.9. Hybrid 

In this section we present a hybrid between the signing systems and recovery 

that reduces the disadvantages of both. The disadvantage of the signing systems is the 

computational cost associated with public key cryptography at each node relative to 

the hash computation used in recovery. The disadvantage of recovery is the inability to 

pinpoint a single adversary node as well as the time it takes for an adversary to be 

detected. We can reduce both these problems by starting off with a signing model and 

transitioning to recovery as we get closer to the base station. This system is based on 

the observation that computational and time overhead is more important near the base 

station because those nodes have to handle more traffic. Thus, we can divide the 

network into three groups roughly based on depth relative to the base station. The first 

group is the signature zone that uses the naïve protocol where a single signature is 

checked at each hop. Nodes closest to the base station are in the recovery zone and use 

the recovery protocol. This allows them to handle traffic quickly from the large 

number of upstream nodes. Finally, nodes between the recovery zone and the naïve 

zone are in the hybrid zone and use a hybrid protocol where some nodes check 

signatures and some use recovery. What role a node has for a particular packet 

depends on the source node for that packet.  
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3.9.1. Hybrid Setup 

In setting up the Hybrid protocol there are various parameters that are needed; 

these will be discussed in turn in this section and explored in greater depth in a later 

chapter. As in the signature based protocols, all nodes have a public-private key pair. 

They send their public key to the base station. What the forwarding nodes do with the 

keys depends on what zone they are in.  

The first parameter is the point where we switch from using the signature 

scheme to using the hybrid scheme. The primary concern for this parameter is the 

amount of memory available to nodes to store keys. Nodes that would need too much 

memory cannot be in this zone. Nodes in the signature zone store all public keys they 

forward during setup.  

For the hybrid zone, the main concern is which nodes should use which 

protocol, as well as where the changeover should be to the pure recovery protocol. In 

the hybrid zone, nodes divide their memory between recovery and key storage. It is 

convenient that both ECC public keys and SHA-1 hashes are 20 bytes. Recall that the 

memory usage of the hash storage for the recovery protocol in a steady state is twice 

their depth (number of hops from the base station, or D). The hash storage size is 

2*D*20 bytes, while the rest of the available memory is key storage. Nodes in the 

hybrid zone use this formula to divide their available memory for this protocol into 

hash storage, used for the recovery protocol, and key storage, used to store public 

keys for checking signatures.  
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To simplify things, we pick a step value. When the public keys are sent to the 

base station at the end of setup, a counter is included. Every hop toward the base 

station increments the counter. When nodes in the signature zone get a public key 

during setup they make a note in their source table. If the counter is a multiple of the 

step value (counter mod sv = 0), the node stores the public key and makes a note in 

the source table that they are a signature node for that source. That means that they 

will check the signatures of nodes from that source before forwarding packets. If the 

counter is not a multiple of the step value the node makes a note in the source table 

that they are a recovery node relative to that source. This means that the node stores 

the hash value of packets from that source as part of the recovery protocol.  

One can think of the step value, sv, as dividing the number of keys a node 

needs to store by sv. Since the base station told each node how many upstream nodes 

there are, a node can figure out that the number of upstream nodes should be less than  

the step value times the amount of key storage. This allows each node in the hybrid 

zone to figure out their step value.  

Finally, as the distance to the base station increases and the number of 

upstream nodes decreases, we enter the recovery zone. These nodes use the recovery 

protocol no matter what the source is. In this zone, it is possible to drop the packet 

signature to save packet overhead.  

3.9.2. Hybrid Operation 

Figure 12 shows the setup and operation of the hybrid protocol. We use 

numbers to label the nodes in this case. We show the operation of the protocol relative 
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to two source nodes, nodes 1 and 2. Along with the node names, we also show the role 

of each node relative to source nodes 1 and 2 in that order. We use 0 to indicate that a 

node has no role relative to that source node, and S to indicate the source nodes 

themselves. The letter G is used to indicate that a node is a signature node relative to a 

particular source, while R is used to label nodes that do recovery for a particular 

source. The solid line represents the signature zone. Nodes in this zone check the 

signature of all packets. Thus, node 3 is labeled 3:GG because it is a signature node 

relative to both source nodes, 1 and 2. The dashed line represents the hybrid zone for 

nodes 1 and 2(nodes 3,4 and 5)  and the remaining nodes are in the recovery zone for 

nodes 1 and 2(nodes 7 and 8).  

 

 

 We note that in the hybrid zone, nodes may have different actions for packets 

from different source nodes. Also, all nodes in the hybrid zone in this example use a 

8:RR  2:0S 

7:RR 
3:GG 

5:GR 

6:RG 4:RG 
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Figure 12 - Hybrid Setup  
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step value of 2. A packet that originates at node 1 would have its signature checked at 

node 3. Node 4, with the label RG is a recovery node for source 1, so it would store 

the hash value before forwarding the packet. Node 5 is a signature node for source 1 

so it would check the packet signature before forwarding the packet. Node 6 is again a 

recovery node for source 1, like node 4: it would store the hash value before 

forwarding. Nodes 7 and 8 are in the recovery zone for all sources, so they store the 

hash value regardless of the source. In this case, node 7 can remove the packet 

signature to save packet space. 

Attribution and detection are almost the same as in their respective protocols. 

If a node in the signature zone detects malicious data alteration, it knows the previous 

node is a fault, as it had to have either altered it or knowingly forwarded a bad packet. 

This is the same as in the signature based protocols. In summary, if node detects data 

alteration via a signature check and it knows the previous node also did a signature 

check, it can assume the previous node is the adversary.  

In the Hybrid zone, a node that detects data alteration via a signature check 

cannot assume the previous node is at fault unless it also did a signature check. If the 

previous node is a recovery node for that source then the node that detects data 

alteration initiates the recovery protocol starting at itself. The advantage of doing this 

is that bad data does not need to go all the way to the base station to be detected and 

the recovery process is initiated quicker. In the recovery zone, nodes use the recovery 

protocol as described in an earlier section. As with the other protocols, the hybrid 
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protocol can only find a single adversary per altered packet. This holds true no matter 

how the alteration is detected or in what zone it is detected. 

Reconfiguration of the hybrid protocol is different depending on what zone the 

affected nodes are in, but in all other aspects, it is the same as in the component 

protocols.  

3.9.3. Hybrid Evaluation 

The evaluation of the hybrid protocol depends on the parameters chosen, so we 

explore it more fully using simulation in later chapter. However we present an 

overview at this time.  

Setup Phase: Like the signature algorithms, the setup phase generates 1 additional 

message per node that is used to distribute that nodes public key. The message is 1 

byte bigger due to the counter. 

Message Overhead:  The message overhead is almost the same as the naïve solution. 

The change in packet size comes from the signature on each message. The signature 

has a size of 40 bytes.  

 The only extra messages generated are during the recovery protocol. 

Depending on where the data alteration is detected, the number of extra messages is 

the same as in the recovery protocol or less. The number of messages is the same if 

alteration is detected at the base station and less if it is detected by a signature node in 

the network. During the recovery protocol, a message is sent from every node between 

the detection point and the source to the base station.  
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Computational Overhead:  The computational overhead varies depending on the role 

a node plays for a particular packet. If a node is a recovery node for a packet, the 

computational overhead is the SHA-1 hash check. If a node is a signature node, then 

the overhead is the signature verification. 

Hash Computation: 7.7 ms 

Signature Verification: 2.43646s 

Memory Overhead: The memory overhead is actually the same for almost all nodes. 

The difference is how we allocate the available memory between the recovery and 

signature protocols. The memory storage for recovery is 20 bytes times twice the 

depth of the node. Public keys are also 20 bytes in size, so we use 20 bytes as the 

block size for this discussion.  

Nodes in the signature zone that have fewer upstream nodes than the amount of 

memory allocated will use less memory. Similarly, nodes very close to the base station 

that only use recovery, but have a quick turnaround due to a shallow depth, will also 

use less memory.  
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CHAPTER 4 

 

FINDINGS 

 

In this section we will compare the different algorithms across each type of 

overhead, while discussing the different situations in which each one is useful. The 

solutions we presented broadly fall into three categories. 

Public Key Signatures: These solutions use public key encryption and the 

signing of data to detect malicious alteration. We consider the Tier Plus system the 

representative of this category, due to it being a combination of the other systems.  

Group Signatures: While the usage of this from a users point of view  is almost 

the same as the public key version, the encryption scheme used is different and not as 

widely studied. For this reason, it has its own entry. We generally refer to this and the 

Public Key Signatures as signature based schemes, which differentiates them from the 

next one. 

Recovery: The recovery system is based on the idea of remembering data that is 

seen and backtracking to determine the culprit. Since this uses a different mechanism 

than the signature based schemes, we primarily focus on the strengths and weaknesses 

of the two approaches.  

The hybrid protocol uses a combination of the recovery protocol and a signature 

scheme, which is usually the naïve system. In it, some nodes check signatures and 

some use the recovery protocol to detect and attribute malicious data alteration. The 
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overheads involved vary according to the source node and the role a particular node 

plays. We evaluate this empirically in section 4.6.  

4.1. Detection and Alteration  

It is worth remembering that we can distinguish between packets that have 

been altered by an adversary and those that have been corrupted by wireless physics. 

The former will have valid checksums, while the latter will not. This allows us to 

distinguish malicious data alteration.  

 All signature based schemes work in the same way. One or more digital 

signatures of the data is added to packets and is checked by all loyal nodes along the 

path to the base station. A failed check indicates that the previous node is hostile, as 

we know it either altered the data itself or passed bad data. This makes the detection 

and attribution of malicious data alteration fairly straightforward in these schemes.  

Recovery is based on remembering the data that was sent and back tracking the 

trail to find the adversary node. The difference is, since the adversary can claim to 

have gotten altered or unaltered data, we usually cannot uniquely identify the 

adversary; instead, the alteration can attributed to one of two nodes. We treat both 

nodes as adversaries in this case. An additional weakness of the recovery protocol is 

that altered data must reach the base station before it can be detected. This means the 

effort spent sending it is wasted. Thus, recovery could be considered to be weaker than 

the signature based schemes in both the detection and attribution of malicious data 

alteration. 

4.2. Setup Overhead 
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In all cases the setup overhead is fairly straightforward. There is no specific 

setup for the recover protocol. For the signature based protocols the base station sends 

each node its key(s). Nodes then send their public keys along the path to the base 

station to allow nodes along the way to store them.  

Tier Plus actually has the worst setup phase of all the public key signature 

based systems. This is because it allows nodes to have the same public-private key 

pair as long as repetition does not create packets with the same pair of signatures. This 

reduces the overall number of keys nodes need to store, but means selection of keys 

must be coordinated, which requires more data to be sent from the base station. The 

Hybrid protocol uses the same setup phase as the signing protocol it uses for its 

signatures (usually, the naïve protocol), so its setup overhead is the same as the naïve 

protocol.  

Individual Data: This is the data sent from the base station to each node that 

is unique to that node. For a particular node, individual data needed by upstream nodes 

must be forwarded to them, while that node will never see the individual data for 

nodes closer to the base station than itself, since they will have already received it. 

Thus, the total amount of setup data for a node in this category depends on the number 

of upstream nodes. 

Broadcast Data: This is data sent from the base station to all nodes. This data 

is always forwarded to upstream nodes during setup, but it is the same for everyone.  

Public Key Size: In the second setup phase, nodes send their public keys to the 

base station so downstream nodes can remember it.  
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We assume the base station sends 64 bit(8 byte) seed values that nodes use to 

generate their own key pairs where applicable. We also show the sizes for the naïve or 

re-signing algorithm here, in order to allow comparison with Tier Plus. Algorithms 

such as the naïve solution allow each node to select its own key individually. These do 

not send seed values from the base station. Instead of individual public keys, the 

Group Signatures system broadcasts the group key to all nodes. All sizes are in bytes. 

Table 1 - Setup Overhead   

Algorithm Individual Data Broadcast Public Key Size 

Naïve/Hybrid 0 0 20 

Tier Plus 8 0 20 

Group Sig 86 342 0 

Recovery 0 0 0 

In all cases the amount of data sent from the base station to each individual node is 

less than 100 bytes. Since setup is a onetime phase, no algorithm stands out as having 

a significant strength or weakness in this area. 

4.3. Message Overhead 

Extra messages generated due to the protocol and extra data added to packets 

are both considered message overhead. The only protocol that generates extra 

messages is the recovery protocol, so we simply discuss that separately before 

examining the packet overhead of the signature based schemes. 

Recovery detects altered data by having nodes remember the values they see 

and send those values to the base station, encrypted with their own private key, when 
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alteration is detected. This allows the base station to look at the trace of values and 

determine who the adversary is. Since we assume the base station sends out 

acknowledgements of data it gets, the call for hash values from each node does not 

count as overhead, as it takes the place of the acknowledgement. While executing the 

recovery protocol, one extra message (containing that node’s hash value of the 

message in question) is sent to the base station for every node between base station 

and the source. In fact, only the values of loyal nodes downstream of the adversary 

nodes must be received to discover the adversary’s (approximate) identity.  

Signature based data alteration detection appends signatures to the packet that 

are verified at each hop. Thus, the amount of data added to each packet depends on the 

size of the signatures. The three factors we consider here are the number of signatures 

per packet, the size of each signature and the total data added to each packet. We show 

the naïve solution (which can be used in hierarchical networks) for comparison.  

The Hybrid protocol uses both signatures as in the naïve system and the 

recovery protocol. Its message overhead is a single signature in the naïve system, but 

we note that nodes in the recovery zone drop the signature when no more nodes along 

the path that can verify the signature. All sizes are in bytes. 

Table 2 - Message Overhead 

Algorithm Signature Size # Signatures Total Size 

Naïve 40 1 40 

Tier Plus 40 2 80 

Group Sig 171 1 171 
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Recovery 0 0 0 

While the group signature algorithm uses only a single signature, the fact that this 

signature is over 4 times as large makes this system less appealing. This causes the tier 

plus system to be clear winner in this area. 

4.4. Computational Overhead 

Computational costs refers to the time spent doing algorithm related 

computations at each step. In all cases the cryptographic primitives used are the 

dominant source of computation, with no significant work required outside of these. 

We are primarily interested in the amount of work done at each hop, for each packet 

that is forwarded, as these are the dominant costs associated with the system as a 

whole. We list signature generation times also, but these are only done once signature 

on the packet, so their contribution to the overall work required is fairly small.  

We call the primary operation for each algorithm the primitive operation with 

the total computation overhead being the product of the magnitude of each primitive 

operation as well as how many there are per packet.  

 For Recovery, the primary source of computation is computing the hash value 

of the packet and storing it. For the signature based systems the dominant factor is the 

signature verification. These constitute the primitive operations for those algorithms. 

 All operations that are only done a single time per packet are added to the 

startup time. For signature algorithms, this is the time to sign the data. 

 The hybrid protocol uses both signatures and recovery, where weather a given 

node checks a packet signature or stores a hash value for recovery varies according to 
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the role that node plays for that source node. Thus, we evaluate it more globally in a 

later section. 

 Table 3 lists the time for the primitive operation for each system, the number 

of primitive ops per packet and the total startup overhead per packet and total 

computational overhead per packet per hop. Startup overhead is done once per packet 

and isn’t part of the total. We once again include the naïve algorithm for comparison. 

All times are on an ATmega128 microprocessor, a common sensor network platform 

and are in seconds. 

Table 3 - Computational Overhead 

Algorithm Primitive Op # Startup Time Total Time 

Naive 2.436 1 2.002 2.436 

Tier Plus 2.436 2 4.004 4.872 

Group Sig 29 1 27 29 

Recovery .0077 1 .0077 .0077 

Due to the fact that hash operations are much faster than public key operations the 

recovery protocol is the best here. 

4.5. Memory Overhead 

In this section we examine the amount of memory used by the different 

algorithms. We assume all algorithms need a basic form of the source table in order to 

route acknowledgements and other control data to upstream nodes. Thus, one category 

of memory use we consider is the amount of data added to the source table. This is the 

number of bytes each entry is increased by. This data takes form of pointers into the 
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key table. We assume 1 byte is sufficient for each pointer, as 255 keys tend to take up 

a decent amount of space for all the algorithms we consider. In addition the Tier Plus 

algorithm can deal with over 10,000 nodes using fewer entries than this.  

The other category of memory consumption is the amount of data used for 

detection table (DT). This is space dedicated to information used to detect data 

alteration. For signature based algorithms this is the space used for keys, while for the 

recovery algorithm it is the space used to store hashes. Since the memory of the 

algorithms is topology dependent we consider the node with the highest memory 

usage in a given topology. This is because this is often the limiting case that 

determines if a system is practical. We also consider worst case topologies for all 

cases. For completeness, we also mention the space used by each node’s private key, 

although each node only has one. 

We will use the following variables: 

N: Number of nodes in the network.  

X: The smallest integer value such that (
 
 
)     

U: The number of upstream nodes. The worst case for this value is the neighbor of the 

base station that the most nodes route through. Generally, we expect the base station to 

have more than 1 neighbor, so U can be conservatively approximated as 60% of N.  

D:Depth of the network. The worst case for this parameter is the node with the longest 

path to the base station.  

The categories we consider are the private key size, the amount of overhead per 

Source Table entry(ST Overhead), the number of entries in the detection table(DT 
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Size), the size of each DT entry and the total memory used by the detection table(DT 

total). All sizes are in bytes.  

Table 4 - Memory Overhead 

Algorithm Private key ST Overhead DT Size DT Entry Size DT Total 

Naïve 20 1 U 20 20*U 

Tier Plus 20 2 <X 20 20 * X < 

Group sig 86 0 1 342 342 

Recovery 0 0 2*D 20 40 * D 

One thing we notice is that the ECC public keys and SHA-1 hashes used in recovery 

are both 20 bytes. This helps make comparisons clearer. The clear best version here is 

the group signatures, with a total space usage of 428 bytes, which is enough for 21 

keys or a network depth of about 10. This value does not change according to the size 

of the network. 

 Between the Recovery and Tier Plus algorithms, we can that the memory usage 

of Tier Plus increases faster than recovery. To simplify things, we will assume that the 

network is a balanced binary tree. This means the depth is log2(N), despite each node 

having only two children. For 100 nodes, the network would have  maximum depth of 

log2(100)=6.64 or 7. For 100 nodes, X = 15, since (
  
 
)     . For 1000 nodes then 

X=46, (
  
 
)      , while log2(1000)~10. As we can see the difference in growth 

means that recovery will almost always use less memory than the other systems.  

4.6. Hybrid Evaluation 
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On a high level the signature based protocols could be said to provide an 

excellent ability to detect adversary activity, at the cost of a high computational 

overhead due to the public key operations. The recovery protocol is the other way 

around. The computational overhead at each node is a fairly lightweight single hash 

computation, but the recovery protocol itself involves a number of trips through the 

network in order to gather the hashes necessary for identification so the amount of 

time before an adversary can be identified is increased. Adversary attribution accuracy 

is also reduced. 

The hybrid protocol uses a combination of the other protocols, so we evaluate 

it in this section. On a per-node level, the overheads of the hybrid protocol are the 

same as the other protocols depending on what role that node plays, so we focus on 

more global metrics in this section. 

To evaluate the hybrid protocol we implemented a simple MatLab [20] based 

simulator that simulates a sensor network in a tree configuration with a basic 

TDMA[26]-like protocol where time can be divided up into slots. Each node sends 

and receives a single upstream and downstream message in each slot. The metrics we 

evaluate are: 

Average Computational Overhead: We define the average computational overhead 

per source as the total computation time spent by nodes processing the packet on its 

way to the base station divided by the source node’s depth. The average computational 

overhead for the network is the average over all possible sources, which is all nodes in 

this case. The numbers are for the ATmega128 as in the rest of this section. 
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Average Attribution Time: We measure the average amount of time until the base 

station can be notified of an adversary. For the recovery protocol, this is the time taken 

by the recovery phase until the required hashes can be gathered at the base station. For 

signature based detection protocols the detecting node just notifies the base station.  

 We define the average detection time per source as the detection time average 

over all possible adversaries relative to that source. Recall that only nodes that route 

that source’s packets will have the opportunity to change them as an adversary. The 

attribution time for the network is averaged over all possible sources. 
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Max Memory Overhead:  We evaluate the maximum memory overhead, rather than 

average. Since sensor networks are often homogenous, the maximum usage by any 

single node is the limiting factor.  

 

 

4.6.1. Hybrid Step Evaluation 

First we evaluate the step protocol used in the hybrid zone of the hybrid 

protocol. Here, nodes decide whether or not to store a given node’s public key during 

setup based on whether the hop count from that node is an even multiple of the step. 

Nodes are called signature nodes for sources where they have a public key and 

recovery nodes for all other sources. Nodes store hashes and participate in the 

recovery protocol for all sources they don’t have a key for. Since there is no standard 

topology for sensor networks, to evaluate the step protocol we generate random 1000 

node network trees where each node may have a maximum of 5 children. We evaluate 

the computational overhead, attribution time and memory overhead while varying the 

step size between 1 and 10. We also include a step size of 100, which, being larger 

than the network depth, is equivalent to the pure recovery protocol. We note that a step 

size of 1 is equivalent to the naïve protocol.  
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Figure 13 shows the operation of the step portion of the hybrid protocol as the 

step value is varied from pure signatures at step of 1 to pure recovery protocol at a step 

value of 100. The most interesting feature is that the detection time rapidly increases 

with the step value, while the computational overhead goes down as the number of 

nodes doing signature checks decreases. 

4.7. Zone Hybrid Evaluation 

The zoned version of the hybrid protocol divides the network into specific 

zones in order to achieve both a target memory usage and better detection times. To 

evaluate the effects of zoning we use the same networks we used to evaluate the step 

version while setting the memory target to be the max memory usage of the step 

version. Nodes divide their memory up between different roles and won’t exceed the 

target value.  
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In Figure 14 we see the average detection time of the zone hybrid vs. the basic 

step algorithm. We placed the memory usage along the top axis, since both protocols 

use the same amount of memory. In Figure 15 we see the average computational 

overhead of the zone protocol compared to the basic step protocol. The zoned hybrid 

generally uses more sign checks, which reduces detection time but also increases the 

computational overhead. The zone protocol tends to use sign nodes near the leaves, so 

the extra time is less of an issue due to the fact that these nodes do not have to route as 

much traffic. In certain applications, such as military ones, nodes further from the base 

station may be considered more likely to be compromised also, so that having more 

checking in those areas may make sense. We see that by tuning the memory 

consumption of the zone protocol we can affect the number of sign check nodes which 

20000 10100 6920 5080 4100 3480 3280 3120 3100 2620 580

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 100

Step 3ZoneFigure 15 - Avg Computational Overhead 
Step Size 

Bytes 
T

im
e-

S
ec

o
n
d
s 



 

 

81 

 

in turn affects both the detection time and computational overhead. This provides a 

way of tuning the tradeoff toward a specific application domain.  
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CHAPTER 5 

 

CONCLUSION 

In this section we tie together the results of the previous sections as well as 

expanding on situations where one makes sense compared to the other. Much like 

previous chapter, we mostly concentrate on three schemes while mentioning others as 

appropriate. The Tier Plus and Group Signatures are the representatives of the 

signature based systems while Recovery is the non-cryptographic representative. 

5.1. Experience and Principles 

In this section we talk about experiences and principals we discovered while 

trying to address the problem of malicious data alteration in sensor networks. It is 

hoped that these may be of use to future research. 

Due to attacking the most general case of an adversary node that was a part of the 

network the options for detection were limited because the adversary could perfectly 

imitate a loyal node. This meant we could only detect malicious nodes by their 

behavior. In this case an adversary is detected when they alter data. We assume all 

nodes have equal difficulty for the adversary to attack, so that the only barrier we can 

raise is the number of nodes that need to be taken over.  

The concept of a secure channel between each individual node and base station 

turned out to be very useful. This was realized by the source key in our system. It not 

only settled the question of “how does one know something changed”, it also allows 

one to distinguish between malicious data alteration and that caused by wireless 
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transmission, as well as providing a simple way to secure necessary control 

communications.  

The signature based schemes are all based on the idea of verifying the data based 

on the signature of the original source. This is because the source is the only time we 

can be sure the data is not corrupted. The primary problem to overcome here was the 

number of keys required for this. Any sort of key reuse is problematic due to the 

adversary’s ability to take over any node. Re-signing similarly proved problematic due 

to the re-sign points being shared points of vulnerability. The nice thing about using 

signatures was the simplicity of detection and attribution. An asymmetric scheme is 

required as an symmetric one would give the key to the adversary.  

The inverse of this was the recovery protocol, which depended on there being a 

loyal path of nodes back to the adversary. By tracing that path, one could almost 

determine where the change was. The difficulty is that there was no way to force the 

adversary to send either the value they received or the value they sent, so we would 

always end up with two potential suspects. The performance benefits of this generally 

seem to outweigh being able to narrow the adversary down to one node rather than 

two.  

5.2. Algorithm Evaluation 

Here we make an overall evaluation of each of the algorithms we considered 

along with details of a particular application that influence the choice of for a specific 

application. As with the evaluation section, the three main protocols we consider are 
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Group Signatures, Tier Plus and Recovery. The first two algorithms are signature 

based, while Recovery is not.  

5.2.1. Group Signatures 

The Group Signature based algorithm is easily the least useful of the solutions we 

found. Since it functions like a public key algorithm with a shared public key, the 

memory overhead is quite attractive. In addition, its ability to detect data alteration is 

also among the best. It is also quite insensitive to the properties of the network other 

than to the degree its overheads cause a problem. While the amount of memory 

required is quite low, the computational overhead is severe. It is almost 5 times the 

overhead of the elliptical curve based signature schemes, even accounting for the fact 

that there are two signatures. In addition, the fact that the keys and signature are both 

larger than the ECC schemes reduces its memory advantage. This makes it difficult to 

recommend this scheme. 

We did not originally expect this to be the case. Group Signatures are a type of 

pairing based cryptography [5] that uses discreet logarithm problem and bilinear maps 

between a pair of cyclic groups of large prime order. Type-1 pairings have both groups 

be the same. An advantage of this is that some optimizations can be used to speed of 

the calculations considerably. The problem is that some recent attacks [15] [13] on the 

discrete log problem in these situations have cast doubt on the security of commonly 

used parameters here. This makes it impractical to use systems based on these types of 

pairings. (The Group Signature algorithm we evaluated used a different type of 

pairing.) The problem comes from the fact that the algorithm is almost five times 
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slower with the optimizations available to type-1 pairings. This makes it difficult to 

recommend this system except in cases where memory is severely limited while the 

computational power is not.  

5.3. Related Work 

This work falls under a general umbrella of work that endeavors to address the 

problem of security in wireless sensor networks. This research is complementary to 

many of these approaches. The concept of a “watchdog”, where nodes attempt to listen 

to their neighbors transmissions, as well as the limitations of this approach were 

discussed in Chapter  2. 

This work deals with the problem of nodes corrupting data that passes through 

them,  and  does not address the problem of  malicious nodes creating false data out of 

thin air.  This is also called “false data injection.” In general, solutions to this problem 

use sensor redundancy within the network.  If a node detects an event, then its 

neighbors should also detect something. This can be used to distinguish between real 

events and fake ones [3].  This is orthogonal to the problem we address, which 

involves preventing nodes from tampering with data they forward. In a real sensitive 

application, both problems would need to be  addressed.  

An insider attack allows an adversary to generate data that appears valid to my 

method, while this method does not address nodes altering forwarded data as all 

reports related to a single event could route through a single node at some point and 

thus could be subject to an alteration by an adversary.  This would allow an adversary  
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routing node to generate the appearance of consensus among a local neighborhood 

reporting an event.  

This work deals with a specific attack and attribution of blame for it. This 

information would then be reported to higher level Intrusion Detection System[23], 

which can then take action.  This  research is complementary to such systems as it can 

identify the targeted attack and culpable node with a high degree of accuracy. In 

addition, we also discussed the idea  of triggering a defensive technique in the face of 

an elevated threat level or if data alteration is detected at the base station.  

 

5.4.  Wireless Sensor Network Application Background and Conclusion 

In order speak about differences between the remaining two algorithms, some 

background knowledge of the different types of operational modes is required. Since 

this is the only place it is required, we speak of it here. [26] We also mention which of 

the schemes is better in this case.  

Multiple Base Stations: We usually assumed a single base station for simplicity. We 

assume all nodes can route to any base station, as if nodes are divided between base 

stations they can be treated as separate networks. Multiple base stations imply multiple 

routing trees. This increases the overhead of algorithms that rely on the routing tree. 

Mobility: Even worse is if the nodes can move. In this case, routing is a much more 

difficult problem. In addition, nodes may frequently be disconnected and reconnected 

to the network. In this case, we recommend solutions that do not depend on routing 

tree at all. Recovery cannot be used in this case, as there will be no path to trace back. 



 

 

87 

 

The two key version of Tier Plus (where each node has two keys and only the pairs are 

unique) is the best solution here, as any node can verify data signed from any source in 

this case with a fairly reasonable number of keys stored.  

 Mobile sinks are another option that can be considered. There is the additional 

possibility that they could be compromised [34]. This could be considered an area of 

future work.  

Duty Cycle: In order conserve power sensor nodes will often sleep. The pattern of this 

is referred to as the duty cycle. This may cause a node to have to sleep due to the fact 

that its neighbors are not awake at the right time. While sleeping the node must store 

whatever data it needs. Unless the network mostly sleeps as group, signature based 

schemes are favored in this case. This is due to an important difference in the memory 

usage between the signature and recovery systems. The keys stored by signature 

schemes do not change often, so they can be stored in the node’s FLASH memory, 

which is also used for program data. The hash values stored by recovery change often 

and must reside in the node’s much more limited RAM, which must be either powered 

or written to more permanent storage (writing to FLASH memory usually uses much 

more power than reading it) when a sleep cycle starts. Thus, if nodes do not coordinate 

their wake cycles, the signature based Tier Plus scheme is preferred. This is one of the 

few cases where Group Signatures could be useful, as nodes could stay awake doing 

the required computations. However, the energy cost of this would still tip the scales 

toward Tier Plus unless storage was really at a premium. 
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Data Generation Model: Different applications generate different patterns of data. In 

some cases, events may cause “bursts” of data from areas of the network, while in 

other cases there may be a relatively constant stream of events. Combinations of those 

two extremes are possible. As the lowest overhead system, Recovery works best for 

the burst data model. The one concern is the degree to which the recovery protocol 

would cause interference if triggered. Thus, the signature protocols and their 

immediate detection and attribution aspect have an advantage.  

 In general, we find there to be no single best algorithm, but the recovery 

protocol offers the best performance by far if its minor weaknesses in detection and 

attribution can be tolerated. If these are a problem, a variant of the Tier Plus algorithm 

provides robust detection and attribute of malicious data alteration with only modest 

overheads, as well as not being affected by factors such node or base station mobility. 

Finally, the zone hybrid algorithm provides a way of managing the tradeoff between 

detection time, computational overhead and memory usage.  In the future we 

would like to enhance  the Tier Plus algorithm with a more quantitative analysis of the 

risks of multiple adversary nodes  and key combinations while examining the idea of 

reducing these by controlling the spacial distribution of keys  and combinations in the 

network. We note that the simple numeric approach we used provides good security 

unless the number of  nodes  is close to the number of combinations and that the risk 

can be reduced by  increasing  the number of combinations. We would also  like to 

further cutting edge cryptographic techniques and further examine the turning 

parameters for the hybrid system to see it can  provide tradeoff’s along different axies.  



 

 

89 

 

 

 

BIBLIOGRAPHY 

[1] AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y., AND CAYIRCI, E. 

Wireless sensor networks: a survey. Computer Networks 38 (2002), 393–422. 

[2] AL-KARAKI, J. N., AND KAMAL, A. E. Routing techniques in wireless sensor 

networks: a survey. Wireless communications, IEEE 11, 6 (2004), 6–28. 

[3] ATAKLI, I. M., HU, H., CHEN, Y., KU, W. S., AND SU, Z. Malicious node 

detection in wireless sensor networks using weighted trust evaluation. In Proceedings 

of the 2008 Spring simulation multiconference (San Diego, CA, USA, 2008), 

SpringSim ’08, Society for Computer Simulation International, pp. 836–843. 

[4] ATMEL_CORPERATION. Atmega128. 

http://www.atmel.com/devices/atmega128.aspx. visted on 2014.02.27. 

[5] BARRETO, P. S. L. M. The pairing-based crypto lounge. 

http://www.larc.usp.br/ pbarreto/pblounge.html. Vistied on 2-24-14. 

[6] BECHER, E., BENENSON, Z., AND DORNSEIF, M. Tampering with motes: Real-

world physical attacks on wireless sensor networks. In in 3rd International 

Conference on Security in Pervasive Computing (SPC (2006). 

[7] BONEH, D., BOYEN, X., AND SHACHAM, H. Short group signatures. In Advances 

in Cryptology–CRYPTO 2004 (2004), Springer, pp. 41–55. 



 

 

90 

 

[8] CERTICOM_RESEARCH. Standards for efficient cryptography, sec 1: Elliptic 

curve cryptography. version 1.0, 2000. http://www.secg.org/collateral/sec1 final.pdf, 

2000. Visited on 2014.03.02. 

[9] CERTICOM_RESEARCH. Standards for efficient cryptography (sec) 2: 

Recommended elliptic curve domain parameters, version 1.0 edition. 

http://www.secg.org/collateral/sec2_final.pdf, 2000. Visited on 2014.03.01. 

[10] CHEN, X., MAKKI, K., YEN, K., AND PISSINOU, N. Sensor network security: a 

survey. Communications Surveys & Tutorials, IEEE 11, 2 (2009), 52–73. 

[11] CROSSBOW_TECHNOLOGY_INC. Micaz mote. 

http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf. Visited on 

2014.02.27. 

[12] GANESAN, P., VENUGOPALAN, R., PEDDABACHAGARI, P., DEAN, A., MUELLER, 

F., AND SICHITIU, M. Analyzing and modeling encryption overhead for sensor network 

nodes. In Proceedings of the 2nd ACM international conference on Wireless sensor 

networks and applications (2003), ACM, pp. 151–159. 

[13] GÖLOGLU, F., GRANGER, R., MCGUIRE, G., AND ZUMBRÄGEL, J. On the 

function field sieve and the impact of higher splitting probabilities. In Advances in 

Cryptology–CRYPTO 2013. Springer, 2013, pp. 109–128. 

[14] HWANG, J. Y., LEE, S., CHUNG, B.-H., CHO, H. S., AND NYANG, D. Short group 

signatures with controllable linkability. In Lightweight Security & Privacy: Devices, 

Protocols and Applications (LightSec), 2011 Workshop on (2011), IEEE, pp. 44–52. 



 

 

91 

 

[15] JOUX, A. A new index calculus algorithm with complexity l (1/4+ o (1)) in 

very small characteristic. IACR Cryptology ePrint Archive 2013 (2013), 95. 

[16] KARLOF, C., SASTRY, N., AND WAGNER, D. Tinysec: a link layer security 

architecture for wireless sensor networks. In Proceedings of the 2nd international 

conference on Embedded networked sensor systems (2004), ACM, pp. 162–175. 

[17] KRISHNAMACHARI, L., ESTRIN, D., AND WICKER, S. The impact of data 

aggregation in wireless sensor networks. In Distributed Computing Systems 

Workshops, 2002. Proceedings. 22nd International Conference on (2002), IEEE, 

pp. 575–578. 

[18] LIU, A., AND NING, P. Tinyecc: A configurable library for elliptic curve 

cryptography in wireless sensor networks. In Information Processing in Sensor 

Networks, 2008. IPSN’08. International Conference on (2008), IEEE, pp. 245–256. 

[19] MARTI, S., GIULI, T. J., LAI, K., BAKER, M., ET AL. Mitigating routing 

misbehavior in mobile ad hoc networks. In International Conference on Mobile 

Computing and Networking: Proceedings of the 6 th annual international conference 

on Mobile computing and networking (2000), vol. 6, pp. 255–265. 

[20] MATLAB. version 8.3.0 (R2014a). The MathWorks Inc., Natick, 

Massachusetts, 2014. 

[21] MENEZES, A. J., VAN OORSCHOT, P. C., AND VANSTONE, S. A. Handbook of 

applied cryptography. CRC press, 2010. 



 

 

92 

 

[22] MHATRE, V., AND ROSENBERG, C. Design guidelines for wireless sensor 

networks: communication, clustering and aggregation. Ad Hoc Networks 2, 1 (2004), 

45–63. 

[23] MISHRA, A., NADKARNI, K., AND PATCHA, A. Intrusion detection in wireless ad 

hoc networks. Wireless Communications, IEEE 11, 1 (Feb 2004), 48–60. 

[24] OLSZYNA, J., AND WINIECKI, W. Low-power cryptographic coprocessor for 

autonomous wireless sensor networks. In Photonics Applications in Astronomy, 

Communications, Industry, and High-Energy Physics Experiments 2013 (2013), 

International Society for Optics and Photonics, pp. 890327–890327. 

[25] PERRIG, A., STANKOVIC, J., AND WAGNER, D. Security in wireless sensor 

networks. Communications of the ACM 47, 6 (2004), 53–57. 

[26] RAGHAVENDRA, C. S., SIVALINGAM, K. M., AND ZNATI, T. Wireless sensor 

networks. Springer, 2004. 

[27] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital 

signatures and public-key cryptosystems. Communications of the ACM 21, 2 (1978), 

120–126. 

[28] SOHRABI, K., GAO, J., AILAWADHI, V., AND POTTIE, G. J. Protocols for self-

organization of a wireless sensor network. IEEE personal communications 7, 5 (2000), 

16–27. 

[29] SPREITZER, R., AND SCHMIDT, J.-M. Group-signature schemes on constrained 

devices: the gap between theory and practice. In Proceedings of the First Workshop on 

Cryptography and Security in Computing Systems (2014), ACM, pp. 31–36. 



 

 

93 

 

[30] SZCZECHOWIAK, P., OLIVEIRA, L. B., SCOTT, M., COLLIER, M., AND DAHAB, R. 

Nanoecc: Testing the limits of elliptic curve cryptography in sensor networks. In 

Wireless sensor networks. Springer, 2008, pp. 305–320. 

[31] TANENBAUM, A. S. Computer Networks 4th Edition. Prentice-Hall Englewood 

Cliffs (NY), 2003. 

[32] WANDER, A. S., GURA, N., EBERLE, H., GUPTA, V., AND SHANTZ, S. C. Energy 

analysis of public-key cryptography for wireless sensor networks. In Pervasive 

Computing and Communications, 2005. PerCom 2005. Third IEEE International 

Conference on (2005), IEEE, pp. 324–328. 

[33] WOO, A., TONG, T., AND CULLER, D. Taming the underlying challenges of 

reliable multihop routing in sensor networks. In Proceedings of the 1st international 

conference on Embedded networked sensor systems (2003), ACM, pp. 14–27. 

[34] ZHANG, W., SONG, H., ZHU, S., AND CAO, G. Least privilege and privilege 

deprivation: towards tolerating mobile sink compromises in wireless sensor networks. 

In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking 

and computing (2005), ACM, pp. 378–389. 

 

 

 


	DATA ALTERATION ATTACKS IN WIRELESS SENSOR NETWORKS: DETECTION AND ATTRIBUTION
	Terms of Use
	Recommended Citation

	FULL TITLE HERE IN ALL CAPS IN A FORMAT

