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1.  INTRODUCTION

Over the past century, upper-ocean temperatures
have increased across much of the northwest Atlantic,
consistent with the global trend of increasing sea sur-
face temperature due to anthropogenic climate change
(Bush & Lemmen 2019). The effects of ocean warming
have already been observed in marine ecosystems
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ABSTRACT: Shallow-water sponges are often cited
as being ‘climate change winners’ due to their re -
siliency against climate change effects compared to
other benthic taxa. However, little is known of the
impacts of climate change on deep-water sponges.
The deep-water glass sponge Vazella pourtalesii is
distributed off eastern North America, forming dense
sponge grounds with enhanced biodiversity on the
Scotian Shelf off Nova Scotia, Canada. While the
strong natural environmental variability that charac-
terizes these sponge grounds suggests this species is
resilient to a changing environment, its physiological
limitations remain unknown, and the impact of more
persistent anthropogenic climate change on its distri-
bution has never been assessed. We used Random
Forest and generalized additive models to project the
distribution of V. pourtalesii in the northwest Atlantic
using environmental conditions simulated under mod-
erate and worst-case CO2 emission scenarios. Under
future (2046–2065) climate change, the suitable
habitat of V. pourtalesii will increase up to 4 times its
present-day size and shift into deeper waters and
higher latitudes, particularly in its northern range
where ocean warming will serve to improve the
habitat surrounding this originally sub-tropical spe-
cies. However, not all areas projected as suitable
habitat in the future will realistically be populated,
and the re duced likelihood of occurrence in its core
habitat on the Scotian Shelf suggests that the exist-
ing Vazella sponge grounds may be negatively
impacted. An ef fective monitoring programme will
require tracking changes in the density and distribu-
tion of V. pourtalesii at the margins between core
habitat and where losses and gains were projected.

Species distribution models showed that the suitable habitat
of the deep-water glass sponge Vazella pourtalesii will ex -
pand under climate change scenarios.
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across the region, through northward shifts in the
range of commercially harvested fish and their catch
distribution (Nye et al. 2009, Pinsky & Fogarty 2012).
Given the inevitable socio-economic impacts of a
changing climate on the valuable fisheries that op -
erate in the northeast USA and on the Scotian Shelf
in Canadian waters, several studies have aimed to
identify particular geographic areas of commercially
harvested species considered vulnerable to present
and future climate change (e.g. Hare et al. 2016,
Rheuban et al. 2018). In the absence of information
on physiological thresholds, species distribution mod-
els (SDMs) are often used to estimate potential cli-
mate change effects by predicting the degree of
habitat loss or gain under various emission scenarios
and time periods, based on the statistical association
between occurrence records and spatial environ-
mental data. Such correlative tools have been re -
cently utilized to predict changes in the future distri-
bution of commercially harvested groundfish (e.g.
Kleisner et al. 2017, Stanley et al. 2018, McHenry et
al. 2019) and motile invertebrate species (e.g. Tanaka
et al. 2017, Stanley et al. 2018, Greenan et al. 2019) in
the northwest Atlantic. However, much less is known
about the impacts of climate change on the distri -
bution of long-lived, sessile benthic invertebrates of
conservation, but not commercial, importance in the
region (although see Morato et al. 2020). Such com-
munities may be more vulnerable than motile spe-
cies, as latitudinal shifts in distribution are unlikely to
occur over short time scales.

Sponges are key components of benthic marine eco -
systems worldwide, from intertidal to abyssal depths
(Maldonado et al. 2017). In the deep sea, sponge spe-
cies can be widely distributed across vast areas as
isolated individuals, but in certain locations where
environmental conditions are favourable, they may
form dense aggregations commonly known as sponge
grounds. The importance of such aggregations in
deep-sea environments has only recently emerged,
through demonstrations of their role in biodiversity
enhancement and habitat provision (Beazley et al.
2013, 2015, Hawkes et al. 2019, Murillo et al. 2020),
and their importance in benthic−pelagic coupling and
the cycling of nutrients (Kutti et al. 2013, Pham et al.
2019). 

The Scotian Shelf off Nova Scotia, eastern Canada,
is home to a globally unique aggregation of the glass
sponge Vazella pourtalesii. This rosellid species has
a wide but fragmented distribution along the conti-
nental margin of eastern North America between
~100 and 750 m depth (Beazley et al. 2018, NOAA
2019), occurring in low densities off Florida in the

southeastern USA, and forming the densest known
monospecific aggregations of their kind in Emerald
Basin on the Scotian Shelf. Through an analysis of
in situ benthic imagery inside the ‘Vazella sponge
grounds’ (sensu Beazley et al. 2018), Hawkes et al.
(2019) found that on average, mean species density
(i.e. richness) and abundance of other epibenthic
megafauna was ~3−4 times higher in the presence of
V. pourtalesii, demonstrating the importance of these
sponge grounds in enhancing local biodiversity.

Beazley et al. (2018) used classification Random
Forest modelling to predict the present-day distribu-
tion of V. pourtalesii across the Scotian Shelf. A suite
of 35 predictor variables relating to ocean terrain,
fishing effort, and biological and physical oceano-
graphic characteristics considered to represent the
current oceanographic climate were utilized. Addi-
tionally, historical trends in bottom temperature and
salinity, 2 variables that were identified as important
determinants of its present-day distribution, were
examined through the hindcast Simple Ocean Data
Assimilation model, revealing that the Vazella sponge
grounds have historically been subjected to strong
inter-annual and multi-decadal variability in water
mass characteristics, with annually averaged bottom
temperatures varying by up to 8°C (range 4−12°C).
This variability was related to periods of larger than
average transport of cold, fresh Labrador Slope
Water by the Labrador Current, consistent with the
influence of the Atlantic Multi-Decadal Oscillation
(AMO), a mode of natural variability in the North
Atlantic responsible for warming and cooling during
positive and negative phases of the Atlantic Merid-
ional Overturning Circulation, respectively. The per-
sistence of V. pourtalesii in Emerald Basin since its
discovery in the late 1800s (Honeyman 1889) sug-
gests that this species may be inherently adapted to a
highly dynamic physical environment, and able to
withstand the particularly pronounced cold condi-
tions that prevailed in Emerald Basin and across the
Scotian Shelf in the 1960s (Beazley et al. 2018). While
the impact of persistently warmer conditions that
exceed the upper thermal range of the AMO (~12°C;
Beazley et al. 2018) on V. pourtalesii has not been
quantitatively assessed, the presence of this species
in the subtropical waters off the mid- and southeastern
USA suggests it is adapted to withstand a warmer cli-
mate. However, its ability to adapt to such changes
over relatively short time scales and the physiologi-
cal tolerance of individuals and populations in differ-
ent parts of its range, remain unknown.

The response of sponges to ocean warming and
acidification is well studied in shallow-water ecosys-
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tems (see overviews in Carballo & Bell 2017 and Bell
et al. 2018). In these environments, sponges have
been referred to as potential ‘climate change winners’
(Bell et al. 2013, 2018), due mainly to the physio -
logical tolerance of some species to high thermal
anomalies that have caused bleaching events in corals.
Observations from several experimental and field-
based studies suggest that some shallow-water
sponges have an upper thermal tolerance of ~2−3°C
above mean monthly values (Bennett et al. 2017,
Ramsby et al. 2018). However, virtually nothing is
known of the physiological effects of climate change
on glass sponges, which are thought to be relatively
sensitive to changes in temperature (Leys & Meech
2006), and how their physiological thresholds may
drive community or ecological responses (e.g. dis-
tribution shifts) under a changing climate. In an at -
mospheric CO2 doubling experiment, upper ocean
(0−300 m depth) temperatures on the northwest At -
lantic shelf between 35 and 45° N were predicted to
warm by ~3°C (Saba et al. 2016), a rate 2−3 times
faster than the global average. This change may have
important implications for the distribution of the
Vazella sponge grounds and the biodiversity that
they support. Furthermore, understanding the effects
of climate change on this vulnerable marine ecosystem
indicator species (Fuller et al. 2008) will be necessary
to determine whether the 2 bottom-fishery closures
currently in place on the Scotian Shelf for the con -
servation of this species re quire more adaptive ap -
proaches to ensure their effectiveness into the future.

In the absence of information on the physiological
tolerance of this long-lived, deep-water glass sponge,
we here aim to deduce the potential impacts of future
climate change on the distribution of V. pourtalesii
 using correlative SDM techniques. We employed the
machine-learning method Random Forest, and gener-
alized additive modelling (GAM) to project the distri-
bution of this species in the northwest Atlantic using
environmental variables simulated for the bi-decadal
period 2046−2065 under moderate (representative
concentration pathway [RCP] 4.5) and worst- case
(RCP 8.5) CO2 emission scenarios. This period was
chosen instead of the commonly modelled end-of-cen-
tury (2100) to allow for consideration of the results in
current conservation management strategies. We as-
sessed whether this long-lived, deep-water sponge
species is a potential ‘winner’, ‘loser’, or is neutral to
the effects of climate change based on whether its
suitable habitat expanded, contracted, or showed no
change under future climatic conditions.

We assume that V. pourtalesii is locally adapted to
the unique water mass characteristics that influence

the northern and southern portions of its range, and
have applied models separately to the occurrences
located on the Scotian Shelf in Canadian waters and
those off the mid–southeast USA. Collectively, our
ap proach will provide a better understanding of the
potential upper thermal tolerance limit of this species
and how it may affect its distribution in the northwest
Atlantic into the future. To our knowledge, our study
represents the first application of SDMs to evaluate
climate-induced changes in the distribution of a deep-
water, ground-forming sponge, and has important
implications for the conservation of these relatively
understudied ecosystems.

2.  MATERIALS AND METHODS

2.1.  Distribution of Vazella pourtalesii and 
study area

Occurrences of V. pourtalesii in the northwest
Atlantic (Fig. 1) come from a variety of sources
(Table 1). On the Scotian Shelf (see Breeze & Hors-
man 2005), significant effort has been made to map
the distribution of the Vazella sponge grounds for
conservation management purposes, and as a result,
the occurrences (Fig. 1) are spatially biased towards
this part of its range. There, records are collated from
the Fisheries and Oceans Canada (DFO) multispecies
research vessel trawl survey, DFO and Natural Re -
sources of Canada (NRCan) optical (camera/video)
benthic surveys (comprising the majority of obser-
vations; Table 1), and commercial bycatch records
from the Fisheries Observer Program. The DFO mul-
tispecies research vessel trawl survey is a depth-
stratified random survey conducted primarily using
Western IIA trawl gear. Tows are 30 min in duration,
and the average linear distance covered is 3.17 km
(Beazley et al. 2018). Commercial trawls in the region
are often much longer in duration and length, collat-
ing catch data over distances of 10+ km. For both the
re search vessel and commercial trawl data, the start
position of each tow was used to represent the pres-
ence of V. pourtalesii in the catch.

Records located off the mid–southeast USA (Table 1)
were extracted from a combination of sources includ-
ing the primary literature and online repositories,
and through direct video annotations collected for
the purpose of this study. Three specimens collected
in 1868 off Florida that were re-examined by Reiswig
(1996) are included here, as well as remotely oper-
ated vehicle (ROV) and submersible records ex -
tracted from the NOAA Deep-Sea Coral Data Portal
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(https://deepseacoraldata.noaa.gov/). In both 2018
and 2019, NOAA conducted 2 ROV surveys off the
mid- and southeastern USA (‘Windows to the Deep’

Okeanos Explorer EX1806 and EX1903 missions in
2018 and 2019, respectively) and reported the pres-
ence of V. pourtalesii. In order to increase the number
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Fig. 1. Occurrences of Vazella pourtalesii. Presences are colour-coded according to their source as outlined in Table 1. The black
dashed lines show the exclusive economic zones of countries within the study region. Inset shows a close-up of the distribution
of records on the Scotian Shelf off Nova Scotia (NS). NEC: Northeast Channel; GoM: Gulf of Maine; LC: Laurentian Channel;
GoSL: Gulf of St. Lawrence. Also shown are the modelling subareas in which the species distribution models were trained

Source                                       Location Record type Date collected Number of presences

DFO Multispecies RV              Scotian Shelf Research vessel trawl catch 2007−2019 131
Trawl Survey

DFO/NRCan Optical               Scotian Shelf Still images, 1989−2018 4216
Science Surveys                      video observations

Fisheries Observer                   Scotian Shelf Commercial trawl bycatch 1997−2007, 104
Program                                  2010−2015

Reiswig (1996)                          Southeast USA Collected specimens 1868 3

NOAA Deep-Sea Coral           Southeast USA Still images, 2009−2011 38
Data Portal                              video observations

NOAA Okeanos Explorer       Mid- and Video observations 2018−2019 1051
EX1806 & EX1903                  southeast USA

Table 1. Sources of Vazella pourtalesii occurrence data, including general location, record/gear type, date range of data source, 
and original number of presences prior to filtering the data for modelling purposes
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of presences in this relatively under-sampled (com-
pared to the Scotian Shelf) portion of its range, all
dives within its expected depth range (<1000 m) from
these 2 missions were examined and presences re -
corded using the Ocean Networks Canada SeaTube
V2 annotation software (https://data.oceannetworks.
ca/ SeaTubeV2). A total of 1051 V. pourtalesii indi-
viduals were observed from 9 different stations (see
Table S1 in the Supplement at www. int-res. com/
articles/ suppl/ m657 p001 _ supp .pdf, for details). Most
observations were from the Blake Plateau where V.
pourtalesii was found in localized, dense aggrega-
tions in association with the reef-building coral Lo -
phelia pertusa (and its rubble). These observations
ex tend the maximum depth of V. pourtalesii in the
northwest Atlantic to 935 m (from 754 m previously
reported from observations on Cape Canaveral North
off Florida; NOAA 2019). Finally, a search for V.
pourtalesii records not encompassed by the sources
described above was made in the Ocean Biogeo-
graphic Information System (https://obis.org/) to en -
sure that all records were considered. No new records
resulted from this search.

Given the wide latitudinal gradient and presumed
environmental heterogeneity over which V. pourtale-
sii is distributed, key environmental variables (depth,
bottom temperature, and salinity) shown to be impor-
tant for the distribution of this species (Beazley et al.
2018) were evaluated at the V. pourtalesii presence
localities in order to assess the potential generality
and future transferability of a model trained on
its entire range (see Wenger & Olden
2012). Temperature−salinity plots and
bivariate plots of the relationships be -
tween depth− temperature and depth−
salinity at the location of the occur-
rences were examined (see Fig. S1). At
comparable depths, records of V. pour-
talesii on the Scotian Shelf were located
in a colder, less saline environment than
those located off the mid–southeast
USA. We therefore chose to model the
V. pourtalesii occurrences in the north-
ern portion its range separately from
its southern distribution. Two model-
ling subareas were created (see Fig. 1)
and split at 40° N, which roughly cor-
responds to the boundary of the 2
regimes of the Ekman portion of the
Atlantic Meridional Overturning Circu-
lation (see Fig. 9 of Wang et al. 2019),
reflecting the anticyclonic and cyclonic
atmosphere circulations over the sub-

tropical and subpolar gyres. The subarea north of
40° N is referred to as the ‘Northeast US/ Atlantic
Canada’ subarea, which in cludes the northeast USA
and Atlantic Canada regions, but also the Flemish Cap
situated in international waters off New foundland,
Canada (Fig. 1). The spatial extent south of 40° N is
referred to as the ‘Mid–Southeast US’ subarea. Both
subareas extend seaward to 2000 m depth (based on
the resampled General Bathymetric Chart of the
Oceans [GEBCO] 2019 bathymetry layer), which was
the upper depth limit of model extrapolation based
on previous modelling exercises of this species (see
Beazley et al. 2016, 2018). A 5 km land buffer was
applied to all coastline within each subarea, and any
environmental grid cell (see Section 2.2, below) falling
within its boundaries was removed to avoid the
inclusion of land points.

2.2.  Environmental predictor layers

A total of 10 environmental predictor layers
(Table 2), including 2 static (stable in time, i.e. depth,
slope) and 8 dynamic (varying in time, e.g. tempera-
ture, salinity) layers were extracted for consideration
in the models. Although previous modelling works
(Beazley et al. 2018) highlighted the importance of
both hydrographic conditions (e.g. bottom and sur-
face temperature, bottom salinity) and ocean produc-
tivity (e.g. sea surface primary production) in pre-
dicting the distribution of this species, only a limited
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Variable Unit Native Used in 
resolution models

Dynamic 
Mean Bottom Temperature °C 1/12° Yes
Mean Bottom Salinity − 1/12° Yes
Mean Bottom Current Velocity m s−1 1/12° Yes
Mean Bottom Shear Pa 1/12° No
Mean Surface Temperature °C 1/12° Yes
Mean Surface Salinity − 1/12° Yes
Mean Surface Current Velocity m s−1 1/12° Yes
Mean Maximum Mixed Layer Depth m 1/12° Yes

Static 
Depth m 15-arc seconds No

(0.00417°)
Slope ° 15-arc seconds Yes

(0.00417°)

Table 2. Environmental predictor variables considered for modelling the dis-
tribution of Vazella pourtalesii. Dynamic variables are from the Bedford Insti-
tute of Oceanography North Atlantic Model and are available for the RCP 4.5
and 8.5 scenarios. All variables were gridded to the final 0.088° cell size. Note
that salinity as incorporated here is considered unitless. Correlated variables 

were removed prior to distribution modelling

https://www.int-res.com/articles/suppl/m657p001_supp.pdf
https://www.int-res.com/articles/suppl/m657p001_supp.pdf
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number of physical hydrographical variables (bottom
and surface temperature, salinity, and current velocity;
bottom shear stress and mixed layer depth [MLD])
were available for both present and future climatic
conditions over the full modelling domain. The static
variables depth and slope were chosen based on their
continuous coverage across the modelling domain and
importance in predicting the distribution of deep-sea
sponges elsewhere (Howell et al. 2016). Mean bot-
tom and surface temperature, salinity, and current
velocity, as well as mean bottom shear and mean
maximum MLD were extracted from the Bedford Insti-
tute of Oceanography North Atlantic Model (BNAM;
Wang et al. 2018) to represent mean present-day cli-
matic conditions. The BNAM is based on the Nucleus
for European Modelling of the Ocean (NEMO) 2.3 re -
analysis model, which has a horizontal resolution of
1/12° and consists of 50 vertical layers of varying thick-
ness, ranging from 1 m at the surface to up to 450 m
in the bottom layer (Wang et al. 2018). Monthly data
for the time period 1990−2015 were extracted from
BNAM and averaged across months and years to
represent present-day mean climatic conditions.

A version of BNAM was developed to simulate fu-
ture climatologies for the bi-decadal period 2046−
2065 (referred to hereafter as the ‘2055 climatology’)
under 2 different IPCC (IPCC 2013) emission scenar-
ios: RCP 4.5 and RCP 8.5 (Brickman et al. 2016). RCP
4.5 is considered an emission-stabilizing scenario in
which radiative forcing increases to 4.5 watts m−2 and
stabilizes around 2100, when trajectories of atmos-
pheric CO2 concentration and the median global
temperature anomaly reach ~650 ppm and 2.4°C,
respectively (Moss et al. 2010). RCP 8.5 is a high-
emission scenario in which radiative forcing in creases
to 8.5 watts m−2 by 2100 (~1370 ppm CO2 and a me-
dian temperature anomaly of 4.9°C; Moss et al. 2010),
but does not stabilize until 2300 when it reaches
12 watts m−2 (van Vuuren et al. 2011). Averaged an-
nual anomalies representing the difference between
present day and future (2055) conditions were extracted
from BNAM simulations (see Brickman et al. 2016) and
applied (added) to the averaged present-day climatol-
ogy layers modelled in this study to create predictor
layers representing future forecasted conditions.

Depth was extracted from the 2019 GEBCO grid
(https://www.gebco.net/data_and_products/gridded_
bathymetry_data/gebco_2019/gebco_2019_info.html).
Slope was derived from this bathymetry using the
‘Slope’ tool in ArcGIS Desktop 10.7 (ESRI 2019). Prior
to the generation of slope, depth was projected in an
Albers equal area conic projection where units are
represented in metres.

Continuous raster surfaces of the BNAM point data
were created in ArcGIS using the ‘Point to Raster’
tool, with point data displayed using geographic
coordinates and a WGS 1984 datum. The final raster
cell size was 0.088°, which is approximately equiva-
lent to 7.5 km horizontal resolution at the centre of
the study area (~40°N). Bilinear interpolation was
used to resample both depth and slope to match the
resolution of the climatic variables (0.088°).

2.3.  Pseudo-absence generation

The most widely used SDM techniques can be
broadly categorized into those that utilize only
presences, and those that require information on
both presences and absences (Barbet-Massin et al.
2012). In cases where real absence data are not
available, absence points (‘background data’ or
‘pseudo-absences’) can be simulated and extracted
from the model domain or ‘background’. Despite pop-
ular belief, MaxEnt, which is often falsely referred
to as a ‘presence-only’ method, requires information
on where a species is considered absent (i.e. pseudo-
absences) in order to contrast the conditions at those
locations against where it is present (VanDerWal et
al. 2009, Barbet-Massin et al. 2012, Guillera-Arroita
et al. 2015). Such models are more accurately con-
sidered ‘presence−background’ models (Guillera-
Arroita et al. 2015), and should closely resemble the
results of a presence−absence model in cases where
a species is well-sampled but rare, and background
points closely emulate the distribution of true ab -
sences (Ward et al. 2009).

As the majority of the V. pourtalesii presence data
were extracted from video surveys and discrete sam-
pling locations, real absence data were not available
over the majority of the subarea extents and at a
scale relevant to the environmental variables mod-
elled in our study. However, null catches from the
DFO multispecies trawl survey operating on the
Scotian Shelf in the Northeast US/Atlantic Canada
subarea could be used to approximate absence loca-
tions, an approach which was recently used by Beaz-
ley et al. (2018) in a presence−absence Random For-
est classification modelling exercise. We evaluated
the results of Random Forest and GAM models gen-
erated using absences from null catches collected
between 2007 and 2017 from the DFO multispecies
trawl survey on the Scotian Shelf, augmented with
randomly generated pseudo-absences across the
remainder of the Northeast US/Atlantic Canada sub-
area (see Fig. S2). Absences were augmented with
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pseudo-absences to avoid potential extrapolation of
models built on data collected only from the Scotian
Shelf to other, environmentally dissimilar locations in
the Northeast US/Atlantic Canada subarea.

The Random Forest and GAM models built on
absences augmented with pseudo-absences had
lower accuracy measures (see Table S2) compared to
Beazley et al. (2018) and to the final models presented
in this study (see Table 3), performing particularly
poorly in their ability to correctly predict the absence
data (lower ‘specificity’). This was possibly due to the
lower number of environmental variables used here,
and close proximity of trawl survey absences to the
presence data in its core habitat in Emerald Basin
and the inability of the models to consistently clas-
sify or fit a model to the presences and absences
that co-occur in the same water mass. The resulting
predicted/projected distribution surfaces (see Fig. S3)
appeared to over-extend the suitable habitat of this
species into more coastal and shelf depths, where
absences from the trawl survey are distributed. There-
fore, we chose to run our models using randomly gen-
erated pseudo-absences across the entire Northeast
US/Atlantic Canada subarea. A description of the
methods used for pseudo-absence generation can be
found in Text S1.

2.4.  Species distribution modelling, evaluation,
and prediction

Prior to model fitting, correlation between environ-
mental variable pairs was examined using R statisti-
cal software version 3.6.1 (R Core Team 2019), and
those variables (Depth and Mean Bottom Shear) con-
sidered highly correlated (Spearman’s rho > 0.7) with
others were not considered further. Two different SDM
approaches were employed to model the distribution
of V. pourtalesii in each subarea: Random Forest
classification (Breiman 2001a) and GAMs (Hastie &
Tibshirani 1986). Both techniques have been recently
used in applications dealing with presences and
pseudo-absences (González-Irusta et al. 2015, Morato
et al. 2020), and were employed here to maximize
both model prediction and inference, and to increase
reliability of model predictions in areas outside the
environmental domain of the training data. Black
box approaches such as Random Forest tend to opti-
mize model prediction (i.e. the ability to predict a
response variable based on the set of independent
variables; Breiman 2001b) without particular focus
on identifying the relationship between the predic-
tors and response, so long as accurate predictions of

the response are yielded (James et al. 2013). In con-
trast, regression methods such as GAMs are better at
identifying the type (linear or non-linear), strength,
and direction of the relationship between the re sponse
and predictors (James et al. 2013), and are therefore
more useful in applications requiring biological infer-
ence (i.e. understanding how changes in the predicts
variables affect the response). Furthermore, when
extrapolating outside the domain of the training data,
where different physical conditions from those used
to train the model may exist, Random Forest predicts
the same value as it would for the closest value in the
tree for which it had training data (Breiman et al.
1984). Regression techniques are better at predicting
trends in the data (Hengl et al. 2018), which is impor-
tant when extrapolating species−environment rela-
tionships into the future.

Random Forest models were fitted using R package
‘randomForest’ (Liaw & Wiener 2002) with default
parameters and 500 trees. GAMs were fitted with a
binomial error distribution and cloglog link (see Zuur
et al. 2009) using the ‘gam’ function in R package
‘mgcv’ (Wood 2011), after a series of generalized lin-
ear models indicated non-linear patterns between
the response and some predictor variables. The final
GAMs in each subarea were selected using a for-
ward stepwise approach, which involved fitting sin-
gle-variable models, identifying the model with the
lowest Akaike’s information criterion (AIC) and high-
est significance, and iteratively adding the other
variables and selecting the best combination that
resulted in the lowest AIC, and repeating the process
until there was no further improvement in AIC. The
final GAM built in the Northeast US/Atlantic Canada
subarea included 7 variables (bottom and surface
temperature and salinity, MLD, bottom current
velocity, and slope), while 4 variables (bottom and
surface temperature, surface current velocity, and
slope) were included in the GAM built in the Mid–
Southeast US subarea. Smoothers were initially app -
lied to all terms, and the effective degrees of freedom
(edf) were evaluated. Following Wood (2001), smooth
terms were replaced with parametric linear terms for
variables with edf close to 1. Smoothers were applied
to bottom and surface temperature and salinity, and
MLD in the Northeast US/Atlantic Canada subarea
GAM, and to bottom temperature in the Mid–
Southeast US subarea GAM to account for their non-
linear relationship with the response, with knots con-
strained to a maximum of 4 to avoid overfitting.

Model accuracy metrics and threshold probabili-
ties were derived using 5-fold spatial block cross-
validation (CV), which reduces the effects of spatial

7
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autocorrelation on model prediction error (Roberts
et al. 2017), and has been applied in recent deep-
sea modelling efforts (Guinotte & Davies 2014). Using
the ‘spatialBlock’ and ‘spatialAutoRange’ functions in
the R package ‘blockCV’ (Valavi et al. 2019), each sub -
area was partitioned into regularly-shaped ‘blocks’,
and the presence/pseudo-absence data falling within
each block were randomly assigned to either the
training or testing dataset of each of the 5 folds. To
ensure similar prevalence rates between folds, latitu-
dinal and longitudinal offsets were ap plied to shift
the blocks on their longitudinal and latitudinal axes
in the Northeast US/ Atlantic Canada subarea, and
the ‘numLimit’ parameter was set to 0 to ensure that
the most evenly dispersed number of records was
chosen (with 500 iterations). The number of presences
and pseudo- absences assigned to the training and
testing data sets of each fold is shown in Table S3.

For each subarea, Random Forest models and
GAMs were fitted to the training datasets from
4 folds and validated on the testing dataset from
the fifth fold. The process was repeated 5 times,
resulting in 5 CV runs from which accuracy metrics
were derived. The threshold-independent area under
the receiver operating characteristic curve (AUC) was
calculated for each CV run, from which the mean and
standard deviation were derived. The ‘optimal.
thresholds’ function in the R package ‘PresenceAb-
sence’ (Freeman & Moisen 2008) was used to calcu-
late several common threshold values (e.g. maximum
Kappa, sensitivity = specificity, ob served prevalence;
Liu et al. 2005) above which a given relative likeli-
hood of occurrence is considered a presence. We
selected the threshold which maximizes the sum of
sensitivity and specificity (MSS), where sensitivity
and specificity represent the pro portion of accu-
rately pre dicted presences and absences, respec-
tively. This threshold was used to convert the likeli-
hood of oc currence outcomes from each CV run into
predicted outcomes (0 or 1) that are then summa-
rized into a 2 × 2 confusion matrix. Sensitivity,
specificity, and the true skill statistic (TSS; Allouche
et al. 2006) were derived and used to assess model
performance along with AUC.

From presence−background data, it is not possible
to determine whether a species is well surveyed
but rare, or common but under-surveyed, a function
which requires presence−absence or occupancy de -
tection data (Guillera-Arroita et al. 2015). Conse-
quently, predictions from models that use pseudo-
absences over real absence data are more indicative
of a species’ relative likelihood of occurrence than
probability of presence (Guillera-Arroita et al. 2015).

Therefore, relative likelihood of occurrence was
adopted herein to refer to the Random Forest and
GAM outputs. The final predictions/projections of
the relative likelihood of V. pourtalesii occurrence
under present-day and future climatic conditions
were generated from models trained on the full pres-
ence/ pseudo-absence datasets in each subarea: 118
presences and 3373 pseudo-absence in the Northeast
US/Atlantic Canada subarea for both Random Forest
and GAM (see Text S1) and 18 presences and 1164
pseudo-absences for GAM, and 18 presences and
237 pseudo-absences for Random Forest in the Mid–
Southeast US subarea. As all the data are used (im -
portant for small datasets), this approach was chosen
over averaging the predictions generated from mod-
els built in each CV run. Its disadvantage is that the
error estimates from CV do not apply perfectly to
the final models, as slightly different datasets were
used to train them. However, the error rates from CV
are likely conservative, with better performance ex -
pected from models built on the full dataset (Roberts
et al. 2017).

Model uncertainty was evaluated by calculating the
standard deviation of the predictions generated from
the 5 CV models. This estimate of standard de viation
highlights areas of higher or lower variability between
models built on different, spatially partitioned subsets
of data, and areas of higher uncertainty may be re -
flective of local non-stationarity (Nephin et al. 2020).
Similar to the accuracy metrics described above, this
measure of uncertainty is considered conservative, as
standard deviation was derived from the 5 CV models
and not the final models used for prediction. To aid in
identifying where model outputs may be less certain,
especially those of Random Forest, areas of model ex-
trapolation were identified by highlighting each grid
cell across both subareas where at least 1 environ-
mental variable had values above or below the pres-
ent-day variables used to train the final models.

Predictions of relative likelihood of occurrence
were thresholded into a binary depiction of suitable
vs. unsuitable habitat using the MSS values used to
threshold the confusion matrices of each model built
in each subarea. Suitable habitat defined here is
based solely on the relationship of the V. pourtalesii
presences and pseudo-absences with the 8 present-
day physical oceanographic and ocean terrain envi-
ronmental predictor variables used in the models of
this study. The relative likelihood of occurrence pro-
jected to the 2 future climatic scenarios was also
thresholded using MSS, and areas that experienced
a gain, loss, or no change in suitable habitat from
present-day con ditions were evaluated.

8
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2.5.  Variable importance and functional 
response curves

The importance of the predictor variables in Ran-
dom Forest models was assessed using the mean de -
crease in Gini index extracted using the ‘importance’
function in the package ‘randomForest’. For GAMs,
the ‘varImp’ function in the package ‘caret’ (Kuhn
2020) was used to extract the importance of the pre-
dictor variables based on their p-value. Following
Lopes et al. (2019), ‘functional response curves’ were
generated to evaluate changes in the relative likeli-
hood of occurrence across environmental variable
gradients. This method allowed for a direct com-
parison of the relative likelihood of occurrence−
environment relationships for the present-day, RCP
4.5, and RCP 8.5 scenarios. Relative likelihood of oc -
currence and the value of environmental predictors
for each raster cell across each study area were ex -
tracted and smoothed using the ‘loess’ method with
span = 0.5 applied to each curve. Curves were dis-
played with 95% standard error confidence intervals.

3.  RESULTS

3.1.  Changes in environmental conditions between
present-day and future climatologies

The overall change in environmental conditions
between present-day and the 2 future climatic sce-
narios was more prominent in the northern portion of
Vazella pourtalesii’s range than across its southern
distribution (see Table S4, Figs. S4 & S5). Bottom and
surface temperature showed the largest
change, with average Mean Bottom
Temperature increasing by 0.80 and
0.38°C between present-day and RCP
8.5 in the Northeast US/Atlantic Can-
ada and Mid–Southeast US subareas,
respectively, and Mean Surface Tem-
perature by 0.90 and 0.58°C (Table
S4). This was followed by maximum
MLD, which became shallower across
both subareas in the future (change in
average MLD: −0.59 and −0.35 m in
the Northeast US/Atlantic Canada and
Mid–Southeast US subareas, respec-
tively). Changes in bottom salinity,
bottom and surface current, and bot-
tom shear between the present-day
and future forecasted conditions were
negligible in both sub areas, while sur-

face salinity decreased in both sub areas but more
drastically in the northern subarea (change in Mean
Surface Salinity −0.25 and −0.09 in the Northeast
US/Atlantic Canada and Mid–Southeast US subar-
eas, respectively; Table S4).

3.2.  Model performance

Accuracy metrics (AUC, sensitivity, specificity, and
TSS) of the Random Forest models and GAMs built in
each subarea are shown in Table 3, while additional
summaries of the parametric and smoothed terms of
the GAMs are shown in Table S5. In the Northeast
US/Atlantic Canada subarea, both Random Forest and
GAM had an excellent performance rating based on
AUC (>0.90), with GAM marginally outperforming
Random Forest based on all 4 metrics. Models gener-
ated in the Mid–Southeast US subarea had a compar-
atively poor performance, with AUC values in the low
0.80 range, and low TSS values (0.52 and 0.49 for
Random Forest and GAM, respectively). Models in
both subareas performed similarly in terms of their
ability to accurately predict the presences (i.e. sensi-
tivity) and pseudo-absences (i.e. specificity) correctly,
with specificity lower than sensitivity for all models
(Table 3). The environmental variables considered
most important for the present-day distribution of
V. pourtalesii (see Fig. S6) were Mean Bottom Tem-
perature and Mean Surface Salinity for Random
Forest and GAM, respectively in the Northeast US/
Atlantic Canada sub area. Mean Surface Temperature
and Slope were the most im portant variables for these
models in the Mid–Southeast US subarea (Fig. S6).

9

Model type Mean Sensitivity Specificity TSS MSS
AUC ± SD threshold

Northeast US/Atlantic Canada subarea
Random Forest 0.99 ± 0.01 0.95 0.94 0.89 0.10
GAM 0.99 ± 0.01 0.95 0.94 0.89 0.03

Mid–Southeast US subarea
Random Forest 0.82 ± 0.08 0.83 0.69 0.52 0.07
GAM 0.82 ± 0.07 0.89 0.60 0.49 0.01

Table 3. Accuracy measures for the Random Forest models and generalized ad-
ditive models (GAMs) trained and tested on the Vazella pourtalesii presence/
pseudo-absence data in both the Northeast US/Atlantic Canada and Mid–
Southeast US subareas. Cross-validation was done via 5-fold spatial blocking
with random assignment of blocks into folds. Sensitivity, specificity, and the
true skill statistic (TSS) were generated from a confusion matrix of tabulated
outcomes that was thresholded using the maximum of sensitivity + specificity
(MSS) identified for each model and subarea. AUC: area under the receiver 

operating characteristic curve
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3.3.  Present-day and future
distribution — Northeast

US/Atlantic Canada

The areas predicted with a
higher relative likelihood of occur-
rence of V. pourtalesii under pres-
ent-day conditions were relatively
consistent between Random Forest
and GAM in the Northeast US/
Atlantic Canada subarea (Fig. 2).
In accordance with the spatial dis-
tribution of the occurrence data
(Fig. 1), the Scotian Gulf, an inlet
which opens up into the LaHave
and Emerald Basins on the inner
shelf, and the Northeast Channel,
a deep channel at the mouth of the
Gulf of Maine (see Beazley et al.
2018 for further details), were pre-
dicted with high relative likelihood
of occurrence of V. pourta lesii
by both models. However, under
future environmental conditions,
the spatial distribution of the pro-
jections diverged between models.
Random Forest projected a higher
relative likelihood of occurrence of
V. pourtalesii in the Gulf of Maine
than GAM, while GAM projected a
higher relative likelihood of occur-
rence in the Laurentian Channel/
Gulf of St. Law rence than Random
Forest. The spread into the Lau -
rentian Channel/Gulf of St. Law -
rence intensified under the RCP 8.5
scenario for both models, although
GAM projected a higher relative
likelihood of occurrence further
north, into the mouth of the St.
Lawrence estuary.

The binary depiction of suitable
versus unsuitable habitat and com-
parison of the percent change in
areas projected as suitable habitat
between the different climatic sce-
narios (Figs. 3 & 4) also exemplify
the overall range expansion of V.
pourtalesii under future climate
change. However, certain areas of
suitable habitat in the Laurentian
Channel and Gulf of St. Lawrence
projected by GAM were also asso-
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ciated with high model uncertainty
(Fig. 5). Evaluation of the predic-
tion/ projection outputs from each
of the 5 CV models (not shown)
showed that projections of relative
likelihood of occurrence from the
model based on the data partitioned
into one particular fold (Fold 3)
were erroneously high in the lower
Laurentian Channel, mouth of the
Gulf of St. Lawrence estuary, and
northeast Scotian Gulf, congruent
with the areas of higher uncer-
tainty in Fig. 5. The training data of
this fold had the lowest number of
presences (70 compared to 89−114)
and the highest number of pseudo-
absences (2804 compared to 2645−
2716) of all folds (see Table S3),
and in contrast to the other folds,
the presence data selected by spa-
tial blocking for Fold 3 were lo -
cated in the lower Scotian Gulf and
Northeast Channel, south of the
main sponge grounds in Emerald
Basin.

While the CV models for Ran-
dom Forest were built on the same
subsets of data as the GAMs, their
model projections were not as
greatly affected by the varying
numbers of presences and pseudo-
absences in each fold, nor by their
spatial distribution. This was re -
flected by the relatively low stan-
dard deviation across model pre-
dictions (Fig. 5). Random Forest is
more prone to poor model results
when predicting/projecting out-
side the environmental envelope
of the training data. However, those
areas where model uncertainty was
high for both Random Forest and
GAM were not considered extra -
polated (see Fig. S7) with the ex -
ception of the area where GAM
projected suitable habitat in the
mouth of the Gulf of St. Lawrence
estuary under the RCP 4.5 and 8.5
scenarios.

Another notable difference be -
tween model projections in this
subarea was the decrease in rela-
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tive likelihood of occurrence of V. pourtalesii in its
core habitat in the Scotian Gulf and Northeast Chan-
nel projected by Random Forest for both RCP scenar-
ios (Fig. 2). In contrast, GAM projections of relative
likelihood of occurrence intensified in the future.
Although these areas were generally associated with
higher model uncertainty (Fig. 5), this high uncer-
tainty was due to the projections resulting from the
GAM fit to the training data in Fold 3. With Fold 3
excluded (not shown), the standard deviation
across the GAM predicted/ projected surfaces was
relatively low, and highest in the Gulf of St. Law -
rence estuary. The slight northward shift and con-
traction in the areas of highest relative likelihood of
occurrence in the Scotian Gulf and Northeast Chan-
nel, respectively, as projected by GAM under RCP
8.5 suggests that these model results collectively
indicate that some impacts to the future distribution
of V. pourtalesii may be incurred with further climate
change.

Fig. 6 shows where Random Forest and GAM pro-
jected a gain, loss, and no change (i.e. the core suit-
able habitat) in suitable habitat between present-day
and future forecasted conditions. For both models,

the core of this species’ habitat in the Scotian Gulf
and Northeast Channel in the Northeast US/Atlantic
Canada subarea remained relatively stable between
the present-day and future forecasted conditions,
suggesting these areas may serve as refugia against
climate change in the future. Areas projected to gain
suitable habitat under the RCP 4.5 and 8.5 scenarios
were, on average, deeper than the present-day habi-
tat of V. pourtalesii (see Table S6), indicating an
extension of this species into deeper waters as a
result of climate change. For Random Forest, these
areas were associated with warmer mean bottom
temperatures (7.39 ± 1.63°C SD, up to 12.48°C; RCP
8.5) compared to the present-day habitat in the
Scotian Gulf and Northeast Channel/Gulf of Maine
(Fig. 6), where temperatures were on average 6.97 ±
0.78°C and reached a maximum of 9.20°C. In con-
trast, areas where GAM projected a gain in suitable
habitat were, on average, colder than the areas pro-
jected by Random Forest (6.04 ± 0.72°C for RCP 8.5,
maximum: 9.33°C), and also slightly colder than aver-
age bottom temperature in its present-day habitat
(6.77 ± 0.92°C in present day; although note the afore -
mentioned higher uncertainty in GAM projections
into the Gulf of St. Lawrence estuary). This differ-
ence is likely due to Random Forest projecting a
larger gain in habitat in the Gulf of Maine, where
simulated bottom temperatures are warmer than in
the Laurentian Channel where GAM projected a
larger gain than Random Forest (Fig. S4, Table S7).
Table S6 shows that while the average depth of
present-day suitable habitat predicted by both Ran-
dom Forest and GAM is similar (203 ± 125 and 219 ±
177 m, respectively), the average depth of suitable
habitat projected by GAM under RCP 8.5 is over 50 m
deeper (335 ± 164 m) than that projected by Random
Forest (285 ± 178 m), likely explaining why average
bottom temperatures are slightly cooler in its future
suitable habitat.

The slight peak in relative likelihood of occur-
rence at 6°C and larger mode peaking at ~9°C in
the Random Forest functional curve for Mean Bot-
tom Temperature (Fig. 7a) also reflects this pattern,
with the smaller mode corresponding to tempera-
tures in the Laurentian Channel/Gulf of St. Lawrence
and the larger mode corresponding to the Scotian
Gulf and Northeast Channel/Gulf of Maine where
this model projected a larger gain in suitable habitat.
For GAM, relative likelihood of occurrence under
RCP 4.5 and 8.5 peaked at cooler temperatures (~6°C;
Fig. 7a), corresponding to the Laurentian Channel
and Gulf of St. Lawrence where it projected a larger
gain than Random Forest. Bottom temperatures in
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Fig. 4. Percentage of total area in the Northeast US/Atlantic
Canada and Mid–Southeast US subareas predicted/pro-
jected as habitat suitable for Vazella pourtalesii by Random
Forest models and GAMs under present-day environmental
conditions and conditions projected under the representa-
tive concentration pathway (RCP) 4.5 and 8.5 emission 

scenarios for 2055
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both the Gulf of Maine and Lau-
rentian Channel/Gulf of St. Law -
rence warmed from their present-
day con ditions (Fig. S4, Table S7),
suggesting that the habitat of V.
pourtalesii may respond positively
to warming bottom waters.

Patterns in the functional re -
sponse curves presented here were
similar to the presence−absence
Random Forest partial dependence
plots of Beazley et al. (2018) for
similar environmental variables.
For instance, both Random Forest
and GAM models showed an in -
crease in relative likelihood of
occurrence at ~6°C and ~34 along
the gradients in Mean Bottom
Temperature and Salinity, respec-
tively, similar to the peaks in Mini-
mum Bottom Temperature (5−6°C)
and Salinity (33.5) as shown by
Beazley et al. (2018), suggesting
that our use of pseudo-absences
closely emulates the predicted dis-
tribution of V. pourtalesii based on
real absence data.

3.4.  Present-day and future
distribution — Mid–Southeast US

subarea

Patterns in the present-day and
future predicted/projected distribu -
tion of V. pourtalesii in the Mid–
Southeast US subarea were not as
clearly de fined as in the northern
portion of its range. Under present-
day environmental conditions, both
Random Forest and GAM predicted
low to moderate V. pourtalesii rela-
tive likelihood of occurrence in a
band following the Florida penin-
sula (Fig. 2). This band is consistent
with the location of V. pourtalesii
occurrences around the peninsula
and on Blake Plateau (Fig. 1). While
uncertainty associated with both
models was relatively low (Fig. 5),
predictions/ projections were low
at the location of presence localities
from both models (5% relative like-
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lihood of occurrence by GAM and up to 50% by Ran-
dom Forest), reiterating their poor performance in
this subarea (Table 3; Table S5). Changes in the
intensity and distribution of the relative likelihood of
occurrence under the 2 future emission scenarios
were relatively small for Random Forest and virtually
un changing for GAM (Figs. 2 & 3).

Random Forest projected a slight gain in suitable
habitat in the deeper waters of the Blake Plateau
under RCP 4.5 conditions (Fig. 3). Similar to the pat-
tern observed in the northern portion of its range,
these areas corresponded to slightly colder tempera-
tures than the present-day habitat of this species (see
Table S8). However, the total area projected as suit-
able habitat by Random Forest showed only a negli-
gible increase from RCP 4.5 to 8.5 (Fig. 4), suggesting
that the warmer portion of this species’ range will not
benefit from additional ocean warming. GAM also
projected a slight increase in suitable habitat under

RCP 4.5, followed by a decrease back to its present-
day size under RCP 8.5 (Fig. 4). Fig. 6 shows a loss of
suitable habitat in the deeper waters of the Blake
Plateau as well as along the flanks of the refugia
areas, which was slightly more pronounced for RCP
8.5 than RCP 4.5.

Relative likelihood of occurrence predicted/ pro -
jected along the present-day and future gradients in
Mean Bottom Temperature were highest at ~10− 11°C
for both Random Forest and GAM in the Mid–
Southeast US subarea (Fig. 7b). However, Mean Bot-
tom Temperature was not the top environmental pre-
dictor variable in either model (Fig. S6), suggesting
that any inferences based on temperature should be
made with caution. The selection of Mean Surface
Temperature by Random Forest as its top predictor is
likely due to the spatial congruence between the
location of V. pourtalesii occurrences (Fig. 1) and the
Florida Current, a swift, northward-flowing segment
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Fig. 6. Areas projected by Random Forest models and GAMs under relative concentration pathway (RCP)  4.5 and 8.5 emission
scenarios to gain, lose, and show no change (i.e. core suitable habitat) in suitable habitat from present-day conditions. 40° N 

is indicated by the grey dashed line
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of the Gulf Stream whose influence extends to the
seafloor both off Florida in water depths of 700 m and
further north on the Blake Plateau where depths
reach 1000 m (Richardson 2019). While temperatures
associated with this current are projected to increase
in the future (Fig. S5), the associated projected occur-
rences remained relatively stable (Fig. 2), suggesting
that other variables or interactions between variables
may have a greater influence in this subarea. The
functional response curves for both models (Fig. 7b)
showed little change in the relative likelihood of
occurrence predicted/projected for the present-day
and future forecasted conditions, especially for GAM.
Of the 4 environmental predictors included in GAM
(Mean Bottom Temperature, Mean Surface Current,
Slope, and Mean Surface Temperature), the static
variable Slope was considered the most important
(Fig. S6), possibly explaining why spatial patterns in
predicted/projected relative likelihood of occurrence
and suitable habitat (Figs. 2 & 3) remained relatively
unchanged between present-day and future fore-
casted conditions.

Overall, the performance of both Random Forest
and GAM models in this subarea was relatively poor
(Table 3; Table S5), with poor congruence be tween
the spatial predictions of relative likelihood of oc -
currence and the location of presence points under
present-day environmental conditions (especially for
GAM; see Figs. 1 & 2), suggesting that any infer-
ences derived from these models should be taken
with caution.

4.  DISCUSSION

The results of our study show that under future cli-
matic conditions, the potential suitable habitat of the
glass sponge Vazella pourtalesii will in crease in the
northwest Atlantic. Using Random Forest and GAM
techniques, we projected a gain in habitat of up
to ~4 times its present-day size using environmental
conditions simulated under moderate (RCP 4.5) and
worst-case (RCP 8.5) CO2 emission scenarios for
2046–2065. In the northern portion of this species’
range, we projected a shift into deeper waters and
higher latitudes, a pattern consistent with previous
studies of the effects of climate change on marine
species in the region (Nye et al. 2009, Greenan et al.
2019, Morato et al. 2020). This shift in distribution
was likely due to the warming of the colder waters
surrounding its current habitat, and the availability
of new, unoccupied niche for this deep-water, orig-
inally subtropical species (Schmidt 1870).

4.1.  Effects of climate change on sponges: 
a deep-water example

Fitness and adaptability of individuals within the
same population often differ between individuals lo -
cated at the core and leading/trailing edges of its
range, resulting in observed contractions and expan-
sions at the trailing (southern) and leading (northern/
colder) edges of its distribution, respectively, in re -
sponse to climate change (Rilov et al. 2019). Our pro-
jected gain in V. pourtalesii suitable habitat in the
future, particularly in the northern portion of its
range where a colder climate prevails, is not entirely
unexpected. Its current distribution on the Scotian
Shelf is highly associated with areas that experience
regular ingression of Warm Slope Water (Beazley et
al. 2018), a warmer, saltier water mass originating
from the Gulf Stream. Under a CO2 doubling sce-
nario, Saba et al. (2016) predicted that the enhanced
warming on the northwest Atlantic shelf was the
result of increased incursion of Warm Slope Water
into the region due to a northerly shift in the Gulf
Stream and the retreat of the cold and fresh Labrador
Current. The Laurentian Channel/Gulf of St. Law -
rence, where significant gains in suitable habitat are
projected, is projected to warm at least 1°C (see
Fig. S4 and Table S7), shifting the climate closer to the
temperature preference of V. pourtalesii as defined
by its present-day distribution (~6°C; Fig. 7a). The
southern range of V. pourtalesii did not contract under
further warming as expected, and was instead pro-
jected (by Random Forest) to nearly double in size
under RCP 4.5 conditions. However, no further ex -
pansion was projected by this model under RCP 8.5.
The area predicted/projected as suitable habitat by
GAM was similar between the present-day and future
climatologies, but showed a slight decrease in size
from RCP 4.5 to 8.5, suggesting that this species does
not benefit from further warming in the warmer part
of its range.

In contrast to the Northeast US/Atlantic Canada
subarea, the mechanism for the projected shift of V.
pourtalesii into deeper waters in the southern portion
of its range may be due to the warming of waters
beyond its upper thermal tolerance limit, causing it to
retreat into deeper, cooler waters. Although both
Random Forest and GAM models showed a loss of
suitable habitat along the flanks of its core distribu-
tion, a clear extension of the leading (cooler) edge
and decline of the trailing (warmer) edge of its core
habitat was not apparent in this subarea (Fig. 6). Both
models predicted poorly in that area, possibly due to
the low number of presence points (18 presences).
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Wisz et al. (2008) evaluated the predictions of 12 dif-
ferent modelling algorithms applied to 46 species
occurring at 3 different frequencies (10, 30, and 100
presence records), and found that no model predicted
consistently well when sample size was less than 30.
This suggests that model predictions/projections in
this subarea should be considered for exploratory
purposes only until additional information on the dis-
tribution of V. pourtalesii is collected.

Species affiliated with narrow environmental en -
velopes are often easier to model than those distrib-
uted over wide environmental gradients or mosaics
(McPherson & Jetz 2007, Tsoar et al. 2007). High envi-
ronmental variability associated with only a few V.
pourtalesii presences (18) and/or local heterogeneity
that is difficult to capture in SDMs could possibly ex-
plain the poor model results in the Mid–Southeast US
subarea. For instance, the densest aggregations of V.
pourtalesii off Florida co-occurred with vast regions of
dead Lophelia pertusa reef. Niche overlap between
L. pertusa reefs and sponges has been previously
noted (van Oevelen et al. 2018), and the use of L. per-
tusa as settlement substrate by V. pourtalesii may be
to take advantage of the current-induced flow and en-
hanced food supply due to interactions between reef
topography and local hydrodynamic conditions (Davies
et al. 2009, Mohn et al. 2014). Such small-scale asso-
ciations would not be accurately captured by our
coarser-scale data (Austin & Van Niel 2011).

Studies of shallow-water sponges have shown that
while many appear to be relatively resilient to the
combined effects of ocean warming and acidification
compared to other benthic taxa, their tolerance to var-
ious climate stressors is highly species-specific (Bell et
al. 2018). Bell et al. (2018) conducted a review of stud-
ies on the singular and combined effects of ocean
warming and acidification on sponges and found that
of the 44 studies focused  solely on ocean warming, 30
demonstrated negative effects to host physiology, in-
cluding pumping rate, filtration efficiency, choanocyte
chamber size, and density; to gene expression, feed-
ing ecology, and reproductive output; and to microbial
community composition and function. Ramsby et al.
(2018) examined the effects of incrementally increas-
ing ambient seawater temperature on the bioeroding
sponge Cliona orientalis and its symbiotic dinoflagel-
lates (Symbiodinium), and found little effect of raising
temperatures 2°C above monthly mean values. How-
ever, at 3°C above average (consistent with tempera-
tures predicted to occur in year 2100 under RCP 8.5),
C. orientalis bleached and reduced its energy reserves,
consistent with the response of sympatric corals. Ben-
nett et al. (2017) demonstrated via ex situ experimen-

tation a tolerance of several Great Barrier Reef sponges
to ocean temperatures forecasted under moderate
(RCP 6.0; 3°C above ambient), but not high (RCP 8.5;
4.5°C above ambient) CO2 emission scenarios.

We modelled changes in the distribution of the
deep-water sponge V. pourtalesii under moderately
strong climate policy (RCP 4.5) and worst-case (RCP
8.5) CO2 emission scenarios, where forecasted anom-
alies in Mean Bottom Temperature in the Northeast
US/Atlantic Canada subarea in 2046–2065 were, on
average, +0.57 ± 0.37°C (SD) and +0.80 ± 0.56°C
under RCP 4.5 and 8.5, respectively. In the core of
this species’ habitat in the Scotian Gulf and North-
east Channel, such anomalies would raise average
bottom temperatures by a maximum of ~2°C (to
~10°C under RCP 8.5) from their present-day aver-
age maximum (~8°C), which is below the thermal
change often shown to cause deleterious effects in
shallow-water sponges (~3°C above ambient). Emer-
ald Basin, where V. pourtalesii forms the densest
known aggregations of its kind, is subjected to strong
inter-annual and multi-decadal variability in water
mass characteristics, where empirical maximum bot-
tom temperatures of 12°C were recorded from CTD
and Argo float data collected between 1950 and 2015
(Beazley et al. 2018). Exposure to short-term fluctua-
tions in environmental conditions may have impor-
tant consequences for species’ ranges (Wethey et al.
2011), and have shown to cause mass mortality
events in deep-water sponge grounds elsewhere
(Guihen et al. 2012). Our use of average conditions
over monthly or seasonal data likely do not capture
the overall temperature range ex perienced by these
sponge grounds historically, nor the extremes that
will likely be incurred in the future. Nonetheless, our
correlative SDMs using mean climatic conditions
show that while the population may persist into the
future, further warming of V. pourtalesii’s core habi-
tat in Emerald Basin may result in a reduction in its
relative likelihood of occurrence there compared to
the present day. While it has long been assumed that
the deep sea is a highly stable environment rela-
tively buffered from the effects of short-term changes
in atmospheric or surface conditions, recent studies
suggest that deep-sea ecosystems may be relatively
sensitive to even seasonal shifts in upper ocean condi-
tions (Glover et al. 2010). As the bottom temperatures
forecasted under RCP 4.5 and 8.5 in the core habitat
of V. pourtalesii are not outside the range experienced
historically by these sponge grounds, or warmer than
the conditions associated with V. pourtalesii pres-
ence in the southern portion of its range, the reduc-
tion in relative likelihood of occurrence suggests that
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even marginal in creases in temperature in the deep
sea may have deleterious impacts on animal physiol-
ogy and habitat quality, and/or that variables other
than bottom temperature, or possibly synergies be -
tween variables, may be responsible for this decline.

The occurrence of V. pourtalesii in certain localities
off the mid–southeast USA, where empirical maxi-
mum bottom temperatures of 11.2°C were recorded
(Table S1), points to an ability of this species to accli-
mate to temperatures higher than the average condi-
tions experienced on the Scotian Shelf, suggesting
some hope for the persistence of the dense sponge
grounds that reside there. However, the densest ag -
gregations of V. pourtalesii in the Mid–Southeast US
subarea (up to 663 individuals on a single transect)
were typically associated with bottom temperatures
no higher than 8.6°C, suggesting that individuals
found at ~12°C may be more representative of mar-
ginal than central populations, on the brink of their
thermal tolerance limit (Bennett et al. 2019). The for-
mation of sponge grounds at these higher tempera-
tures is likely less probable. Evaluation of the Random
Forest and GAM response curves for the Mid–
Southeast US subarea (Fig. 7b) also support a prefer-
ence for bottom temperatures <12°C (maximum rela-
tive likelihood of occurrence at ~10°C). Interpretation
of our model results would greatly benefit from labo-
ratory-based experiments where the physiological ef-
fects of incrementally increasing temperatures beyond
10°C are measured, and the upper thermal tolerance
of V. pourtalesii definitively identified.

4.2.  Limitations and importance of environmental
interpretation

While we attempted to ensure a similar prevalence
(i.e. proportion of observed presences) between data
partitions (folds) used in 5-fold spatial-block cross-
validation, the lower number of presences and
higher number of pseudo-absences, along with their
spatial distribution, had an impact on the model out-
puts for GAM (but not for Random Forest). For irreg-
ularly sampled data, spatially clustered data, or those
with a highly unbalanced prevalence such as ours,
Roberts et al. (2017) suggested non-gridded and/or
irregularly-shaped blocks (i.e. pie slices) to ensure
even sampling of presence and absence data, but
also cautioned that non-regular blocks may not
address the issue of autocorrelation consistently.
Caution must also be taken when using spatial
blocking, as blocking structures that follow environ-
mental gradients can lead to entire portions of envi-

ronmental predictor space (i.e. ranges and/or combi-
nations of predictor variables) being held out in the
testing dataset, resulting in extrapolation between
folds (Roberts et al. 2017). The CV GAM model
trained on the data partitioned in Fold 3 led to erro-
neously high projections of relative likelihood of oc -
currence in the lower Laurentian Channel, mouth of
the Gulf of St. Lawrence estuary, and northeast Scot-
ian Gulf, consistent with the locations of high model
uncertainty. Similar applications of Random Forest
modelling in the Gulf of St. Lawrence using ground-
fish trawl survey presences and absences (see Murillo
et al. 2016) indicated an absence of V. pourtalesii in
those areas. While we did not evaluate whether the
CV model was extrapolating beyond the data used to
train the model, unlike the data partitioned in the
other folds, the dataset of Fold 3 excluded presences
from the core sponge grounds in Emerald Basin. We
recommend that alternate approaches to rectangular
spatial blocking be investigated in the future for
highly clustered species datasets such as those mod-
elled here, to ensure uniform data selection between
folds across the environmental domain of the species.

While our model results are an important first step
in understanding the impacts of climate change on
deep-water sponges, the caveats and uncertainties
inherent to this particular type of habitat suitability
modelling should be considered prior to the develop-
ment of strategies and policies for the management
of this species in the future. Climate trajectories in -
herently include a broad range of assumptions on
future greenhouse gas emissions, population and eco-
nomic growth, and technological change (van Vuuren
et al. 2011), the uncertainties of which are carried
forward into ecological models (Payne et al. 2016).
RCP 8.5 trajectories are associated with the highest
level of uncertainty, and changes in projected distri-
bution under this RCP should be considered the
worst-case scenario. Many factors can influence the
response of a species to changes in the environment,
including recruitment dynamics, physiological toler-
ances, food availability, competition, and community
composition of existing or receiving communities
(Poloczanska et al. 2016), which are difficult to cap-
ture in single-species models such as those pre-
sented here.

Correlative SDMs such as those applied here are
based on the statistical association between occur-
rence records and spatial environmental data, and
inherently capture complex interactions between a
species and its current environment. When project-
ing future distributions, these interactions are as -
sumed to be preserved in the new environmental
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space, an assumption that may not be valid under
future climate change where novel environmental
scenarios and non-equilibrium species distributions
are likely (Kearney et al. 2010). Furthermore, we de -
fined the habitat of V. pourtalesii in relation to only a
few dynamic environmental variables (bottom and sur-
face temperature, salinity, current velocity, and MLD).
Other abiotic factors not captured here may be equally
as important for the distribution of this species, such
as nutrient availability and primary production (Beaz -
ley et al. 2018, Kazanidis et al. 2019), both of which
are expected to decrease on the Scotian Shelf in the
future (Pepin et al. 2013, Lavoie et al. 2019).

Further interpretation of the results of these mod-
els with other information important for species’ dis-
tributions is necessary in order to evaluate their
uncertainty. For instance, while both Random Forest
and GAM were consistent in projecting gains in suit-
able habitat in the deeper waters of the Laurentian
Channel and Gulf of St. Lawrence, the direction of
flow of oceanographic currents in the future, which
was not captured by our models, does not support the
transport of larvae beyond the edge of the Scotian
Shelf. Although the east-to-west flow of the Labrador
Current along the edge of the Scotian Shelf is pre-
dicted to weaken (Saba et al. 2016), no significant
transport from the Scotian Gulf to the Laurentian
Channel is anticipated under future climate change
(see Fig. 6 of Saba et al. 2016). In contrast, the pro-
portion of warm and salty Slope Water entering the
Gulf of Maine through the Northeast Channel is pre-
dicted to increase (Saba et al. 2016), suggesting that
the gain in suitable habitat in the Gulf of Maine pro-
jected by Random Forest (Fig. 6) is a much more
likely event. Furthermore, the presence of hard sub-
strate is crucial for the settlement of V. pourtalesii,
which attaches to substrate ranging in size from peb-
bles to boulders (Hawkes et al. 2019). The Laurentian
Channel is dominated by mud and clay substrate
(DFO 2011), further reiterating that the settlement
and proliferation of this species there is unlikely. This
highlights the need for further interpretation with
other factors not included in these models that may
be important for the spatial distribution of a species.

4.3.  Deep-water sponges as ‘climate change
winners’?

The predicted impacts of climate change on the
home ranges of other marine species residing on the
continental shelves of the northeast USA and Atlantic
Canada are, to date, highly species-specific, with

emergence of clear ‘winners’ and ‘losers’ (Greenan et
al. 2019, McHenry et al. 2019, Morato et al. 2020). For
the distribution of 125 benthic invertebrates, and
pelagic and demersal fish on the northeast USA
shelf, McHenry et al. (2019) predicted more losers
than winners, with those species highly associated
with the seabed (benthic invertebrates and demersal
fish) experiencing the most severe habitat loss and/
or fragmentation. In contrast, highly mobile species
such as pelagic fish, cephalopods, and elasmobranchs
showed a greater ability to shift their home ranges
north to help mitigate climate-induced effects. For
long-lived, habitat-forming cold-water corals in the
North Atlantic (including our study area), Morato et
al. (2020) predicted severe habitat losses ranging be -
tween 28 and 100%. These results suggest that the
impacts on benthic or sedentary species may be more
severe than on highly mobile species, varying by
taxa likely as a consequence of longevity, reproduc-
tive periodicity, and dispersal capacity. Nonetheless,
the projections of McHenry et al. (2019) and Morato
et al. (2020) were made using a different suite of en -
vironmental variables and for a later time period than
modelled here, when the severity of climate-induced
effects on marine habitats will likely be higher.

If based solely on the projected expansion in suit-
able habitat in the future, our results may lend further
weight to the concept that sponges, even in deep-sea
environments, are potential ‘winners’ against climate
change compared to other benthic groups. Whether
the distribution of boreal or arctic sponge grounds in
the North Atlantic will benefit from ocean warming
in the same way remains unknown. Boreal assem-
blages may have some ability to shift their distribu-
tion north to help mitigate the effects of ocean warm-
ing. However, a laboratory-based study of the ef fects
of increasing temperatures on the transcriptomic
response of the extrem o phile Antarctic demosponge
Isodictya sp. (González- Aravena et al. 2019) suggests
that cold-adapted sponges may have an even more
limited ability to tolerate increased temperatures
compared to warm-adapted species. This suggests
that Arctic assemblages located at their maximum
latitudinal limit may therefore experience an overall
loss of habitat due to contraction of their southern
range as temperatures warm. Nonetheless, the local
formation of sponge grounds has been strongly
linked to factors other than temperature, such as the
occurrence of internal tidal waves at the seabed (Klit-
gaard et al. 1997, Klitgaard & Tendal 2004) and the
presence of water mass fronts (Klitgaard & Tendal
2004, Roberts et al. 2018, Meyer et al. 2019), which
should be accounted for when making inferences of
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climate-induced distribution changes. Such charac-
teristics are often poorly resolved in climate fore-
casting models.

4.4.  Implications for conservation management

The size of the V. pourtalesii core habitat in the
Scotian Gulf and Northeast Channel remained rela-
tively unchanged between our present-day predic-
tions and future projections (Fig. 6), suggesting that
these areas may serve as important refugia into the
future. However, the projected relative likelihood of
occurrence of V. pourtalesii under both RCP scenar-
ios was lower in these areas compared to present-
day conditions (see Random Forest outputs; Fig. 2),
including at the location of the 2 bottom-fishery clo-
sures implemented by DFO in 2013 for the protection
of this species from bottom-fishing activities. While
relative likelihood of occurrence or presence proba-
bility is not a direct correlate of abundance or bio-
mass, it could be considered a proxy for habitat
quality, where a higher-quality en vironment would
presumably support higher species’ abundances. In
2013, DFO closed 2 areas equating to nearly 260 km2

in Emerald Basin to all bottom-tending fishing gears
to protect 2 of the 5 densest concentrations of V.
pourtalesii in the Scotian Gulf. As the purpose of the
2 sponge conservation areas is to protect the most
significant concentrations (based on biomass/den-
sity) of this species, range shifts and potential abun-
dance reductions under future climate change pres-
ent a significant challenge for maintaining the
effectiveness of these fishery closures. Effective con-
servation management of V. pourtalesii will require
an iterative monitoring programme designed to track
changes in its density and distribution within and
outside these closed areas, with emphasis placed on
the margins between core areas and those where a
loss or gain of habitat are projected.

5.  CONCLUSIONS

The results of our correlative SDMs show that the
suitable habitat of the deep-water glass sponge V.
pourtalesii will expand in the northwest Atlantic un-
der future climate change, particularly in the northern
portion of its range (Atlantic Canada), where ocean
warming will serve to improve the conditions sur-
rounding the current habitat of this species and in-
crease the availability of currently unoccupied niche.
While not all of these areas are likely to be populated

in the future, any expansion of V. pourtalesii’s niche
will likely have positive implications for other benthic
species, which were shown to be more abundant and
diverse in the presence of this habitat-forming species
(Hawkes et al. 2019), a function they have in common
with other sponge grounds across the North Atlantic
(Klitgaard 1995, Bo et al. 2012, Beazley et al. 2013,
2015). Although our projected expansion of suitable
V. pourtalesii habitat suggests that this species may
be a ‘winner’ against future climate change, the re-
duction in relative likelihood of occurrence in its core
habitat on the Scotian Shelf suggests that the Vazella
sponge grounds that re side there may experience
losses as the northwest Atlantic continues to warm. We
recommend that future studies aimed at elucidating
the effects of climate change on the distribution of
V. pourtalesii combine mechanistic approaches based
on functional traits and physiological constraints with
correlative SDM techniques (see Kearney et al. 2010)
such as those presented here, in order to strengthen
their results. Nonetheless, our results are an important
first step in evaluating the impacts of climate change
on a ground-forming deep-water sponge, serve as a
basis for hypothesis testing in future laboratory-based
physiological studies, and provide a starting point for
its effective conservation management in light of cli-
mate change.

While the impacts of climate change on the distri-
bution, abundance, and composition of other sponge
grounds in the North Atlantic remain unknown, given
their importance to various ecological functions, any
positive or negative impacts of anthropogenically
induced change are likely to have cascading effects
throughout these benthic ecosystems.

Acknowledgements. This research was funded through the
Fisheries and Oceans Canada (DFO) Strategic Program for
Ecosystem-Based Research and Advice (SPERA) project
‘Evaluation of the Effectiveness of Two Sponge Conserva-
tion Areas in the Maritimes Region: Identifying Patterns of
Dispersal, Connectivity, and Recovery Potential of the Russ-
ian Hat Sponge Vazella pourtalesii ’ led by L.B. and E.K. and
the H2020 EU Framework Programme for Research and
Innovation Project SponGES (Deep-sea Sponge Grounds
Ecosystems of the North Atlantic: an integrated approach
towards their preservation and sustainable exploitation)
(Grant Agreement no. 679849). This document reflects only
the authors’ views, and the Executive Agency for Small and
Medium-sized Enterprises (EASME) is not responsible for
any use that may be made of the information it contains.
Data/imagery from the NOAA Deep-Sea Coral Data Portal
and the NOAA Okeanos Explorer EX1806 and EX1903 mis-
sions courtesy of NOAA’s Office of Ocean Exploration and
Research. This study is in memory of our colleague and co-
author Prof. H. T. Rapp, the coordinator of project SponGES,
who passed away in March 2020.

20



Beazley et al.: Deep-water glass sponge climate change winner?

LITERATURE CITED

Allouche O, Tsoar A, Kadmon R (2006) Assessing the accu-
racy of species distribution models:  prevalence, kappa
and the true skill statistic (TSS). J Appl Ecol 43: 
1223−1232 

Austin MP, Van Niel KP (2011) Improving species distribu-
tion models for climate change studies:  variable selection
and scale. J Biogeogr 38: 1−8 

Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012)
Selecting pseudo-absences for species distribution mod-
els:  how, where and how many? Methods Ecol Evol 3: 
327−338 

Beazley LI, Kenchington EL, Murillo FJ, Sacau MM (2013)
Deep-sea sponge grounds enhance diversity and abun-
dance of epibenthic megafauna in the Northwest Atlantic.
ICES J Mar Sci 70: 1471−1490 

Beazley L, Kenchington E, Yashayaev I, Murillo, FJ (2015)
Drivers of epibenthic megafaunal composition in the
sponge grounds of the Sackville Spur, northwest Atlantic.
Deep Sea Res I 98: 102−114 

Beazley L, Kenchington, E, Murillo FJ, Lirette C and others
(2016) Species distribution modelling of corals and
sponges in the Maritimes region for use in the identifica-
tion of significant benthic areas. Can Tech Rep Fish
Aquat Sci 3172: vi + 189p

Beazley L, Wang, Z, Kenchington E, Yashayaev I and others
(2018) Predicted distribution of the glass sponge Vazella
pourtalesi on the Scotian Shelf and its persistence in the
face of climatic variability. PLOS ONE 13: e0205505

Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS (2013)
Could some coral reefs become sponge reefs as our cli-
mate changes? Glob Change Biol 19: 2613−2624 

Bell JJ, Bennett HM, Rovellini A, Webster NS (2018) Sponges
to be winners under near-future climate sce narios. Bio-
Science 68: 955−968 

Bennett HM, Altenrath C, Woods L, Davy SK, Webster NS,
Bell JJ (2017) Interactive effects of temperature and
pCO2 on sponges:  from the cradle to the grave. Glob
Change Biol 23: 2031−2046 

Bennett S, Duarte CM, Marbà N, Wernberg T (2019) Inte-
grating within-species variation in thermal physiology
into climate change ecology. Philos Trans R Soc B 374: 
20180550 

Bo M, Bertolino M, Bavestrello G, Canese S and others
(2012) Role of deep sponge grounds in the Mediterran-
ean Sea:  a case study in northern Italy. Hydrobiologia
687: 167−177 

Breeze H, Horsman T (eds) (2005) The Scotian Shelf:  an
atlas of human activities. Oceans and Coastal Manage-
ment Division, Fisheries and Oceans Canada, Dart-
mouth, NS. https: //waves-vagues.dfo-mpo.gc.ca/ Library/
321387.pdf (accessed 9 July 2020)

Breiman L (2001a) Random forests. Mach Learn 45: 5−32 
Breiman L (2001b) Statistical modeling:  the two cultures.

Stat Sci 16: 199–231
Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classi-

fication and regression trees. Wadsworth & Brooks/Cole
Advanced Books & Software, Monterey, CA

Brickman D, Wang Z, DeTracey B (2016) High resolution
future climate ocean model simulations for the northwest
Atlantic shelf region. Can Tech Rep Hydrogr Ocean Sci
315: xiv + 143 pp

Bush E, Lemmen DS (eds) (2019) Canada’s changing climate
report. Government of Canada, Ottawa. https: //www.

nrcan. gc.ca/sites/www.nrcan.gc.ca/files/energy/Climate-
change/pdf/CCCR_FULLREPORT-EN-FINAL.pdf

Carballo JL, Bell JJ (eds) (2017) Climate change, ocean acidi-
fication and sponges:  impacts across multiple levels of or -
ganization. Springer International Publishing, Cham

Davies AJ, Duineveld GCA, Lavaleye MSS, Bergman, MJN,
van Haren H, Roberts JM (2009) Downwelling and deep-
water bottom currents as food supply mechanisms to the
cold-water coral Lophelia pertusa (Scleractinia) at the
Mingulay Reef Complex. Limnol Oceanogr 54: 620−629

DFO (Fisheries and Oceans Canada) (2011) Biophysical
overview of the Laurentian Channel Area of Interest (AOI).
DFO Can Sci Advis Secret Sci Advis Rep 2010/076. https: //
waves-vagues.dfo-mpo.gc.ca/ Library/ 343558.pdf

ESRI (2019) ArcGIS Desktop:  Release 10.7. Environmental
Systems Research Institute, Redlands, CA

Freeman EA, Moisen G (2008) PresenceAbsence:  an R pack-
age for presence absence analysis. J Stat Softw 23: 1−31 

Fuller SD, Murillo Perez FJ, Wareham V, Kenchington E
(2008) Vulnerable marine ecosystems dominated by
deep-water corals and sponges in the NAFO Convention
Area. NAFO SCR Doc 08/22 Ser No N5524. https: // www.
nafo.int/Portals/0/PDFs/sc/2008/scr08-022.pdf

Glover AG, Gooday AJ, Bailey DM, Billett DSM and others
(2010) Temporal change in deep-sea benthic ecosystems: 
a review of the evidence from recent time-series studies.
Adv Mar Biol 58: 1−95 

González-Aravena M, Kenny NJ, Osorio M, Font A, Riesgo
A, Cárdenas CA (2019) Warm temperatures, cool sponges: 
the effect of increased temperatures on the Antarctic
sponge Isodictya sp. PeerJ 7: e8088 

González-Irusta JM, González-Porto M, Sarralde R, Arrese
B, Almón B, Martín-Sosa P (2015) Comparing species
distribution models:  a case study of four deep sea urchin
species. Hydrobiologia 745: 43−57 

Greenan BJW, Shackell NL, Ferguson K, Greyson P and
 others (2019) Climate change vulnerability of American
lobster fishing communities in Atlantic Canada. Front
Mar Sci 6: 579 

Guihen D, White M, Lundälv T (2012) Temperature shocks
and ecological implications at a cold-water coral reef.
Mar Biodivers Rec 5: e68 

Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A and
others (2015) Is my species distribution model fit for pur-
pose? Matching data and models to applications. Glob
Ecol Biogeogr 24:276–292

Guinotte JM, Davies AJ (2014) Predicted deep-sea coral
habitat suitability for the US West Coast. PLOS ONE 9: 
e93918 

Hare JA, Morrison WE, Nelson MW, Stachura MM and oth-
ers (2016) A vulnerability assessment of fish and inverte-
brates to climate change on the northeast US Continental
Shelf. PLOS ONE 11: e0146756 

Hastie TJ, Tibshirani RJ (1986) Generalized additive mod-
els. Stat Sci 1: 297−310 

Hawkes N, Korabik M, Beazley L, Rapp HT, Xavier JR,
Kenchington E (2019) Glass sponge grounds on the Scot-
ian Shelf and their associated biodiversity. Mar Ecol Prog
Ser 614: 91−109 

Hengl T, Nussbaum M, Wright MN, Heuvelink GBM, Gräler
B (2018) Random forest as a generic framework for pre-
dicting modeling of spatial and spatio-temporal vari-
ables. PeerJ 6: e5518 

Honeyman D (1889) Glacial boulders of our fisheries and
invertebrates, attached and detached. Proc Trans N S

21

https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2699.2010.02416.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1093/icesjms/fst124
https://doi.org/10.1016/j.dsr.2014.11.016
https://doi.org/10.1371/journal.pone.0205505
https://doi.org/10.1111/gcb.12212
https://doi.org/10.1093/biosci/biy142
https://doi.org/10.1111/gcb.13474
https://doi.org/10.1098/rstb.2018.0550
https://doi.org/10.1007/s10750-011-0964-1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.7717/peerj.5518
https://doi.org/10.3354/meps12903
https://doi.org/10.1214/ss/1177013604
https://doi.org/10.1371/journal.pone.0146756
https://doi.org/10.1371/journal.pone.0093918
https://doi.org/10.1111/geb.12268
https://doi.org/10.1017/S1755267212000413
https://doi.org/10.3389/fmars.2019.00579
https://doi.org/10.1007/s10750-014-2090-3
https://doi.org/10.7717/peerj.8088
https://doi.org/10.1016/B978-0-12-381015-1.00001-0
https://doi.org/10.18637/jss.v023.i11
https://doi.org/10.1214/ss/1009213726


Mar Ecol Prog Ser 657: 1–23, 2021

Inst Nat Sci 7: 205−213
Howell KL, Piechaud N, Downie AL, Kenny A (2016) The

distribution of deep-sea sponge aggregations in the
North Atlantic and implications for their effective spatial
management. Deep Sea Res I 115: 309−320 

IPCC (2013) Climate change 2013:  the physical science
basis. Contribution of Working Group I to the Fifth As -
sessment Report of the Intergovernmental Panel on Cli-
mate Change. Cambridge University Press, Cambridge

James G, Witten D, Hastie T, Tibshirani R (2013) An intro-
duction to statistical learning. Springer, New York

Kazanidis G, Vad J, Henry LA, Neat F, Berx B, Georgoulas
K, Roberts JM (2019) Distribution of deep-sea sponge
aggregations in an area of multisectoral activities and
changing oceanic conditions. Front Mar Sci 6: 163 

Kearney MR, Wintle BA, Porter WP (2010) Correlative and
mechanistic models of species distribution provide con-
gruent forecasts under climate change. Conserv Lett 3: 
203−213 

Kleisner KM, Fogarty MJ, McGee S, Hare JA, Moret S, Per-
retti CT, Saba VS (2017) Marine species distribution
shifts on the US Northeast Continental shelf under con-
tinued ocean warming. Prog Oceanogr 153: 24−36 

Klitgaard AB (1995) The fauna associated with outer shelf
and upper slope sponges (Porifera, Demospongiae) at
the Faroe Islands, northeastern Atlantic. Sarsia 80: 
1−22 

Klitgaard AB, Tendal OS (2004) Distribution and species
composition of mass occurrences of large-sized sponges
in the northeast Atlantic. Prog Oceanogr 61: 57−98 

Klitgaard AB, Tendal OS, Westerberg H (1997) Mass occur-
rences of large sponges (Porifera) in Faroe Island (NE
Atlantic) shelf and slope areas:  characteristics, distribu-
tion and possible causes. In:  Hawings LE, Hutchinson S
(eds) The responses of marine organisms to their envi-
ronments. Proc 30th Eur Mar Biol Symp, University of
Southampton, UK, p 129−142

Kuhn M (2020) caret:  classification and regression training.
R package version 6.0-86. https: //CRAN.R-project.org/
package=caret

Kutti T, Bannister RJ, Fosså JH (2013) Community structure
and ecological function of deep-water sponge grounds in
the Traenadypet MPA—northern Norwegian continental
shelf. Cont Shelf Res 69: 21−30 

Lavoie D, Lambert N, Gilbert D (2019) Projections of future
trends in biogeochemical conditions in the northwest
Atlantic using CMIP5 Earth Systems Models. Atmos
Ocean 57: 18−40 

Leys SP, Meech RW (2006) Physiology of coordination in
sponges. Can J Zool 84: 288−306 

Liaw A, Wiener M (2002) Classification and regression by
randomForest. R News 2−3: 18−22

Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting
thresholds of occurrence in the prediction of species dis-
tributions. Ecography 28: 385−393 

Lopes PFM, Verba JT, Begossi A, Pennino MG (2019) Pre-
dicting species distribution from fishers’ local ecological
knowledge:  a new alternative for data-poor manage-
ment. Can J Fish Aquat Sci 76: 1423−1431 

Maldonado M, Aguilar R, Bannister RJ, Bell JJ and others
(2017) Sponge grounds as key marine habitats:  a syn-
thetic review of types, structure, functional roles, and
conservation concerns. In:  Rossi S, Bramanti L, Gori A,
Orejas Saco del Valle C (eds) Marine animal forests: 
the ecology of benthic biodiversity hotspots. Springer

International Publishing, Cham, p 145–183
McHenry J, Welch H, Lester SE, Saba V (2019) Projecting

marine species range shifts from only temperature can
mask climate vulnerability. Glob Change Biol 25: 4208−4221 

McPherson JM, Jetz W (2007) Effects of species’ ecology
on the accuracy of species distribution models. Ecogra-
phy 30:135−151

Meyer HK, Roberts EM, Rapp HT, Davies AJ (2019) Spatial
patterns of arctic sponge ground fauna and demersal fish
are detectable in autonomous underwater vehicle (AUV)
imagery. Deep Sea Res I 153: 103137 

Mohn C, Rengstorf A, White M, Duineveld G, Mienis F,
Soetaert K, Grehan A (2014) Linking benthic hydrody-
namics and cold-water coral occurrences:  a high-resolu-
tion model study at three cold-water coral provinces in
the NE Atlantic. Prog Oceanogr 122: 92−104 

Morato T, González-Irusta JM, Dominguez-Carrió C, Wei
CL and others (2020) Climate-induced changes in the
habitat suitability of cold-water corals and commercially
important deep-sea fishes in the North Atlantic. Glob
Change Biol 26: 2181−2202 

Moss RH, Edmonds JA, Hibbard KA, Manning MR and oth-
ers (2010) The next generation of scenarios for climate
change research and assessment. Nature 463: 747−756 

Murillo FJ, Kenchington E, Beazley L, Lirette C and others
(2016) Distribution modelling of sea pens, sponges,
stalked tunicates and soft corals from research vessel
survey data in the Gulf of St. Lawrence for use in the
identification of significant benthic areas. Can Tech Rep
Fish Aquat Sci 3170:vi + 132p

Murillo FJ, Kenchington E, Koen-Alonso M, Guijarro J and
others (2020) Mapping ecological diversity and interac-
tions with bottom-contact fishing on the Flemish Cap
(northwest Atlantic). Ecol Indic 112: 106135 

Nephin J, Gregr EJ, St. Germain C, Fields C, Finney JL
(2020) Development of a species distribution modelling
framework and its application to twelve species on Can-
ada’s Pacific coast. DFO Can Sci Advis Sec Res Doc.
2020/004:  xii + 107 p. https: //waves-vagues.dfo-mpo.gc.
ca/ Library/40875325.pdf

NOAA (2019) National Database for Deep-Sea Corals and
Sponges (version 20190117-0). NOAA Deep Sea Coral
Research & Technology Program. https: //deepseacoral-
data.noaa.gov/ (accessed 18 Oct 2019)

Nye JA, Link JS, Hare JA, Overholtz WJ (2009) Changing
spatial distribution of fish stocks in relation to climate
and population size on the Northeast United States con-
tinental shelf. Mar Ecol Prog Ser 393: 111−129 

Payne MR, Barange M, Cheung WWL, MacKenzie BR and
others (2016) Uncertainties in projecting climate-change
impacts in marine ecosystems. ICES J Mar Sci 73: 
1272−1282 

Pepin P, Maillet GL, Lavoie D, Johnson C (2013) Temporal
trends in nutrient concentrations in the northwest Atlantic
basin. In:  Loder JW, Han G, Galbraith PS, Chassé J, van
der Baaren A (eds) Aspects of climate change in the
Northwest Atlantic off Canada. Can Tech Rep Fish
Aquat Sci 3045, p 127−150

Pham CK, Murillo FJ, Lirette C, Maldonado M, Colaço A,
Ottaviani D, Kenchington E (2019) Removal of deep-sea
sponges by bottom trawling in the Flemish Cap area: 
conservation, ecology and economic assessment. Sci Rep
9: 15843 

Pinsky ML, Fogarty M (2012) Lagged socio-ecological
responses to climate and range shifts in fisheries. Clim

22

https://doi.org/10.1016/j.dsr.2016.07.005
https://doi.org/10.3389/fmars.2019.00163
https://doi.org/10.1111/j.1755-263X.2010.00097.x
https://doi.org/10.1016/j.pocean.2017.04.001
https://doi.org/10.1080/00364827.1995.10413574
https://doi.org/10.1016/j.pocean.2004.06.002
https://doi.org/10.1016/j.csr.2013.09.011
https://doi.org/10.1080/07055900.2017.1401973
https://doi.org/10.1139/z05-171
https://doi.org/10.1111/j.0906-7590.2005.03957.x
https://doi.org/10.1139/cjfas-2018-0148
https://doi.org/10.1007/s10584-012-0599-x
https://doi.org/10.1038/s41598-019-52250-1
https://doi.org/10.1093/icesjms/fsv231
https://doi.org/10.3354/meps08220
https://doi.org/10.1016/j.ecolind.2020.106135
https://doi.org/10.1038/nature08823
https://doi.org/10.1111/gcb.14996
https://doi.org/10.1016/j.pocean.2013.12.003
https://doi.org/10.1016/j.dsr.2019.103137
https://doi.org/10.1111/j.0906-7590.2007.04823.x
https://doi.org/10.1111/gcb.14828


Beazley et al.: Deep-water glass sponge climate change winner?

Change 115: 883−891 
Poloczanska ES, Burrows MT, Brown CJ, García Molinos J

and others (2016) Responses of marine organisms to cli-
mate change across oceans. Front Mar Sci 3: 62 

R Core Team (2019) R:  a language and environment for sta-
tistical computing. R Foundation for Statistical Comput-
ing, Vienna

Ramsby BD, Hoogenboom MO, Smith HA, Whalan S, Web-
ster NS (2018) The bioeroding sponge Cliona orientalis
will not tolerate future projected ocean warming. Sci Rep
8: 8302 

Reiswig HM (1996) Redescription and placement of the
rossellid genus Vazella Gray (Hexactinellida:  Lyssaci-
nosida). Bull Inst R Sci Nat Belg 66(Suppl): 135−141

Rheuban JE, Doney SC, Cooley SR, Hart DR (2018) Pre-
dicted impacts of future climate change, ocean acidifica-
tion, and management on the US Atlantic sea scallop
(Placopecten magellanicus) fishery. PLOS ONE 13: 
e0203536

Richardson PL (2019) Florida Current, Gulf Stream, and Lab -
rador Current. In:  Cochran JK, Bokuniewicz HJ, Yager PL
(eds) Encyclopedia of ocean sciences, Vol 1, 3rd edn.
Marine biogeochemistry. Elsevier, London, p 351−361

Rilov G, Mazaris AD, Stelzenmüller V, Helmuth B and oth-
ers (2019) Adaptive marine conservation planning in the
face of climate change:  What can we learn from physio-
logical, ecological and genetic studies? Glob Ecol Con-
serv 17: e00566 

Roberts DR, Bahn V, Ciuti S, Boyce MS and others (2017)
Cross-validation strategies for data with temporal, spa-
tial, hierarchical, or phylogenetic structure. Ecography
40: 913−929 

Roberts EM, Mienis F, Rapp HT, Hanz U, Meyer HK, Davies
AJ (2018) Oceanographic setting and short-timescale
environmental variability at an Arctic seamount sponge
ground. Deep Sea Res I 138: 98−113 

Saba VS, Griffies SM, Anderson WG, Winton M and others
(2016) Enhanced warming of the Northwest Atlantic
Ocean under climate change. J Geophys Res Oceans
121: 118−132 

Schmidt EO (1870) Grundzüge einer Spongien-Fauna des
atlantischen Gebietes. Wilhelm Engelmann, Leipzig

Stanley RRE, DiBacco C, Lowen B, Beiko RG and others
(2018) A climate-associated multispecies cryptic cline in
the northwest Atlantic. Sci Adv 43: eaaq0929 

Tanaka KR, Belknap SL, Homola JJ, Chen Y (2017) A statis-
tical model for monitoring shell disease in inshore lobster
fisheries:  a case study in Long Island Sound. PLOS ONE
12: e0172123 

Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007)

A comparative evaluation of presence-only methods for
modelling species distribution. Divers Distrib 13: 397−405 

Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G
(2019) BlockCV:  an R package for generating spatially or
environmentally separated folds for k-fold cross-valida-
tion of species distribution models. Methods Ecol Evol
10: 225−232 

VanDerWal J, Shoo LP, Graham C, Williams SE (2009)
Selecting pseudo-absence data for presence-only distri-
bution modeling:  How far should you stray from what
you know? Ecol Model 220: 589−594 

van Oevelen D, Mueller CE, Lundälv T, van Duyl FC, de
Goeij JM, Middelburg JJ (2018) Niche overlap between
a cold-water coral and an associated sponge for isotopi-
cally-enriched particulate food sources. PLOS ONE 13: 
e0194659 

van Vuuren DP, Edmonds J, Kainuma M, Riahi K and others
(2011) The representative concentration pathways:  an
overview. Clim Change 109: 5 

Wang Z, Lu Y, Greenan B, Brickman D (2018) BNAM:  An
eddy-resolving North Atlantic Ocean model to support
ocean monitoring. Can Tech Rep Hydrogr Ocean Sci 327: 
vii + 18p

Wang Z, Brickman D, Greenan BJW (2019) Characteristic
evolution of the Atlantic Meridional Overturning Circu-
lation from 1990 to 2015:  an eddy-resolving ocean model
study. Deep Sea Res I 149: 103056 

Ward G, Hastie T, Barry S, Elith J, Leathwick JR (2009) Pres-
ence-only data and the EM algorithm. Biometrics 65: 
554−563 

Wenger SJ, Olden JD (2012) Assessing transferability of
ecological models:  an underappreciated aspect of statis-
tical validation. Methods Ecol Evol 3: 260−267 

Wethey DS, Woodin SA, Hilbish TJ, Jones SJ, Lima FP,
Brannock PM (2011) Response of intertidal populations
to climate change:  effects of extreme events versus long
term change. J Exp Mar Biol Ecol 400: 132−144 

Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH,
Guisan A, NCEAS Predicting Species Distributions
Working Group (2008) Effects of sample size on the per-
formance of species distribution models. Divers Distrib
14: 763−773 

Wood SN (2001) mgcv:  GAMs and generalized ridge regres-
sion for R. R News 1: 20−25

Wood SN (2011) Fast stable restricted maximum likelihood
and marginal likelihood estimation of semiparametric
gen eralized linear models. J R Stat Soc B 73: 3−36 

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM
(2009) Mixed effects models and extensions in Ecology
with R. Springer Science+Business Media, Berlin

23

Editorial responsibility: Myron Peck, 
Hamburg, Germany

Reviewed by: 3 anonymous referees

Submitted: March 30, 2020
Accepted: November 4, 2020
Proofs received from author(s): December 18, 2020

https://doi.org/10.3389/fmars.2016.00062
https://doi.org/10.1038/s41598-018-26535-w
https://doi.org/10.1371/journal.pone.0203536
https://doi.org/10.1016/j.gecco.2019.e00566
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1016/j.dsr.2018.06.007
https://doi.org/10.1002/2015JC011346
https://doi.org/10.1126/sciadv.aaq0929
https://doi.org/10.1371/journal.pone.0172123
https://doi.org/10.1111/j.1472-4642.2007.00346.x
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1016/j.jembe.2011.02.008
https://doi.org/10.1111/j.2041-210X.2011.00170.x
https://doi.org/10.1111/j.1541-0420.2008.01116.x
https://doi.org/10.1016/j.dsr.2019.06.002
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1371/journal.pone.0194659
https://doi.org/10.1016/j.ecolmodel.2008.11.010
https://doi.org/10.1111/2041-210X.13107

	Climate Change Winner in the Deep Sea? Predicting the Impacts of Climate Change on the Distribution of the Glass Sponge Vazella pourtalesii
	Citation/Publisher Attribution

	Climate Change Winner in the Deep Sea? Predicting the Impacts of Climate Change on the Distribution of the Glass Sponge Vazella pourtalesii
	Creative Commons License
	Authors

	Climate change winner in the deep sea? Predicting the impacts of climate change on the distribution of the glass sponge Vazella pourtalesii

