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Field-induced Kosterlitz-Thouless transition in the zero-temperature triangular
Ising antiferromagnet
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(Received 28 November 1990)

We investigate the zero-temperature triangular Ising antiferromagnet in a magnetic field by
means of transfer matrix and Monte Carlo methods. The finite-size results are compared with
predictions obtained from a mapping to the Gaussian model. The results confirm the presence
of a field-induced Kosterlitz-Thouless transition to a state with long-range order.

The ground state of the antiferromagnetic triangular
Ising model with only nearest-neighbor interactions is
characterized by the absence of long-range order and has
a nonzero entropy, i at least in the isotropic case. Since
the correlation functions decay with power laws of the
distance rather than exponentially, the ground state is
critical. When a magnetic field B of sufBcient strength
is applied to the ground state, the residual entropy is
removed. The resulting ordered state has spins of one
sign on two of the three sublattices of the triangular lat-
tice, and spins of the opposite sign on the third sublat-
tice. Here we investigate the nature of the associated
phase transition, induced by a magnetic field of the or-
der of the (vanishing) thermal energy kT Thus, we c.on-
sider the T ~ 0 limit such that H = I3/kT remains
finite, while the nearest-neighbor coupling K does not:
Ii = J/kT ~ —oo. The reduced Hamiltonian is

'H/kT = Ii ) s;s —H ) s—y
&~,j& k

where the first sum is over all nearest-neighbor pairs.
The net effect of this sum is, apart from contributing an
infinite constant, the restriction that elementary triangles
with three spins of the same sign are forbidden.

It was originally suspected that the reduced Geld 0
was relevant, i.e. , that the system would immediately en-
ter the ordered state when H g 0. However, this was
not supported by a later analysis4 which used a map-
ping to the Gaussian model and the Coulomb gas. 5 We
summarize some of the main steps of this analysis. As

a first step, the zero-temperature Ising model is exactly
mapped to the triangular Ising solid-on-solid (TISOS)
model, a solid-on-solid (SOS) model describing the equi-
librium shape of a (111) surface of a cubic crystal. 4 Us-

ing this mapping, one can express the SOS height-height
correlation function G(r ) = ((hr —ha)z), between height
variables h„and ho separated by a distance r, in corre-
lations between Ising spins. The latter correlations are
known exactly for H = O.z ~ The asymptotic behavior of
G(r) at long distances is thus found to be

9
G(r) ln r

Such logarithmic divergences are typical for two-
dimensional Gaussian and SOS models in their rough
phases. In the Gaussian model, with a reduced Hamilto-
nian —(2x/7'o) Q&, &(h; —hI), the amplitude A of the
logarithm can be calculated as a function of the Gaus-
sian temperature TG as A = To/(2z' ). It is plausible
that under a renormalization-group transformation the
TISOS model flows to the Gaussian model. Since the
amplitude of the logarithm is invariant under this trans-
formation, it follows that the TISOS model maps onto a
Gaussian model with TG ——18. Consequently, we know
the critical-point exponents of the TISOS and equivalent
Ising model. As an example we consider the critical ex-
ponent of the uniform magnetic field H coupling to the
Ising spins. As argued in Ref. 4, this field corresponds
to a periodic potential with a period of p = 2 elementary
steps of the SOS surface. In the Gaussian model the
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corresponding contribution to the Hamiltonian is a term
proportional to cos(2m h;/p), with a scaling dimensions

X~ = TG/2p

which is equal to 4 for p = 2. This scaling field is ir-
relevant: If sufIiciently small, it does not destroy the al-
gebraic correlations in the zero-field Ising ground state
(at least, if our assumption concerning the existence of
a mapping between the SOS and the Gaussian model
was right). However, it is also to be expected that H
will play the role of a temperaturelike parameter and
will decrease the marginal Gaussian temperature field.
At some value HKT the scaling dimension Xq will be-
come marginal (TG = 16), and the system will undergo
a Kosterlitz-Thouless (KT) transition. io Another conse-
quence of this theory is that the smallest anomalous di-
mension is Xs& which is equal to 4 at H = 0; Xs is ex-
pected to decrease as a function of ~H~ and should reach
the value 9 at H = HKT. For H & HKT the system
enters a long-range ordered state which is threefold de-
generate: the majority of the minus spins are located on
one of the three sublattices of the triangular lattice. The
anomalous dimension Xs is associated with a staggered
field, e.g. , 2H on on—e sublattice and +H on the other
two sublattices, and should govern the long-range behav-
ior of the spin-spin correlation function g(r) ar

In this paper we verify this scenario by two different
approaches. Firstly, we determine the magnetic suscep-
tibility of the zero-temperature Ising model as a function
of the magnetic field for several finite L x L systems with
toroidal boundaries. Finite-size scaling predicts that the
susceptibility y(L) of a system with linear size L at a
critical point scales as

y(L) = g(0)+ AI, '"" '+ . -

where A is a constant and the ellipsis stands for correc-
tions to scaling and yH is the renormalization exponent
associated with the field H. If the transition is indeed
KT-like, yH ——0 and the susceptibility will not diverge; it
will behave qualitatively as the specific heat of the XY'
model. However, if the transition is of the three-state
Potts type, as might be suggested by the symmetry of
the ordered state, we have y~ —s, so that g(L) will

diverge with L.
Figure 1 shows Monte Carlo results for the susceptibil-

ity obtained by means of the Delft Ising System Proces-
sor (DISP) (Ref. 11) for systems with linear dimensions
L equal to powers of 2, ranging from 8 to 256. The
simulations were performed at K = —12, which, after
truncation of the Monte Carlo transition probabilities to
machine precision, inhibits spin fiips that increase the
nearest-neighbor interaction energy.

The way in which the initial states were prepared de-
serves some attention. Via the SOS representation, a
T = 0 Ising configuration can be specified by means of a
system of nonintersecting strings. s Since the number of
strings is conserved under the Glauberiz dynamics used
in the spin-updating algorithm, it should initially be set

0.2

0.1

0
0 2.0

FIG. 1. Monte Carlo results for the magnetic susceptibil-
ity y of the zero-temperature triangular Ising model with a
finite coupling H of the spins to the magnetic field. Results
are shown for several I x I systems with periodic boundaries
and I equal to powers of 2. In order to avoid crowding of
symbols, the data are shown by smooth curves except for the
largest system size (256) for which the data points are shown
as &. The statistical error in the latter points is slightly
larger than the size of the symbols. The errors in the other
data do not exceed the thickness of the curves in most cases.
The susceptibilities for system sizes I = 2 and 4 are zero
because the initial state (described in the text) is frozen: no
spin Sips are possible. These results shown here indicate that
the susceptibility remains finite when the system enters the
ordered phase.

equal to 2I /3 which is appropriate for the state at H = 0
as well as the ordered state at 0 « H « —6I~. It does
not seem likely that fluctuations in the number of strings,
as occurring in the summation over alt Ising configura-
tions in the partition sum, would alter universal aspects
of the critical behavior. Since the DISP can only simu-
late systems with sizes equal to powers of 2, the afore-
mentioned choice is not possible and we have chosen the
number of strings equal to the nearest even integer to
2L/3 instead. Only configurations with an even number
of strings correspond to Ising configurations with periodic
boundaries. This choice leads to corrections to scaling in

y proportional to 1/I, and to some alternation between
results for system sizes that are odd and even powers of
2. While such corrections to scaling, and alternation, are
much in line with the data shown in Fig. 1, there are no
indications for a power-law divergence of y(L) with L.

As a further check of the Gaussian model description
of the T = 0 Ising model, we have performed a finite-
size scaling analysis using transfer matrix calcula-
tions. These calculations pertain to a lattice wrapped on
an infinitely long cylinder, with one set of lattice edges
perpendicular to the cylinder s axis. The finite-size pa-
rameter L is the circumference of the cylinder measured
in lattice units.
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The transfer matrix T that, adds two layers of L spins
to the lattice can be written as

T=r"'r r r X'"———H —K+—0—K-—H

where the diagonal matrix g~ takes into account the field
H acting on a row of spins. It is de6ned by 0.2

TH(s, s') = exp[H(s, + s';)]b.. . (6)

where rows of spins are denoted as s = (si, sz, . . . , sL, ).
The matrices T~+ take into account half the couplings
within a row, and the couplings between neighboring
rows of spins:

T~y(s& s ) = exp(K[ s', (s; + s;~, )

+(' '+ +";";,)/2])

Since TK is the transpose of TK+, T is symmetric.
The matrices TK+ and TK can be decomposed into L
sparse matrices, which is convenient for computational
purposes. is is This decomposition proceeds as for the
honeycomb lattice, see, e.g. , Ref. 16. However, since we
are now working in the limit I~ —+ —oo, we have to be
careful to share each bond strength Ix between adjacent
triangles and to divide out an infinite factor exp( —K/2)
from the Boltzmann weight of each triangle.

The correlation length can be expressed in the two
largest eigenvalues A1 and A2 of the transfer matrix as

((H, L) = I/[(ln(Ai/Az)], (8)

where the geometrical factor ( equals 1/~3. According
to the theory of conformal invariance the asymptotic
finite-size scaling behavior of the correlation length of a
critical system obeys

lim L/((H, L) = 2zX, (9)

where X is the scaling dimension of the correlation func-
tion associated with the correlation length. Hence, the
scaled gaps X(H, L) = I /[2x((H, L)] should converge to
the scaling dimension X.

Figure 2 shows the scaled gaps as a function of H
for several system sizes that are a multiple of 3. At
H = 0, the data points converge well to t,he expected
value Xz ——4 [see Eq. (3)] for the smallest anomalous
dimension, also in agreement with the correlation func-
tion exponent found by Stephenson. z For not too large
values of H g 0, the data points still show convergence
to a smaller but nonzero value of X for L -+ oo, thus
revealing a decrease of the corresponding Gaussian tem-
perature TG. For 0 larger than about 0.3 the data points

0
0 0.5 1.0

FIG. 2. Scaled gaps X of J x oo zero-temperature anti-
ferromagnetic triangular Ising models, as a function of the
reduced magnetic field H. Data points (not shown) were cal-
culated at intervals of 0.2 in H and. connected by smooth
curves. Each curve is labeled by the value of the finite size J.
These data show that X converges to a nonzero value when
H is smaller than about 0.3 or 0.4. For large values of H we
observe that X converges to 0 with increasing L. Such behav-
ior is in agreement with the presence of a Kosterlitz-Thouless
transition to the ordered state.

assume a clearly decreasing behavior with L Conver-.
gence to X = 0 is observed for larger values of H, in
agreement with the behavior expected for a long-range
ordered state (an infinite correlation length). The de-
creasing trend sets in at a value of X close to 9. the value
predicted for Xs at the KT transition. We conclude that
these results provide strong evidence for a field-induced
KT transition at about H = 0.3 in the zero-temperature
antiferromagnetic triangular Ising model.
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fessor E.G.D. Cohen at the Rockefeller University in New
York, where some of this work was performed, is grate-
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the (U.S.) National Science Foundation through Grant
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