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THESIS ABSTRACT 

The phenomena of cardiac ischemia and reperfusion involve substantial , 

multifactorial pathophysiologic derangements, the attenuation of which is vital for 

the functional recovery and viability of the heart. It has been proposed that 

methylene blue (MB) may decrease the damage associated with ischemia and 

reperfusion, in part by the suppression of oxyradical generation and by the 

enhancement of ATP recovery. In the present study, we tested the effect of 

pretreating isolated working rat hearts with MB prior to imposing ischemia and 

reperfusion . Hearts were treated for ten minutes with either 0.1 µM, 1.0 µM, or 

10.0 µM MB, or given no treatment, prior to thirty-five minutes of zero flow, 

global ischemia and ten minutes of subsequent reperfusion. The mechanical 

performance and electrical activity of the hearts were monitored throughout the 

experiments. In addition, aliquots of coronary artery effluent were periodically 

collected for biochemical analyses. The cardiac tissue was frozen at the end of 

the experiments and subsequently assayed to estimate the extent of membrane 

phospholipid peroxidation. The ir:icidence and duration of ventricular fibrillation 

occurring during reperfusion in the MB-treated hearts were not significantly 

different from the untreated hearts. The measurement of coronary artery flow 

during reperfusion was similar in both untreated and treated groups. The 

appearance of lactate dehydrogeriase in the coronary artery effluent of treated 

hearts approximated those levels measured in untreated hearts. The calculated 

indices of electromechanical recovery did not differ significantly from the value 
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obtained for the untreated pool. There were comparable levels of thiobarbituric 

acid reactive substances (TSARS) detected in the cardiac tissue from treated 

and untreated groups. Since MB did not exhibit significant protective effects 

during ischemia and reperfusion, we also conducted an experiment with 100 nM 

erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), an adenosine deaminase 

inhibitor. Previous studies with EHNA pretreatment in our laboratory have 

demonstrated measurable cardioprotection, however this observation was not 

reproduced in the present study. In summary, we did not observe 

cardioprotective effects using several concentrations of MB in our isolated 

working rat heart model of global ischemia/reperfusion injury. 
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PREFACE 

This thesis was prepared in the manuscript format. The manuscript entitled "The 

Effects of Methylene Blue Pretreatment on Global Cardiac lschemia in the 

Isolated Rat Heart" was written according to the "Instructions to Authors" for the 

Canadian Journal of Physiology and Pharmacology. 
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ABSTRACT 

It has been proposed that methylene blue (MB) might protect the 

myocardium against ischemia/reperfusion damage in part by suppression of 

oxyradical generation and by enhancement of high energy phosphate synthesis. 

In the present study, we tested the effect of pretreatment with MB on ischemia 

and reperfusion injury in the isolated working rat heart. In the experimental 

groups, hearts were treated for ten minutes with either 0.1 µM, 1.0 µM, or 10.0 

µM methylene blue prior to thirty-five minutes of zero flow, global ischemia and 

ten minutes of subsequent reperfusion. The incidence and duration of 

ventricular fibrillation occurring during reperfusion were not significantly different 

from the untreated hearts. The measurement of coronary artery flow during 

reperfusion was similar for both the untreated and treated groups. The 

appearance of lactate dehydrogenase, an indicator of cellular damage, in the 

coronary artery effluent of treated hearts approximated those levels measured in 

the untreated hearts. Similarly, the calculated mean indices of 

electromechanical recovery did not differ significantly between the treated and 

untreated groups. Also, the index of lipid peroxidative injury, levels of 

thiobarbituric acid reactive substances (TBARS) in assayed frozen cardiac 

tissue, were comparable in both the treated and untreated groups. These 

results demonstrate that MB did not attenuate the damage associated with 

ischemia and reperfusion in our isolated rat heart model. 
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INTRODUCTION 

It has been well-established that ischemia occurs when quantities of 

substrate and oxygen are insufficient to meet the metabolic and energy demands 

of myocardial tissue (Jennings and Reimer, 1991 ). During the ischemic period, 

a constellation of metabolic, structural, and functional derangements arise, the 

severity of which depend on the extent and duration of coronary artery flow 

compromise (Downey, 1990). The manifestations of myocardial ischemia have 

been well-defined. They include a rapid impairment in contractile performance, 

depletion of high energy phosphate stores and an increase in intracellular 

inorganic phosphate, dependency on anaerobic metabolism leading to a build­

up of glycolytic byproducts, intracellular acidosis as a result of proton and lactate 

accumulation, and arrhythmogenesis precipitated by hyperkalemia secondary to 

the failure of membranous Na+-~-ATPase pumps. Prolonged ischemia 

culminates in tissue necrosis and infarction (Jennings and Reimer, 1991; 

Karmazyn, 1991 ; Katz, 1992). 

Timely reperfusion of ischemic myocardium, though absolutely essential 

for its salvage, is paradoxically associated with deleterious sequelae and 

exacerbation of tissue damage. The phenomenon of reperfusion injury is 

characterized by several pathophysiologic derangements, including the 

induction of lethal ventricular arrhythmias, prolonged depression of contractile 

function, major ultrastructural damage, and massive leakage of cytosolic 

enzymes (Korthuis and Granger, 1993). The mechanisms underlying the 
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pathogenesis of reoxygenation injury have not been fully elucidated, but the 

etiology is multifactorial and involves a concerted series of events (Karmazyn, 

1990). Free radical-mediated oxidative damage (Balli, 1991 ; Goldhaber and 

Weiss, 1992) and an irreversible collapse of intracellular ionic homeostasis 

(Darley-Usmar et al., 1991) have been implicated as major contributors to the 

pathologic process. Numerous laboratories have investigated possible 

interventions, but none has demonstrated significant clinical utility. 

Mahoney (1990) postulated that the commonly used tissue dye, 

methylene blue (MB), which oxidizes NADPH to NADPH+, increases flux through 

the hexosemonophosphate shunt and thereby hastens ATP synthesis for 

improved electromechanical recovery and function of the heart following 

ischemia and reperfusion. Normally, during ischemia-induced catabolism of 

adenine nucelotides, electrons are routed to the flavin site on xanthine oxidase 

for the reduction of molecular oxygen and subsequent formation of superoxide 

radicals. Salaris ( 1991) proposed that MB may prevent the formation of 

cytotoxic oxygen radical species by parasitically accepting electrons from 

xanthine oxidase. Other laboratories have also reported that MB may block 

oxygen radical generation in reperfusion injury by decreasing superoxide 

production in vitro [Kelner et al., 1988a and 1988b]. Our search of the literature 

revealed no studies employing MB as a potential therapeutic agent in animal 

models of ischemia and reperfusion . We hypothesized that treatment with MB 

prior to ischemia and reperfusion would attenuate myocardial tissue damage by 
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assuring its immediate availability for action by the aforementioned mechanisms 

in cells presented with a metabolic challenge. We also hypothesized that 

cardioprotection would be observed by a marked improvement in electrical and 

mechanical recovery during reperfusion, decreased cytosolic enzyme leakage, 

and decreased levels of membrane lipid peroxidative injury. In the present 

study, we administered MB at several concentrations prior to the imposition of 

ischemia and subsequent reperfusion in isolated working rat hearts. 
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METHODS 

Heart Perfusion 

Male Sprague Dawley rats weighing 300-400 g were fed ad libitum and 

cared for in accordance with institutional guidelines and procedures. Animals 

were injected i.p. with heparin (1000 U/kg body weight) ten minutes prior to 

sacrifice. The hearts were rapidly excised, and the aortas were isolated and 

mounted on a 14 g cannula. Perfusion was initially performed in the Langendorff 

mode for 3-5 minutes. The perfusate was a modified, non-recirculating Krebs­

Henseleit buffer containing the following: NaCl (120 mM), KCI (5.6 mM), MgS04 

(0.65 mM), CaCl2 (2.4 mM), NaH2P04 (1.21 mM), EDTA (0.2 mM), NaHC03 (20 

mM); gassed with 95% 02 and 5% C02; pH 7.4. The left atrium was cannulated 

to allow for perfusate inflow. Left atrial filling pressure was set at 10 cm H20. 

The pulmonary artery was cannulated to allow for the collection and 

measurement of coronary artery effluent, and the heart was subsequently 

switched to the working mode. The hearts were allowed to stabilize for ten 

minutes prior to drug treatment or data collection. The perfusion apparatus was 

enclosed in a thermostatic chamber at 37° C. MB was continuously infused for 

ten minutes into the left atrial filling reservoir via a syringe pump prior to the 

ischemic period of thirty-five minutes and a subsequent reperfusion period of ten 

minutes. Global cardiac ischemia and reperfusion were achieved by closing and 

opening, respectively, of both the aortic and left atrial perfusion lines. At the end 

of experiments hearts were freeze-clamped in liquid nitrogen and were 
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transferred to a - 80°C freezer for subsequent biochemical analysis. 

Pressure and Flow Measurements 

Left ventricular pressure development (LVP) was monitored and recorded 

continually on a Model 7 polygraph unit (Grass Instrument Co.) linked to a 

pressure transducer. The transducer was attached to a 3 cm piece of PE90 

tubing, which was inserted into the left ventricle through the pulmonary vein and 

pulled out through the apex of the heart leaving one end of the cannula in the 

left ventricular chamber. Electrocardiographic rhythm (ECG) was monitored and 

recorded through electrodes that were placed in both atria and in the left 

ventricle. Heart rate (HR) and the presence of ventricular fibrillation were 

determined from the ECG. Coronary flow rate (CF) was assessed by weighing 

coronary effluent collected over one minute intervals. 

Assay of Lactate Dehydrogenase Activity 

Samples of coronary effluent were analyzed for lactate dehydrogenase 

(LOH). The assay contained the following (in final concentrations): 0.2 M Tris­

HCI buffer, pH 7.3; 1.0 mM pyruvate; 0.22 mM NAOH. The LOH activity was 

measured at 30° C as the amount of pyruvate consumed by monitoring the rate 

of decrease of absorbance due to the oxidation of the coenzyme, NAOH. 

Absorbance was measured at 340nm with a Beckman OU-64 

spectrophotometer. LOH activity is expressed in units where 1 U is that which 

oxidizes 1 µmol NAOH/minute. 
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Assay of Thiobarbituric Acid Reactive Substances 

Lipid peroxidation was assessed by determining the content of 

thiobarbituric acid reactive substances (TSARS) in 200 mg aliquots of freeze­

clamped heart muscle which were mixed with 20% trichloroacetic acid and 

centrifugated at 1000 x g for 20 minutes. 1 ml of the supernatant was reacted 

with 100 mM thiobarbituric acid, capped, and heated in a 95° C heating block for 

20 minutes. After cooling for ten minutes, TSARS were quantitated at 532 nM 

using 1, 1,3,3-tetraethoxypropan (Aldrich) as standard. 

Statistical Analysis 

Comparisons between untreated and treated groups for the 

measurements of lactate dehydrogenase activity and coronary artery flow at 

several timepoints during reperfusion were made by a multifactorial analysis of 

variance (ANOVA) with repeated measures. Analyses of ventricular fibrillation 

incidence and duration, levels of TSARS, and indices of electromechanical 

recovery were done using two-way analysis of variance (ANOVA) with a 

Dunnett's follow-up test. The level of significance was set at p < 0.05. All 

statistical computations were done using SYSTAT®. 
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RESULTS 

In hearts subjected to ischemia and reperfusion without prior treatment, 

the mean incidence of ventricular fibrillation occurring during reperfusion was 

68.8%. The duration of ventricular fibrillation averaged 6.29 minutes (Table 1 ). 

The the lowest concentration of MB tested in this study was observed to produce 

a mean duration of ventricular tachyarrhythmias longer than that observed in the 

untreated group and resulted in a 100% incidence of ventricular fibrillation. 

Statistically, however, these observations were not significant. 

The normalized mean coronary flow rates during preischemia among the 

various groups ranged between 4.15 and 7.88 mUminute x g wet heart weight. 

During the reperfusion period, MB produced no significant difference in the 

coronary flow rates (Figure 1 ). 

The measurements of lactate dehydrogenase (LOH) activity in coronary 

artery effluent prior to ischemia and during reperfusion were comparable 

between MB-treated and untreated groups (Figure 2) . 

The calculated index of electromechanical recovery (Ir) is an unweighted 

formula incorporating ventricular fibrillation duration (VFD), heart rate (HR), and 

left ventricular pulse pressure (LVPP), such that Ir= [ (LVPPfina1 I LVPP initia1) + 

(HRfina1 I HRinitia1) + ((10 - VFD) / 10)] / 3. By including these three parameters of 

electrical and mechanical performance, this calculation allows comparisons to 

be made based on the overall functional recovery of the hearts at the end of 

each experiment. The Ir's determined for all concentrations of MB tested in this 
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study were not significantly different from the Ir calculated for the untreated 

hearts (Figure 3). 

Membrane lipid peroxidative injury in the untreated, ischemic/reperfused 

hearts was quantified as having a mean of 22.69 nmoles TBARS/g tissue. MB 

did not reduce the levels of TBARS in myocardial tissue frozen at the end of 

reperfusion and assayed six weeks later (Figure 4). 
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Table 1. Effect of methylene blue on the duration and incidence of ventricular 

fibrillation during reperfusion. 
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Untreated 
Methylene blue 0.1 µM 
Methylene blue 1.0 µM 
Methylene blue 10.0 µM 

Duration (minutes) 

6.29 ± 4.78 
9.78 ± 0.67 
4.28 ± 4.63 
6.44 ± 4.85 

Incidence (%) 

68.8 
100 
55.5 
66.6 

Values for the duration of ventricular fibrillation occurring during the ten minutes 
of reperfusion are expressed as mean ± SD. The incidence is the mean percent 
occurrence of ~1 minute of ventricular fibrillation during reperfusion. Sample 
size is 9 for all groups except the untreated (n=32). 
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Figure 1. Effect of methylene blue on coronary artery flow during reperfusion. 

Samples of effluent were collected over one minute intervals preceding the 

designated time point. Minutes 0-10 are preischemia. Minutes 45-55 are 

postischemia. Each point represents the mean ± SD. Sample size is 9 for all 

groups except the untreated (n=32). 
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Figure 2. Effect of methylene blue on the appearance of LDH in the coronary 

artery effluent during reperfusion. Samples of effluent were collected over one 

minute intervals preceding the designated time point. Minutes 0-10 are 

preischemia. Minutes 45-55 are postischemia. Each point represents the mean 

± SD. Sample size is 9 for all groups except the untreated (n=32). 
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Figure 3. Effect of methylene blue on the calculated index of electromechanical 

recovery (Ir). Each point represents the mean± SD. Sample size is 9 for all 

groups except the untreated (n=32). 
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Figure 4. Effect of methylene blue pretreatment on the formation of 

thiobarbituric acid reactive substances (TBARS) as determined in homogenates 

of cardiac tissue. Hearts were freeze-clamped in liquid nitrogen at the endpoint 

of reperfusion and subsequently assayed. Each bar represents the mean ± SD. 

Sample size is 9 for all groups except the untreated (n=32). 
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DISCUSSION 

In the present study, MB did not offer significant protection from the 

damaging effects of global cardiac ischemia and reperfusion. Our hypothesis, 

that MB would minimize the damage involved in ischemia and reperfusion if 

administered prior to the ischemic insult, was not supported by the data. 

It has been reported that MB may attenuate ischemia/reperfusion injury by 

decreasing oxyradical generation or by enhancing ATP levels. In separate 

laboratories, Ke Iner et al. ( 1988b) and Salaris et al. ( 1991) reported that MB 

suppressed the in vitro formation of cytotoxic oxygen free radical species by 

diverting electrons from xanthine oxidase. From the standpoint that the 

inhibition of free radical generation would eliminate major components of 

reperfusion-induced tissue damage, such a mechanism to preserve tissue 

viability and functional recovery was entirely plausible. In fact, this hypothetical 

mechanism was especially suitable for testing in our animal model in light of the 

confirmed presence of xanthine oxidase in the globally ischemic rat heart 

(Downey, 1988). Moreover, a xanthine oxidase inhibitor, allopurinol, has been 

reported to produce a beneficial effect in ischemic rat hearts, but whether this 

effect is actually due to the purported mechanism of allopurinol has not been 

unequivocally established in the literature. Our study, by determining the extent 

of membrane lipid peroxidation in tissue subjected to ischemia and reperfusion, 

provided no experimental evidence to support the contention that MB 

suppresses oxyradical formation. This finding correlated with the observed lack 
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of significant functional cardioprotection, as assessed by the parameters of left 

ventricular pressure, heart rate, arrhythmia incidence, and cytosolic enzyme 

release. 

Despite reports of its vasoconstrictive activity in select vascular beds, MB, 

even at high doses, did not decrease coronary flow. An observed decrease in 

flow would have more easily explained the poor recovery obtained in the treated 

heart preparations. But, in the absence of data to support coronary artery flow 

compromise, it is reasonable to conclude that MB-induced vasoconstriction was 

not a major contributory factor for the results obtained in this study. 

The lack of any detectable cardioprotection by methylene blue raises 

several questions, primarily focused on whether the current model is suitable 

and adequate to test the hypothesis. Prior to concluding that MB is not effective 

in attenuating ischemia and reperfusion damage, the author believes it would be 

prudent to repeat the experiments using the same biological system but with a 

modified protocol that shortens the duration of ischemia and lengthens the 

period of reperfusion . There is a distinct possibility, given the 35 minute period 

of global ischemia utilized in the present study, that there may be a critical 

timepoint after the onset of ischemia beyond which MB may be completely 

ineffective due to the irreversibility of cell death and the depletion or 

accumulation of metabolic byproducts. A repeat study using various durations of 

ischemia would confirm or rule out this possibility. In addition, to more 

thoroughly address the hypothesis that MB enhances ATP recovery, it is 
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suggested that MB be tested in a protocol that includes a reperfusion period 

better defined to temporally allow for the synthesis and quantification of high 

energy phosphates. 

It is equivocal as to why cardioprotection was not observed in the present 

EHNA study, as it has been in the past. However, previously unpublished data 

emanating from this laboratory, in studies of various chemical compounds, 

confirm that the present model allows the obervation of measurable and 

significant cardioprotection. Therefore, the presumed confidence in our model's 

ability to adequately test the hypothesis does allow for reasonable but prudent 

conclusions to be drawn about the lack of efficacy of MB in ischemia and 

reperfusion in our particular model. 

In summary, the data do not support the hypothesis the MB attenuates 

damage caused by ischemia and reperfusion in our isolated rat heart model. 

However, future studies are necessary to evaluate the hypothesis under 

modified experimental conditions, as discussed above. 
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SPECIFIC OBJECTIVES 

The aim of this study was to determine the effects of methylene blue 

treatment on ischemia/reperfusion injury, as characterized by: 

(1) Indices of cardiac electrical and mechanical performance 

(2) Lactate dehydrogenase (LOH) activity in the coronary artery 

effluent as a marker of cellular membrane damage, cytosolic leakage, and 

myocardial cell necrosis 

(3) Formation of thiobarbituric acid reactive substances (TSARS) in 

frozen cardiac tissue to estimate the extent of membrane lipid 

peroxidative injury 
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LITERATURE REVIEW 

lschemia arises whenever coronary artery flow cannot provide oxygen 

and metabolic substrate in a quantity that is sufficient to meet the energy 

demands of myocardial tissue (Jennings & Reimer, 1991 ; Downey, 1991 ). The 

consequences of ischemia entail a constellation of functional, structural , and 

metabolic derangements that are dependent on the duration and severity of 

coronary artery flow compromise (Downey, 1991 ). 

lschemia can result from a thrombotic or atherosclerotic occlusion of a 

coronary artery or may occur during surgical procedures, such as percutaneous 

transluminal coronary angioplasty (PTCA), cardiac transplantation, and coronary 

artery bypass grafting after cardioplegic arrest (Keith, 1993; Ferrari , 1992; 

Flitter, 1993). After an ischemic period longer than twenty minutes, some 

myocytes will sustain irreversible injury by the loss of plasma membrane integrity 

and leakage of cytosolic enzymes, such as LDH, culminating in necrosis and 

infarction (Jennings & Reimer, 1991 ; Downey, 1990). 

Manifestations of myocardial ischemia include 1) a sudden impairment in 

contractile function, 2) a decrease in intramyocardial pressure, 3) depletion of 

high energy phosphate stores (ATP) and accumulation of intracellular inorganic 

phosphate, 4) intracellular acidosis caused by proton and lactate accumulation, 

5) hyperkalemia leading to arrhythmogenesis, and 6) a shift to anaerobic 

metabolism leading to the accumulation of glycolytic products (Jennings & 

Reimer, 1991 ; Karmazyn, 1991 ; Katz, 1992). 
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Timely reperfusion of the ischemic heart has been shown to reduce 

mortality and improve myocardial function in patients suffering from an infarction. 

However, under some circumstances, antiocclusive interventions such as 

pharmacological thrombolysis and coronary artery angioplasty (Goldhaber & 

Weiss, 1992) may actually augment ischemic injury. Some clinical and 

experimental studies (Karmazyn, 1991 ; Downey, 1990) have revealed 

deleterious effects of reperfusion on myocardium, a paradoxical phenomenon 

marked by the occurrence of lethal arrhythmias such as ventricular fibrillation or 

ventricular tachycardia, massive cytosolic enzyme release, mechanical 

dysfunction leading to prolonged depression of contractile function, major 

ultrastructural damage, such as sarcolemmal disruption and mitochondrial 

swelling, cellular swelling, and cellular necrosis (Korthuis & Granger, 1993; 

Hegstad et al., 1994; Goldhaber & Weiss, 1992; Jeroudi et al. , 1994). Since 

reperfusion must always be preceded by ischemia, and some of the adverse 

events may be related to the ischemic process and not exclusively to reperfusion 

itself, these events are collectively referred to as myocardial 

ischemia/reperfusion (l/R) injury (Karmazyn, 1991 ). 

The ultimate mechanisms for the pathogenesis of damage to 

postischemic, reperfused hearts have not been fully elucidated. The etiology is 

multifactorial and involves a concerted series of events. Among the variety of 

proposed mechanisms, free radical-mediated oxidative damage and the 

derangement of cellular ion homeostasis have been implicated as the most 
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significant contributors to the pathologic process. 

The derangement of cellular ion homeostasis, especially intracellular 

calcium overload, has been reported to correlate with the adverse events that 

occur during reperfusion. On reflow, there is an extrusion of protons in 

exchange for Na+, via the Na+ /H+ exchanger, because of rapid washout of the 

acidic extracellular space. Intracellular Na+ then accumulates and exchanges 

with calcium via the 3Na+/Ca+ exchanger. Calcium accumulates excessively in 

the cytosol and mitochondria, resulting in depressed recovery of cellular 

functions due to impaired oxidative phosphorylation, impaired contractile 

function, arrhythmias, and phospholipid membrane breakdown (Tani, 1900; Tani 

& Neely, 1989; Steenbergen et al., 1993; Pierce & Meng, 1992). It has been 

reported that excessive mitochondrial calcium sequestration causes a decrease 

in electron transfer efficiency at NADH CoQ reductase and complex I of the 

respiratory chain, resulting in a collapse of ionic homeostasis and diminished 

ATP synthesis on reoxygenation, culminating in cell death and lysis (Darley­

Usmar et al., 1991 ). Studies using Na+/H+ exchange inhibitors and calcium 

channel blockers have shown decreases in intracellular Na+ and Ca++, paralleled 

by a reduction in arrhythmias and necrosis in ischemia and prevention of 

reperfusion-associated events (Ambrosio et al. , 1992; Scholz & Albus, 1993; 

Harper et al. , 1993). 

The occurrence of oxidative stress during reperfusion has been well­

documented. The formation of oxygen free radicals (OFR) (superoxide anion, 
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hydrogen peroxide, nitric oxide radical, hydroxyl radical) during reperfusion has 

been directly identified by electron paramagnetic resonance spectroscopy and 

indirectly by the finding of malondialdehyde in tissue and coronary effluent 

(Maupoil et al. , 1990; Darley-Usmar et al. , 1991 ; Gauduel & Duvelleroy, 1984). 

While endogenous antioxidant systems exist to neutralize OFR as a normal 

byproduct of aerobic metabolism, an imbalance between available protection 

and production of OFR leads to oxidative damage of organelles (Goldhaber & 

Weiss, 1992). 

Mitochondria are the predominant intracellular source of OFR (Flitter, 

1993). During ischemia, the electron transport chain becomes fully reduced. On 

reoxygenation, mitochondria become reenergized. Electron egress through 

cytochrome C oxidase, which normally catalyzes the tetravalent reduction of 

oxygen, is inhibited, leading to augmented leakage of unpaired electrons which 

react with oxygen to form superoxide Piper et al. , 1994; Ferrari et al. , 1991 ). 

Other sources of free radicals are polymorphonuclear leucocytes, or 

neutrophils, which contain a NADPH dependent oxidase system on the 

membrane surface that produces superoxide (Ferrari et al. , 1991 ). This radical 

is stored in the cytoplasm and is released along with a latent chemoattractant 

that amplifies the inflammatory process during ischemia (Korthuis & Granger, 

1993; Kukreja & Hess, 1992; Goldhaber & Weiss, 1992). The contribution of this 

potential source of OFR is not relevant to the blood-free experimental system 

utilized in this project. 
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The cytotoxicity of OFR is produced by an attack on polyunsaturated fatty 

acid chains complexed to phospholipid, resulting in the peroxidation of lipids and 

the consequential loss of cell integrity and function. By direct oxidation of amino 

acids and sulfhydryl groups, membrane proteins, subcellular functions, and 

critical enzymes in metabolic pathways may be irreversibly damaged (Flitter, 

1993; Balli, 1991; Romaschin et al. , 1990). Arrhythmogenesis and precipitation 

of ventricular fibrillation appear due to an increase in membrane permeability, 

perturbations in calcium homeostasis, and modification of ionic translocating 

proteins in the sarcolemma and sarcoplasmic reticulum (Jeroudi et al. , 1994; 

Balli , 1991 ). 

The potential for methylene blue (MB) to attenuate l/R injury has been 

proposed by several authors. Methylene blue, a commonly used redox dye, has 

been used in the treatment of methemoglobinemia, cyanide poisoning, nitrite 

poisoning, as a dye in abdominal surgery, and for detection of ischemic areas in 

the heart during surgery (Salaris et al., 1991 ; DiSanto & Wagner, 1972a). The 

dye is partially lipid soluble, and in view of its routine use as a tissue stain, 

penetrates cell membranes readily (Kelner et al. , 1988). It exhibits rapid cellular 

uptake in a dose-dependent fashion in several tissue and species types, 

including rat heart (DiSanto & Wagner, 1972b). Once MB, in its original, colored 

form, is taken up by the cell , it is rapidly reduced to leukomethylene blue 

(MB2H), and it becomes colorless, less soluble, and accumulates in the 

intracellular compartment. This phenomenon, known as reductive trapping, 
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accounts for the ability of cells to metabolize MB against its concentration 

gradient (Mahoney, 1990; DiSanto & Wagner, 1972a). It is approved for human 

use and is easily available. Thus, its potential to attenuate the consequences of 

l/R injury should be explored. 

Mahoney (1990) has postulated a mechanism of MB's potential to 

increase adenosine triphosphate (ATP) synthesis and improve recovery and 

function following ischemia and reperfusion. ATP recovery is dependent on 

either salvage of purine nucleotides for resynthesis or de nova biosynthesis. In 

ischemia, purine bases diffuse across the sarcolemmal membrane, making the 

salvage pathway ineffective, thereby forcing reliance on de novo biosynthesis. 

MB, which oxidizes NADPH to NADP+, has been shown to increase 

hexosemonophosphate shunt (HMPS) activity more than twenty-fold in red blood 

cells. Therefore, an increase in flux through the HMPS should provide more 

phosphoribosylpyrophosphate (PRPP), an adenine nucleotide precursor, 

thereby enhancing functional recovery by more rapid ATP synthesis. 

A hypothesis offered by Salaris et al. (1991) proposes that MB may exert 

an antioxidant effect in ischemia and reperfusion by competing with molecular 

oxygen for electrons in xanthine oxidase (XO). Xanthine dehydrogenase is 

converted by calcium-activated proteolysis to XO during ischemia, a time when 

hypoxanthine and xanthine are accumulating in cells as a consequence of 

ischemia-induced catabolism of adenine nucleotides. XO, a two subunit 

enzyme, contains three purine binding sites: flavin, molybdenum, and Fe-S 
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centers. In the normal sequence, electrons are routed to the flavin site, where 

molecular oxygen undergoes a single electron reduction to subsequently 

produce a burst of superoxide radicals (Hearse, 1991; Tavazzi et al., 1990), 

which can react with H20 2 and through the Fenton and Haber-Weiss reactions, 

generate the cytotoxic hydroxyl radical. Or, superoxide radical may react with 

nitric oxide radical to form the peroxynitrite anion, and subsequently undergo 

transformation to the hydroxyl radical (Kukreja & Hess, 1992; Salaris et al. , 

1991 ; Downey et al. , 1988). 

MB, when administered prior to ischemia, may provide a substrate for 

further breakdown of adenine nucleotide metabolites and may short-circuit 

superoxide radical production by diverting electrons in xanthine oxidase (XO) 

from molecular oxygen at the flavin adenine dinucleotide (FAD) site (Salaris et 

al., 1991 ). MB, it is postulated, parasitically accepts electrons at the Fe-S center 

and becomes reduced to the leuko form (MB2H). In the presence of oxygen, 

MB2H autooxidizes back to MB with the concomitant formation of H202 rather 

than superoxide radical. There is insufficent Fe2
+ to allow toxic amounts of 

hydroxyl radical formation from H202 by the Fenton reaction. Salaris et al. 

(1991) have showed significant MB concentration-related attenuation of 

membrane lipid peroxidation, as assessed by the thiobarbituric acid test, in liver 

and kidney tissue slices in an in vitro model of l/R injury. 

While Salaris' hypothesis is attractive, its relevance in human myocardial 

l/R injury is uncertain, since evidence to support measurable XO activity in 
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humans is inconsistent. While several studies have indicated no XO activity in 

human myocardium (Korthuis & Granger, 1993; Kukreja& Hess, 1992; Downey 

et al. , 1988), others have suggested the possibility that the enzyme may not be 

in the oxidase form (Downey et al. , 1988). However, the enzyme may be 

immunolocalized in capillary endothelial cells, which account for 1 % of 

myocardial weight. Some studies have showed that XO inhibition, depletion, or 

immunoneutralization attenuates reperfusion injury in different models (Korthuis 

& Grnager, 1993). However, in a rat model of myocardial l/R injury, XO activity 

never significantly increased during reperfusion (Coudray et al. , 1992). This 

finding is inconsistent with the reported antiischemic effect of allopurinol , which 

purportedly acts by inhibiting XO (Korthuis & Granger, 1993). Moreover, it has 

been reported that even with allopurinol treatment, which completely inhibited 

XO, a massive release of LOH was still seen during reperfusion (Kehrer et al. , 

1987). 

Hrushesky (1985) showed that levels of reduced glutathione (GSH) in 

cardiac and hepatic tissue were lower in animals treated with MB than in saline­

treated ·animals. The decrease in GSH has been attributed to competition with 

GSSG for NADPH, thereby inhibiting the reduction of GSSG to GSH, and 

lowering the overall cellular reducing capacity. Kelner and Alexander (1985) 

have reported, however, that MB directly oxidizes glutathione without the 

intermediate formation of hydrogen peroxide that occurs with MB reduction. 

Since GSH plays an essential protective role against OFR and prevents 
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membrane lipid peroxidation (Ferrari et al., 1991 ), the implications of Kelner's 

and Alexander's data are ambiguous concerning the potential protective role of 

MB in l/R injury. 

Kelner et al. (1988) have also reported that methylene blue competed 

effectively with paraquat, a free radical-producing herbicide, for reduction with 

the flavin-containing enzymes, xanthine oxidase, NADH cytochrome C 

reductase, and NADPH-dependent p450 reductase. Methylene blue was shown 

to react with heme proteins rather than with molecular oxygen, thereby 

decreasing the formation of superoxide and hydoxyl radical. 

In summary, a search of the literature has revealed no previous research 

on the effects of methylene blue treatment in global myocardial ischemia and 

reperfusion in an animal model. Therefore, this study was undertaken to 

investigate the potential attenuation of damage associated with ischemia and 

reperfusion in the isolated rat heart. 
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APPENDIX B. SUMMARY OF RAW DATA AND STATISTICAL ANALYSES 

36 



Table 2. A Summary of Raw Data for the Duration (in minutes) of 

Ventricular Fibrillation during Reperfusion. 

Heart Untreated MB 0.1µM MB 1.0µM MB 10.0µM 
1 10 10 4 9 
2 0 8 0 0 
3 1 10 0 9 
4 0 10 10 0 
5 10 10 4.5 0 
6 0 10 10 10 
7 8.5 10 0 10 
8 10 10 0 10 
9 0 10 10 10 
10 0 
11 10 
12 10 
13 10 
14 10 
15 10 
16 10 
17 0 
18 10 
19 10 
20 0 
21 10 
22 0 
23 10 
24 10 
25 10 
26 10 
27 10 
28 10 
29 0 
30 0 
31 10 
32 1.87 

Mean 6.29 9.78 4.28 6.44 
SD 4.78 0.67 4.63 4.8? 

Incidence 68.8% 100% 55.5% 66.6% 
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Statistical Analysis of Ventricular Fibrillation Duration during Reperfusion 

LEVELS ENCOUNTERED DURING PROCESSING ARE: 
HEART 
1.000 Untreated 
2.000 0.1uMMB 
3.000 1.0uM MB 
4.000 1 O.OuM MB 

DEP VAR: DURATION N: 59 MULTIPLE R: 0.342 
SQUARED MULTIPLE R: 0.117 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES OF MEAN-SQUARE F-RATIO P 

HEART 
ERROR 

142.445 
1072.897 

LEAST SQUARES MEANS. 

3 
55 

LS MEAN 
HEART = 1.000 6.293 
HEART = 2.000 9.778 
HEART = 3.000 4.278 
HEART = 4.000 6.444 

POST HOC TEST OF DURATION 
DUNNETT TEST WITH CONTROL = 

SE 

47.482 
19.507 

N 
0.781 32 
1.472 9 
1.472 9 
1.472 9 

1.000 

2.434 0.075 

USING MODEL MSE OF 19.507 WITH 55. OF. 
MATRIX OF MEAN DIFFERENCES FROM CONTROL: 

1 0.000 
2 3.485 
3 -2.015 
4 0.152 

DUNNETT TWO SIDED TEST. 
MATRIX OF PAIRWISE COMPARISON PROBABILITIES: 

1 1.000 
2 0.1 15 
3 0.531 
4 1.000 
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Statistical Analysis of Ventricular Fibrillation Incidence during Reperfusion 

LEVELS ENCOUNTERED DURING PROCESSING ARE: 
HEART 
1.000 Untreated 
2.000 0.1 uM MB 
3.000 1.0uM MB 
4.000 10.0uM MB 

DEP VAR: INCIDENCE N: 59 
SQUARED MULTIPLE R: 0.083 

ANALYSIS OF VARIANCE 

MULTIPLE R: 0.288 

SOURCE SUM-OF-SQUARES OF MEAN-SQUARE F-RATIO P 

HEART 
ERROR 

1.004 
11 .097 

LEAST SQUARES MEANS. 

LS MEAN 
HEART = 1.000 0.688 
HEART = 2.000 1.000 
HEART = 3.000 0.556 
HEART = 4.000 0.667 

POST HOC TEST OF INCIDENCE 

3 0.335 
55 0.202 

SE N 
0.079 32 
0.150 9 
0.150 9 
0.150 9 

DUNNETT TEST WITH CONTROL = 1.000 

USING MODEL MSE OF .202 WITH 55 OF. 
MATRIX OF MEAN DIFFERENCES FROM CONTROL: 

1 0.000 
2 0.313 
3 -0.132 
4 -0.021 

DUNNED TWO SIDED TEST. 
MATRIX OF PAIRWISE COMPARISON PROBABILITIES: 

1 1.000 
2 0.190 
3 0.813 
4 0.999 
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Table 3. A Summary of Calculated Indices of Electromechanical 
Recovery 

Heart Untreated MB 0.1uM MB 1.0µM MB 10.0uM --
1 0.0000 0.0000 0.0000 0.0330 
2 0.7674 0.0670 0.7800 0.4960 
3 0.7995 0.0000 0.8191 0.0330 

4 0.6007 0.0000 0.6896 0.6390 

5 0.0000 0.0310 0.0000 0.6220 
6 0.7235 0.0180 0.1833 0.0000 
7 0.0500 0.0260 0.0000 0.0000 
8 0.0000 0.0350 0.8224 0.0000 

9 0.7463 0.0310 0.4505 0.0000 
10 0.5907 

11 0.0000 

12 0.0000 

13 0.0000 

14 0.0000 

15 0.0000 

17 0.8564 

18 0.6762 

19 0.0000 

20 0.7220 

21 0.0000 

22 0.9360 

23 0.0000 

24 0.0000 

25 0.0000 

26 0.0000 

27 0.0330 

28 0.0230 
29 0.7519 

30 0.7315 

31 0.0000 

32 0.2870 

Mean .0.29047 .02311 .41610 .20256 
SD 0.36338 .02188 .37241 .29029 
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Statistical Analysis of Indices of Electromechanical Recovery 

LEVELS ENCOUNTERED DURING PROCESSING ARE: 
HEART 
1.000 Untreated 
2.000 0.1 uM MB 
3.000 1.0uM MB 
4.000 1 O.OuM MB 

DEP VAR: INDEX OF ELECTROMECHANICAL RECOVERY N: 59 
MULTIPLE R: 0.343 SQUARED MULTIPLE R: 0.117 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES OF MEAN-SQUARE F-RATIO P 

HEART 
ERROR 

0.783 
5.881 

LEAST SQUARES MEANS 

LS MEAN 
HEART = 1.000 0.290 
HEART = 2.000 0.023 
HEART = 3.000 0.416 
HEART = 4.000 0.203 

3 
55 

SE 
0.058 
0.109 
0.109 
0.109 

N 
32 
9 
9 
9 

0.261 
0.107 

2.440 0.074 

POST HOC TEST OF INDEX OF ELECTROMECHANICAL RECOVERY 
DUNNETT TEST WITH CONTROL= 1.000 

USING MODEL MSE OF .107 WITH 55 OF. 
MATRIX OF MEAN DIFFERENCES FROM CONTROL: 

1 0.000 
2 -0.267 
3 0.126 
4 -0.088 

DUNNETT TWO SIDED TEST. 
MATRIX OF PAIRWISE COMPARISON PROBABILITIES: 

1 1.000 
2 0.097 
3 0.661 
4 0.849 
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Table 4a. A Summary of the Levels of TBARS in Frozen Cardiac Tissue. 

Untreated Group A Slope of Stnd. Curve (m)= 0.0664 

Heart Tube 1 Tube 2 Mean (l'.} X value=(J'./m} nM/g tissue 
A1 0.129 0.136 0.1325 1.995 19.95 
2 0.157 0.177 0.167 2.515 25.15 
3 0.181 0.195 0.188 2.831 28.31 
4 0.179 0.186 0.1825 2.748 27.48 
5 0.162 0.179 0.1705 2.568 25.68 
6 0.168 0.164 0.166 2.500 25.00 
7 0.161 0.132 0.1465 2.206 22.06 
8 0.187 0.167 0.177 2.666 26.66 
9 0.168 0.174 0.171 2.575 25.75 

Mean= 2.512 25.12 
SD= 0.262 2.62 

Untreated Group B Slope of Stnd. Curve (m)= 0.0757 

Heart Tube 1 Tube 2 Mean (l'.} X value=(J'./m} nM/g tissue 
81 0.234 0.262 0.248 3.276 32.76 
2 0.203 0.23 0.2165 2.860 28.60 
3 0.185 0.183 0.184 2.431 24.31 
4 0.217 0.215 0.216 2.853 28.53 
5 0.162 0.158 0.16 2.114 21.14 
6 0.152 0.148 0.15 1.982 19.82 
7 0.174 0.15 0.162 2.140 21.40 
8 0.165 0.141 0.153 2.021 20.21 
9 0.133 0.124 0.1285 1.697 16.97 

Mean= 2.375 23.75 
SD= 0.517 5.17 

Untreated Group C Slope of Stnd. Curve (m)= 0.0772 

Heart Tube 1 Tube 2 Mean (l'.} X value=(J'./m} nM/g tissue 
C1 0.14 0.133 0.1365 1.768 17.68 
2 0.154 0.149 0.1515 1.962 19.62 
3 0.127 0.138 0.1325 1.716 17.16 
4 0.206 0.184 0.195 2.526 25.26 
5 0.213 0.199 0.206 2.668 26.68 
6 0.125 0.119 0.122 1.580 15.80 
7 0.137 0.143 0.14 1.813 18.13 
8 0.155 0.151 0.153 1.982 19.82 
9 0.155 0.154 0.1545 2.001 20.01 

Mean= 2.002 20.02 
SD= 0.366 3.66 
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Untreated Group D Slope of Stnd. Curve (m)= 

Heart 
1 
2 
3 
4 
5 

Pooled Mean= 
Pooled SD = 

Tube 1 Tube 2 
0.167 0.173 
0.154 0.147 
0.178 0.181 
0.169 0.163 
0.146 0.152 

22.69nM/g tissue 
4.120 

Mean (y} 
0.17 

0.1505 
0.1795 
0.166 
0.149 

Mean= 
SD= 
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0.0768 

X value=(y/m} nM/g tissue 
2.214 22.14 
1.960 19.60 
2.337 23.37 
2.161 21 .61 
1.940 19.40 

2.122 21 .224 
0.170 1.701 



Table 4b. A Summary of the Levels of TSARS in Frozen Cardiac Tissue. 

1uM Methylene Blue-treated Group 

Slope of Standard Curve (m 0.0677 
Heart Tube 1 Tube 2 Mean {y) X value={y/m) nM/g tissue 

1 0.133 0.145 0.139 2.053 20.53 
2 0.119 0.114 0.1165 1.721 17.21 
3 0.132 0.136 0.134 1.979 19.79 
4 0.146 0.14 0.143 2.112 21.12 
5 0.099 0.11 0.1045 1.544 15.44 
6 0.238 0.245 0.2415 3.567 35.67 
7 0.116 0.119 0.1175 1.736 17.36 
8 0.121 0.126 0.1235 1.824 18.24 
9 0.167 0.133 0.15 2.216 22.16 

Mean= 2.084 20.84 
SD= 0.596 5.96 

0.1uM Methylene Blue-treated Group 

Slope of Standard Curve (m 0.0686 
Heart Tube 1 Tube2 Mean (y) X value=(y/m) nM/g tissue 

21 0.18 0.17 0.175 2.551 25.51 
22 0.173 0.154 0.1635 2.383 23.83 
23 0.147 0.189 0.168 2.449 24.49 
24 0.155 0.164 0.1595 2.325 23.25 
25 0.168 0.191 0.1795 2.617 26.17 
26 0.235 0.254 0.2445 3.564 35.64 
27 0.152 0.135 0.1435 2.092 20.92 
28 0.154 0.181 0.1675 2.442 24.42 
29 0.166 0.164 0.165 2.405 24.05 

Mean= 2.536 25.36 
SD= 0.413 4.13 

10uM Methylene Blue-treated Group 

Slope of Standard Curve (m 0.0723 
Heart Tube 1 Tube 2 Mean M X value=(y/m) nM/g tissue 

31 0.159 0.148 0.1535 2.123 21 .23 
32 0.103 0.108 0.1055 1.459 14.59 
33 0.153 0.099 0.126 1.743 17.43 
34 0.122 0.123 0.1225 1.694 16.94 
35 0.1'2 0.124 0.122 1.687 16.87 
36 0.174 0.231 0.2025 2.801 28.01 
37 0.145 0.135 0.14 1.936 19.36 
38 0.111 0.144 0.1275 1.763 17.63 
39 0.132 0.173 0.1525 2.109 21 .09 

Mean= 1.924 19.24 
SD= 0.392 3.92 
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Statistical Analysis of the Levels of TBARS in Frozen Cardiac Tissue 
at the End of Reperfusion 

LEVELS ENCOUNTERED DURING PROCESSING ARE: 
HEART 
1.000 Untreated 
2.000 0.1 uM MB 
3.000 1.0uM MB 
4.000 10.0uM MB 

DEP VAR: TSARS N: 59 MULTIPLE R: 0.391 SQUARED MULTIPLE R: 
0.153 

ANALYSIS OF VARIANCE 

SOURCE SUM-OF-SQUARES OF MEAN-SQUARE F-RATIO p 
HEART 192.996 3 64.332 3.310 0.027 
ERROR 1068.823 55 19.433 

LEAST SQUARES MEANS 

LS MEAN SE N 
HEART = 1.000 22.689 0.779 32 
HEART = 2.000 25.364 1.469 9 
HEART = 3.000 20.836 1.469 9 
HEART = 4.000 19.239 1.469 9 

POST HOC TEST OF TBARS 
DUNNETT TEST WITH CONTROL= 1.000 

USING MODEL MSE OF 19.433 WITH 55 OF 
MATRIX OF MEAN DIFFERENCES FROM CONTROL: 

1 0.000 
2 2.675 
3 -1 .854 
4 -3.450 

DUNNETT TWO SIDED TEST. 
MATRIX OF PAIRWISE COMPARISON PROBABILITIES: 

1 1.000 
2 0.293 
3 0.595 
4 0.119 
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Heart 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Mean 
SD 

Table Sa. Coronary Artery Flow Rates (ml/minute x g wet heart weight) 

Pre-ischemia 

Q ~ 
6.26 4.56 
5.85 4.84 
4.17 3.21 
4.59 5.13 
4.89 4.30 
6.12 3.87 

~ 
3.27 
3.92 
2.48 
3.98 
4.30 
3.54 

46 
0.74 
0.78 
0.55 
0.91 
1.85 
1.19 

4.32 3.82 3.32 0.67 
5.34 4.31 3.53 0.76 
3.74 3.61 3.83 1.74 
6 .51 5.66 4.22 1.15 
3.43 3.35 3.02 0.54 
6.75 6.88 6 .16 1.19 
6 .31 4 .51 3.78 1.13 
8.31 7.72 5.20 1.09 
8.35 7.95 7.12 1.12 
6.57 6 .24 5.78 1.43 
2.57 3.92 2.62 1.06 
3.48 2 .41 2.10 0 .83 
5.82 5.36 4.32 0.90 
2.31 1.73 1.28 1.33 
4.62 3.67 3.03 0.70 
7.24 7.35 6.90 9.39 
6.47 8.15 8.99 1.33 
5.75 5.24 5.12 1.06 
7.06 6 .96 6.61 1.62 
8.65 9.88 9.52 3.07 
7.29 6.53 5.84 1.15 
7.91 7.73 5.96 1.36 
4.21 3.82 3.33 0.95 
7.24 6 .89 6.66 4.11 
6 .80 5.27 4.01 0.84 
4.47 4.65 4.31 1.09 

5.73 5.30 4.63 1.49 
1.69 1.88 1.90 1 .61 

Untreated Group 

Time Point during Reperfusion 
47 48 49 50 52 

0.75 
0.48 
1.24 
1.37 
2.23 
1.20 

55 
0.73 
0.47 
1.32 
1.39 
2 .37 
1.30 

0.69 0 .77 0.79 0.80 
0.93 0.95 0.86 0.66 
0.78 0.93 1.17 1.16 
1.45 1.40 1.33 1.25 
1.33 1.75 2 .14 2.36 
1 .31 1 .22 1 .20 1 .18 
0.58 0.58 0.68 0.75 1.14 1.07 
0.99 0.91 0.81 0.68 0.63 0.50 
1.71 1.58 1.80 1.95 2.05 1.78 
1.13 0.85 0.85 0.95 0.95 0.96 
0.73 0.71 0.67 0.74 0.93 1.24 
1.17 0 .99 0.75 0.65 0.61 0.63 
1 .20 1 .24 1 .10 1.00 1.09 1.35 
0.62 0.52 0.49 0.49 0.59 0.64 
1.66 1 .45 1 .25 1.18 1.23 1.39 
0.71 0.72 0.87 1 .54 1 .22 1 .17 
1.42 1 .87 1.90 2 .26 2.28 2.65 
1.10 1.02 0.98 1.12 1.12 0.91 
1.00 0 .98 0.87 0.86 0.62 1.13 
1.29 1 .24 1 .03 0.98 0.97 0.89 
0.78 0.60 0.50 0.46 0.51 0.57 
8.39 8.28 7.85 8.18 8.40 8.62 
1.28 1 .04 1.46 1.43 2.07 1.82 
0.75 0.57 0.48 0.48 0.54 0.66 
1.09 0.84 0.77 0.84 1.16 1.26 
2.79 3.03 3.06 3.19 3.44 3.35 
1.14 0.91 0.77 0.63 0.41 0.4 7 
1.27 1 .42 1.67 1.79 2.00 2.01 
1 .31 1 .28 1 .22 1.27 1.31 1.40 
3.95 3.96 3.94 3.70 3.82 3.75 
1.09 1.09 1.03 0.96 0.95 1.07 
1.14 0.99 1.03 1.07 1.14 1.03 

1.46 1 .43 1.42 1.45 1.51 1.56 
1.42 1.43 1.38 1.44 1.49 1.51 
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Heart 
MB1 

2 
3 
4 
5 
6 
7 
8 
9 

Mean 
SD 

MB21 
22 
23 
24 
25 
26 
27 
28 
29 

Mean 
SD 

MB31 
32 
33 
34 
35 
36 
37 
38 
39 

Mean 
SD 

Table 5b. Coronary Artery Flow Rates (mUminute x g wet heart weight) 

Pre-lschemla 

Q ~ 
4.96 4.61 
6.53 6.29 
5.34 4.63 
4.52 4.50 
3.27 3.49 

Methylene Blue {1.0uM)-treated Hearts 

! 
4.38 
6.09 
4.62 
4.63 
2.98 

46 
1.32 
0.47 
0.85 
1.35 
0.46 

Time Point during Reperfusion 
47 48 49 50 

1.28 1.57 1.47 1.92 
0.41 0.53 0.87 4.63 
1.36 
1.16 
0.72 

1.52 
0.67 
0.47 

3.72 
5.46 
2.17 
7.41 

2.61 2.86 0.72 1.62 1.70 

1.52 
0.51 
0.36 
1.71 
1.92 
0.43 
1.69 

1.56 
0.63 
0.39 
1.71 
1.93 
0.38 
1.46 

5.21 4.22 1.77 2.14 1.97 
2.41 2.03 1.00 0.65 0.49 
6.ro 5 .~ 1 .~ 1.ro 1.ITT 

4.82 
1.62 

4.50 4.15 1.03 1.23 1.18 1.16 
0.62 

1.62 
1.29 1.49 1.31 0.45 0.56 0.62 

Pre-lschemia 

Q ~ 
2.47 2.40 
5.38 4.48 
7.66 6.12 
6.11 5.30 
9.87 9.66 
8.01 8.42 
8.52 7.16 
6.19 4.52 
7.42 7.47 

6.85 6.17 
2.14 2.25 

Pre-lschemia 

Methylene Blue {0.1uM)-treated Hearts 

! 
1.97 
3.75 
5.55 
3.93 
9.00 
4.60 
5.79 
3.86 
6.63 

5.01 
2.03 

46 
0.91 
1.50 
2.76 
0.33 
1.48 
0.97 
0.77 
0.87 
0.97 

1.17 
0.69 

Time Point during Reperfusion 
47 48 49 50 

0.65 0.41 0.37 0.37 
1.05 0.69 0.68 0.45 
2.67 
0.45 
1.64 
1.06 
0.65 
1.04 
0.78 

1.11 
0.68 

2.75 
0.42 
0.75 
0.97 
1.19 
0.94 
0.55 

0.96 
0.72 

2.93 
0.36 
0.62 
0.84 
1.21 
0.80 
0.73 

0.95 
0.79 

2.92 
0.40 
0.60 
1.23 
1.13 
0.65 
0.83 

0.95 
0.80 

Methylene Blue {10.0uM)-treated Hearts 

Time Point during Reperfuslon 

52 
2.06 
4.46 
1.14 
0.64 
0.46 

55 
2.19 
4 .54 
0.84 
0.63 
0.60 

1.91 1.78 
1.97 2.27 
0.71 0.29 
1.58 1.71 

1.66 1.65 
1.22 1.31 

52 
0.43 
0.36 
3.18 
0.36 
1.02 
2.25 
1.04 
0.67 
0.73 

1.12 
0.97 

55 
0.47 
0.34 
2.91 
0.39 
1.84 
1.33 
1.15 
0.80 
1.41 

1.18 
0.83 

Q ~ ~ 46 47 48 49 50 52 55 
0.86 
1.64 
0.59 
0.60 
3.16 
1.53 
1.30 
0.74 
1.36 

9.93 8.37 7.25 1.53 
9.60 8.70 7.10 0.66 
6.02 6.32 5.83 1.12 
5.98 5.68 6.01 1.02 
6.25 7.23 7.78 3.22 
6.90 
8.38 
9.54 
8.33 

7.88 
1.62 

5.67 
7.56 
7.88 
8.06 

7.27 
1.14 

5.24 
5.98 
9.91 
7.47 

6.95 
1.41 

1.19 
0.95 
0.76 
0.70 

1.24 
0.79 

1 .~ O.M O.ITT O.ITT O.M 
1.39 1.72 1.65 1.64 1.56 
0.83 0.50 0.67 0.64 0.55 
0.72 0.41 0.29 0.30 0.56 
3.06 2.99 2.78 2.89 3.15 
1.85 
0.82 
1.15 
0.96 

1.41 
0.76 

47 

1.60 
0.79 
0.83 
0.85 

1.17 
0.81 

1.54 
0.88 
0.66 
0.92 

1.12 
0.76 

1.59 
1.08 
0.67 
0.79 

1.14 
0.79 

1.58 
1.03 
0.61 
0.85 

1.19 
0.83 

1.31 
0.80 



Statistical Analysis of Coronary Artery Flow during Reperfusion 

NUMBER OF CASES PROCESSED: S9 

DEPENDENT VARIABLE MEANS 

T46 T47 T 48 T 49 TSO TS2 TSS 
1.323 1.320 1.248 1.23S 1.328 1.41 S 1.4S8 

LEAST SQUARES MEANS. 

HEART= 1.000 N OF CASES= 32.000 

T46 T47 T48 T49 TSO 
LS. MEAN 1.488 1.462 1.428. 1.416 1.4SS 
SE 0.22S 0.203 0.206 0.203 0.223 

TS2 TSS 
LS. MEAN 1.S14 1.SS9 
SE 0.233 0.232 

HEART= 2.000 N OF CASES= 9.000 

T46 T47 T48 T49 TSO 
LS. MEAN 1.173 1.110 0.963 0.949 0.9S3 
SE 0.42S 0.382 0.389 0.382 0.421 

TS2 TSS 
LS. MEAN 1.116 1.182 
SE 0.440 0.438 

HEART= 3.000 N OF CASES= 9.000 

T46 T47 T48 T49 TSO 
LS. MEAN 1.034 1.233 1.177 1.164 1.623 
SE 0.42S 0.382 0.389 0.382 0.421 

TS2 TSS 
LS. MEAN 1.6S9 1.6SO 
SE 0.440 0.438 
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HEART= 4.000 N OF CASES= 9.000 

T46 T47 T48 T49 TSO 
LS. MEAN 1.173 1.110 0.963 0.949 0.953 
SE 0.425 0.382 0.389 0.382 0.421 

T52 T55 
LS. MEAN 1.116 1.182 
SE 0.440 0.438 

UNIVARIATE AND MUL TIVAR/ATE REPEATED MEASURES ANALYSIS 

BETWEEN SUBJECTS 

SOURCE SS OF MS F p 

HEART 13.684 3 4.561 0.464 0.708 
ERROR 540.120 55 9.820 

WITHIN SUBJECTS 

SOURCE SS OF MS F p G-G H-F 
a 2.744 6 0.457 3.198 0.005 0.049 0.045 
a*HEART 3.279 18 0.182 1.274 0.202 0.278 0.275 
ERROR 47.183 330 0.143 

GREENHOUSE-GEISSER EPSILON: 0.3066 
HUYNH-FELDT EPSILON 0.3340 

.. 
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Table 6a. Lactate Dehydrogenase Activity in Coronary Effluent 
(LI/minute x g dry heart weight) 

Untreated Group 

Time Point 
Heart# 0 5 9 46 47 48 49 50 52 55 

1 0.273 0.149 0.160 0.940 0.777 1.192 1.390 1.441 1.442 1.303 

2 0.382 0.895 0.790 1.547 1.179 1.282 1.145 0.874 0.613 0.613 
3 0.136 0.070 0.081 0.176 0.242 0.514 0.958 1.170 1.337 1.259 

4 0.100 0.195 0.130 0.228 0.894 1.768 2.210 2.195 2.141 1.733 
5 0.319 0.258 0.234 1.521 0.755 0.935 1.232 1.256 1.650 1.576 
6 0.266 0.210 0.154 0.750 0.979 1.350 1.420 1.686 1.432 1.234 
7 0.235 0.208 0.398 0.593 0.478 0.618 0.618 0.809 1.293 1.353 
8 0 .174 0.188 0.307 0.726 0.752 1.068 1.026 0.436 0.942 0.743 

9 0.244 0.236 0.167 1.012 1.070 1.435 1.733 1.807 1.871 1.681 
10 0.354 0.247 0.276 0.974 1.296 1.353 1.408 1.655 1.713 1.716 
11 0.318 0.474 0.526 1.496 0.994 1.124 1.071 1.137 1.265 1.548 
12 0.441 0.637 0.201 1.217 0.786 1.034 0.952 0.952 0.880 0.839 
13 0.275 0.295 0.679 2.078 1.616 1.698 1.660 1.545 1.654 1.827 

14 0.497 0.504 0.509 1.604 0.867 0.709 0.148 0.639 0.440 1.157 
15 0.454 0.433 0.194 1.021 1.283 2.113 2.103 2.042 2.275 2.729 
16 0.429 0.306 0.189 0.625 0.186 0.219 0.371 0.656 1.155 1.328 
17 0.084 0.107 0.071 0.403 0.744 1.301 1.120 1.380 1.362 1.558 
18 0.133 0.079 0.092 0.584 0.419 0.968 1.128 1.446 1.562 1.230 
19 0.824 0.437 0.541 0.585 0.321 0.451 0.578 0.486 0.047 0.154 
20 0.176 0.056 0.258 1.319 1.296 1.764 1.707 1.607 1.547 1.217 
21 0.402 0.300 0.198 0.549 0.296 0.415 0.517 0.123 0.599 0.547 
22 0.315 0.200 0.901 1.226 0.821 0.991 0.897 1.024 1.051 0.845 
23 0 .000 0.000 0.034 1.712 0.783 1.190 1.427 1.538 1.890 1.631 
24 0.282 0.200 0.167 0.874 0.804 1.042 0.888 0.854 0.973 1.192 
25 0.307 0.227 0.216 0.431 0.586 0.824 0.733 0.860 1.305 1.359 
26 0.188 0.215 0.052 1.052 1.261 1.532 1.765 2.275 2.884 2.957 
27 0.397 0.391 0.381 2.017 1.61 1.663 1.491 1.231 0.392 0.729 
28 0.559 0.547 0.389 0.835 0.449 0.804 1.587 1.827 2.329 2.042 
29 0.183 0.125 0.109 0.638 1.269 2.052 1.877 2.005 1.632 1.68 
30 0 .236 0.225 0.145 1.008 2.021 3.126 3.323 3.241 3.658 3.146 
31 0.37 0.603 0.654 1.402 0.742 0.963 1.146 1.299 1.264 1.269 
32 0.122 0.101 0.117 0.638 1.364 1.717 1.876 1.903 2.182 1.743 

Mean 0.296 0.285 0.291 0.993 0.904 1.225 1.297 1.356 1.462 1.436 
SD 0.162 0.197 0.226 0.492 0.434 0.586 0.623 0.638 0.734 0.649 
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Table6b. Lactate Dehydrogenase Activity in Coronary Effluent 
(U/minute x g dry heart weight) 

Methylene Blue [1.0um]-treated Group 

Time Point 
Heart# Q ~ ~ 46 47 48 49 50 52 55 

MB1 0.189 0.150 0.167 0.416 0.698 1.161 1.446 1.879 2.280 2.856 
2 0.213 0.137 0.066 0.052 0.022 0.040 0.067 0.353 0.413 0.544 
3 0.203 0.176 0.151 0.580 1.048 1.609 1.700 1.577 1.191 0.860 
4 0.074 0.049 0.050 0.914 0.846 0.753 0.483 0.531 0.520 0.777 
5 0.196 0.171 0.162 0.272 0.189 0.242 0.092 0.034 0.437 0.539 
6 0.283 0.284 0.280 1.227 1.137 1.474 1.621 1.612 1.925 1.701 
7 0.357 0.284 0.276 1.090 1.257 1.606 1.652 1.544 1.857 2.046 
8 0.118 0.092 0.066 0.381 0.284 0.159 0.169 0.292 0.461 0.144 
9 0.242 0.221 0.180 1.457 1.692 2.284 2.537 2.357 2.777 3.181 

Mean 0.208 0.174 0.155 0.710 0.797 1.037 1.085 1.131 1.318 1.405 
SD 0.058 0.060 0.064 0.411 0.443 0.656 0.784 0.736 0.793 0.925 

Methylene Blue [0.1uM]-treated Group 

Time Point 
Heart# Q ~ ~ 46 47 48 49 50 52 55 
MB21 0.107 0.079 0.086 0.869 0.489 0.109 0.057 0.590 0.668 0.537 

22 0.117 0.098 0.082 1.075 0.659 0.394 0.557 0.450 0.406 0.415 
23 0.292 0.133 0.121 1.157 0.989 1.211 1.389 1.560 1.989 1.819 
24 0.133 0.058 0.064 0.257 0.355 0.519 0.514 0.560 0.457 0.511 
25 0.322 0.210 0.294 0.742 0.759 0.717 0.860 0.905 1.577 2 .689 
26 0.436 1.053 0.825 1.366 1.112 2.884 3.993 5.103 5.103 5.579 
27 0.325 0.234 0.252 0.543 0.247 1.129 1.384 1.469 1.449 1.542 
28 0.337 0.148 0.147 0.683 0.949 1.379 1.429 1.218 1.335 2.145 
29 0.363 0.244 0.217 1.107 0.555 0.672 0.965 1.216 1.130 2.260 

Mean 0.270 0.251 0.232 0.867 0.679 1.002 1.239 1.452 1.568 1.944 
SD 0.101 0.178 0.150 0.276 0.243 0.577 0.720 0.839 0.881 1.088 

Methylene Blue [10.0uM]-treated Group 

Time Point 
Heart# Q ~ ~ 46 47 48 49 50 52 55 
MB31 0.541 0.820 0.315 1.048 0.985 0.938 1.052 1.125 1.615 1.693 
32 0.209 0.379 0.232 0.425 0.945 1.715 1.048 2.180 1.786 1.661 
33 0.131 0.138 0.127 0.530 0.684 0.427 1.177 1.197 0.985 0.927 
34 0.260 0.155 0.065 0.466 0.600 0.321 0.069 0.070 0.405 0.680 
35 0.272 0.157 0.169 1.295 1.501 2.230 2.118 2.261 2.706 2.855 
36 0.338 0.278 0.285 0.991 1.563 2.342 2.553 2.813 2.624 2.462 
37 0.182 0.165 0.130 0.310 0.504 0.966 0.912 1.341 1.234 1.505 
38 0.156 0.257 0.487 0.678 0.530 0.673 0.645 0.678 0.551 0.592 
39 0.227 0.088 0.203 0.190 0.494 0.647 0.986 0.791 1.077 0.059 

Mean 0.257 0.271 0.224 0.659 0.867 1.140 1.173 1.384 1.443 1.382 
SD 0.085 0.148 0.094 0.306 0.339 0.637 0.517 0.689 0.658 0.726 
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Statistical Analysis of Lactate Dehydrogenase Activity in Coronary Effluent 

LEVELS ENCOUNTERED DURING PROCESSING ARE: 
HEART 
1.000 Untreated 
2.000 0.1 uM MB 
3.000 1.0uM MB 
4.000 1 O.OuM MB 

NUMBER OF CASES PROCESSED: S9 

DEPENDENT VARIABLE MEANS 

T46 T47 T48 T49 TSO TS2 

0.880 0.848 1.149 1.237 1.341 1.4S3 

LEAST SQUARES MEANS. 

HEART = 1.000 N OF CASES= 32.000 

LS. MEAN 
SE 

HEART = 

LS. MEAN 
SE 

HEART = 

LS. MEAN 
SE 

T46 
0.993 
0.081 

2.000 
T46 

0.867 
0.1S2 

T47 T48 
0.904 1.22S 
0.077 .120 

N OF CASES= 
T47 T48 

0.679 1.002 
0.14S 0.227 

3.000 N OF CASES= 
T46 T47 T48 

0.710 0.797 1.036 
0.1 S2 0.14S 0.227 

T49 TSO 
1.297 1.3S6 

0.137 0.1S2 

9.000 
T49 TSO 
1.239 1.4S2 
0.2S9 0.286 

9.000 
T49 
1.08S 
0.2S9 

TSO 
1.131 

0.286 

HEART = 4.000 N OF CASES= 9.000 

TSS 

1.SOO 

TS2 
1.462 
0.160 

TS2 
1.S68 
0.302 

TS2 
1.318 
0.302 

T46 
0.6S9 
0.1S2 

T47 
0.867 
0.14S 

T48 
1.140 
0.227 

T49 
1.173 
0.2S9 

TSO TS2' 
LS. MEAN 
SE 

S2 

1.384 1.443 
0.286 0.302 

TSS 
1.436 
0.168 

TSS 
1.944 
0.317 

TSS 
1.40S 
0.317 

TSS 
1.382 
0.317 



UN/VAR/A TE AND MUL TIVAR/ATE REPEATED MEASURES ANALYSIS 

BETWEEN SUBJECTS 
SOURCE SS DF MS F p 

HEART 1.741 3 0.580 0.203 0.894 
ERROR 157.041 55 2.855 

WITHIN SUBJECTS 

SOURCE SS DF MS F p G-G H-F 

a 22.212 6 3.702 20.775 0.000 0.000 0.000 
a*HEART 3.545 18 0.197 1.105 0.345 0.364 0.364 
ERROR 58.804 330 0.178 

GREENHOUSE-GEISSER EPSILON: 0.3222 
HUYNH-FELDT EPSILON 0.3519 
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Table 7. Summary of Results with EHNA [100nM] as Treatment 

Heart# ( 10 - Vfib Duration)/10 LVPPtlLVPPi 

E1 .467 .1212 
E2 1.0 .2927 
E3 0 .0526 
E4 0 .0278 
E5 0 .0216 
E6 .1250 .0270 
E7 0 .0500 
E8 0 0 
E9 0 .0512 
E10 0 0 
E11 0 .1143 

Calculated Index of Recovery (Ir): .0970±.2121 
Duration of Ventricular Fibrillation: 8.55±3.17minutes 
Incidence of Ventricular Fibrillation: 90.9% 

54 

HRtlHRi 

0 
0.8491 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 

.1961 

.7139 

.0175 

.0093 

.0072 

.0507 

.0167 
0.000 
.0171 
0.000 
.0381 
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