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Design of a Multiply Nested Primitive Equation Ocean Model

I. GINIS, R. A. RICHARDSON, AND L. M. ROTHSTEIN

Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

(Manuscript received 15 April 1997, in final form 8 September 1997)

ABSTRACT

A new multiply nested primitive equation ocean model is presented. The model employs a two-way interactive
nesting technique successfully applied for many years in the Geophysical Fluid Dynamics Laboratory–NOAA
hurricane prediction model. The formulation of the mesh nesting algorithm allows flexibility in deciding the
number of meshes and the ratio of grid resolutions between adjacent meshes. Other advanced features include
realistic coastline geometry and spatially variable grid spacing. The results of various idealized experiments
indicate good performance of the nesting technique.

The most important feature of the model is the ability to combine large-scale and regional-scale predictions.
The model is tested as a general circulation model (GCM) in a 3-yr spinup experiment of the large-scale circulation
in the tropical Pacific Ocean. It demonstrates skill comparable to that of other recently developed GCMs. The
resulting large-scale fields are then used in the nested configuration as initial conditions for simulations of the
ocean response to a westerly wind burst and a tropical cyclone. Significant improvements over a coarse, single-
mesh model have been achieved in resolving finescale features of the wind-induced current and temperature
fields. These results highlight the importance of model resolution for realistic simulations of mesoscale ocean
variability.

1. Introduction

The evolution of the atmosphere and ocean is deter-
mined by many processes operating over a wide range
of temporal and spatial scales. One such scale includes
synoptic–mesoscale atmospheric and oceanic phenom-
ena, and covers a broad spectrum of environmental
events that have lifetimes ranging from several hours
up to a month or so. Meteorological examples of such
events are tropical cyclones, wind bursts, squall lines,
and other ‘‘spells’’ of unusual weather. Oceanic syn-
optic–mesoscale variability is dynamically analogous to
atmospheric synoptic-scale phenomena and can be
thought of as the internal weather of the ocean. It en-
compasses processes where energetic variability occurs
on spatial scales characterized by the internal Rossby
radius of deformation (Robinson 1983). The first inter-
nal Rossby radius in the ocean ranges from less than
10 km to several tens of kilometers and is thus two
orders of magnitude or more smaller than the internal
radius in the atmosphere.

Improvements in the prediction of some important
synoptic–mesoscale atmospheric and oceanic phenom-
ena can be made by coupling oceanic and atmospheric
models (e.g., Ginis et al. 1997). However, although rapid
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of Oceanography, University of Rhode Island, Narragansett Bay Cam-
pus, Narragansett, RI 02882-1197.
E-mail: iginis@gso.uri.edu

progress is occurring in ocean forecast research, ocean-
ographers are still somewhat behind meteorologists in
their numerical prediction capabilities. This is particu-
larly true in regard to simulations of ocean variability
on the mesoscale. The small spatial scale of this vari-
ability requires very high horizontal and vertical reso-
lutions that are difficult to achieve in realistic ocean
simulations using conventional, single-mesh ocean
models. With a single-mesh model, one is typically
faced with a choice of a large-scale simulation, where
high resolution is computationally impractical, or a re-
gional simulation, in which boundary conditions are
suspect and large-scale flow features are difficult to rep-
resent.

One avenue for improvement of ocean mesoscale
forecasting tools involves the development of models
that have multiply nested grid capabilities, a numerical
technique that is widely used in meteorology [e.g.,
Zhang et al. (1986) and references therein]. A nested-
grid configuration makes it feasible to combine realistic
large-scale simulations with mesoscale forecasts for se-
lected regions. It allows improved horizontal resolution
in model forecasts of smaller-scale oceanic phenomena,
and better resolution of large gradients of oceanic vari-
ables, without requiring a fine grid resolution throughout
the entire model domain. By including a nested struc-
ture, the large-scale flow can be simulated with a lower
resolution, while a selected region can be examined at
higher resolution with a model that has essentially the
same physics and numerical structure in both regimes.
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The purpose of this paper is to present a new, high-
resolution, multiply nested primitive equation ocean
model. The model is specifically designed to simulate
mesoscale ocean dynamics while simultaneously re-
solving the larger-scale circulation. The development of
this model was motivated by the international Tropical
Ocean Global Atmosphere Coupled Ocean–Atmosphere
Response Experiment (TOGA COARE), conducted in
the warm pool (the area where the surface temperature
exceeds 288C) of the western equatorial Pacific (Webster
and Lukas 1992). In that experiment, a four-month-long
intensive observational period, extending from early
November 1992 through the end of February 1993, was
embedded in an approximately 2-yr program of en-
hanced monitoring of the warm pool system. Some of
the TOGA COARE scientific objectives are to explore
the multiple-scale interactions that occur in and over the
warm pool and to understand and simulate the dynam-
ical connections between regional air–sea coupled pro-
cesses and the large-scale air–sea system of the tropical
Pacific. The horizontal resolution needed to accurately
represent the synoptic-scale air–sea interaction in the
TOGA COARE region with a high degree of realism is
on the order of 10–15 km. It is not practical, however,
to use very high resolution grids over the entire tropical
Pacific Ocean. Instead, a multiply nested grid config-
uration is developed in this study. Although the nested-
grid model presented in this paper has been developed
with the TOGA COARE experiment in mind, we en-
vision its use in a variety of studies that focus on me-
soscale ocean and coupled air–sea variability.

The primary feature that distinguishes nested-grid
models from one another is the nature of the interaction
between adjacent grids of differing resolution. Infor-
mation can be passed between the different grid scales
by either one-way or two-way interaction. With a one-
way interaction, the courser grid mesh (CGM) model is
integrated and the information on the boundaries of the
finer grid mesh (FGM) is saved. The FGM model is
then integrated using the CGM forecast for boundary
conditions. The inherent assumption in one-way inter-
action models is that the larger-scale motion determines
the small-scale motion without feedback from the pro-
cesses occurring within the FGM region. This is ap-
parently not a good assumption for TOGA COARE. The
nested-mesh system considered in this study belongs to
a class of two-way nesting systems in which two neigh-
boring mesh areas interact dynamically with each other.
In a two-way nesting system, dynamical interaction be-
tween two adjacent domains can be achieved in various
ways. A fairly common technique is to transfer infor-
mation from the fine to the coarse mesh and vice versa
in a narrow zone where the two meshes overlap. This
kind of grid configuration is used in all of the few ocean
nested-grid models developed so far [e.g., Spall and
Holland (1991); Oey and Chen (1992); and Fox and
Maskell (1995)]. For the overlapping grid system, after
each integration of the CGM, the boundaries of the FGM

are specified by interpolation (temporal and spatial)
from adjacent coarse grid solution tendencies. At the
conclusion of each FGM integration, the interior coin-
cident grid points in the CGM are revised using some
averaging procedure. Thus the CGM integration pro-
vides the time-dependent boundary values for the FGM,
and, conversely, the predicted fine-mesh values are used
to continually update the coincident coarse-mesh values.

The main difficulty in developing a two-way nesting
system is a compatibility problem that exists at the in-
terface where the two grids meet. For instance, a dis-
turbance propagating from an FGM to a CGM may un-
dergo false reflection back to the FGM or aliasing as it
enters the CGM. These interface-generated problems
may lead to numerical instabilities that can seriously
affect the results over the entire domain. The overlap-
ping nested procedure does not necessarily conserve
fluxes of mass, heat and momentum at the interfaces
between coarse and fine meshes [e.g., Spall and Holland
(1991), Oey and Chen (1992)]. As a result, it can be
applied for only relatively short time integrations, and
only for those applications when exact conservation
properties are not very critical (Fox and Maskell 1995).

An optimal procedure that will reduce the numerical
problems at mesh interfaces should have the following
properties: all resolvable waves propagate across mesh
interfaces with only minimal changes in amplitude and
structure, and mass, momentum, and heat exchange be-
tween the two grid systems are conserved. Because of
the numerical difficulties involved in designing a nested-
grid procedure that fully satisfies these two require-
ments, it has yet to be implemented in ocean models.
However, such a scheme was developed in meteorology
by Kurihara et al. (1979) and successfully applied for
many years in the Geophysical Fluid Dynamics Labo-
ratory–NOAA hurricane prediction model (Kurihara et
al. 1998). The main numerical ideas of their technique
are implemented in the ocean nested-grid model de-
scribed in this paper. Although the different components
of their nested algorithm have, in one form or another,
been published in the meteorological literature, its im-
plementation in an ocean model has some new features
due to differences in the governing equations and phys-
ics. This paper presents details of the model formulation,
boundary forcing, and nesting algorithm, as well as the
results of rigorous testing of the computer code in ide-
alized and realistic ocean settings.

The rest of the paper is organized as follows: the
ocean model formulation is presented in section 2, the
nested-grid procedure is discussed in section 3, various
numerical test experiments are presented in section 4,
and simulations of the large-scale tropical Pacific cir-
culation and numerical results of the ocean response to
a wind burst and a tropical cyclone in the western equa-
torial Pacific are discussed in section 5. The paper ends
with a summary in section 6.
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FIG. 1. Vertical model structure. Solid lines indicate layer interfaces
and dotted lines indicate vertical positions of dynamical variables.

2. Model formulation

a. Governing equations

The model is based on a primitive equation multi-
layered formulation. The distinguishing feature of a lay-
ered model is the treatment of the surface mixed layer
as a layer from both a dynamical and thermodynamical
standpoint. The mixed layer is treated as a turbulent
boundary layer that exchanges momentum and heat with
the atmosphere at its surface and with the thermocline
by entrainment at its base. It is well mixed due to tur-
bulent mixing and is vertically homogeneous in density.
The stratified thermocline below is divided into an ar-
bitrary number of numerical layers according to a sig-
ma-coordinate system described in section 2d. The mod-
el employs the reduced gravity assumption so that the
deep ocean is at rest below the active upper ocean. A
schematic of the vertical structure of the model is shown
in Fig. 1. Each layer has an integer level at its center
and is bounded by half-integer levels. The governing
equations, written in spherical coordinates, are pre-
sented below:

1) Equations of motion

] u tanf ]Pk k
(h u ) 5 2D (u ) 1 f 1 h y 2 hk k k k k k k1 2]t a c]l

l l1 (wu) 2 (wu) 1 F 1 Fk11/2 k21/2 H k V k21/2

l2 F , (1)V k11/2

] u tanf ]Pk k(h y ) 5 2D (y ) 2 f 1 h u 2 hk k k k k k k1 2]t a a]f
f f1 (wy) 2 (wy) 1 F 1 Fk11/2 k21/2 H k V k21/2

f2 F , (2)V k11/2

where l is the longitude, f is the latitude, a is the
radius of the earth, c 5 a cosf, f is the Coriolis
parameter, hk is the layer thickness, u k and y k are the
eastward and northward components of the current
vector Vk, respectively, and w is the vertical velocity.
Further, (wV)k21/2 and (wV)k11/2 are the momentum
fluxes at the top and bottom of the layer k due to
mass exchange with the adjacent layers; HFk and
VFk11/2, VFk21/2 represent horizontal and vertical dif-
fusion, respectively. The operator D denotes the two-
dimensional divergence

]( )hu ]( )hy cosf
D( ) 5 1 . (3)

c]l c]f

The pressure gradient force P k in the layer k is
written as

]P ]Pk kP 5 h , hk k k1 2c]l a]f

N k21g 2 b hk k5 = h b 1 b = h 1O Ok k k j1 2g 2k51 j51

k21 h bk k2 = h b 1 , (4)O j j1 22j51

where g is the acceleration due to gravity, and b is
the buoyancy defined as

(r 2 r )0b 5 2g , (5)
r0

where r0 is a constant reference density.
2) Continuity equation

]hk 5 2D (1) 1 w 2 w , (6)k k11/2 k21/2]t

where wk21/2 and wk11/2 are the volume fluxes per
unit area across the top and bottom of the layer k,
respectively (hereafter we will refer to these fluxes
as mass fluxes).
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3) Temperature and salinity equations

]
(h T ) 5 2D (T ) 1 (wT ) 2 (wT )k k k k k11/2 k21/2]t

T T T1 F 1 F 2 F (7)H k V k21/2 V k11/2

]
(h S ) 5 2D (S ) 1 (wS) 2 (wS)k k k k k11/2 k21/2]t

S S S1 F 1 F 2 F , (8)H k V k21/2 V k11/2

where the second and third terms in (7) and (8) are
the temperature and salinity fluxes due to mass ex-
change between adjacent layers. The last three terms
represent the effects of horizontal and vertical dif-
fusion of heat and salt, respectively.

The temperature and salinity obtained in (7) and (8)
are used to calculate the buoyancy (5) using the
UNESCO equation of state (UNESCO 1981), as adapted
by Mellor (1991).

b. Vertical boundary conditions

The boundary conditions at the sea surface prescribe
the fluxes that determine the air–sea exchange. Their
formulation will vary for each specific simulation and
may include the mass flux due to the difference between
evaporation and precipitation,

w1/2 5 E 2 P; (9)

momentum flux,

VF1/2 5 t 0, (10)

and heat and salinity fluxes,

V 5 Q0, V 5 S0;T SF F1/2 1/2 (11)

where t 0 is the surface wind stress vector, and Q0 and S0

are the surface fluxes of heat and salt in kinematic units.
At the bottom of the lowest model layer, all fluxes,

wN11/2, VFN11/2, V , and V , are set to 0.T SF FN11/2 N11/2

c. Lateral boundary conditions

The model is designed for both basin-scale and re-
gional-scale simulations. As such it has the ability to
handle ‘‘closed’’ land–water boundaries and ‘‘open’’ lat-
eral boundaries where the computational domain is sur-
rounded by the sea. At closed boundaries, a no-slip con-
dition is invoked on the velocity field and there are no
grid-scale or subgrid-scale normal fluxes of any quan-
tity. For regional predictions, time-dependent boundary
conditions are imposed which can accommodate either
available observations or data from the integration of a
larger-scale model.

When formulating open lateral boundary conditions,
different types of criteria may be imposed. In this model,
we implement a technique analogous to the one devel-
oped by Kurihara and Bender (1983) including im-

provements made in Kurihara et al. (1989). The essence
of the technique is to provide a smooth connection of
the solution in the interior domain with the imposed
boundary conditions. In this scheme, the open boundary
condition is carried out in two steps. A prediction is
first made at the boundary points using only information
from the inner domain. During this step, the boundary
grid values for all model variables are obtained by linear
extrapolation of the data from the interior. It should be
noted that, in the original Kurihara and Bender scheme,
the temperatures at the boundary grid points are ob-
tained using the thermal wind relation. However, we
found that using a linear extrapolation of temperature
did not create any significant imbalances of the mo-
mentum and mass fields near the boundary in our cal-
culations. During the second step, the obtained bound-
ary values are relaxed toward the ‘‘reference’’ values
according to the following damping formula:

1
n11 nF 5 (AF 1 F ), (12)m,b m,b r,b1 1 A

where A is the damping coefficient, Fm,b denotes the
model boundary gridpoint values of the variable F, and
Fr,b represents the reference values.

The most important feature of the present scheme is
that the reference values are not prescribed, but are ob-
tained in the course of the model integration. The gra-
dients, as well as the local values of the fields of the
larger scale dataset, are used to define the time-depen-
dent reference values

Fr,b 5 L(Fm,b21 1 F0,b 2 F0,b21) 1 (1 2 L)F0,b,
(13)

where the subscript b 2 1 denotes the inner grid points
next to the boundary, and F0 denotes the values from
the given larger-scale data. The weight factor L can take
different values for different variables. Following Ku-
rihara et al. (1989), we apply a stronger constraint on
the gradient of the temperature and salinity fields (L 5
1). For momentum, however, the gradient and the ve-
locity itself are constrained with equal weight (L 5 1/2).

d. Sigma-coordinate system

The present model utilizes a sigma-coordinate system
in the vertical, originally proposed by Gent and Cane
(1989). The essence of the sigma coordinate is to keep
the ratio of the layer depths below the mixed layer equal
to a prescribed value; that is, the ratios sk defined as

hks 5 , (14)k N

hO k
k52

remain constant in the course of the model integration.
The advantage of a sigma vertical coordinate as com-

pared to a traditional layered model is in providing high
vertical resolution immediately below the mixed layer,



1058 VOLUME 126M O N T H L Y W E A T H E R R E V I E W

where large gradients of density and velocity may occur.
This interfacial (transition) layer plays a key role in the
dynamics of the upper ocean because nonadvective
deepening of the mixed layer occurs by entrainment of
thermocline fluid across this stratified layer. Represent-
ing the character and intensity of the turbulence in the
transition layer is the key to accurate modeling of the
mixed layer physics. In traditional layered models, how-
ever, high resolution is difficult to achieve because of
the possible vanishing of the layer below the mixed layer
during entrainment.

With this vertical coordinate, the layer depths are re-
arranged at each model time step in the course of the
model integration. As a result, mass fluxes are intro-
duced across the layer interfaces. These mass fluxes,
along with their accompanying fluxes of momentum,
heat, and salt, are calculated diagnostically. At the be-
ginning of each time step, the time tendency (]/]t) of
the total depth of layers 2 through N is calculated first

N N]
T 5 h 5 2 D (1) 1 w , (15)O Ok k 3/2]t k52 k52

where w3/2 is the entrainment/detrainment velocity at the
bottom of the mixed layer described in the following
section. The mass flux through each layer interface is
then calculated as

w 5 w 1 D (1) 1 s T,k11/2 k21/2 k k

k 5 2, N 2 1. (16)

Associated with this mass flux, the fluxes of mo-
mentum (wV)k11/2, heat (wT)k11/2 and salinity (wS)k11/2

require the values of Vk11/2, Tk11/2, and Sk11/2. Following
Gent and Cane (1989), we choose the following forms
that conserve energy, heat, and salinity

1
V 5 (V 1 V ),k11/2 k k112

h T 1 h Tk k k11 k11T 5 ,k11/2 h 1 hk k11

h S 1 h Sk k k11 k11S 5 . (17)k11/2 h 1 hk k11

e. Parameterization of subgrid-scale processes

1) HORIZONTAL DIFFUSION

The effects of horizontal diffusion of momentum, heat
and salt are estimated by the Smagorinsky nonlinear
viscosity scheme (Smagorinsky 1963). According to the
scheme, the east–west and north–south components of
momentum diffusion resulting from lateral stresses are
computed as

ll lf 2]t ](t cos f)k klF 5 1 , (18)H k 2c]l a cos f]f
fl ff]t ](t cosf) tanfk kf llF 5 1 1 t , (19)H k kc]l c]f a

where , , , and are the stress tensors re-ll ff lf flt t t tk k k k

sulting from horizontal momentum mixing. These
stresses are related to the tension (mk) and shearing rate
of strain (nk) by

5 2 5 hkKHmk, 5 5 hkKHnk, (20)ll ff lf flt t t tk k k k

where mk and nk are defined as

]u cosf ] yk km 5 2 , (21)k 1 2c]l a ]f cosf

]y cosf ] uk kn 5 1 . (22)k 1 2c]l a ]f cosf

The diffusion coefficient KH is determined by

KH 5 d2( 1 )1/2,2 2 2k m n0 k k (23)

where d is the grid distance in the appropriate direction
and k0 is a nondimensional parameter. A value of in2k0

the range 0.1–0.2 has been used successfully in the nu-
merical experiments presented in this paper. Some ad-
vantages of this parameterization are that KH decreases
as horizontal resolution improves and that KH is small
if velocity gradients are small.

Calculations of the horizontal diffusion terms in the
temperature and salinity equations use the following for-
mulas

] ]T ] ]Tk kTF 5 h K 1 h K cosf ,H k k H k H1 2 1 2[ ] [ ]c]l c]l c]f c]f

(24)

] ]S ] ]Sk kSF 5 h K 1 h K cosf .H k k H k H1 2 1 2[ ] [ ]c]l c]l c]f c]f

(25)

2) VERTICAL DIFFUSION

The vertical diffusion processes in the model include
three major mechanisms of vertical turbulent mixing in
the upper ocean, that is, wind stirring, shear instability,
and convective overturning. The parameterization of
these processes is based on the hybrid mixing scheme
developed by Chen et al. (1994a). It combines the ad-
vantages of a bulk mixed layer model and the Price et
al. (1986) dynamical instability model. The hybrid
scheme has been shown to behave more reasonably than
some commonly used schemes in various applications
(Chen et al. 1994a,b). We describe below the way it is
implemented in the present model.

The estimate of vertical diffusion processes is first
made for background diffusion by making use of the
eddy diffusion coefficient technique, where the diffu-
sivities of momentum, heat and salinity at the layer
interfaces are written, respectively, as
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]V
F 5 K , (26)V k11/2 M1 2]z

k11/2

]T
TF 5 K 1 I ,V k11/2 T k11/21 2]z

k11/2

]S
SF 5 K , (27)V k11/2 S1 2]z

k11/2

where KM, KT, and KS are the vertical eddy viscosity
and diffusivities of heat and salt, respectively, which
are set to small constant values appropriate for back-
ground mixing. The vertical gradients of velocity, tem-
perature, and salinity at the layer interface k 1 1/2 are
calculated as

]F F 2 Fk k115 2 , (28)1 2]z h 1 hk k11k11/2

where F stands for V, T, or S.
The value Ik11/2 in (27) is the penetrating solar ra-

diation, written as

z
I 5 gI exp 2 , (29)k11/2 0 1 2hg

where I0 is the solar radiation flux at the sea surface,
hg is the attenuation depth of the shortwave radiation,
set to 17 m, and g 5 0.33 (Chen et al. 1994a).

Since the uppermost layer is treated as a turbulent
boundary layer in the model, its deepening (shallowing)
is determined by the mass exchange with the layer be-
low, controlled by the entrainment (detrainment) rate,
w3/2. This rate is calculated from the following simpli-
fied bulk turbulent kinetic energy equation:

Q 2 |Q |0 03w h (b 2 b ) 5 2m u* 2 h Q 2 m 1 Q ,3/2 1 1 2 1 1 0 2 11 22
(30)

where

Q1 5 gI0[h1 2 2hg(1 2 )],2h /h 2h /h1 g 1 ge e (31)

u* 5 t 0 is the surface friction velocity, and m1 andÏ
m2 are constants set to 1.25 and 0.83, respectively.

When the right-hand side of (30) is less than 0, the
mixed layer shallows (detrainment) and h1 is calculated
by balancing the terms on the right-hand side of (30).
The detrainment velocity is then obtained as

Dh
w 5 , (32)3/2 Dt

where Dh is the negative depth change, and Dt is the
time increment.

The values of V3/2, T3/2, and S3/2 that are necessary
to estimate the fluxes of momentum, heat, and salinity
associated with entrainment/detrainment are calculated
using an upstream scheme:

(V , T , S ), w $ 02 2 2 3/2(V , T , S ) 5 (33)3/2 3/2 3/2 5(V , T , S ), w , 0.1 1 1 3/2

The shear-produced mixing and convective overturn-
ing in the ocean interior are carried out diagnostically.
The shear-produced mixing is parameterized using a
gradient Richardson number criterion, originally intro-
duced in Price et al. (1986). The scheme first makes
estimates of the Richardson number Rg at the layer in-
terface between two adjacent layers k and k 1 1,

1 (b 2 b )(h 1 h )k k11 k k11R 5 . (34)g 22 |V 2 V |k k11

If Rg is less than the critical value (Rc 5 0.25), these
two layers are partially mixed in such a way that Rg

goes back to Rc,

(1 2 R /R )hg c k11mF 5 F 2 (F 2 F )k k k k11h 1 hk k11

(1 2 R /R )hg c kmF 5 F 1 (F 2 F ), (35)k11 k11 k k11h 1 hk k11

where F stands for V, T, or S and superscript m denotes
the values after the shear-produced mixing.

The convective overturning is handled by a simple
convective adjustment. When two adjacent layers k and
k 1 1 are statically unstable (density of the layer k is
greater than density of the layer k 1 1), the densities
are mixed instantly. The new buoyancy profile is re-
examined for further static instabilities and the iteration
proceeds until the entire water column becomes gravi-
tationally stable.

During the time integration of the model, the effect
of vertical diffusion is taken into account in the follow-
ing way. At the beginning of each time integration step,
the entrainment/detrainment rate is first calculated and
all turbulent fluxes are estimated at the interface be-
tween the mixed layer and thermocline (k 5 3/2). That
is followed by a calculation of the fluxes at the interfaces
below the mixed layer resulting from the sigma coor-
dinate layer depth rearrangement. These fluxes are used
for prediction of the new values of velocity, temperature,
salinity, and depth of each layer. After the completion
of the time integration step, vertical mixing and con-
vective adjustment in the ocean interior are carried out,
where necessary, to determine the new vertical profiles
of temperature, salinity, and velocity.

3. Grid-nesting procedure

a. Grid configuration

The most distinctive feature of the present model nu-
merical design is a nested mesh system in which inner
meshes of finer resolution are telescopically nested. A
schematic of the nested mesh structure is shown in Fig.
2. The outermost mesh, extending to the boundary of
the model domain (not shown), contains meshes of high-
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FIG. 2. A schematic of the nested mesh structure. Bold lines indi-
cate the dynamical interfaces.

FIG. 3. Schematic illustration of the calculation of box interface
values in a single but meridionally stretched mesh (upper panel) and
a nested mesh system (lower panel).

er resolution, which are telescopically nested. The di-
agram represents a triply nested grid configuration in
which the ratio of the grid spacing between adjacent
meshes is set to 2. However, the nesting strategy in our
model allows flexibility in deciding the number of mesh-
es and grid ratios for each model application. Moreover,
as will be demonstrated below, the nested-grid model
can be reduced to a simple single-mesh model by setting
the number of grids to 1.

The nested-grid configuration presented here belongs
to the class of two-way nesting in which the time in-
tegration proceeds simultaneously for the fine and the
coarse resolution domains. The most important feature
of the mesh coupling procedure is that the boundary at
which two neighboring domains dynamically interact
(the dynamical interface, bold lines in Fig. 2) is sepa-
rated from the mesh interface by a narrow zone of two
coarse-grid points. This allows one to avoid simulta-
neously dealing with the problems resulting from grid
resolution changes and dynamical coupling.

A nonstaggered grid system is used (an A grid in
Arakawa’s nomenclature) in which all model variables
are calculated at the middle of the grid boxes. We should
note here that a nonstaggered mesh is known to yield
potentially large errors in the phase speeds of short grav-
ity waves with wavelengths less than four grid intervals
(Mesinger and Arakawa 1976). However, these waves
are suppressed adequately in the present model through
the use of a frequency selective time integration scheme
and occasional spatial smoothing, methods which are
described below.

b. Spatial finite differencing

Finite differencing of the governing equations is
based on the box method originally developed by Bryan
(1966) and Kurihara and Holloway (1967). The gradient
of any quantity is computed from its value at the center
of a given grid box and those on its sides. The flux
divergence is estimated from the sum of fluxes across

the interfaces between the box and adjacent boxes. Con-
servation properties of mass, momentum, and energy
are satisfied everywhere in this method.

In the original box method, designed for a uniformly
spaced grid, the values at the box interfaces are obtained
by averaging the grid values. In our model, for an ir-
regular single-mesh or a nested configuration when a
coarse box is connected to two or more finer boxes, the
interface values are calculated by linear interpolation of
grid values as suggested in Kurihara et al. (1979). Figure
3 illustrates how the box interface values are calculated
in a single but irregular mesh and in a nested model at
the interface between a CGM and FGM. In the upper
part of Fig. 3, the values at the sides of the middle box
(cross marks) are obtained by linear interpolation be-
tween the box grid point (open circle) and neighboring
grid points (black dots). In the nested case (lower part
of Fig. 3), values at the coarse grid are first interpolated
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to the auxiliary points (open circles) in the direction
parallel to the interface. The values at the interface
points (cross marks) are then calculated by interpolation
between auxiliary points and the FGM. This method
becomes identical to the original box method for a uni-
formly spaced single mesh.

c. Time integration scheme

The time integration is performed with a two-step
iteration scheme consisting of a predictor and a corrector
step (Kurihara and Tripoli 1976). The scheme is spe-
cially designed to preserve low-frequency, slow modes
while suppressing high-frequency, fast oscillatory
modes. The latter property is especially important for a
nested-grid configuration as a large part of the noise
excited at mesh interfaces usually appears as high-fre-
quency short gravity waves. To demonstrate how the
scheme is used in the present model, the equations (1),
(2), (7), and (8) are expressed in the following symbolic
form:

]
(hF) 5 LF 1 HF 1 DF 1 AD. (36)

]t

Here F denotes any of the variables u, y , T, and S; LF
5 2D(F) 1 FD(1) denotes the low-frequency terms
due to advection; HF 5 2FD(1) 1 (Coriolis, metric,
and pressure gradient force for F 5 u, y) represents the
terms related to high-frequency modes; and DF repre-
sents the horizontal and vertical diffusion terms and the
fluxes of momentum, heat, and salt due to mass ex-
change between adjacent layers. The last term, AD, is
included to represent the forcing effects of shear-pro-
duced vertical mixing and convective adjustment.

The time integration proceeds in two steps. During
the predictor step, tentative values are obtained fromF*0

tF* 2 F0 t t t5 LF 1 HF 1 DF , (37)
Dt

where Dt is the time increment and the superscript t
indicates a time level. During the corrector step, the
values of at the new time level t 1 1 are calculatedt11F0

first from

t11 tF 2 F0 t5 [(1 2 a)LF 1 aLF*]
Dt

t t1 [(1 2 b)HF 1 bHF*] 1 DF . (38)

That is followed by the addition of the effects of shear
instability and convective adjustment

Ft11 5 1 ADt11.t11F0 (39)

With the use of appropriate weights a and b in (38),
high-frequency modes can be suppressed while low-
frequency modes are preserved. In the numerical ex-
periments presented in this paper, a and b are set to
0.506 and 2.5, respectively, as suggested by Kurihara

et al. (1979). Using these weights, the amplitudes of
high-frequency waves are strongly suppressed.

The application of the above scheme for a multiply
nested computational domain is examined in detail by
Kurihara et al. (1979). We only highlight here the major
principles. The time integration is performed with dif-
ferent time increments for each mesh proceeding inward
from the outermost mesh. The integration order is based
on two rules: 1) integration of a given mesh proceeds
only when all the inner meshes are integrated up to the
time level of that mesh, and 2) when the time levels of
two or more meshes are synchronized, the integration
proceeds from the outermost of the synchronized mesh-
es. For example, for a triply nested grid configuration
with a ratio of 2:1 between mesh 1 and 2, and a ratio
of 3:1 between mesh 2 and 3, the order of integration
is as follows: mesh 1, 2, 3, 3, 3, 2, 3, 3, 3. The ratio
of the time increments between neighboring meshes is
the same as the ratio of the corresponding grid sizes. If
the time increment for the outermost mesh is 1200 s in
our example, those for the two inner domains will be
600 and 200 s, respectively. With these time increments,
the integration sequence brings the solutions on all grids
to the same temporal location and the cycle is repeated.

d. Two-way interactive procedure

To perform the time integration of a two-way inter-
acting, nested-grid system, special care is required at
the mesh interfaces. As mentioned before, the dynamical
interfaces are physically separated from the mesh in-
terfaces in our model. The integration domains are
bounded by these dynamical interfaces. This is sche-
matically illustrated in Fig. 4. The dynamical interface
shown represents the boundary between two neighbor-
ing integration domains. The shaded two-gridpoint
zone, called the window frame, belongs to the integra-
tion domain of the fine mesh. Consequently, the inte-
gration of the window frame grid points is made when
the fine mesh is integrated. The distinct advantage of
this strategy is that the mesh interface is free from the
immediate impact of the boundary conditions. Thus,
noise due to dynamical coupling is kept from occurring
at the mesh interface, where the change of resolution is
a potential source of numerical noise.

The two-way interaction is accomplished in the fol-
lowing way. At a given time level, the integration begins
in domain 1 (Fig. 4), taking into account the values in
the window frame. During this step the fluxes and all
model variables at the dynamical interface are pre-
served. This information is used during the integration
of domain 2 to specify the boundary conditions along
the dynamical interface. Since the time increment of the
fine grid domain is shorter than that in the coarse-grid
domain, the boundary conditions are interpolated in
time, which makes the sum of fluxes during the inte-
gration of domain 2 exactly equal to the flux obtained
in the integration of domain 1 [see Kurihara et al. (1979)
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FIG. 4. Horizontal structure of two adjacent integration domains.
The dynamical interface is indicated by the dashed line.

for details]. In this procedure, the transports of mass,
momentum, heat, and salinity do not yield fictitious in-
creases or decreases at the dynamical interfaces.

e. Computational noise control

High-frequency, short gravity waves are mainly sup-
pressed by the application of a time-damping integration
method. However, in a nonlinear system, stationary
computational noise is inevitably generated by energy
transfer along the spectra. In a real fluid, energy that is
transferred to small scales is dissipated by molecular
friction. A numerical solution, however, has no scales
shorter than the size of a grid box and the energy there-
fore has a tendency to be accumulated on these scales.
This may cause computational instability. Consequently,
a numerical model should have a mechanism of dissi-
pation similar to molecular friction. A common practice
in numerical modeling is to apply a spatial smoothing
operator, which plays the role of an artificial friction.
Such an operator, however, should be used with great
caution, especially in simulations concerned with grav-
ity wave propagation. The use of too much artificial
friction may lead to substantial damping of waves with
longer wavelengths during removal of the short grid-
scale variations. For example, in a simple three-point
averaging operator, sinusoidal waves with wavelengths
of 4d and 6d (where d is the grid distance) are reduced
in amplitude by 50% and 25%, respectively. Far more
satisfactory for our present purposes is the smoothing

technique introduced in Bender et al. (1993). The main
idea of the method is to apply a ‘‘desmoothing’’ operator
to a preliminary smoothed field. For illustration, a one-
dimensional three-point smoothing–desmoothing oper-
ator applied in the zonal direction can be written as
follows:

F 5 (1 2 4k)F0 1 2k(FW 1 FE), (40)

where F0 is the center gridpoint value, and FW and FE

are the values at the west and east interfaces between
F0 and its surrounding grid points.

This operator works as a smoother when k 5 0.25,
but it works as a desmoother when k is negative and
less than 20.25. If the desmoothing operator is applied
immediately following the smoothing, it will restore the
amplitudes of slow-moving long waves that are reduced
by the smoothing operator. When k 5 20.28, the above-
mentioned 4d and 6d sinusoidal waves have amplitudes
after desmoothing only 22% and 4% smaller than the
original unsmoothed amplitudes. During the model in-
tegration, we apply the smoothing–desmoothing oper-
ator sequentially in the zonal and meridional directions
at appropriate time-step intervals. For the experiments
discussed in this paper, this operator was applied every
six time steps.

f. Some programming considerations

We have coded the model to allow for maximum
flexibility in configuring different types of simulations,
but, no doubt, continued improvements will be made as
we apply it to new problems. The code is structured to
have its basis on the coarse grid domain. Thus, given
the coarse grid structure (grid distance, integration time
step), a user can specify the number of inner grids, the
four corners of each mesh, and the grid ratios. The pro-
gram will automatically generate the grid points in every
inner mesh and the time steps for inner mesh integration.

The nested system can easily be reduced to a single
grid configuration by simply specifying the number of
grids to be 1. Such a feature is very desirable if one
wishes to simulate both large-scale and mesoscale oce-
anic phenomena. One can begin the integration with a
spinup of the single-mesh coarse-grid fields, interpolate
the model fields onto a multinested grid configuration
utilizing a routine we have developed, and then sub-
sequently perform a mesoscale study that incorporates
the large-scale features from the single grid run. This
is a recipe that is followed in several of the mesoscale
experiments described later. As will be demonstrated in
the following section, the present model is designed to
be used for simulations of the large-scale tropical Pacific
Ocean circulation and for relatively short-term meso-
scale simulations of ocean dynamics in specified
regions. In the latter case, physical consistency between
the large-scale general circulation model (GCM) and
regional model is preserved. Further flexibility is pro-
vided by the option of employing variable grid reso-
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TABLE 1. Specification of the grid system in the wave propagation experiments.

Grid system

Grid spacing (8)

East–west
(long)

North–south
(lat)

Domain size
(grid number)

Time step
(s)

Mesh 1
Mesh 2
Mesh 3

2⁄3
1⁄3
1⁄6

2⁄3
1⁄3
1⁄6

120 3 60
60 3 60
60 3 60

2400
1200

600

lution in either the single-mesh or the multiple-mesh
configurations.

4. Numerical tests

While the present model is designed to serve as a
prediction tool for realistic ocean simulations, our im-
mediate goal in this section is to evaluate the perfor-
mance of the nesting algorithm under simplified con-
ditions. Such tests permit comparison of the results
with well-known solutions and are needed to establish
the model’s credibility for more complicated applica-
tions.

a. Test of Kelvin and Rossby wave propagation
along the equator

We first consider Rossby and Kelvin wave propa-
gation along the equator generated by the evolution of
an initially imposed perturbation in the ocean ther-
mocline. For these experiments, the model is simplified
in two ways: the multilayer vertical structure is reduced
to a single active upper layer (the second layer is at
rest) and any vertical mixing or diffusion is neglected.
The initial conditions assume zero velocity and a
Gaussian bell-shaped perturbation in the upper-layer
thickness, symmetrical about the equator

2 22(x 1 y )
h 5 H 1 dh exp , (41)1 2[ ]L

where x 5 a(l 2 l 0) cosf, y 5 a(f 2 f 0), and l 0

and f 0 are the longitude and latitude of the center of
the perturbation, respectively. The variables H and dh
are set to 40 and 60 m, respectively, and L 5 500 km.
The values assigned for the upper- and lower-layer den-
sities are such that the long gravity wave speed C 5
(gDrH/r)1/2 5 1.4 m s21 , so that the equatorial radius
of deformation is 250 km.

For the test experiments, we use a triply nested grid
system described in Table 1. In the first run, the center
of the perturbation (41) is initially placed in the middle
of the finest mesh, but in the second run, it is placed
outside of the two inner meshes, to the west. For the
nesting algorithm to be deemed to be working well,
the generated Kelvin and Rossby waves should move
from the finer (coarser) meshes into the coarser (finer)
meshes without any significant distortion.

Figures 5 and 6 illustrate the upper-layer depth

anomalies and currents in the two runs. The initial,
axisymmetric perturbation is dispersed into westward-
propagating Rossby waves and an eastward-propagat-
ing Kelvin wave. This solution is very similar to a
well-known numerical solution (e.g., Philander et al.
1984). It is seen that as the waves move through the
meshes of differing resolution, no numerical problems
appear at the interfaces. Careful analysis of the solution
indicates that the phase speed of the Kelvin wave is
nearly constant as it moves from fine to coarse and
coarse to fine meshes. The shape of each wave is pre-
served as well. Some small differences in the structure
of the same waves in the coarser and finer meshes can
readily be seen, however. The frontal edge of the Kel-
vin wave, for instance, is greatly sharpened in the finest
domain. This is because the change of grid resolution
from one mesh to another always results in some dif-
ferences in the numerical behavior of a wave. This does
not seem to cause any serious computational problem
in the present tests, provided the waves are well re-
solved in the coarser meshes.

If the horizontal scale of the simulated waves is re-
duced, the solution may deteriorate as very short, high-
frequency waves, unresolvable in the coarser mesh, are
reflected at the mesh interface and trapped. Such difficult
situations will develop inevitably in nonlinear systems
and therefore must be kept under control. To demonstrate
how the present model handles smaller-scale distur-
bances, we run two additional test experiments, which
are similar to the one described above but with the hor-
izontal size of the initial perturbation (41), L, reduced to
250 and 125 km, respectively. Figure 7 shows the evo-
lution of the depth fields in these runs. One can see that
the nested-grid model works satisfactorily for smaller
disturbances, as well. Because high-frequency, very short
waves are effectively suppressed, no apparent wave trap-
ping effects are observed. However, by comparing Fig.
7 and Fig. 5, one can notice that, for smaller perturba-
tions, the wave amplitudes are substantially reduced
when they move from finer to coarser meshes. This is
related to an increase in numerical dispersion due to the
grid-size dependency of the truncation error. If the grid
resolution is not sufficiently fine relative to the scale of
the disturbance, significant numerical dispersion may be
generated.

This effect is further illustrated in a set of numerical
experiments shown in Fig. 8. In the first run (Fig. 8a),
the integration is performed using a regular, uniform
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FIG. 5. Depth anomalies generated by the evolution of an initial ‘‘bell-shaped’’ perturbation [Eq. (41)] in
two nested-grid test experiments. The grid resolutions are listed in Table 1. Contours are plotted in 2.0-m
increments, with positive values shown by solid lines and negative values indicated by dotted lines. Inner
grid locations are indicated by dashed lines.

grid of 1⁄68 resolution, whereas in the second run (Fig.
8b), the same integration is repeated with a much coarser
grid spacing of 2⁄38. Note that the grid resolutions in
these experiments are analogous to the resolutions of
the innermost and outermost domains, respectively, in
the nested experiments (see Table 1). It is evident that
the depth anomalies in the latter experiment are reduced
significantly. These runs can now be compared with the
triply nested grid system (Fig. 8c). It is seen that the
spatial structure of the depth anomalies in the innermost
mesh is very similar to that in the 1⁄68 resolution run,
though the amplitudes are slightly smaller for the former
case. This is shown more clearly in Fig. 9, where an

expanded view of the innermost region of the nested-
grid experiment (Fig. 9b) is compared to the corre-
sponding region of the 1⁄68 resolution experiment (Fig.
9a). The amplitude differences may be associated with
the fact that the boundary conditions for the inner do-
main are derived from a region of coarser resolution.
Nevertheless, one sees that the finest domain captures
most of the essential features of the uniformly fine-
resolution solution. These last comparisons illustrate the
important advantage of using a multinested grid system
in which high grid resolutions need be used only in the
area of greatest interest without requiring high resolu-
tion over the entire computational domain.
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FIG. 6. Currents associated with the evolution of the initial ‘‘bell-shaped’’ perturbation [Eq. (41)] plotted
in Fig. 5.

b. Test of dipolar vortex propagation

Another test case of the nesting procedure presented
here is especially important from a computational point
of view. It simulates the propagation of a dipolar vortex
pair (dipole), consisting of two counterrotating eddies.
These closely packed eddies are capable of trapping
fluid particles and transporting them over distances
much larger than their initial scale size. Thus, motion
of the dipole provides a means of fluid transport, as
opposed to the momentum transport that occurs during
wave propagation. It yields, therefore, a rigorous test of
the mass conservation conditions at the nested-mesh
interfaces. The behavior of dipoles has been intensively
studied analytically and numerically in geophysical fluid
dynamics. Their propagation is strongly dependent upon
the structure of the counter-rotating eddies (e.g., Sutyrin
et al. 1994). Thus, if the simulated dipole is somewhat
distorted at the mesh interfaces in the course of its prop-
agation through the nested-grid system, the solution will
quickly diverge from the reference single-mesh case.

For this test experiment, we apply the same simplified
model as the one used in the previous section. The initial
structure of the dipole is specified as a perturbation dh
of the upper-layer thickness H as follows:

dh 5 HA(r)r sin(w 2 w0), (42)

where r and w are polar coordinates in which r is the
radial distance and w is the angle measured counter-
clockwise relative to eastward, w0 denotes the initial
angle of dipole propagation, and A(r) is a nondimen-
sional function that determines the structure of the di-
pole. In the present experiment, A(r) is defined using
an analytical solution obtained by Larichev and Reznik
(1976):

 2a RJ (kr)11 1 1 2 , r , R,
2 [ ]k rJ (kR)1A(r) 5 (43)

RK (ar)1 , r . R,
rK (aR) 1

where J1 and K1 denote the first-order Bessel function
of the first kind and the first-order modified Bessel func-
tion of the second kind, respectively. Variable a is the
inverse of the radius of deformation Rd 5 (gDrH/r)1/2/
f, where H 5 400 m, Dr 5 2 kg m23, and f 5 7.27
3 1025 s21. Variable k is a parameter obtained from an
equation ensuring continuity of vorticity at the separ-
atrix r 5 R. Assuming that R 5 3Rd, it can be shown
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FIG. 7. The same as in Fig. 5 but with the horizontal scale of the initial perturbation reduced to L 5 250
km (left panels) and L 5 125 km (right panels).

that k 5 4.2/Rd. The initial velocity field is estimated
from the geostrophic balance equations on an f plane
( f is constant).

According to the theory of dipole propagation, the
symmetric dipole (42)–(43) will move along a straight
line if it is on an f plane (e.g., Hopfinger and van Heijst
1993). However, f is variable in the present model. In
this case, evolution of the dipole will be strongly de-
pendent on its initial direction of propagation. Steady
solutions exist only for dipoles initially moving in a
zonal direction, either eastward (w0 5 0) or westward
(w0 5 p) (e.g., Flierl 1987). For our test runs, we choose
the eastward initial direction, that is, the cyclonic vortex
is to the north and the anticyclonic one is to the south.
According to Sutyrin et al. (1994), we should expect

the dipole to move to the east with a small oscillatory
excursion from the initial latitude.

Since an analytical solution is not available for the
primitive equation system used here, we compare the
performance of a nested grid configuration against that
of a single uniform mesh. A series of preliminary test
experiments with a single mesh have indicated that the
dipole propagation is strongly dependent on the grid
spacing. The horizontal resolution must be fine enough
to resolve the structure of the eddies and internal vortex
circulation that drives the self-induced dipole motion.
Since our main objective here is to test the effects of
mesh interfaces on the dipole propagation, we first made
efforts to minimize the effects related to grid resolution
changes. By reducing the grid spacing in a series of
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FIG. 8. Comparison of single-mesh test runs of (a) 1⁄68 and (b) 2⁄38
resolutions with (c) a triply nested configuration using the initial
perturbation Eq. (41) with L 5 250 km. Shown here are the depth
anomalies at day 30 in increments of 0.5 m.

FIG. 9. Expanded view of the day 30 depth anomalies in the region
from 208 to 308 zonally and from 58S to 58N meridionally. (a) The
1⁄68 resolution single grid experiment, and (b) innermost mesh of the
triply nested experiment.

TABLE 2. Specification of the grid system in the dipole propagation experiments.

Expt. Grid system

Grid spacing (8)

East–west
(long)

North–south
(lat)

Domain size
(grid number)

Time step
(s)

1 Uniform mesh 0.045 0.045 444 3 200 400

2 Doubly nested mesh
Mesh 1
Mesh 2

0.045
0.0225

0.045
0.0225

532 3 144
66 3 66

400
200

model runs we found that those of 0.0458 (;5 km) and
0.02258 (;2.5 km) provided very similar solutions. We
therefore applied these values to specify the correspond-
ing grid spacing in the doubly nested grid configuration
(Table 2) used for our test experiment.

Figure 10 shows the temporal development of the
zonal velocity fields in the nested-grid (right panels)
and uniform-grid (left panels) runs. We show here only

a portion of the uniform and coarse-grid computational
domains. In the beginning of the model integration, the
center of the dipole was outside of the area shown in
Fig. 10, located at 338N. During the first 30 days of
dipole evolution, the anticyclonic vortex to the south
became stronger than the cyclonic vortex to the north
due to the differing signs of the cyclostrophic acceler-
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FIG. 10. Zonal velocity fields for uniform mesh (left panels) and doubly nested mesh (right panels)
dipole evolution experiments. The contour interval is 30 cm s21. Negative values are dotted.

ation terms. This caused the initial southward deflection
from the eastward movement.

As the dipole continues its movement to the southeast,
the cyclonic vortex strengthens while the anticyclonic
vortex weakens due to the effect of conservation of
absolute vorticity. As a result, the dipole reaches its
minimum latitude of 318N at about day 45, and then
begins moving to the northeast. The FGM in the nested
system is placed in the area where the dipole reaches
its most southward position but this does not cause any
significant alteration in the dipole’s speed of propagation
as it moves through the mesh interfaces. Notice how
smoothly the dipole enters the FGM and exits back to

the CGM. It is important to emphasize the ability of the
nested procedure to preserve the proper dipole structure,
which clearly indicates very good performance of the
flux conditions imposed at both the dynamical and mesh
interfaces. More careful analysis of Fig. 10 shows that
after the dipole has passed the FGM it begins to slightly
decelerate compared to the uniform mesh experiment
(the propagation speed decreases by 12%). These
changes in the dipole’s motion are probably due to the
higher grid resolution that the dipole experienced when
it passed through the FGM. Thus, even though the dipole
structure is well resolved in both meshes, small differ-
ences in the truncation error may still exist.
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TABLE 3. The s levels and layer depths* in the spinup experiment.

Level 1 2 3 4 5 6 7 8 9

s
Layer depth (m)

—
60

0.029
10

0.044
15

0.074
25

0.147
50

0.147
50

0.147
50

0.147
50

0.294
100

* The layer depth distribution is an example for the case when the average depth of the simulated upper ocean is 400 m and mixed layer
depth is 60 m.

In summary, the results presented in this and the pre-
ceding section suggest that the impact of mesh nesting
on Rossby and Kelvin wave propagation and dipole evo-
lution was minimal. However, these test experiments
were performed with a simplified model without the
effects of horizontal and vertical eddy diffusions. For
the full model, the noise level can be expected to be
higher than it was in these simple cases. The perfor-
mance of the nested grid scheme has to be examined
by applying it to the full model. Such experiments are
presented in the following sections.

5. Examples of realistic ocean simulations

While detailed real-case applications of this nested-
grid model will appear in subsequent publications, in
this section we demonstrate its general skill in a realistic
ocean environment. Our main objective here is to eval-
uate the robustness and usefulness of the nested-grid
technique and to illustrate what one might learn of the
detailed mesoscale processes that are resolved in the
finer meshes.

a. Simulation of the tropical Pacific circulation

In this section we will demonstrate the model perfor-
mance as a GCM, presenting the results of a large-scale
simulation of the tropical Pacific ocean. For this simu-
lation, a single but variable-resolution mesh configuration
will be used. Although the major components of the mod-
el physics, vertical sigma coordinate, and hybrid mixing
scheme have already been successfully tested for large-
scale tropical Pacific simulations by Gent and Cane
(1989), Chen et al. (1994a), and Chen et al. (1994b), the
present model is fundamentally different in its numerical
realization. Additionally, our model differs by the im-
plementation of the Smagorinsky nonlinear viscosity
scheme for horizontal diffusion. The purpose of the pres-
ent simulation is twofold: to establish the model’s cred-
ibility in realistically reproducing the main features of
the large-scale tropical Pacific circulation and to provide
initial conditions and reference runs for comparisons with
the nested model.

In the experiment discussed here, the computational
domain covers the whole tropical Pacific region and has
166 longitude grid points spanning from 1248E to 708W
and 92 latitude grid points from 308S to 308N. The grid
spacing is a constant 18 in longitude but is variable in
latitude, with a resolution of 1⁄38 near the equator, increas-

ing poleward in such a way that it is about 18 at 208N
(S). Global topography data at 1⁄68 resolution, prepared
by the U.S. Navy’s Fleet Numerical Oceanography Cen-
ter, are used to determine the presence of land. The re-
sulting coastline is then smoothed somewhat to avoid
numerical instabilities and islands are eliminated. The
upper ocean is divided into nine levels. Positions of these
levels in the sigma coordinate are listed in Table 3. Note
that the highest resolution is right below the mixed layer,
that is, an important region for vertical turbulent mixing
is well resolved.

The model is initialized with annual mean Levitus
(1982) temperature and salinity. The thickness of the up-
per mixed layer is calculated based on a vertical gradient
of density criterion. The 1027 kg m23 density level is
chosen as the model base and, with the total thermocline
depth thus determined, the thickness of each layer is
calculated according to the sigma coordinate.

The horizontal boundary conditions in this run are non-
slip and nonflux at all boundaries. However, near the
northern (southern) boundary of the domain, poleward
of 258N (S), temperature and salinity are gradually re-
laxed toward climatology. The model starts from rest and
is forced by annual mean climatological surface wind
stress and heat fluxes. The wind stress is derived from
the Florida State University (FSU) pseudostress clima-
tology. The net heat flux is parameterized according to
Gordon and Corry (1991)

Q0 5 Q(SSTc) 1 l(SSTc 2 T1), (44)

where Q(SSTc) is the climatological heat flux at the Lev-
itus annual mean sea surface temperature (SSTc), T1 is
the upper mixed layer temperature predicted by the mod-
el, and l 5 34.2 W m22 8C21 is the relaxation parameter.

The heat flux Q(SSTc) is calculated using the simpli-
fied bulk formula of Seager et al. (1988), with annual
mean cloud cover from the International Satellite Cloud
Climatology Project (Rossow and Schiffer 1991). We use
the total cloud fraction to determine the heat flux, making
no distinction between high, middle, and low clouds. This
introduces some inaccuracies to the heat flux calculation
and a small correction is applied to avoid excessive sur-
face heating in some locations, most notably near the
northern Central American coast. The Seager et al. (1988)
algorithm also requires wind speed for the heat flux cal-
culation. This speed was derived from the FSU wind
stress assuming a surface drag coefficient of 1.5 3 1023.
The second term on the right-hand side of (44) indicates
a relaxation back to climatology on a timescale of 20
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FIG. 11. Temperature fields after 1080 days for the large-scale equatorial circulation in the Pacific Ocean
using a single-mesh variable grid configuration.

days for a mixed layer of 30 m deep. This is necessary
to avoid excessive model drift from climatology when
forced with constant annual mean fluxes. The applied
forcing is certainly simplified and not very realistic. How-
ever, our purpose here is not to simulate real data, but
rather to reproduce the major components of the tropical
Pacific circulation and compare the results with other
GCM runs utilizing similar forcing, in particular, with
the Chen et al. (1994a) study.

The model is integrated for three years. This time in-
tegration is sufficient to establish a quasi-equilibrium
state in the present experiment. Figure 11 shows snap-
shots of horizontal and vertical temperature distributions
at day 1080. The overall temperature field shows many
characteristics that are well known from observations and
other model simulations such as the warm pool in the
west and the cold tongue in the east. The zonal cross
section displays an increase in the thermocline depth from
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FIG. 12. The same as in Fig. 11 but for velocity fields.

east to west along the equator, which is indicative of the
general east–west pressure gradient that balances the
mean wind stress and, at the same time, produces and
maintains the eastward-flowing Equatorial Undercurrent
(Fig. 12). The meridional cross section along 1558W dis-
plays, for instance, the well-known ridge–trough struc-
ture in the tropical and subtropical region observed in
the Hawaii–Tahiti Shuttle experiment (Wyrtki and Kil-
onsky 1984). The equatorial trough is located on or slight-

ly south of the equator, the equatorial ridge near 38N, the
countercurrent trough at 68–78N and the North Pacific
ridge along 128–138N. These structures are well corre-
lated with the simulated tropical surface currents (Fig.
12), that is, the North Equatorial Current runs between
the North Pacific ridge and the countercurrent trough,
and the North Equatorial Countercurrent between the
equatorial ridge and the countercurrent trough. More de-
tailed analysis of the results is beyond the scope of the
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FIG. 13. Zonal wind stress and the triply nested grid structure for the WWB experiment.

present work. However, it is important to emphasize that
this simulation is in very good agreement with the Chen
et al. (1994a) study, indicating that their hybrid vertical
mixing scheme is successfully implemented into the pres-
ent model.

One of the most notable features of the simulated tem-
perature and velocity fields is the presence of equatorial
instability waves in the eastern Pacific, which are de-
tectable all the way to the date line. These cause SST
fluctuations as large as 28C at 28–38N. It appears, how-
ever, that appearance of the instability waves in the model
solution is very sensitive to the choice of the Smagorin-
sky constant, in (23). A value of 5 0.1 is used for2 2k k0 0

the present simulation. In a series of numerical experi-
ments, we found that larger values lead to substantial
weakening of these waves and their eventual disappear-
ance for 5 1.2k0

The successful model performance in reproducing the
major features of the large-scale equatorial Pacific cir-
culation is quite comparable with other advanced GCMs
recently developed for the tropical Pacific Ocean [e.g.,
Chen et al. (1994a), Zhang and Endoh (1992), Philander
et al. (1987)]. However, the present model has a unique
characteristic that other models do not typically possess:
the capability to implant nested meshes of higher reso-
lution in any specified area of potential interest. The mod-
el skill in simulating regional air–sea interactions in the
presence of realistic large-scale circulation is evaluated
in the next two sections.

b. Wind burst forcing in the western equatorial Pacific

The nested-grid model presented here is specifically
tailored to perform realistic simulations of the oceanic
response to synoptic-scale wind forcing and its impact
on the low-frequency evolution of the coupled ocean–
atmosphere system. A prominent example of such forcing
is the phenomenon of surface westerly wind bursts
(WWB) in the western equatorial Pacific warm pool. It
has been speculated that WWB’s may be an important

component of the El Niño–Southern Oscillation (ENSO)
cycle (Harrison and Giese 1991). These short-duration
episodes of westerly winds, often lasting for a few days,
with typical horizontal scales from a few hundred to one
thousand kilometers, have a significant effect on the up-
per-ocean equatorial current, salinity, and temperature
structure. Understanding and predicting the oceanic re-
sponse to WWB forcing have been major objectives of
TOGA COARE.

For a test experiment, we use an idealized represen-
tation of a WWB, described here as a stationary narrow
wind anomaly imposed just south of the equator,

f 2 f12 2l l 2[(l2l ) /L ]0t 5 t e sin p , (45)0 max 1 2f 2 f2 1

where tmax 5 0.2 N m22, and L 5 2.58. This anomaly
is added to the annual mean climatological wind in the
region of the TOGA COARE field experiment: f 1 5
1578E, f 2 5 1678E, and l0 5 18S.

In order to better resolve the spatial structure of the
WWB and the resulting oceanic response, we introduce
a triply nested configuration in which the meshes of high-
er resolution are placed in the area of wind burst forcing,
as shown in Fig. 13. The outermost mesh covers the entire
tropical Pacific region and has the same geometry as the
computational domain in the previously described spinup
run. The locations of the two inner meshes are chosen
to approximately match the outer sounding array (OSA)
and large-scale domain (LSD) domains of TOGA
COARE (see Webster and Lukas 1992). The parameters
of the nested-grid system are listed in Table 4. Note that
the grid spacing is set to be uniform within each mesh
in this test; however, this model also allows the flexibility
of embedding finer meshes into a coarse domain with
variable grid spacing. The latter option has been suc-
cessfully tested but the results are not presented in this
paper.

In these runs, we keep the structure of vertical layers
the same as listed in Table 3. The nested model is ini-
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TABLE 4. Specification of the grid system in the WWB experiment.

Grid system

Grid spacing (8)

East–west
(long)

North–south
(lat)

Domain size
(grid number)

Time step
(s)

Mesh 1
Mesh 2
Mesh 3

½
¼
⅛

½
¼
⅛

320 3 120
76 3 76
76 3 92

2400
1200

600

tialized using the fields resulting from the 3-yr single-
mesh model spinup run discussed above. The gridpoint
values of each variable in the nested domain are obtained
from the neighboring coarse gridpoint values using two-
dimensional bilinear interpolation. The climatological
fluxes at the sea surface are interpolated in the same
manner. Note that, in future model applications, for cases
in which additional finer-resolution data are available,
these data can be used to enhance the description of the
initial fields in the inner meshes.

In a preliminary test experiment, the nested model was
first run with no WWB forcing. This run represents a
mere continuation of the spinup run but with the nested
meshes introduced. Figure 14 shows temperature and ve-
locity vector fields after 30 days of integration that are
compared to a reference single-mesh run. The horizontal
resolution in the latter run is uniform ½8, and equal to
the resolution of the outermost mesh in the nested model.
The area shown in Fig. 14 is for the region occupied by
the two inner meshes. Examination of the model fields
reveals no distortions in the vicinity of the interfaces,
which are frequently the site of spurious wave distur-
bances in nested-grid models with ill-posed interface con-
ditions. The gross characteristics of the fields are quite
similar in the nested and reference runs. However, use
of the nested model has allowed the development of
steeper horizontal temperature gradients, particularly im-
mediately north of the equator. Stronger westward flow
associated with the North Equatorial Current has devel-
oped in the nested run. Smaller-scale variability in the
velocity field is also evident in the finest mesh, which is
not resolved in the reference model. Outside of the second
mesh region, the results for the nested and single-mesh
runs are quite similar (not shown), although some dif-
ferences exist near the mesh interface. These differences
are due to finescale information that is fed back from the
finer meshes and that then propagates outward to the
coarse domain.

In the WWB experiment, the wind anomaly (45) was
impulsively applied at day 1090 and remained in effect
for 10 days. The integration was then continued for an-
other 20 days to simulate the relaxation of the burst-
induced circulation. Figure 15 shows zonal velocity fields
in the region of the two inner meshes of the nested-grid
model. These are compared with those for the single-
mesh model of ½8 resolution, shown for the same region.
The dynamical response to WWB forcing initially in-
volves a meridionally convergent, eastward-accelerating

Yoshida jet (Yoshida 1959) in the surface layer. In the
nested model, this jet reaches a speed of about 110 cm
s21 at day 1100 because the Coriolis force is ineffective
at retarding and deflecting currents near the equator. The
wind burst also generates inertia–gravity waves and
mixed Rossby–gravity waves that cause the surface jet
to deviate toward the equator. In the single-mesh run, the
jet is weaker and appears to be wider in the meridional
direction, indicating that the grid resolution is not suf-
ficient to resolve its structure well. At later times in the
evolution of the current field, equatorial Kelvin and long
Rossby waves excited at the zonal extremes of the wind
burst propagate into the WWB forced region and lead to
deceleration of the eastward jet. By day 1110 the jet is
clearly split into two packets. One moves to the west and
is associated with the propagation of a Rossby wave and
the other, moving to the east, is associated with a Kelvin
wave. It is evident that the wave structure in the nested
run is significantly more detailed than in the single-mesh
run. Smaller-scale variability is seen throughout the re-
gion occupied by the fine mesh. Encouragingly, there is
still no noticeable noise or distortion of the fields at the
mesh interface. At day 1120, another important difference
in the wave evolution can be observed: in the single-
mesh run, the Rossby wave is leaving the area with sig-
nificantly faster speed. This results from the fact that the
wave phase and group velocities have been affected by
the grid resolution. Thus, an apparent improvement in
the representation of the ocean response to the wind burst
is achieved in the nested run.

Figure 16 shows zonal and meridional cross sections
of the zonal current at day 1100. Prior to the onset of
the WWB, the ocean circulation is characterized by a
weak westward current of about 5 cm s21 in the surface
layer and the eastward equatorial undercurrent, with a
maximum of 40 cm s21, in the thermocline at depths of
150–175 m (Fig. 11). The WWB-driven eastward jet is
characterized by upwelling at the western edge of the
wind burst and downwelling at the eastern edge and
strong vertical shear across the mixed layer base due to
vertical turbulent mixing and downward advection of
surface momentum. Strong acceleration of the surface
flow is accompanied by rapid deceleration of the Equa-
torial Undercurrent in the upper thermocline. This kind
of behavior is in qualitative agreement with some ob-
servations of the ocean response to a wind burst (e.g.,
McPhaden et al. 1992) and more detailed numerical so-
lutions (Zhang and Rothstein 1998). The nested- and
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FIG. 14. Test experiment with no WWB forcing applied. Surface temperature and velocity fields are plotted in the
region corresponding to the two inner meshes in the nested model. Initial fields at day 1090 (top), fields at the end
of the nested run (left), and at the end of the single-mesh run (right) are shown.

single-mesh runs are qualitatively quite similar, but
some differences in the velocity structure are readily
observed, especially in the finest-mesh region. For ex-
ample, in the nested run, the velocity shear and mixed
layer deepening near the eastern edge of the WWB reach
a depth of 100 m, compared to about 75 m in the single
mesh. The structure of the subsurface currents is no-
ticeably different as well. Thus, although the two runs
have the same high vertical resolution in the upper
ocean, use of the nested model has substantially im-
proved the simulation of the vertical structure of the
wind-generated velocity fields. The implication of this

result is quite important. It indicates that in order to
achieve better simulations of the upper-ocean structure
during synoptic-scale wind forcing, it is not sufficient
to have high vertical resolution, but high horizontal res-
olution as well.

c. Ocean response to real-case tropical cyclone
forcing

In the last test experiment presented in this paper we
illustrate the ability of the nested model to simulate the
ocean response to a tropical cyclone in the western Pa-
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FIG. 15. The WWB experiment. Surface zonal velocity in the nested run (left panels) and single-mesh run
(right panels). The area shown is for the region of the two inner meshes in the nested model.

cific. For this simulation, we select the real case of
Tropical Cyclone Yuri in 1991 which, during the period
from November 21 to November 25, remained almost
at the same location and developed rapidly from a trop-
ical depression to typhoon strength. This case has been

well documented recently by Kindle and Phoebus
(1995), using the U.S. Navy’s operational global data
assimilation system. Based on their data, we specify the
wind stress radial profile using the linear formula first
introduced by Chang and Anthes (1978)
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FIG. 16. The WWB experiment. Zonal (along the equator) and meridional (along 163.48E) cross sections of the
zonal velocity at day 1100 for the nested run (left panels) and the single-mesh run (right panels).

 r
, 0 , r , rmrmw w t 5 t (46)0 0 max r 2 r0 , r , r , r ,m 0r 2 r 0 m

where 5 0.5 Pa is the maximum azimuthal com-wt 0max

ponent of the wind stress, r is the radial distance, and
rm 5 100 km and r0 5 600 km are the radii of the
maximum wind and the outer edge of the typhoon, re-
spectively. The cyclone center is located at 7.58N,
1688E.

For this experiment, we use a triply nested grid con-
figuration in which the geometry of the outermost mesh
and the mesh resolutions are the same as in the WWB
experiments discussed above. The two inner meshes
cover the regions 08–148N, 1618–1758W, and 3.58–
11.58N, 1648–1728W, respectively. The model is ini-
tialized in the same manner as for the WWB experiment,
using the fields generated by the 3-yr single-mesh spin-
up driven by annual mean surface wind stress and heat
fluxes. The integration started on day 1090 and the cy-
clone forcing was applied for 4 days. The model run

was then continued until day 1120 with no forcing as
Yuri moved away from the equator.

Figure 17 shows the evolution of the SST, with ve-
locity arrows superimposed, in the region covered by
the two inner meshes. These fields are compared to a
single-mesh, ½8 resolution run. The tropical cyclone
generates an energetic cyclonic circulation in the upper
ocean. It is accompanied by an SST decrease induced
by vertical turbulent mixing. In addition, the storm ex-
cites near-inertia–gravity waves that propagate primarily
toward the equator with an eastward group velocity. It
can be seen that stronger currents and larger SST cooling
are produced by the nested run. No grid-scale noise can
be seen in either the temperature or velocity fields at
the nested-model interfaces. Careful analysis of the re-
sults indicates that the impact of mesh nesting on the
wave propagation is minimal.

The cyclonic circulation moves in the north–north-
west direction due to the advection of planetary vortic-
ity. A jet generated behind the cyclone is considerably
weaker in the single-mesh model (29.2 cm s21 versus
41.8 cm s21 for the nested case at day 1110). By day
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FIG. 17. Tropical cyclone experiment. Surface temperature and velocity fields for the nested run (left panels) and the
single-mesh run (right panels). The area shown is for the region of the two inner meshes in the nested model.
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1110, an anticyclonic circulation has developed behind
the cyclonic vortex in the nested model, but not in the
single-mesh model. It is generated by the development
of an annulus with a negative potential vorticity gra-
dient. The low horizontal resolution in the single mesh
is apparently not adequate to resolve this circulation. It
is also seen that the finer grids in the nested model have
allowed the development of much steeper SST gradients
in the innermost mesh. By day 1120, the anticyclone
has moved slowly to the west with a noticeable merid-
ional twisting. The cyclonic vortex, however, has weak-
ened considerably and stretched out in the zonal direc-
tion. This is because the evolution of both vortices is
accompanied by Rossby wave radiation and nonlinear
interaction with the generated Rossby wave wake. All
these effects have been well investigated in the literature
and it is not our intent here to present detailed analyses
of the flow physics involved. We demonstrate here that
the grid nesting has resulted in a much improved sim-
ulation of the current and temperature response to trop-
ical cyclone forcing. This and the previous WWB ex-
periment reveal the importance of increased model res-
olution in better determining the characteristics of the
mesoscale ocean variability induced by strong synoptic-
scale atmospheric forcing. Sufficient model resolution
may be vital in some situations not only for resolving
finescale features, but also for better representing the
large-scale flow.

6. Summary

A multiply nested primitive equation ocean model has
been described. The model employs a two-way inter-
active nesting technique originally proposed by Kuri-
hara et al. (1979) and successfully applied for many
years in the Geophysical Fluid Dynamics Laboratory–
NOAA hurricane prediction model (Kurihara et al.
1998). One of the original features of the nesting scheme
adopted in the model is that an interface where the two
integration domains interact with each other (the dy-
namical interface) is intentionally separated from the
mesh interface. This is done in order to prevent nu-
merical noise from occurring at the mesh interface
where noise may also result from the change of grid
resolution. Furthermore, the interaction at the dynamical
interface is expressed in the form of a flux condition so
that the transports of mass, momentum, and heat do not
fictitiously increase or decrease. Application of a time
integration method that produces frequency-selective
damping of waves, and the occasional use of spatial
smoothing, effectively suppresses nonlinear computa-
tional instability in the model.

The model utilizes a sigma-coordinate system origi-
nally proposed by Gent and Cane (1989) and a hybrid
mixed layer physics parameterization due to Chen at al.
(1994a). Currently, the model invokes the reduced grav-
ity approximation, in which the deep ocean is at rest
and has a constant density. Efforts are underway to re-

move this limitation by including a barotropic mode and
bottom topography.

The results of various idealized experiments with the
nested model were described. The nesting technique ap-
pears to be working very well. No distortion or com-
putational noise associated with the dynamical inter-
action of adjacent meshes of differing resolution was
found.

The formulation of the mesh nesting algorithm allows
flexibility in deciding the number of meshes and the
ratio of grid resolutions between adjacent meshes. The
model has other advanced features as well, including
realistic coastline geometry and spatially variable grid
spacing, which we believe make it suitable for realistic
simulations of the mesoscale dynamics of the sea. The
model can also be used as a large-scale general circu-
lation model (GCM) by using only one mesh. The most
important feature of our nested model is the ability to
combine large-scale and regional-scale predictions. It
was demonstrated that the model can be integrated as
a single-mesh GCM for long-term predictions, and the
multinested structure can be introduced at any time for
regional predictions in selected areas of interest or dur-
ing unusual weather phenomena, such as tropical cy-
clones, wind bursts, etc. The model was tested as a GCM
in a 3-yr spinup experiment of the large-scale circulation
in the tropical Pacific Ocean. It demonstrated skill com-
parable to that of other recently developed GCMs. The
resulting large-scale fields were then used in the nested
configuration, as initial conditions for simulations of the
ocean response to a westerly wind burst and a tropical
cyclone. Significant improvements over a coarse single-
mesh model have been achieved in resolving finescale
features of the wind-induced current and temperature
fields. These results highlight the importance of model
resolution for realistic simulations of mesoscale ocean
variability.

The usefulness and robustness of the developed nest-
ed-grid model will, no doubt, be determined from an
accumulation of actual performance experience, in ad-
dition to the results of designed tests such as those pre-
sented in our paper. An effort is currently underway to
apply the model to more realistic oceanographic and
atmospheric situations.
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