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ABSTRACT 

Protein phosphatases play significant roles in signal transduction pathways 

that regulate cellular processes in response to external/internal stimuli. They are 

crucial for the growth, division, and differentiation of all organisms. Examples of cell 

functions involving reversible phosphorylation include ion transport, metabolism, cell 

cycle progression, developmental control, and stress responses. Serine/threonine

specific protein phosphatases are of particular interest in this study. There are two 

types of serine/threonine-specific protein phosphatases: type 1 & type 2. Both 

protein phosphatase 1 (PPl) and protein phosphatase 2A (PP2A) are inhibited by a 

structurally diverse group of natural toxins produced by marine organisms that cause 

diarrhetic shellfish poisoning. Recent research into diarrhetic shellfish poisoning has 

contributed to the understanding of some of the mechanism of actions of cathartics. 

It was learned that hydroxy acid moieties are essential for receptor binding of 

diarrhetic shellfish toxins, such as okadaic acid, to the protein phosphatase enzymes 

in the intestines which regulate ion channels. The loss of ion channel regulation in 

the intestines leads to an efflux of electrolytes and water, causing diarrhea. 

This study was undertaken in order to learn if four different crude cathartic 

plant drugs whose active components contain hydroxy-acid moieties, will act 

similarly to these diarrhetic shellfish toxins by inhibiting PP2A. First, two resin 

glycosides, jalapin and convolvulin, were isolated from Ipomoea purga and Pharbitis 

nil, of the Convolvulaceae family, respectively. After verifying their molecular 

structures by proton nuclear magnetic resonance (1H NMR) spectroscopy, they were 

tested against PP2A. Pure ricinoleic acid from Ricinis communis and 
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podophyllotoxin from Podophyllum peltatum were purchased and also tested against 

PP2A. A fluorometric assay, recently developed in Dr. Shimizu's lab, was used to 

determine their activities toward protein phosphatase enzyme PP2A. The assay 

results indicated weak but significant inhibition of PP2A by these compounds. The 

doses of these crude drugs used to produce catharsis are six orders larger than the 

dose of okadaic acid which causes diarrhea in humans. Thus the weak activities of 

these compounds may be sufficient to account for the cathartic action of these drugs. 

The bioavailability of these compounds in the human body is unknown. Since the 

traditional standard dosages of these cathartics are too large to prepare as samples for 

a micro-titer assay due to their solubilities, they were not able to be assayed at higher 

concentrations at which more or total inhibition might take place. The possibility that 

these crude cathartic drugs inhibit PP2A can not be discounted based on the results of 

this study. It is also possible that these compounds may affect other enzymatic 

activities which were not tested. This matter remains open to question. 
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PREFACE 

This thesis was prepared with the standard thesis plan of the University of 

Rhode Island. The introduction will present an overview of the literature involved 

with the background of Convolvulaceae plants, phosphatase research, and diarrheic 

shellfish poisoning (DSP) including the 4-MUP assay for DSP detection. An 

Experimental chapter will be followed by a Results and Discussion chapter. Finally, 

a Conclusion and Bibliography will be presented. 
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INTRODUCTION 

Cathartic and laxative plant drugs comprise a large class of important 

crude drugs. In the past, cathartics were used extensively and were thought to 

purge the body of a vast array of maladies. Among this class of crude plant drugs, 

some of the more famous and officially recognized cathartics included croton oil, 

castor oil, jalap roots, senna leaves, Cascara Sagrada bark, frangula bark, Aloe 

spp., and rhubarb roots (United States Pharmacopeia XX, 1979). Despite their 

widespread popularity and usage, only recently have a few mechanisms of action 

of such cathartic drugs been elucidated. Many of these mechanisms still remain 

unknown. 

Senna leaves (Cassia angustifolia), Cascara Sagrada bark (Rhamnus 

purshiana), Frangula bark (Rhamnus frangula) , the dried latex of Aloe leaves 

(Aloe spp.) and rhubarb roots (Rheum palmatum) all contain 1,8-oxygenated 

derivatives of anthracene in the form of anthraquinone, anthrone and anthranol 

(see Figure 1). They may occur as 0- and C glycosides. Glycosides of 

anthranols and anthrones elicit a more drastic effect than do the anthraquinone 

glycosides causing a discomforting, griping action. (Stahl, E., 1973). These 

glycosides contribute significantly to the therapeutic activity of these crude plant 

drugs (Tyler, V. et al. , 1988). Taken orally, the free anthraquinone aglycones 

have little therapeutic activity, but in the glycosidic form the sugar moiety 

facilitates absorption and trans location of the aglycone to the site of action in the 

wall of the large intestine. Bacterial flora in the colon wall cleave the sugar 

residues and free the aglycones at the site of action. The anthraquinone 



glycosides and their derivatives are stimulant cathartics and exert their action by 

increasing the tone of the smooth muscle in the wall of the colon. The exact 

mechanisms of these actions are not yet known (Fairbairn, J.W., 1977). 

Relatively recent studies involving croton oil, cholera toxin, and 

diarrhetic shellfish poisoning have shed some light on the mechanisms by which 

cathartics can act. These mechanisms of action involve interference with signal 

transduction pathways responsible for regulating electrolyte balance. 

Signal transduction regulates cellular processes in response to 

external/internal stimuli and is crucial for the growth, division, and 

differentiation of all organisms. Reversible protein phosphorylation is an 

essential component of almost all signaling pathways in living cells. Changes in 

the phosphorylation state of a protein are conducted by two types of enzyme 

activities: protein kinases and protein phosphatases. Protein kinases catalyze the 

covalent attachment of a phosphate group to an amino acid side chain, whereas 

protein phosphatases reverse this process (Luan, 2000). The attachment to or 

removal of a phosphate group from a protein often has profound effects on its 

structure and thereby modifies the functional property of the protein. 

Phosphorylation of key proteins with associated changes in their biological 

activity accounts for many physiological responses. The phosphate content of 

these proteins reflects a net balance of the protein kinases and protein 

phosphatases acting on them (Hanks et al., 1988). 

Phosphorylation of hydroxyl-bearing amino acid side chains (serine, 

threonine, and tyrosine) is catalyzed by protein kinases (PKs) using ATP as a 
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phosphoryl donor, whereas dephosphorylation is catalyzed by protein 

phosphatases, which induce changes in protein conformation, protein-protein or 

protein-ligand interactions, membrane permeability and solute gradients 

(Sheppeck, et al., 1997). This simple cycle acts as an 'on-off switch to 

selectively modulate the action of countless other proteins. Examples of enzyme 

regulation by phosphorylation include initiation of allosteric conformational 

changes which may directly block the access to an active site or regulation of the 

interaction among protein partners that must form complexes in order to function. 

Examples of cell functions involving reversible phosphorylation include ion 

transport, metabolism, cell cycle progression, developmental control, and stress 

responses. 

Research conducted on croton oil points to the mechanisms by which 

cathartics interfere with signal transduction. Croton oil is a naturally occurring 

plant oil obtained from Croton tiglium, a shrub-like tree of the Euphorbiaceae 

family (Evans, F .J ., 1986). Croton oil has been used traditionally in Western 

medicine as a powerful purgative (Trease, G.E. and Evans, W.C., 1972). Due to 

the highly potent tumor-promoting property of phorbol myristate acetate (PMA), 

the active ingredient of Croton tiglium oil, this drug was considered to be too 

toxic for human use and was eventually removed from modem pharmacopoeias 

(British Pharmaceutical Codex, 1934) (see Figure 2). This same compound, 

PMA, was later found to be a potent protein kinase C activator. This finding is 

consistent with the hypothesis that protein kinase C activation is part of the 

normal growth control process that becomes perturbed in turnorigenesis 
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(Matthews, C. K., Van Holde, K. E., 1997). Activation of protein kinase C 

causes hyperphosphorylation of proteins that control sodium secretion by 

intestinal cells. The increased phosphorylation of cytoskeletal or junctional 

moieties that regulate solute permeability result in the passive loss of fluids as 

diarrhea (Dho et al., 1990). 

There are many causes of diarrhea, but the overall alterations in intestinal 

function are similar in that the intestine ceases to be an organ of net absorption of 

water and electrolytes. The fluid produced exceeds the absorptive capacity of the 

remaining intestine and water passes into the stool. The aim of diarrhea treatment 

is to enhance intestinal absorption of water by reducing the content of luminal 

electrolytes (by increasing active absorption of Na+ or decreasing secretion of 

anions). Absorption of fluid by the colon is secondary to active transport of Na+ 

(Sellin, J. H., 1993). 

The mechanism responsible for colonic absorption of Na+ is primarily 

electrogenic transport, which relies on a Na+/K+/ATPase activity in the basolateral 

membrane of the colonic epithelium. Neutral absorption of NaCl may also be 

involved. The colon absorbs er by an electrically neutral mechanism that 

involves the exchange of er for HC03- and by neutral uptake of NaCl. Agents 

that elevate intracellular cAMP in colonic enterocytes stimulate electrogenic 

secretion of er and may inhibit NaCl uptake. This causes net fluid secretion. The 

colon also secretes K+, probably via an active mechanism that is stimulated by 

cAMP (Goodman & Gilman, 1996). 
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Most animal cells maintain large ionic gradients across their surface 

membranes such that intracellular fluid contains a higher concentration of K+ 

ions and low concentration of Na+ and Ca2+ ions relative to the extracellular fluid. 

These ionic gradients are maintained by the action of specific energy-dependent 

ion pumps. Ion channels mediating electrical signaling are intrinsic membrane 

proteins that form ion-selective pores through which ions can move down their 

electrochemical gradients into or out of cells. The responsiveness of voltage

gated ion channels to membrane potential is regulated by G-protein-coupled 

receptors (Fine, K. D. et al., 1993). These regulatory processes are crucial in the 

control of hormone secretion, neurotransmitter release, muscle contraction, and 

gene transcription. Both direct binding of G proteins and phosphorylation of the 

ion-channel proteins are important effectors of this second order regulation of ion

channel function (Matthews, C. K., Van Holde, K. E., 1997). 

Cholera toxin, a highly cathartic peptide produced by Vibrio cholerae, has 

been shown to stimulate er secretion in the small intestine and the colon by its 

ability to activate adenylate cyclase in the mucosa. The toxin consists of an A 

subunit surrounded by five B subunits. The B subunits attach the toxin to 

ganglioside GM 1 on the cell surface. The A subunit catalyzes ADP-ribosylation 

of the a-subunit of G proteins, reducing GTPase activity. Activating the a

subunit of G proteins also catalyzes ADP-ribosylation of cell membrane adenylate 

cyclase (Chandana, S. et al., 2001). This activation interferes with the role of the 

Ga-subunit in regulating the maintenance of epithelial cell tight junctions. Tight 

junctions serve two functions: regulation of the permeability barrier to 
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paracellular fluxes, and separation of the apical and basolateral membrane 

domains. Loss of regulation of epithelial cell tight junctions results in secretion of 

Cl- in the small intestine and colon, causing net fluid secretion (Wang, W. et al. , 

2000). 

Research into diarrhetic shellfish poisoning has also contributed to the 

understanding of the mechanism of action of cathartic drugs. Diarrhetic shellfish 

poisoning (DSP) is caused by consumption of shellfish which have been 

contaminated with natural toxins produced by dinoflagellates. The onset of the 

illness ranges from 30 minutes to several hours after consumption of the 

contaminated shellfish, but seldom exceeds 12 hours (Van Egmond et al. , 1993). 

Victims suffer from diarrhea, nausea, and stomach pain, but recover within three 

days without serious after-effects. DSP toxins accumulated in the shellfish 

inhibit the activity of serine/threonine specific protein phosphatases 1 and 2A in 

colonic endothelial cells, resulting in rapid accumulation of phosphorylated 

proteins. This rapid accumulation of phosphorylated proteins results in disruption 

of the maintenance of electrolyte balance, preservation of membrane potential, 

and control of cellular volume in tissues. Oral ingestion of one microgram of 

okadaic acid is sufficient to produce the diarrhetic effect in a human being. 

Both protein phosphatase 1 (PP 1) and protein phosphatase 2A 

(PP2A) are the intracellular targets for the toxins produced by marine organisms 

that cause diarrhetic shellfish poisoning. These DSP toxins include the 

polyketide inhibitors okadaic acid and dinophysistoxin-4 which are produced by 

dinoflagellates. Other natural protein phosphatase inhibitors include cyclic 
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peptide inhibitors such as microcystins and nodularins, as well as calyculin and 

tautomycin (Gupta et al., 1997). The toxins, though structurally dissimilar from 

one another, all seem to bind at the active site of each phosphatase, where they 

contact multiple residues near the active site (Suganuma et al., 1989). A free 

carboxyl and hydroxyl group in the molecule is essential for receptor binding in 

the case of okadaic acid (see Figure 3). These moieties are important for such 

compounds to bind to a receptorial site on PP 1 and PP2A, thus inhibiting their 

activity and interfering with signal transduction processes, including ion channel 

regulation (Sasaki, K. et al., 1994). 

These toxins have become important research tools for understanding the 

roles of PPl and PP2A in signal transduction. There are two types of 

serine/threonine-specific protein phosphatases: type 1 & type 2 (Ingebritsen & 

Cohen). Type 1 protein phosphatases specifically dephosphorylate the ~ subunit 

of phosphorylase kinase and are inhibited by nM concentrations of inhibitor-I 

(I-1) & inhibitor-2 (l-2), two small heat- and acid- stable proteins found in liver & 

muscle extracts, as well as okadaic acid, calyculin A, NaF, and orthovanadate. 

A number of different forms of type- I protein phosphatase have been 

characterized. They differ in their association with regulatory components, which 

determine their overall activity and subcellular location. Additionally, these 

forms differ in their substrate specificity measured in vitro using various 

phosphoproteins. 

Type 2 protein phosphatases preferentially dephosphorylate the a subunit 

of phosphorylase kinase & are insensitive to Inhibitor-I and Inhibitor-2. Type 2 
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protein phosphatases are subclassified into three distinct enzymes, PP2A, PP2B 

and PP2C, which are characterized by their cation dependence and use of various 

activators and inhibitors (Cohen, P., 1989). 

PPl holoenzymes are heterodimers composed of catalytic PPlc and a 

regulatory R subunit. The diverse functions of PP2A are attributed to the 

presence of at least 15 B regulatory subunits that individually assemble with each 

core heterodimer of PP2Ac and a 65-kDa A subunit. PP2A exists in either 

heterodirner or heterotrimer form (Catterall, W. A. , 1997). 

As the diarrheic effect of okadaic acid and related toxins has been 

attributed to the accumulation of phosphorylated proteins that control sodium 

secretion in intestinal cells, a detection method for such cathartic compounds 

based on the inhibition of protein phosphatases is of particular interest. Using the 

specific inhibition of both PPl and PP2A catalytic subunits provides a sensitive 

method to detect diarrhetic shellfish poisoning. Recently, a highly sensitive 

fluorometric assay for DSP using PP 1 and PP2A was developed in Dr. Y. 

Shirnizu' s lab (Shimizu et al. , 1997) and Dr. Vieytes's lab (Vieytes et al. , 1997), 

independently of each other. This assay is based on the dephosphorylation of 4-

methylumbelliferone phosphate (4-MUP), a non-fluorescing compound, to 

fluorescent 7-hydroxy-4-methylcoumarin (4-MU), which fluoresces at 

approximately 446 nm, by PPl or PP2A (see Figure 4). The substrate exhibits 

high substrate efficiencies for PP 1 & PP2A. 

After incubation of 4-MUP and purified PPl enzyme in a 96-well 

rnicrotiter plate, liberated 4-MU is measured with a fluorescent scanner. 
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Inhibition of PP 1 or PP2A by a specific inhibitor, e.g., okadaic acid, is quantified 

using the above protocol. The fluorescent inhibition assay involves introducing a 

test sample to the enzyme PPl or PP2A and then adding the substrate 4-MUP. 

An inhibitory sample will result in a fluorescence reading that is less than a 

control known to be free of such inhibitors. 

This inhibition assay has advantages over other assays, such as a 

radioactive phosphoprotein assay using 32P ATP or a para-nitrophenyl phosphate 

colorimetric assay (pNPP assay), due to the elimination of clean up and the 

increase in specificity, sensitivity, precision, rapidness, reproducibility, and 

percentage ofrecovery of the 4-MUP assay. A drawback to this assay is that the 

commercially available PP2A enzymes which are obtained from human 

erythrocytes are very expensive and no recombinant enzymes are available for 

PP2A (Baden et al., 1995). 

In this study, the 4-MUP assay was used to test the activity of jalapin and 

convolvulin, two hydroxy-acid containing resin glycosides from plants of the 

Convolvulaceae family, upon PP2A. Jalapin was isolated from roots of 

Ipomoea purga and convolvulin isolated from seeds of Pharbitis nil. At the 

same time other known cathartics whose active components contain hydroxy-acid 

moieties were also studied including ricinoleic acid (see Figure 5), isolated from 

the oil of Ricinus communis (castor oil), and podophyllotoxin (see Figure 6), 

isolated from podophyllum resin. The hydroxy acid moieties of these cathartic 

compounds, if released, may bind to a receptorial site on PP2A, as seen with the 
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DSP toxins, inhibiting its activity and interfering with signal transduction 

processes such as ion channel regulation (Sasaki, K. et al., 1994). 

Castor oil is cold-pressed from the seeds of Ricinis communis 

(Euphorbiaceae) and has traditionally been taken orally as a stimulant cathartic. It 

is composed of a mixture of triglycerides, of which about 7 5 % is triricinolein. 

Triricinolein is hydrolyzed by lipases in the duodenum to release ricinoleic acid, 

which exerts a cathartic effect (Tyler et al., 1988). Podophyllotoxin is the active 

principle of podophyllum resin, also called podophyllin, which is isolated from 

the roots of Podophyllum peltatum, Berberidaceae (American Mandrake or 

Mayapple ). The resin possesses drastic purgative properties and its active 

constituents consist of a mixture of lignans including podophyllotoxin (20% ), a.

peltatin (10%), and ~-peltatin (5%) (Emmenegger, H. et al., 1961 ). 

It has long been known that certain plant species of the Convolvulaceae 

family produce drastic cathartic and purgative effects when consumed. Two 

species ofthis family, Ipomoea purga (Mexican Jalap ), and Pharbitis nil 

(Morning Glory), were used in this study. Both of these plants produce resins, 

jalapin and convolvulin, respectively, which are both monomers of hydroxy-fatty 

acid oligoglycosides in which the sugar moiety is partially acylated by organic 

acids and can also combine with the carboxy group of the aglycone to form a 

macrocyclic ester in the case of jalapin (Noda, et al, 1987). Studies have 

identified these resins to be the active cathartic components of these crude drugs 

(Mannich, C. et al., 1938; Shellard, E. J., 1961). Jalapin is characterized by the 

presence of an oligoglycoside of 6-deoxyhexoses (rharnnose, fucose), whose 
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aglycone is the hydroxylated fatty acid 1 lS-hydroxyhexadecanoic acid or 

jalapinolic acid. The aglycone found in convolvulin, also known as pharbitinis 

the hydroxy lated fatty acid, 11 S-hydroxytetradecanoic acid or convolvulinic acid 

(pharbitic acid) (Ono, 1990). 

Jalapin is obtained from the dried tubercles of Convolvulaceae plants, 

including Ipomoea purga, which was chosen as the source of jalapin for this 

study, as well as I. orizabensis, I. braziliensis, I. simulans, and Convolvulus 

scammonia. Convolvulin is obtained from the seeds of Convolvulaceae plants, 

including Pharbitis nil, which was chosen as the source of convolvulin for this 

study. The plant materials were extracted and the chemical structures of the 

isolates were confirmed by proton nuclear magnetic resonance (NMR), prior to 

use in the 4-MUP PP2A inhibition assay. 
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Figure 1. Anthracene Derivatives Found in Cathartic Plant Drugs 
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Figure 2. Structure of Phorbol Myristate Acetate (PMA) from Croton 
Oil, Croton tiglium, Euphorbiaceae. 
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Figure 3. A Free Carboxyl at Cl and Hydroxyl Groups at C24 and 
C27 Are Essential for PP2A Receptor Binding of Okadaic Acid 
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Figure 5. Structure of ricinoleic acid (12-hydroxystearic acid) from 
the seeds of Ricinus communis, Euphorbiaceae 

16 



OH 

<o 
0 

Figure 6. Structure of the lignan podophyllotoxin from the roots of 
Podophyllum peltatum, Berberidaceae 
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EXPERIMENTAL 

Materials & Methods 

Unless otherwise specified, all chemicals were reagent grade or better. 

Solvents for extraction, partitioning, and chromatography were HPLC grade. 

Distilled deionized water was used to make all solutions needed for the 4-MUP 

assay. Deionized water was used for all other procedures. 

The following abbreviations have been used in this work: 

protein phosphatase 1 (PPI), protein phosphatase 2 (PP2A), protein phosphatase 

2B (PP2B), protein phosphatase 2C (PP2C), protein phosphatase 2A catalytic 

subunit (PP2Ac), proton nuclear magnetic resonance {1H-NMR), phorbol 

myristate acetate (PMA), 4-methylumbelliferyl phosphate (4-MUP), 4-

methylumbelliferone ( 4-MU), high pressure liquid chromatography (HPLC), thin 

layer chromatography (TLC), protein kinase (PK), adenosine triphosphate (ATP), 

adenosine diphosphate (ADP), cyclic adenosine monophosphate (cAMP), 

inhibitor-I (I-1 ), inhibitor-2 (1-2), guanosine triphosphate (GTP), diarrhetic 

shellfish poisoning (DSP), and hydroxymethyl aminomethane (Tris). 

Dried tubercles of lpomoea purga (Mexican jalap root) were purchased 

from Trinity Herb Co. (Graton, CA). Seeds of Pharbitis nil (morning glory seeds) 

were harvested at the URI Heber Y oungken Medicinal Plant Garden in Kingston, 

RI. Ricinoleic acid and podophyllotoxin were purchased from Sigma-Aldrich 

Chemical Co. (St. Louis, MO). Okadaic acid was purchased from LC 

Laboratories (Woburn, MA). 4-Methylumbelliferyl phosphate (4-MUP) and 4-

methylumbelliferone ( 4-MU) were purchased from Molecular Probes, Inc. 
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(Eugene, OR). Tris (hydroxymethyl) aminomethane (electrophoresis purity) and 

2-mercaptoethanol were obtained from Bio-Rad Laboratories (Richmond, CA). 

Protein phosphatase 2A (PP2A) from human red blood cells (purified enzyme) 

was purchased from Upstate Biotechnology Inc. (Lake Placid, NY). NMR 

solvent pyridine-d5 was purchased from Cambridge Isotopes, Inc. (Andover, 

MA). Assorted laboratory glassware, magnesium chloride-6H20, hydrochloric 

acid, 1-butanol, chloroform, methanol, and methylene chloride were purchased 

from Fisher Scientific Inc. (Fairlawn, NJ). Ethanol was purchased from Aaper 

Alcohol, Inc. (Shelbyville, KY). For column chromatography, Baker silica gel 

(J. T. Baker, Inc. Phillipsburg, NJ) (40 µm average particle diameter) and Bio-gel 

LH-20 (Amersham Pharmacia Biotech, Piscataway, NJ) were used. Thin layer 

chromatography plates were purchased from Whatman, Ltd. (Maidstone, Kent, 

England). 

The following equipment and instruments were employed in this study: 

MTX Labsystems, Inc. Titertek Fluoroskan II version 4.0 ofBio-Tek FL500 

Fluorescence Reader, Yamato Rotary Evaporator model RE-46 with water bath 

model BM-41 , Amsco Autoclave, Eppendorf micropipettors, Dell Latitude C600 

Laptop computer, Fuji Digital Camera, HP Scanjet 5200C Color Scanner, Fisher 

Vortex Genie 2, Sonicor Ultrasonic Cavitator, Precision Scientific Co. Vaccuum 

Pump model S-35 and Vacuum Dessicator, Fisher Scientific Accumet 15 pH 

meter, and VMR I 550 Incubator from VMR Scientific. Microsoft Excel t-test 

was used to determine P values. 
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Nuclear Magnetic Resonance (NMR) Spectroscopy 

Nuclear Magnetic Resonance (NMR) spectrum of 1H-NMR was recorded on the 

Bruker Model DPX-400 Avance NMR spectrometer, College of Pharmacy, 

University of Rhode Island. Data processing was performed with the standard 

software by Silicon Graphics Indy Station NMR Analysis and Dell 450MHz NT 

Workstation NMR Analysis Computer. Five milligrams of each sample was 

dissolved respectively in HPLC grade methanol, filtered through non-adsorbant 

cotton, and dried under the flush of nitrogen gas and further subjected to vacuum 

desiccation. The dried samples were each dissolved in 0.6 ml pyridine-d5 

(Cambridge Isotopes, Inc.) to take 1H-NMR spectrum. 

Thin Layer Chromatography (TLC) 

TLC was performed on silica-gel coated aluminum sheets and silica-gel coated 

glass plates using developing solvent CHCh:MeOH:H20 (6:4:1). Resin 

glycosides such as jalapins and convolvulins lack UV absorbance, so in order to 

visualize the compounds on TLC plates. The vanillin/sulfuric acid spray reagent 

(3.0 g vanillin, 40 ml glacial acetic acid, 30 ml concentrated sulfuric acid, and 

450 ml 95% ethanol) was used, followed by heating on a hot stage. 

Extraction of Ipomoea purga Roots 

Extraction and fractionation were generally based on the methods of Ono 

et al. (1990). The outline of the extraction is shown in Figure 12. Fifty grams of 
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root tubercles of lpomoea purga were pounded into a powder and macerated in 

methanol, sonicated, and extracted three times at room temperature, each time 200 

ml methanol was used. Each methanol extraction was suctioned-filtered through 

a Buchner funnel lined with filter paper into a filtration flask, giving an orange

colored solution. The three filtered methanol extracts were combined and 

evaporated to dryness with a rotary evaporator, yielding a golden-orange resin 

(6.15 grams). Two grams of this methanol extractive was suspended in 25 ml of 

water in a separatory funnel and extracted three times with 1-butanol, each time 

25 ml 1-butanol was used. The aqueous layer was a yellow color and was 

evaporated with a rotary evaporator to give a yellowish resin (330 milligrams). 

The three 1-butanol extracts were orange in color and were combined together, 

then evaporated in a rotary evaporator to give a golden-orange resin (l.65 

grams). This 1-butanol extractive was defatted with methylene chloride three 

times, each time using 25 ml of methylene chloride. The three methylene 

chloride extracts were combined and evaporated with a rotary evaporator to yield 

a yellow oil (100 milligrams). The defatted 1- butanol-soluble extractive ( 1.55 

grams) was further purified by liquid chromatography. 

Purification of I. purga Resin Glycosides by Liquid Chromatography 

a. Silica Gel Column Chromatography of Defatted 1-Butanol-soluble Extractive 

Twenty-five grams of silica gel was suspended in chloroform:methanol 

solution (10: 1) and then immediately and continuously poured into a 2 cm 

diameter glass chromatography column. After the silica gel settled down and 
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there was barely any chloroform:methanol solution left above the surface of the 

silica gel, the defatted 1-butanol soluble extract (630 mg of 1.55 grams) was 

dissolved in the chloroform:methanol solution (10: 1) and loaded. The column 

was eluted with chloroform and methanol in 60 ml quantities in which the 

percentage of methanol was increased stepwise with the following ratios of 

chloroform to methanol: 10:1, 5:1, 5:2, 5:3, and 5:4. Fractions were collected in 

4 ml aliquots and each fraction was checked by TLC. Fractions containing the 

same components were combined based on TLC results. 

Extraction of Pharbitis nil Seeds 

Extraction and fractionation were generally based on the methods of Ono 

et al. (1990) as previously described. The outline of the extraction is shown in 

Figure 13. One hundred grams of seeds of Pharbitis nil were ground into a 

powder and used as starting materials for the extraction. The methanol extraction 

produced a yellow resin ( 4.17 grams). After partitioning 2.00 g of this methanol 

extractive between water and 1-butanol, 0.73 grams of water-soluble extract and 

1.26 grams of 1-butanol soluble material were obtained. This 1-butanol extract 

was defatted with methylene chloride, as described previously, to yield a yellow 

oil (1.21 grams). The remaining defatted 1-butanol extract was evaporated with 

rotary evaporator and weighed 50 milligrams. Both the water-soluble extract and 

the defatted 1-butanol extract were further purified by liquid chromatography. 
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Isolation of P. nil Resin Glycosides by Liquid Chromatography 

a. Silica Gel Column Chromatography of Water-soluble Extract 

Twenty-five grams of Baker silica gel was suspended in 

chloroform:methanol:water solution (6:4: 1) and then immediately and 

continuously poured into a 2.25 cm diameter glass chromatography column to a 

height of 20 cm. The water- soluble extract (700 mg of 730mg) was dissolved in 

chloroform:methanol:water solution ( 6:4: 1) and loaded onto the silica gel column, 

using just enough solution to dissolve the sample. The column was eluted with 

the chloroform:methanol:water solution (6:4: 1 ). Fractions were collected in 10 

ml aliquots and each fraction was checked by TLC. Fractions containing the 

same components were combined based on TLC results. 

b. LH-20 Biogel Column Chromatography ofDefatted 1-Butanol-soluble Extract 

A 1.5 cm diameter glass chromatography column was packed to a height 

of 14 cm with Bio-gel LH-20 previously suspended in methanol. After the LH-20 

settled down and there was barely any methanol left above the top of the gel, the 

defatted 1-butanol extract (50 mg) dissolved in methanol was loaded. The 

column was eluted with methanol. Fractions were collected in 3 ml aliquots and 

each fraction was checked by TLC. Fractions containing the same components 

were combined based on TLC results. 
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Standard Emission Curve of 4-Methylumbelliferone (4-MU) 

One 10 µM 4-MU stock solution and one 5 µM 4-MU stock solution were 

made by dissolving 0.00018 grams and 0.00009 grams of 4-MU, respectively, in 

100 ml of Tris buffer which was made of 50 mM, 20 mM MgC}i, and 1 mM 2-

mercaptoethanol, pH 8.5 adjusted with 1 N HCL Serial dilutions were made by 50 

mM Tris buffer, pH 8.50 to make concentrations of 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 

0.005, 0.001, 0.0005, and 0 µM. Fifty microliters of each solution was pipetted 

into each well used, on a 96-well microtiter plate. Each row consisted of six 

replicates of the given concentration for that column. In total, sixty-six wells 

were filled on the plate, which was read on the Fluoroskan II, version 4.0 of 

Biotek FL500 Fluorescence Reader at time zero and time 30 minutes. 

Preparation of Tris Buffer, pH 8.50 [50 mM] 

Tris (3.04 grams) and MgC}i.6H20 (2.04 grams), were weighed and 

combined in a 500 ml glass beaker which was filled to the 400 ml mark with 

distilled, deionized water, and 2-mercaptoethanol (36 µl) was added. The pH of 

the solution was adjusted to 8.50 with 1 N hydrochloric acid. The contents of the 

beaker were transferred to a 500 ml volumetric flask. The beaker was rinsed with 

100 ml of distilled, deionized water, which was added to the 500 ml volumetric 

flask. The flask was capped and inverted several times. The concentration of the 

Tris buffer was 50 mM. 

24 



Preparation of 4-MUP Solution, pH 8.50 [50 mM] 

4-MUP (6.36 milligrams), was added to 250 ml 50 mM Tris buffer, pH 

8.50. 

Preparation of Test Solutions of Plant Extracts for 4-MUP Assay 

Each of the plant samples isolated in this experiment, jalapin and 

convolvulin, were dissolved in 500 µl of methanol and combined with 9 .5 ml of 

50 mM Tris buffer, pH 8.50. From these 5% methanolic solutions, serial dilutions 

were prepared using the Tris buffer. The ricinoleic acid and podophyllotoxin 

samples were also prepared in serial dilutions, but starting with a 1 % methanolic 

solution. The PP2A 4-MUP inhibition assay is sensitive to alcohol in 

concentrations of 5% or greater in the total well concentration. One percent 

methanol was the highest concentration of methanol in any of the 50 µl wells of 

the microtiter plates used in this experiment. 

Jalapin (15 .9 milligrams) was added to a small vial containing 500 µl of 

methanol and sonicated until completely dissolved. Into this vial, 9 .5 ml of 50 

mM Tris buffer, pH 8.50, was pipetted to give the jalapin solution a concentration 

of 1.59 mg/ml. Three serial dilutions were made by taking one milliliter of this 

1.59 mg/ml solution and pipetting it into nine milliliters of 50 mM Tris buffer, pH 

8.50. Each newly prepared dilution was used in place of the stock solution used 

before it. The concentrations of the jalapin samples made were 1.59 mg/ml, 0.159 

mg/ml, 0.0159 mg/ml, and 0.00159 mg/ml, respectively. 

Convolvulin (14.81 milligrams) was added to a small vial containing 500 

µl of methanol and sonicated until completely dissolved. Into this vial, 9.5 ml of 
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50 mM Tris buffer, pH 8.50, was pipetted to give the convolvulin solution a 

concentration of 1.48 mg/ml. Three serial dilutions were made starting with the 

1.48 mg/ml convolvulin solution. The concentrations of the convolvulin solutions 

made were 1.48 mg/ml, 0.148 mg/ml, 0.0148 mg/ml, and 0.00148 mg/ml. 

Ricinoleic acid (100 mg) was pipetted into a small vial containing one 

milliliter of methanol to give a 100 mM concentration of ricinoleic acid. Into a 

small vial containing 900 µl of methanol, 100 µl of 100 mM ricinoleic acid 

solution was pipetted, to make a 10 mM concentration of ricinoleic acid. One 

hundred micro liters of 10 mM ricinoleic acid solution was pipetted into a small 

vial containing 900 µl of 50 mM Tris buffer, pH 8.50, to make a 1 mM 

concentration of ricinoleic acid, containing ten percent methanol. Three more 

serial dilutions were made, starting with the 1 mM ricinoleic acid solution. These 

three serial dilutions were diluted with 900 µl of 50 mM Tris buffer, pH 8.50, 

instead of 900 µl of methanol. The concentrations of these ricinoleic acid 

solutions were 100 µM, 10 µM , and 1 µM, respectively. 

Podophyllotoxin (4.14 milligrams) was pipetted into a small vial 

containing 1 ml of methanol to make a 10 mM solution. One hundred micro liters 

of 10 mM podophyllotoxin solution was pipetted into 900 µl of 50 mM Tris 

buffer, pH 8.50, to make a podophyllotoxin solution with a 1 mM concentration 

that contained ten percent methanol. Three more serial dilutions were made 

starting with the 1 mM podophyllotoxin solution. These three serial dilutions 

were diluted with 900 µl of 50 mM Tris buffer, pH 8.50. The concentrations of 

these podophyllotoxin solutions were 100 µM , 10 µM , and 1 µM, respectively. 
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4-Methylumbelliferone Phosphate Fluorometric Assay (4-MUP Assay) 

In a 96-well microtiter plate, placed on ice, l µl of purified PP2A enzyme 

from Upstate Biotechnology was added to 10 µl of the compound being tested for 

potential inhibitory activity. The concentration of purified PP2A enzyme was 

0.03 units per well. The mixture of the potential inhibitory compound with the 

enzyme was incubated at room temperature on a 3-D rotator (Lab-Line 

Instruments, Inc., Melrose Park, IL) for five minutes before adding the substrate. 

Thirty-nine microliters of the substrate, 50 mM 4-MUP in 50 mM Tris buffer (20 

mM MgCh, and 1 mM 2-mercaptoethanol, pH 8.5 adjusted with 1 N HCl), was 

added to each well to make a total volume of 50 µl per well. Each row of wells 

on the plate consisted of six replicates of the given reaction mixture for that row. 

Fluorescence intensity measurements were performed using ICN Titertek model 

Fluoroskan II fluorescence reader using ex. 355 nm I em. 460 nm filters. 

Readings were taken at time zero, thirty, and sixty minutes, after incubating the 

reaction mixtures at 37 °C. Inhibition of PP2A by a specific inhibitor, i.e. okadaic 

acid, was quantified using the above protocol. Four 96-well microtiter plates 

were used in this experiment. 

Okadaic acid was used as a reference inhibitor on each of the four 

microtiter plates used. The okadaic acid sample was previously prepared in Dr. 

Shimizu's lab by Dr. X. Qu, in a 60 nM concentration. A 60 nM concentration of 

okadaic acid is known to completely inhibit the activity of PP2A (X. Qu, 1998). 

Each plate contained a row of wells with 60 nM okadaic acid in the presence of 
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the PP2A enzyme and 4-MUP substrate. Each plate also contained a row of 

control wells with 60 nM okadaic acid in the presence of the substrate with no 

enzyme. In the row of control wells with no enzyme, the wells were filled with 1 

µl of 50 rnM Tris buffer, pH 8.50, in place of the 1 µl of PP2A enzyme. 

Each microtiter plate was used to test the potential inhibitory activity of 

each of the following compounds on PP2A, respectively: jalapin (plate 1 ), 

convolvulin (plate 2), ricinoleic acid (plate 3) and podophyllotoxin (plate 4). 

Each row of wells to be filled on the plate, consisted of six replicates of the given 

concentration of compounds to be tested. Each microtiter plate also had a row of 

control wells which contained 39 µl of 4-MUP substrate in the presence of 1 µl of 

PP2A enzyme, without any inhibitory compound being present. These control 

wells were filled with 10 µl of 50 rnM Tris buffer, pH 8.50, in place of any 

potential inhibitory compounds. 

Plates 1 and 2 tested four concentrations of jalapin and convolvulin, 

respectively, for their inhibitory effects on PP2A. Plates 3 and 4 tested three 

concentrations of ricinoleic acid and podophyllotoxin, respectively, for their 

inhibitory effects on PP2A. For each concentration of compound tested on each 

plate, there was a row of control wells filled on the same plate containing the 

same concentraton of compound being tested, but in the presence of the 4-MUP 

substrate without any PP2A enzyme. In the rows of wells containing no enzyme, 

the wells were filled with 1 µl of 50 rnM Tris buffer, pH 8.50, in place of the 1 µl 

of PP2A enzyme. 
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RESULTS AND DISCUSSION 

A schematic representation of the extraction and isolation of jalapin from 

Ipomoea purga roots is shown in Figure 7. Several purple spots were observed on 

silica-gel TLC of the 1-butanol-soluble portion of the methanol extract of the 

I. purga roots (1.65 grams). This 1-butanol extract was separated by silica-gel 

chromatography to afford a crude glycoside mixture. The fractions did not have 

color, had no UV absorbance, and displayed a purple color after being sprayed 

with the vanillin/sulfuric acid reagent. One of the TLC plates is shown in Figure 

14. These fractions were further identified by 1H NMR. The total weight of the 

two samples identified by 1H NMR was 279 milligrams (14% of crude methanol 

extract) and 186 milligrams (9% of crude methanol extract). These fractions were 

combined prior to the assay. These two fractions, each appearing as a single 

bluish-purple spot, had Rf values of0.71 and 0.75. These normal phase Rf values 

are reasonable values for high molecular weight amphoteric resin glycosides 

containing lipophilic fatty acids and hydrophilic sugar moieties. 

Based on their 1 H NMR spectra, these samples were determined to contain 

a mixture ofhomologues or very closely related compounds. Variations in the 

structures of these resin glycosides primarily come from the differing organic acid 

moieties such as tiglic acid, isobutyric acid, etc. which can occur. Variations also 

occur due to the different types and numbers of sugars within the glycosides. 

However, these resin glycosides do share a basic structure which includes the 

hydroxy-acid moieties. The percentages of these resin glycosides present in the 

total crude extract are exceptionally high, reaching up to 26.9% of the crude 
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methanol extract in some Convolvulaceae species (Noda, N., 1987 ). The 

predominance of these resin glycosides in the crude extract may account for the 

1 H NMR data fitting the molecular structure so well, despite the fact that the 

separation procedure was not so thorough. 

The 1H NMR spectra of these two fractions were identical (Figure 10) and 

gave similar 1 H NMR spectra as those compared to in the literature (H. Kogetsu et 

al., 1991 ), based on the peak assignments, integration, and ratios of hydrocarbon 

protons to protons of sugar and organic acids. This suggests that the resin 

glycosides are similar to what Mayer called the ether-soluble resin glycosides 

(Shellard, 1961). The 1H NMR showed three acetoxy methyl signals [8 1.96 

(8H), 2.34 (2H), 2.69 (2H)], the signals characteristic of 1 mol of isobutyric acid 

[8 2.92, (1 H, sept, H-2), 1.21 (3H, d, H3-3), 1.07 (3H, d, H3-3')] and 2 mols of 

tiglic acid groups [8 7.02 (lH, dq, H-3), 1.59 (3H, dd, H3-5), 1.82 (3H, s, H3-4)] 

and [8 7.17 (lH,dq, H-3), ), 1.36 (3H, dd, H3-5), 1.65 (3H, s, H3-4)]. The 1H 

NMR spectrum showed five anomeric protons (8 5.51, 5.13, 4.82, 5.67 and 4.81) 

and four secondary methyls due to 6-deoxyhexose (8 1.56, 1.26, 1.45 and 1.65) as 

well as a 2-methylene (8 2.69) and a primary methyl (8 0.96) attributable to a 

jalapinolic acid moiety (Table 1 ). Based on this data, it is reasonable to presume 

that the Ipomoea resin glycoside isolated in this experiment is similar to the 

proposed chemical structure depicted in Figure 11. 

A schematic representation of the extraction and isolation of convolvulin 

from Pharbitis nil seeds is shown in Figure 8. The crude methanol extract 
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obtained from 100 grams of seeds weighed 4.17 grams. After partitioning 2.0 

grams of this crude extract between 1-butanol and water, the amount ofwater

soluble extract was 730 milligrams (36.5 % of crude methanol extract). The 

amount of 1-butanol-soluble extract was 50 milligrams (2.5 % of crude methanol 

extract). These fractions had a slight yellowish-white color and had no UV 

absorbance. The water-soluble portion of the methanol extract from Pharbitis nil 

seeds exhibited several brownish-gold spots on silica-gel TLC. The LH-20 biogel 

column chromatography was employed to separate them. However these further 

purified fractions obtained from the chromatography were found to be pure sugars 

of di- and oligo-saccharides based on their 1 H NMR spectra, indicating that the 

convolvulinic acid aglycone had been hydrolyzed from the sugars and remained 

in the column. For this reason, the crude extracts obtained after the partitioning 

were identified by 1H NMR and employed to run the PP2A 4-MUP inhibition 

assay. Two fractions, one being water-soluble and the other 1-butanol-soluble, 

each appeared as a group of three spots and had identical Rf values of 0.08, 0.14, 

and 0.32 (see Figure 12). These normal phase Rf values are reasonable values for 

high molecular weight amphoteric water-soluble resin glycosides containing 

lipophilic fatty acid and hydrophilic sugar moieties. Since the carboxy group of 

the aglycone (convolvulinic acid) is free and does not combine with a hydroxy 

group of the sugar moiety to form an intramolecular macrocyclic ester structure, 

as seen in Ipomoea purga resin glycosides, there are more free hydroxyl groups 

present, contributing to the water-soluble property of these resin glycosides (Ono, 

M. et al., 1990). Due to not being chromatographed, the purities of these samples 
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were crude compared with the lpomoea purga samples. Based on the data from 

the 1 H NMR spectra, it was determined that they contained the resin glycosides 

as a mixture of homologues. It is possible that other contaminants may have 

been present, since many glycolipids were isolated in the extraction process. 

Although the Pharbitis nil samples were rather crude preparations, their 

1H NMR spectra (Figure 13) gave similar 1H NMR spectra as those compared to 

in the literature, based on the peak assignments, integration, and ratios of 

hydrocarbon protons to protons of sugar and organic acids. Again this suggests 

that the resin glycoside was an overwhelmingly major component in these 

samples. They are similar to what Mayer called ether-insoluble resin glycosides 

with a free carboxy group of the convolulinic acid aglycone (Shellard, 1961 ). 

These suggestions were supported by the presence in the 1 H NMR of the signals 

characteristic of 1 mol of isobutyric acid [O 2.55, (1 H, sept, H-2), 1.27 (3H, d, 

H3-3), 1.27 (3H, d, H3-3')], 2 mols of (+)-2-methylbutyric acid [O 2.53 (lH,tq, H-

2), ), 1.69 (2H, m, H3-3), 0.99 (3H, s, H3-4), 1.27 (3H, d, H3-5) and [O 2.43 

(IH,tq, H-2), ), 1.60 (2H, m, H3-3), 0.94 (3H, s, H3-4), 1.27 (3H, d, H3-5)] and 1 

mol oftiglic acid groups [O 7.01 (IH, dq, H-3), 1.27 (3H, dd, H3-5), 1.93 (3H, s, 

H3-4)]. The 1H NMR spectrum exhibited the signals of five anomeric protons (0 

6.32, 5.85, 5.48, 5.30 and 4.89) and three secondary methyls due to 6-

deoxyhexose (O 1.93, 1.67 and 1.63) as well as a 2-methylene (O 2.55) and a 

primary methyl (0 0.87) attributable to a convolvulinic acid moiety (see Table 2). 

Based on this data, it is reasonable to presume that the Pharbitis resin glycoside 

32 



isolated in this experiment is similar to the proposed chemical structure depicted 

in Figure 14. 

In the assay experiments, the standard emission curve of 4-MU was 

established (Figure 15). The fluorescence intensity of 4-MU was in a linear 

function with its concentration in the experimental range (0 to 10 µM). The 

enzyme activity could be analyzed by using the standard emission curve to 

compare the amount of 4-MU from the dephosphorylation of 4-MUP by PP2A. 

The okadaic acid at 60 nM was used as a reference inhibitor to verify that 

the enzyme inhibition assay was working correctly. The results showed at least 

99% significant inhibition of PP2A by 60 nM okadaic acid on all four plates, with 

the largest p value of the four sets of okadaic acid data being less than 0.01. 

These results were expected since 60 nM of okadaic acid is a known 

concentration to completely inhibit PP2A activity. For each row of compounds 

tested on PP2A on each microtiter plate, a duplicate row of controls wells was 

prepared on the same plate that contained 1 µl of Tris buffer, pH 8.50 in place of 

the 1 µl of PP2A enzyme. These controls indicated that none of the compounds 

tested in this assay fluoresced on their own and therefore quenching could not 

occur that might produce false results. The row of control wells on each plate 

that contained 1 µl of PP2A enzyme, 39 µl of 4-MUP and 10 µl of Tris buffer, pH 

8.50 was used to determine the normal activity that would be expected from the 

enzyme with no other compounds present. All of the wells on each plate 

containing potential inhibitory compounds were compared against these 

respective control wells to observe any change in activity of the enzyme. 
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The jalapin samples tested against PP2A were prepared in the following 

concentrations: 1.59 mg/ml, 0.159 mg/ml, 0.0159 mg/ml, and 0.00159 mg/ml. 

These concentrations would correspond to 1 mM, 100 µM, 10 µM , and 1 µM if 

the samples were pure, according to the molecular weight of the proposed 

structure of the glycoside. Similarly, the convolvulin samples were prepared in 

the following concentrations: 1.48 mg/ml, 0.148 mg/ml, 0.0148 mg/ml, and 

0.00148 mg/ml, which, likewise, would correspond to 1 mM, 100 µM , 10 µM , 

and 1 µM of pure glycoside. The molecular weight of the proposed jalapin 

structure is 1,590 and the molecular weight of the proposed convolvulin structure 

is 1, 480. 

The results of the inhibition assays are shown in Figures 21 - 24. A 4% 

increase in activation occurred at the 1.59 mg/ml concentration of jalapin, 

however the p value was equal to 0.3, so this data should be considered to be 

insignificant. Whereas, 12 % inhibition was observed at the concentrations of 

0.159 mg/ml and 0.0159 mg/ml, with the p values both less than 0.01. The jalapin 

samples showed a maximum inhibition of 20% at the 0.00159 mg/ml 

concentration with a p value, 0.04. (see Figure 16). According to this data, the 

activity of PP2A did not change when the concentration of jalapin was decreased 

ten-fold from 0.159 mg/ml to 0.0159 mg/ml. The PP2A inhibition increased 

when the concentration ofjalapin was decreased ten-fold from 0.0159 mg/ml to 

0.00159 mg/ml. However, the data from the 1.59 mg/ml concentration of jalapin 

was not significant, and there was no observable trend for the inhibition to 

increase as the concentration of jalapin decreased. The effective dose of jalapin 
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(as a powdered resin) consumed orally which will produce catharsis is 2 grams 

(see Table 3). Because of the six order difference between the effective dose and 

the 0.00159 mg/ml concentration of jalapin which caused 20 % inhibition of 

PP2A in vitro, the possibility can not be excluded that jalapin inhibits PP2A . 

The convolvulin showed a maximum inhibition of 50.9 % at the 1.48 

mg/ml concentration with a p value less than 0.01, 5.7 % inhibition at the 0.148 

mg/ml concentration with a p value of 0.045, 15.5 % inhibition at the 0.0148 

mg/ml concentration with a p value of0.12, and 8% increase in enzyme activity 

occurred at the 0.00148 mg/ml convolvulin concentration with a p value less than 

0.01 (see Figure 17). The inhibition of PP2A activity was significantly increased 

by 45.2% when the concentration of convolvulin was increased ten-fold from 

0.148 to 1.48 mg/ml, increasing the inhibition from 5.7 % to 50.9 %. This was 

the largest significant change observed among two concentrations of the same 

compound with a ten-fold difference in concentration, out of the four cathartic 

plant drugs tested with this assay. The 15 .5 % inhibition of PP2A activity 

reported for the 0.0148 mg/ml concentration of convolvulin should not be 

considered significant based on the 0.12 p-value. An 8% increase in activation 

occurred at the 0.00148 mg/ml concentration of convolvulin. This does not seem 

to be consistent with the rest of the convolvulin data, despite the data's 

significance due to the low p-value below 0.01. The effective dose of convolvulin 

(as a powdered resin) consumed orally to produce catharsis is 2 grams (see Table 

3). Because of the three order difference between the effective dose and the 1.48 
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mg/ml concentration of convolvulin which caused 50.9 % inhibition of PP2A in 

vitro, the possibility can not be excluded that convolvulin may inhibit PP2A . 

The ricinoleic acid samples showed a maximum of 9. 7 % inhibition of 

enzyme activity at the 100 µM ricinoleic acid concentration with a p value of 

0.02, a 6. 7 % inhibition at 10 µM with a p value of 0.01, and a 0.04 % inhibition 

of enzyme activity occurred at the 1 µM ricinoleic acid concentration with a p 

value less than 0.01 (see Figure 18). This data is significant, therefore ricinoleic 

acid may have a weak inhibitory effect on PP2A. According to this data, there 

was a slight trend for the inhibition of PP2A to increase as the concentration of 

ricinoleic acid increased. The effective dose of ricinoleic acid (as castor oil) 

consumed orally which will produce catharsis is 30 milliliters (see Table 3). 

Because of the substantial difference between the effective dose and the 

concentration of ricinoleic acid which caused 9.7 % inhibition of PP2A in vitro, 

the possibility can not be excluded that ricinoleic acid may inhibit PP2A . 

The podophyllotoxin samples showed a maximum inhibition of 7.2% at 

the 100 µM concentration with a p value of 0.03. There is 97% confidence that 

this data is significant, so podophyllotoxin may have a weak inhibitory effect on 

PP2A. A 3.4 % increase in activation occurred at the 10 µM concentration of 

podophyllotoxin, whereas the 1 µM concentrations showed an inhibition of 5.6 % 

PP2A activity (see Figure 19). However, these values should not be considered 

significant since there is only 15% and 25% confidence in this data based on the p 

values. Therefore it is unclear whether the inhibition is increasing or decreasing 

as the concentration of podophyllotoxin increases. The effective dose of 
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podophyllotoxin consumed orally which will produce catharsis is 1.25 grams (see 

Table 3). Since there is a four-order difference between the effective dose and the 

concentration of podophyllotoxin which caused 7.2 % inhibition of PP2A in vitro, 

the possibility can not be excluded that podophyllotoxin may inhibit PP2A. 

The cathartic compounds studied were chosen because of their partial 

structural resemblance to the DSP toxin okadaic acid and its derivatives. Their 

structural resemblance may cause them to act in the same manner as okadaic acid. 

These plant-derived compounds all contain unique hydroxy acid moieties which 

can be easily cleaved in the intestines to produce catharsis. Although okadaic 

acid and its derivatives have complicated structures, the functional groups 

essential for binding to protein phosphatase 1 and 2A have been determined to be 

a carboxyl group and hydroxyl groups. They are located on the straight-chain 

carbon-carbon backbone. With the folding of the molecule, a free carboxyl group 

at carbon one and free hydroxyl groups at carbons 24 and 27 become available 

and are essential for receptor binding in the case of okadaic acid (see Figure 3). 

This was determined by x-ray crystallography of okadaic acid bound to the 

protein phosphatase 1 and 2A enzymes (Sasaki, K. et al., 1994). These moieties 

are important for such compounds to bind to a receptorial site on protein 

phosphatases 1 (PPl) and 2A (PP2A), thus inhibiting their activity and interfering 

with signal transduction processes, such as ion channel regulation. The loss of 

ion channel regulation results in the efflux of electrolytes and water as diarrhea. 
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Resin glycosides are well known as the purgative ingredients of some 

crude drugs such as Pharbitidis Semen and Jalapae Tuber which originate from 

Convolvulaceae plants. Chemical investigations on these resin glycosides were 

conducted as early as 1840 by J. F. W. Johnston. When these resin glycosides are 

subjected to alkaline hydrolysis, a hydroxyfatty acid oligoglycoside (glycosidic 

acid) and some organic acids (isobutyric, 2-methylbutyric, tiglic acids, etc.) are 

provided. The glycosidic acid is cleaved by acid hydrolysis to yield a 

hydroxyfatty acid and several kinds of monosaccharides such as glucose 

rhamnose, quinovose, etc. (Noda, N. et al. , 1987). 

Jalapae Tuber, the dried sliced root of Ipomoea purga, a Convolvulaceae 

species indigenous to Mexico, is well known as a purgative crude drug. The resin 

obtained from the root is called Ipomoea resin. Its resin glycoside is typically 

known as Mayer's "jalapin", an ether-soluble resin glycoside (Mayer, W. , 1852). 

The hydroxyfatty acid (jalapinolic acid) obtained by alkaline and subsequent acid 

hydrolyses of Ipomoea resin was determined to be 11-hydroxyhexadecanoic acid 

(Asahina, Y. et al. , 1922). In 1961 , Shellard reexamined the components of this 

resin and identified seven organic acids (acetic, propionic, isobutyric, tiglic, 2-

methylbutyric, n-valeric and isovaleric acids), three sugars (glucose, fucose, and 

rhamnose) together with the jalapinolic acid from the ether-soluble portion. The 

same organic acids and sugars were isolated from the ether-insoluble portion 

along with ipurolic and convolvulinic acids. The parent glycosides were not 

isolated. 
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Pharbitidis Semen, the seeds of Pharbitis nil, a species of morning glory, 

is a cathartic crude drug. Its resin glycoside is typically known to be a Mayer' s 

"convolvulin," an ether-insoluble resin glycoside (Mayer, W., 1852). Early 

chemical investigations on the resin glycoside of this plant revealed the presence 

of a hydroxytetradecanoic acid ( convolvulinic acid) and tiglic acid (named for 

Croton tiglium, the source from which it was initially isolated), along with a 

glycosidic acid by alkaline hydrolysis and two crystalline fatty acids and D

glucose by acid hydrolysis of the glycosidic acid. (Kromer, N., 1896). More 

detailed investigations were later reported that alkaline hydrolysis of the crude 

glycoside named pharbitin (convolvulin) gave an organic acid named nilic acid 

(2-methyl-3-hydroxybutyric acid), together with tiglic acid and (+)-2-

methylbutyric acid (Asahina Y. et al. , 1922). Mannich and Schumann in 1938 

presumed Mayer' s "convolvulin" to be a complex glycoside composed of a 

number of the repeating unit which is a glycosidic acid partially acylated by some 

organic acids at the sugar moiety. However, any pure resin glycoside had not yet 

been isolated and the chemical studies had been limited only to characterization of 

the component glycosidic acids and organic acids afforded by alkaline hydrolysis 

of a crude resin glycoside (Wagner, H. , 1974). 

In 1970, Okabe et al. reinvestigated the components of Pharbitis resin and 

isolated two glycosidic acids, pharbitic acids C and D, along with valeric, tiglic, 

nilic, isobutyric acid, and (+)-2-methylbutyric acid from its alkaline hydrolysis . 

A reexamination of the chemical components of pharbitin was carried out again in 
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1990 by Ono, M. et al., who characterized the glycosidic acids as ipurolic acid 11-

0-penta- and 11-0-hexaglycoside. 

The effects of the hydroxy acid-containing cathartics on PP2A were 

determined using the PP2A 4-MUP inhibition assay. An assay that perhaps uses a 

crude PP2A preparation would be much more economical for further studies to be 

conducted. Testing these compounds on other enzymes may help to further 

explain their cathartic activities. Also, the development of an assay that is not 

performed on microscale might be more appropriate for future studies due to the 

solubilities of the test samples. Having a maximum volume of 50 µl per well is a 

limitation to this assay. This limitation prevents the drugs from being tested at a 

scale that is relevant to their actual therapeutic dosage and prevents them from 

being assayed at higher concentrations at which more or total inhibition might 

take place. 

Another limitation of this experiment was the uncertainty of the purity of 

the jalapin and convolvulin samples. It may be possible that the slight activation 

observed in each data set from the jalapin and convolvulin samples could have 

been due to contamination of the enzyme assay by highly hydrophobic 

compounds which may have been present in the crude extracts. If this 

experiment were to be improved upon, separation of the crude extracts by HPLC 

would improve the ability to attain better purity of the isolated samples. 13C 

NMR studies in addition to the 1 H NMR studies would enhance the ability to 

confirm the molecular structure of the isolated compounds. Performing replicates 
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of each microtiter plate would provide more data, which would allow for better 

statistical analyses and more certainty in interpreting the results of the experiment. 
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CONCLUSIONS 

The assay results indicated weak but significant inhibition of PP2A by 

these compounds. Okadaic acid almost completely inhibits PP2A in vitro at a 60 

nM concentration and can produce diarrhea in humans by consumption of 1 µg of 

the toxin. The doses of these crude drugs used to produce catharsis are six orders 

larger than the dose of okadaic acid which causes diarrhea in humans. Thus the 

weak activities of these compounds may be sufficient to account for the cathartic 

action of these drugs. However, in the human body, the bioavailability of these 

compounds is unknown. Since the traditional standard dosages of these cathartics 

are too large to prepare as samples for a micro-titer assay due to their solubilities, 

they were not able to be assayed at higher concentrations at which more or total 

inhibition might take place. The possibility that these crude cathartic drugs 

inhibit PP2A can not be discounted based on the results ofthis study. It is also 

possible that these drugs may cause catharsis by affecting other enzymatic 

activities which were not tested. This matter is still open to question. 
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Table 1. 1H NMR Spectral Data for Samples N76-24-5 
& N76-24-6 (YSN2246 & YSN2247) (400 MHz, pyridine-d5) 

Chemical Shift 0 
Moiety Carbon# Umml #of H's Peak splitting 

Rhamnopyranosal 1 5.51 1 H d 
2 5.67 1 H dd 
3 5.78 1 H dd 
4 4.18 1 H dd 
5 4.26 1 H dq 
6 1.56 3H d 

Glucopyranosal 1 5.13 1 H d 
2 4.09 1 H dd 
3 5.78 1 H dd 
4 5.39 1 H dd 
5 4.17 1 H ddd 
6 4.42 1 H dd 

4.68 1 H dd 

Quinovopyranosal 1 4.82 1 H d 
2 4.09 1 H dd 
3 5.39 1 H dd 
4 5.04 1 H dd 
5 3.68 1 H dq 
6 1.26 3H d 

Rhamnopyranosal' 1 5.67 1 H d 
2 5.92 1 H dd 
3 5.99 1 H dd 
4 4.53 1 H dd 
5 4.61 1 H dq 
6 1.45 3H d 

Quinovopyranosal' 1 4.81 1 H d 
2 4.01 1 H dd 
3 3.55 1 H dd 
4 3.62 1 H dd 
5 3.91 1 H dq 
6 1.65 3H d 

Jalapinoyl 2 2.69 2H m 
11 3.77 1 H m 
16 0.96 3H 
3-10, 12-15 1.65 24 H m 
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Chemical Shift 0 
Moiety Carbon# Umml #of H's Peak splitting 

Tiglyl 3 7.02 1 H dq 

4 1.59 3H dd 

5 1.82 3H s 

Tiglyl' 3 7.17 1 H dq 

4 1.36 3H dd 

5 1.65 3H s 

Acetyl 1.96 8H 
2.34 2H 
2.69 2H 

lsobutyryl 2 2.92 1 H sept 

3 1.21 3H d 
4 1.07 3H d 
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Table 2. 1H NMR Spectral Data for Samples N57-174-8 
& N57-175-3 (YSN2170 & YSN2171) (400 MHz, pyridine-dS) 

Moiety Carbon# Chemical Shift d (ppm)# of H's Peak splitting 

Glucopyranosal 1 4.89 1 H d 
2 4.36 1 H dd 
3 4.58 1 H dd 
4 3.85 1 H dd 
5 3.91 1 H ddd 
6 4.28 1 H dd 

4.46 1 H dd 

Glucopyranosal' 1 5.85 1 H d 
2 4.25 1 H dd 
3 4.23 1 H dd 
4 4.21 1 H dd 
5 3.85 1 H ddd 
6 4.3 1 H dd 

4.47 1 H dd 

Rhamnopyranosal 5.48 1 H d 
2 4.54 1 H dd 
3 4.53 1 H dd 
4 4.25 1 H dd 
5 4.38 1 H dq 
6 1.67 3H d 

Rhamnopyranosal' 1 6.32 1 H d 
2 4.71 1 H dd 
3 4.76 1 H dd 
4 4.5 1 H dd 
5 5.04 1 H dq 
6 1.93 3H d 

Quinovopyranosal 1 5.30 1 H d 
2 4.21 1 H dd 
3 4.29 1 H dd 
4 3.49 1 H dd 
5 3.85 1 H dq 
6 1.6 3H d 

Convolvulinyl 2 2.55 2H m 
11 3.91 1 H m 
14 0.87 3H 
3-10, 12-131 .32 20 H m 
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Moiety Carbon# Chemical Shift d (ppm)# of H's Peak splitting 

Tiglyl 3 7.01 1 H dq 
4 1.27 3H dd 
5 1.93 3H s 

Methylbutyryl 2 2.43 1 H tq 
3 1.6 1 H m 

1.93 1 H m 
4 0.94 3H t 
5 1.27 3H d 

Methylbutyryl' 2 2.53 1 H tq 
3 1.69 1 H m 

1 H m 
4 0.99 3H tq 
5 3H d 

lsobutyryl 2 2.55 1 H sept 
3 1.27 3H d 
4 1.27 3H d 
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Table 3. Effective Doses of Cathartic Drugs 

Cathartic Drug Drug Source Chemical Effective 
Classification Dose 

Okadaic Acid Dinoflagellates, Polyketide 1 µg 
manne sponge 

Croton Oil Seeds of Croton Phorbol esters 10-50 mg* 
ti_gfia 

Castor Oil Seeds of Ricinus Hydroxy-fatty acid 30 ml* 
communis l.{_Ricinoleic Acidl 

Podophyllotoxin Roots of Lignan 1.25 g* 
Podophyllum 
peltatum 

Jalapin Roots of lpomoea Resin glycoside 2 g* 
pur:.g_a 

Convolvulin Seeds of Pharbitis Resin glycoside 2 g* 
nil 

*Effective doses listed in the United States Pharmacopeia XX 
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50 g tJomoea purga roots 

__ 200 ml Me OH x 3, suction-filtered through Buchner 
funnel lined vw'lll/hatman 9.0 cm 1 filter. evaporated in 
rotavapor 

MeOH extract, N76-17-3, 6 .15 g 

-2 .0 g N76-17-3 

--partitioned beiween 25 ml dd H20 and 25 ml 1-BuOH in 
separatory funnel x 3, each layer was evaporated in 
rotavapor 

H20 e~•act. 1 76·18·9, 33 mg I "T" •;:::,"::::~:8,165 g 

YSN 
2243 

100 mg Defatted , 1-BuOH-soluble extract, N76-19-2, 1.55 g 
yellow oil L 

Si-gel Column Chromatography: stepwise 
elution wl CHCl3:Me0H (10 :1, 5 :1, 5 :2, 
5 :3, and 5 :4) yielded 76 (4 ml aliquot) 

f•act;oos I 

Fr. Fr. Fr. Fr. Fr. Fr. Fr. 
1-30, 31-38, 39-46,46, 47-53, 54-63, 64-76, 
N76- N76- N76- N76- N76- N76- N76-
24-1 24-2 24-3 24-4 24-5 24-6 24-7 

I I I 
YSN YSN YSN 
2246 2246 2247 

Figure 7. Outline for the Extraction of Jalapin from Roots of 
lpomoea purga 
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100 g Phstb/tis nil seeds 

~ 200 ml MeOH x 3, suction-filtered through Buchner 
fl.l'lnel llned w/ Whatman 9.0 an 1 filter paper, 
evaporated in rotavapor 

MeOH extract, N57-174-2, 4.17 g 

I 
-2.0 I g N57-174-2 

artltloned between 25 ml dd H:P and 25 ml 1-BuOH In 
atory funnel x3, each layer was evaporated In 

r 

LH-20 Column w/ MeOH 
1-BuOH extract H:z() extract I 
N57-174-7 N57-174-8, 730 mg (YSN2171)--1- (YSN2176) 

L 25 ml CH:!C'2 L Flash column chromatography 
N57-175-2, precipitate _L CH~'2 N57•17s-1 C~l3:MeOH:H:z() (6:4:1) yielded 60 (10 ml L · aliquot) fractions 

I MeOH, evaporation I 
NS7-175-3,50mg l~~,-~1 -~,....._-.-1 _~, -.-, --., 
shinywhl1epowcler Fr. 5-8 9-16 17-20 21-2930-35 36-39 40-42 43-60 

LH 20 Col / MeOH _j N57· N57· N57- N57- N57- N57- N57- N57-
• umnw I 181-1 181-2 181-3 181-4181-5 181-6 181-7 181-8 

Fr. 5-19, N57-1n-1 I I I I 
(YSN2170l LH-20 in MeOH YSN2174 YSN2172 YSN2173 

I I I I 
YSN2175 LH-20 Column with MeOH 

I I I 
YSN2177 YSN2178 YSN2179 

Figure 8. Outline for the Extraction of Convolvulin from Seeds of 
Pharbitis nil 
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Sam_l?_le # cm sam_Qle traveled/ cm solvent front Rf Value 
N76-24-5 5.7 cm I 7.6 cm 0.75 
N76-24-6 5.4 cm I 7.6 cm 0.71 
N76-24-7 4.6 cm I 7.6 cm 0.61 

2.3 cm I 7.6 cm 0.30 
1.4 cm I 7.6 cm 0.18 

Solvent system: CHCh:MeOH:H20 (6:4:1) 

( - . 

H?lr " "'l C.-
Z'·(, ~t- l 

Figure 9. Thin Layer Chromatography of Ipomoea purga Isolates 
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Figure 11. Proposed Structure of Ipomoea purga Isolates, Based on 

1 H NMR Analysis 
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t: 

.'• 

• 2.5 cm I 7.7 cm Rf= 0.32 

1.1 cm I 7.7 cm Rf= 0.14 

0.6 cm I 7.7 cm Rf= 0.08 

___ _, 

Solvent system: CHCh:MeOH:H20 (6:4:1) 

Figure 12. Thin Layer Chromatography of Pharbitis nil Isolates 
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Figure 14. Proposed Structure of Pharbitis nil Isolates, Based on 1H 
NMR Analysis 
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Figure 16. The Inhibition Effect of Jalapin on PP2A 
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Figure 17. The Inhibition Effect of Convolvulin on PP2A 
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Figure 18. The Inhibition Effect of Ricinoleic Acid on PP2A 
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