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 ABSTRACT 
Hydra are tubular coelenterates with two germ layers, the endoderm and 

ectoderm. A ring of five to eight tentacles surround an oral pore, and the animal 

attaches to the substrate via adhesion of the peduncle at the opposite end. They 

possess a complete ectodermal nerve net, with nerve fibers running within the 

ectoderm throughout the body and along the length of the tentacles (Hufnagel 1976.) 

Hydra has two nerve rings. One nerve ring surrounds the mouth and is thought to 

coordinate mouth opening. A second ring, located at the base of the tentacles, 

coordinates movements of the body, tentacles, mouth, and nematocysts in response to 

chemical, photic, and tactile stimuli. The functional unit of the tentacle effector 

systems is the battery cell complex. The battery cell complex consists of a large 

epithelial cell called a battery cell and its associated complement of neurons and 

nematocytes. These battery cell complexes link to each other via interdigitating 

neuronal processes and myonemes. They have been shown to respond to diverse 

chemical and mechanical stimuli. When separated from the battery cell, the 

nematocyst is still able to respond to mechanical and photic stimuli, though not 

chemical cues.  

Hydra have been known to be photosensitive since the 1800’s, and have been 

shown to demonstrate a preference for some colors over others. They are sensitive to 

light at the base of the animal. Exposure to light causes contractions of the 

endodermal musculature and extensions of the body column. Light exposure also 

changes the frequency of both ectodermal contraction pulses and endodermal 

rhythmic pulses. Further, I have found in my current electrophysiological experiments 

that hydra’s ablated tentacles show some of the same differences in behavior across 



 

  
 

wavelengths.  

 The Pax family of genes is found across taxa, from cnidarians all the way to 

humans. These highly conserved genes code for a transcription factor instrumental in 

the formation of the eye, to such a degree that it leads to the production of eyes where 

none should be. In fruit flies, exogenous expression of the Pax6 protein product 

causes the production of eyes on the legs or antennae. Box jellies like Cladonema, 

members of another cnidarian group, express a version of the Pax genes that also 

creates ectopic eyes in Drosophila. Nine mammalian Pax genes have been identified, 

in four subgroups; most of the Pax family is involved in the development of the 

nervous system, in particular those sections dealing with optical input. The 

relationships between the Pax systems in more evolved organisms and those in more 

basal organisms have also been sought. A pair of Pax families, named PaxA and 

PaxB, has been found in both sea nettles and hydra. In addition, the protein products 

of the hydra PaxA gene were found to bind to a site for Pax5/6 products, which means 

that the genes produce a very similar protein at all evolutionary levels. This similarity 

indicates that the Pax gene family has been involved in vision for a very long time. 

Because hydra are known to be basal to the eumetazoans, adding hydra to the list of 

Pax-expressing species, coupled with the hydra’s simple nerve net, allows us to 

examine the roots of vision and color sensitivity in its most primitive form.   

In this study of PaxB in hydra it was expressed during head regeneration and 

development, in the cell types expected to become neurons and nematocytes. Most 

particularly, the expression in the nematocytes is of interest, as it spatially couples the 

presence of PaxB to the response to light as demonstrated by Plachetzki and others. 



 

  
 

The electrophysiological results reported here add further support to this, with the 

greatest response to light found in the large tentacle contraction pulses seen in ablated 

tentacles. These tentacles are rich with nematocytes and battery cells, further spatially 

linking light reception to these cell types.  
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PREFACE 

 This dissertation is presented in manuscript format in accordance with the 

guidelines set forth by the Graduate School of the University of Rhode Island. Each 

chapter is written to stand alone as a separate research question while simultaneously 

contributing to the greater body of knowledge about hydra neurophysiology and the 

evolution and development of the photic response in cnidarians specifically and early-

evolving organisms generally. Chapter 2 is in preparation for submission to 

Development, Genes and Evolution. Chapters 3 and 4 are currently in preparation for 

submission to Comparative Biochemistry and Physiology A: Physiology. 
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 Genomic evidence has shown that the freshwater polyp Hydra vulgaris is 

closely related to the ancestor of all eumetazoans - including sea anemones, insects, 

birds, mammals, and humans (Putnam et al. 2007). This close relationship, coupled 

with the simple, yet complete, nerve net found in the species, makes hydra an ideal 

experimental organism for examining a number of questions dealing with the early 

evolution of nervous transmission and sensing (Kass-Simon and Scappaticci 2002).  

 Photoreception is one of the oldest and most widespread sensory systems, with 

examples going all the way from bacteria and algae to humans. The structures, 

proteins, and pathways involved vary widely, but the end result is the same: a system 

that plays a role in feeding, reproduction, circadian rhythm, and many other vital 

processes. A significant amount of evidence indicates that cnidarians are the earliest-

evolving organisms to produce distinct eyes, defined as specialized organs with a 

photosensory function (Arendt 2003). See Figure 1 for a tree of cnidarian 

evolutionary relationships. Further, they even form several different types of 

photosensitive structures, sometimes even more than one type in a single species, 

representing the development of eyes in miniature. Both the medusoid and polypoid 

species have photosensitive abilities. The medusoids in particular have been heavily 

studied, particularly the box jellies like Cladonema californicum, with their large, 

varied, and easily identifiable photosensitive structures (Sun 2001, Bentlage 2009). 

By contrast, though a number of polyp species, like Hydra, demonstrate a marked 

photosensitivity, the genes, pathways, and cell types responsible remain largely 

unclear. Although there is one polyp species known to have pigment-spot ocelli at the 

base of its tentacles, further analysis shows that this species, Stylocoronella riedli, is 
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actually a sessile medusa (Bentlage 2009). Nevertheless, it may be used as a reference 

point for investigating the photoreception of true polyps. Some further assumptions 

may be made about their likely methods and form based on other cnidarian visual 

equipment, as will be outlined below.  

 Cnidarians have many different types of photosensors (Martin 2002, Coates 

2003, Kozmik 2008). The simplest are eyespots, patches of pigmented epithelium 

associated with ciliated sensory cells. The precise shape and size of the receptor cells 

varies with species. The next in the line of ascending complexity is the pigment-cup 

ocellus. In these, the sensory cells are contained within a cup formed of pigmented 

epithelial cells. The cup has the advantage of directing the light input, making it 

possible for the animal to determine directionality of the input. It also concentrates the 

light to some degree, though not to the same resolution as lensed eyes. A similar type 

to this in both complexity and structure is the slit eye found in cubomedusae (Coates 

2003). These types of photosensors are only dimly image-forming at best, most likely 

capable only of distinguishing a shadowy pattern of lights and darks. 

 Further up the complexity series are the complex eyes, which come in both 

large and small types (Martin 2002). These complex eyes, also referred to as the 

camera type, have a cornea, a cellular lens, a retina with pigmented cells, and, in some 

cases, a vitreous space. These eyes are quite morphologically similar to the camera 

type eyes of cephalopods and vertebrates, and may be assumed to have fairly similar 

image-forming properties. The lens is cellular, but the cells appear to form a partial 

syncytium, lacking cells walls, discrete nuclei, and internal structure. The lens is 

continuous with the retina, with no space between as is found in vertebrate eyes. In 
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some species, the lens does appear to secrete a closely associated capsule that is 

sometimes referred to as the vitreous body.  

 Many species of cnidarian also display extraocular photosensitivity, with 

neurons, epithelial cells, and myonemes playing a role in the light response. Of 

particular interest is neuronal photosensitivity, in which the neurons act as the 

receptors, the effectors, and, in those species with at least semi-complete nervous 

networks or rings, the integrators of the photoresponse. Some genomic evidence has 

suggested this as the earliest type of photosensitivity, one which remains extant in 

many species up to the present.  

 Despite the differences in structure of the photosensitive organs, the 

photoreceptive cells themselves are fairly uniform. All cnidarian photoreceptors thus 

far found are of the ciliary type, with a 9+2 bundling arrangement in the microtubules, 

the same construction as vertebrate photoreceptors (Kozmik 2008, Shubin 2009). This 

serves to reinforce the argument that cnidarian photoreceptors are either precursors to 

or sharing a common ancestor with vertebrate ones. In contrast, the archetypical insect 

photoreceptor is of the rhabdomeric type. Cnidarian photoreceptors also share 

electrical methods of action with vertebrate photoreceptors; both types hyperpolarize 

when excited (Figure 2.) 

 The central cilium of these photoreceptors has projecting microvilli, which 

actually contain the stacked rhodopsin molecules (Kozmik 2003). The internal 

structure of the photosensory cell consists of a light-receptive outer region, a 

pigmented layer below it, and a nuclear layer furthest from the light input. Each 

pigmented cell has an associated neuron, which interconnects to those that surround it 
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to create an integrated perception of the surroundings. Cnidarian nerves are 

multifunctional structures In the medusoid species, the only specialized sensory 

structures are the cells of the ocelli and the statocysts. In the polyps, without such 

specialized structures, it may be hypothesized that the neurons take on these roles as 

well. 

 Those cnidarian species demonstrating photosensitivity manifest it most 

strongly in a marked phototacticity. Most freeswimming species will avoid dark 

objects and move toward shafts of light in the water. It has been speculated that this is 

both a feeding and a predator avoidance response. Many of these species live in near-

shore environments, many of which are liberally filled with both obstacles and 

predators, both of which would appear to even simple light-dark photoreceptors as 

large dark spots. By contrast, many possible prey species might be found in the light 

patches, resulting in a light-following behavioral pattern likely to increase chances of 

both successful feeding and discovery of conspecifics. Some medusae have been 

shown to have a far more complex photoresponse than simply light-dark, as well. The 

irukandji, a small box jelly, displays a differential response to colored light, a 

response currently being investigated as a way to deter them from human-populated 

beaches. 

 Despite the nonspecific nature of the photoreceptors of the various polyp 

species, they display similar behaviors to the medusae. The photoresponse of hydra 

has been very well described, with hydra showing a marked movement into lighted 

areas and even a preference for some colors over others. The precise nature of the 

processing and cell types involved in this response is not yet fully understood. 
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 Now that the structure of the discrete photoreceptors in some organisms and 

the behavior associated with the photoresponse are fairly well understood, attention 

has turned to the genomic pathways underlying the evolution, development, and 

maintenance of the responses. The early-evolving nature of the cnidarian 

photoreception systems makes them a prime target for understanding how 

photoreception as a whole came to be. Cnidarians are also significant because, in 

addition to their diverse photoreceptive structures, they display a broad variety of 

genes associated with vision, including all three types of opsins, C-, R-, and RGR/G0 

types (Lamb 2009). As hydra lack the pigmented cells thought typical of the 

photoresponse, of particular interest here is the role and presence of those genes 

tagged in other taxa as integral to the photoresponse, the Pax family.  

 The Pax gene family is a group of transcription factors named for the paired 

box domain they contain. The paired box domain is a region of 128 amino acids 

named for the Drosophila segment polarity gene in which it was first characterized, 

and featuring a distinctive serine residue at position 50 (Bopp 1986). The paired box 

domain has DNA binding activity in both the N- and C- terminal regions (Xu 1999). 

Many have a complete or partial homeodomain as well, and some also feature an 

octapeptide.  

 There are nine Pax genes in total in mammals and other more evolved taxa, 

grouped into four subfamilies (Callaerts 1997, Gehring 1999). Group one consists of 

Pax1 and Pax9 and is distinguished by a complete octapeptide. Group two, Pax2, 

Pax5, and Pax8, has the octapeptide and a partial homeodomain. Group three is Pax3 

and Pax7, and has both the complete octapeptide and a complete homeodomain. 
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Group four, the group of most interest in visual research, is Pax4 and Pax6. These 

genes have a complete homeodomain, but no octapeptide. 

 The Pax genes have been heavily studied because of the significant role they 

play in development. Pax 6, discussed here, plays a crucial role in the formation of the 

eye, the central nervous system, the neural tube, and the olfactory epithelium 

(Stierwald nd, Simpson 2002). It has been highlighted as the master control gene for 

eye development; it triggers a genetic cascade that results in the formation of eyes. It 

also plays a role in defining the borders between regions of the central nervous system 

during the determination of the anterior-posterior axis (Mastick 1997). The 

differential effects in diverse tissues occur via the use of changing splice patterns 

specific to each tissue type, allowing for changes in the specific DNA binding activity 

and therefore affecting the precise control of expression of a phalanx of genes and 

proteins, including Six, Ets, Lim, Hes, Wnt, Maf, HLH, cadherins, keratins, and 

crystallins (Simpson 2002, Purcell 2005). 

 Interestingly, Pax 6 is conserved to such a high degree that murine Pax 6 can 

produce ectopic eyes in Drosophila that even appear to be somewhat functional in 

electrophysiological studies (Gehring 1999). Of even more interest when considering 

the significance of Pax 6 in cnidarian photoreception is the finding that PaxA-Cr, the 

Pax6 homologue in Cladonema, is also able to elicit ectopic eyes in Drosophila (Sun 

2001). The eyes so formed remain Drosophila-specific, suggesting that the expression 

of a Pax6 analog does not itself create the eye, but does suffice to turn on a 

developmental cascade that is specific to the genes present in the host organism. Some 

downstream targets of this cascade include the opsins, which have also been found in 
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hydra (Musio 2001, Plachetzki 2007).  

 Cnidarians appear to have between two and four Pax genes, usually referred to 

as PaxA through PaxD (Sun 1997, Bromham 2002, Plaza 2003). Cladonema radiata 

has three, A through C, while Nematostella vectensis, the starlet sea anemone, has 

four (Sun 2001, Matus 2007.) It has been speculated that hydra also may have as 

many as four. The high homology between Nematostella and Hydra sequences would 

seem to confirm this. 

 The homology between the PaxA-D genes of cnidarians and other 

nonmammalian taxa are not fully understood. It is thought that the nine mammalian 

genes arose from gene duplications after the split between coelenterates and the 

putative mammalian ancestor (Hoshiyama 1998). Sequence analysis of Pax genes 

collected from Hydra littoralis indicates that the hydra PaxA is closest in sequence to 

the Pax4/6 group, with H. littoralis’ PaxB mapping to the Pax2/5/8 group. 

Conversely, however, analysis of the Pax genes found in Hydra magnipapillata hints 

at a more complex picture, with PaxB mapping to Pax4/6. A functional role has been 

proposed for PaxB that unites the roles of all three in vertebrates. This is similar to 

evolutionary sequence analysis as done by Shubin et al. (2009), which indicated that 

PaxB was, generally, the ancestral form of the visual Pax 6 genes, with the later 

differentiation in structure and function in the vertebrates due to a duplication event 

after the cnidarian-vertebrate lineages split; see figure 1 for a tree.  None of the 

hydroid genes have been fully functionally studied, however; the expression patterns 

and true developmental roles of each remain unclear. In this thesis, I will describe the 

discovery, sequencing, and localization of the Hydra vulgaris PaxB gene, with some 
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thoughts on its possible role in photoreception and neural development. 

 Photoreception requires more than simply the presence of a gene known to 

produce photoreceptive structures, however. The eye means nothing without the brain 

to interpret its signals, and hydra lack what most would categorize as a brain. They 

are tubular cnidarians with two epithelial layers, the endoderm and ectoderm. A ring 

of five to eight tentacles surround an oral pore, and the animal attaches to the 

substrate via adhesion of the basal disc at the opposite end. Hydra possess a complete 

ectodermal nerve net; non-nervous epithelial fingers interdigitate between the two 

layers, coordinating the functions of the ectodermal epithelial layer with those of the 

endoderm (Hufnagel and Kass-Simon 1976; Wood 1979). A proximal nerve ring 

surrounds the hypostome at the level of tentacle insertion and is considered to 

coordinate movements of the body, tentacles, mouth, and nematocysts in response to 

chemical, photic, and tactile stimuli (Kass-Simon 1972; Kinnamon 1981, Koizumi 

1992). A second, possibly less-complete distal nerve ring is found inside that, more 

closely placed to the mouth (Hufnagel and Kass-Simon, unpublished). 

 Hydra have two contractile layers working in apposition: an internal layer of 

longitudinal myonemes, and an outer layer of circumferential myonemes (Scappaticci 

and Kass-Simon 2004). Contraction of the longitudinal myonemes contracts the body 

column; contraction of the circumferential myonemes results in an elongation. 

Illumination of the animal has been shown to result in their most unique behavior, the 

somersaulting response to strong stimulus. The animal elongates upward before 

reaching to one side. The isorhizas, a ‘sticky’ type of nematocyst, fire and attach the 

tentacles to the substrate; the opposing side of the body column then contracts, 
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flipping the basal disc over in the direction of travel. After reattachment of the basal 

disc, the animal then releases the isorhizal attachments and contracts the leading edge 

of the body to right itself. This process can continue until the animal has reached a 

more optimal environment.  

 There are three principal types of electrical activity seen in the hydra: pulses 

arising in the hypostome, pulses arising in the body, and pulses arising in the head 

(Passano and McCullough 1964). Any of these may be through-conducted to other 

body regions. The largest type of pulse is the tentacle or body pulse (TP and CP, 

respectively). These pulses, named for the site at which they are recorded, are large – 

even greater than 1mV – and are usually associated with the visible contraction of the 

associated body region. It is thought that both of these types of pulses originate in the 

hypostome (Passano and McCullough, 1964). Both TPs and CPs typically group 

together into bursts, the frequency of which has been found to vary under both 

extrinsic and intrinsic stimulation. Stimuli that change the rate of these bursts include 

light, time of day, degree of starvation, mechanical stimulation, electrical shock, and 

many neuromodulatory substances, including GABA, glutamate, glycine, NMDA, 

AMPA, atropine and others (Kass-Simon 1978, 2007).  

 Hydra have been known to be photosensitive since the 1800’s, and have been 

shown to respond preferentially to some colors over others, with blue being preferred 

(Wilson 1891). They are sensitive to light applied in a narrow band on the base of the 

animal (Passano and McCullough 1964), as well as large-scale changes in the overall 

lighting of the environment. Exposure to light causes contractions of the endodermal 

musculature, resulting in body column extension (Passano and McCullough 1964). 
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Exposure to pulses of colored light also changes the frequency of both ectodermal 

contraction pulses and endodermal rhythmic waves in whole animal and head and 

tentacle preparations (Taddei-Ferretti et al. 2004). Previously reported experimental 

results have indicated that removal of the tentacles did not affect the frequency of 

light-elicited body column contractions, whereas removal of both the head and the 

tentacles resulted in a complete inhibition of such contractions (Rushforth 1963, 1971, 

1973). Single excised tentacles are also independently photosensitive to strong white 

light, demonstrating that at least some part of the necessary photic inputs arise in the 

tentacles and are transmitted down the tentacles to the proximal hypostomal nerve 

ring (Passano and McCullough 1964). New to this study is the finding that the 

tentacles can also distinguish between different wavelengths of light. 

 Within the tentacles, the functional unit is the battery cell complex as 

described by Hufnagel and Kass-Simon (1985); see figure 3. The battery cell complex 

is a group of diverse cell types that together form an effector unit capable of 

responding to stimuli and transmitting that stimulus down the tentacle to the 

hypostomal nerve rings. It consists of large ectodermal epithelial cell, which 

surrounds and supports neurons and nematocytes. The nematocytes, in addition to 

responding to chemical, photic, and tactile stimuli while contained within the battery 

cell unit, have been shown to respond to photic and tactile stimuli when removed 

from it, showing that they possess simple sensor-effector capabilities (Kass-Simon 

and Scappaticci 2002, Scappaticci and Kass-Simon 2008, 2010.)  

 Differential photosensitivity between the tentacles and the whole animal implies 

a degree of as-yet-unquantified neuronal processing of the visual inputs. Because the 
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hydra nervous system is morphologically a simple network, describing the 

mechanisms by which such networks integrate sensory and effector signals may be 

profoundly important to determining how early brains evolved such integration. 
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Abstract  

The early-evolved metazoan hydra has a complex sensory system that 

responds to chemical, mechanical, and photosensory stimuli. Despite hydra’s complex 

responses to light, little is known about the development of the cellular basis for its 

light perception. Here we report the cloning and localization of the Pax B gene in 

Hydra vulgaris. The sequence was isolated from cDNA via PCR and confirmed by 

phylogenetic analysis. Using whole mount in situ hybridization, specific labeling of 

presumptive nematocytes and interstitial cells in whole animals, 24-hour regenerates, 

and mid- to late-stage buds was found. Labeling was concentrated at the apical end in 

regenerates and buds, and found in cells scattered throughout the adult body column. 

Together with earlier behavioral findings, the localization of HvPaxB transcripts in 

budding and regenerating animals suggests that this gene plays a role in neural 

organization and the specification of phototransduction structures in hydra. The time-

dependent expression in structures destined to be crucial to light perception suggests 

that these structures are specified during a finite phase in morphogenesis. 
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Background  

Hydrozoans are considered the best extant representative of the ancestral 

metazoan form; they have a simple tubular body plan, unsegmented appendages, and 

a simple nervous system. The genome of the anthozoan Nematostella vectensis is 

thought to have diverged relatively little from its metazoan common ancestor, 

implying that hydra, as its near relative, may also have characteristics of the most 

primitive animals (Putnam et al 2007). 

Hydras consist of two epithelial layers, the endoderm and ectoderm, separated 

by an acellular mesoglea. A ring of five to eight tentacles surrounds a hypostome, at 

the apex of which, is an oral pore. Hydra possess a complete ectodermal nerve net, 

although its endodermal net is said to consist only of loosely connected fibers 

(Westfall 1971). Non-innervated epithelial projections interdigitate between the two 

layers, providing a pathway for coordination between the layers (Hufnagel and Kass-

Simon 1976, Wood 1979). A nerve ring of interconnected fibers surrounds the mouth 

in Hydra magnipapillata and other species of hydra that has been suggested to 

coordinate the feeding behavior in the hypostome (Westfall 1971, Koizumi 2007). A 

second nerve ring, running between and below the tentacles, coordinates tentacular 

and body contraction behavior in response to chemical, photic, and tactile stimuli 

(Kass-Simon 1972). 

Hydra have been known to be photosensitive since the 1800’s, although they 

have neither eyes nor other conventional photoreceptive structures. The Hydra pirardi 

used in Wilson’s experiments congregated preferentially in regions of a tank lit with 

blue light rather than those lit with other colors. Several species of hydra (H. pirardi, 
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H. oligactis, & H. littoralis) are sensitive to light applied in a narrow beam to the base 

of the animal (Passano and McCullough 1962). Exposure to light causes contractions 

of the endodermal musculature and changes the frequency of ectodermal contraction 

and endodermal electrical impulses (Passano and McCullough 1964, Singer et al 

1963, Taddei-Ferretti 2004). Taddei-Ferretti also describes a bioelectric “big slow 

wave” that correlates to the contraction-extension behavior of the body column and 

which is affected in H. vulgaris by stimuli of 400 to 500 nanometer light, with 

sensitivity decreasing above 500 nm but returning slightly at wavelengths above 575 

nm. 

Plachetzki et al (2012) have recently shown that light is involved in the 

regulation of nematocyst firing through the activation of cyclic-nucleotide gated 

channels (CNG). When cells expressing opsin along with CNG genes were exposed to 

light, the associated nematocysts fired. Knockout experiments on the CNG channels 

showed that these and their associated light response were necessary for the firing.  

It is therefore desirable to examine other links in a putative photosensory 

cascade. One such link involves the Pax family of transcription factors, which have 

been implicated in direct photosensory specification and in the nervous pathways that 

process light stimuli. In mammals, there are nine Pax genes, numbered 1 through 9. In 

cnidarians, the number of Pax genes remains unclear, with numbers as high as nine in 

some species (Matus et al 2007). 

Relationships between the Pax gene network in complex organisms and those 

in more basal organisms have been sought. A pair of Pax genes, PaxA and PaxB, were 

found in sea nettles and hydra (Sun et al 2001). The starlet sea anemone, Nematostella 
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vectensis, has nine Pax genes, while the coral Acropora millepora has four (Matus et 

al 2007). In addition, the protein products of hydra PaxA bind to a site for Pax-5/6 

products, suggesting that the protein was highly conserved as the various taxa 

evolved. Structural analysis and binding affinity experiments on Hydra, Cladonema, 

and Tripedalia indicate that cnidarian PaxB is the orthologue of the Pax 2/5/8 

subfamily in bilaterians (Sun et al 2001, Kozmik et al 2003, Suga et al 2010). In the 

hydroid jellyfish Podocoryne carnea, PaxB plays a role in the differentiation of nerve 

cells (Gröger et al 2000). The PaxB gene from the cubozoan Tripedalia cystophora, 

has characteristics of both the Pax2/5/8 and Pax6 subfamilies (Kozmik et al 2003). 

Pax6, which may be similar to cnidarian PaxA, is a photosensitivity-related gene 

implicated in the early stages of the formation of photoreceptive cells and structures 

and is found across taxa from cnidarians to humans.  

This highly conserved Pax gene codes for a transcription factor instrumental in 

the formation of eyes and other tissues. It has been proposed that it has been necessary 

for the formation of photoreceptor cells since the earliest metazoan ancestors (Arendt 

2003). In fruit flies, ectopic expression of the Pax6 protein product causes the 

production of eyes on the legs or antennae (Halder et al 1995, Callaerts et al 1997). 

The PaxA gene of Cladonema californicum, a scyphozoan jellyfish, is capable of 

inducing ectopic eyes in Drosophila (Suga et al 2010). Remarkably, PaxB from 

another scyphozoan, Tripedalia cystophora, can also induce ectopic eyes in flies 

(Gröger et al 2000). 

Here we present evidence that the PaxB gene found in H. vulgaris appears 

during development of body regions and cell types involved in the animal’s sensory 
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system. 
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Methods 

Animal culture 

Specimens of Hydra vulgaris were asexually cultured in glass baking dishes 

containing modified bicarbonate versene culture solution (BVC): 1 x 10 - 7 mol/L 

NaHCO3, 1 x 10-6 mol/L CaCl2, and 1 x 10-8 mol/L EDTA, pH 7.0 +/- 0.2 (Loomis 

and Lenhoff 1956, Muscatine and Lenhoff 1965). All animals were kept in an 

incubator at 18 +/- 1.0 °C. Hydra cultures were fed freshly hatched Artemia salina 

nauplii once every 48 h. 

 

Experimental preparation 

To prevent possible effects of feeding on gene expression, experimental 

animals were randomly selected from non-budding hydra that had been starved for 24 

+/- 2 h before being selected for subsequent preparation. All animals were relaxed in 

2% menthol in hydra medium and fixed overnight at 4°C in 4% paraformaldehyde in 

hydra medium (Hufnagel et al 1985). 

For regenerating animals, starved animals were cut and allowed to regenerate for 0, 

12, 24, or 48 hours. 

For budding animals, starved animals bearing buds of various stages were fixed; the 

age of the bud was determined by size and level of development as follows:  

Stage 1: earliest appearance of identifiable protobud, the anlage 

Stage 2: lateral extension of tissue that is discrete from parent 

Stage 3: first emergence of tentacle stubs 

Stage 4: bud is nearly adult, tentacle stubs extended, but not fully grown, bud 
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may have begun to bend downward prior to separation. 

See Fig 1 for bud stages. 

 

Cloning HvPaxB 

To isolate the gene, mRNA was extracted from an aggregate of 200 whole, 

nonbudding animals. PCR was run on this cDNA, using primer sequences that were 

made from H. magnipapillata published sequences and custom ordered from 

Invitrogen. The primers used were HvPaxBF1, 5'- 

TGAGTTGGCACATCAAGGTGTCCG and HvPaxBR1, 5'-

CAAAAGCATCTTCAAGGGCTCTGC.. 

 

Phylogenetic analysis 

Clustal Omega with default settings was used to align the HvPaxB sequence to 

20 other Pax gene sequences (Sievers et al 2011). Regions with quality scores below 6 

were manually removed from the alignment to produce 117 concatenated amino acid 

positions, including the paired domain. Alignment is included as Supplemental Figure 

1. Neighbor-joining and maximum likelihood trees were constructed using the JTT 

model of evolution and 1000 bootstrap replicates using the Phylip 3.695 Neighbor and 

ProtML programs after making datasets with ProtDist and SeqBoot: see figure 2 for 

Neighbor and supplemental figure 2 for ProtML (Felsenstein 1989). 

  

 

In situ hybridization 
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Whole-mount in situ hybridization was performed with digoxigenin-labeled 

sense and antisense probes using the protocols of Bridge and Galliot (Bridge et al 

2000, Galliot 2012). Probes were heated for 5 min to remove secondary structure 

prior to their addition to the hybridization solution. Hybridization was performed at 

55°C. The probe was made against HmPaxB, a sequence obtained from KEGG 

[KEGG:100192231] and confirmed by PCR in our animals (Kanehisa and Goto, 

2000). 

For light microscopic sections: Animals were refixed and embedded in Spurr’s 

resin, then sectioned into 1 µm sections using a glass knife. These sections were fixed 

on slides and examined under oil immersion (100x) with an Olympus BX51 

microscope. 
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Results  

Cloning an H. vulgaris Pax gene and relationship to other Pax genes 

Our Clustal Omega alignments were used to generate phylogenetic trees using 

the ProtML (Fig.1) and Neighbor (Supplemental Fig. 1) programs in the Phylip 3.695 

package (Felsenstein 1989). In both methods HvPaxB grouped with the Pax2/5/8 

genes, along with other cnidarian PaxB genes, indicating that our initial orthology 

assessment was correct. 

Transcript expression in whole animals 

We used whole mount in-situ hybridization (ISH) to determine the mRNA 

expression pattern of HvPaxB. Of 11 fixed animals, 11 showed positive signal from 

the antisense digoxygenin-labeled in-situ hybridization probe (table 1). In adult, non-

budding, non-regenerating hydra, expression was seen in scattered cells whose 

morphology suggests that they are neuronal precursors and clusters of developing 

nematoblasts in the body column (Fig. 3, 4). These groups of interstitial cells, similar 

to those identified by David and Bridge, consist of “nests” of small, oblate to circular 

cells that tend to be visible in multiples of two (David and Challoner 1974, Bridge et 

al 2010). Later in development, these cells exhibit processes emanating from a central 

cell body, in keeping with the known morphology of neuronal precursors (David and 

Challoner 1974). Staining was also observed in cell groups that appear to be 

developing battery cell complexes (Fig. 9), with the nascent nematocyst clearly 

unstained within its supporting cell. No broad ISH signal was detected in the 

hypostome, tentacles, or foot. 
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Transcript expression in regenerating animals 

Regenerating animals showed strong HvPaxB ISH signal at the site of head 

regrowth (Fig 5, 6 for detail). When fixed immediately after decapitation, no 

expression was seen in any animals. The strongest and most consistent expression 

(6/8 animals) appeared at 24 hours after decapitation. The first evidence of expression 

appeared at 12 hours after decapitation in the regenerating head anlage, which at this 

time is approximately the upper fifth of the body column. This expression was less 

frequent and less intense than that at 24 hours, with expression appearing in only 2/10 

animals - presumably due to lower levels of transcript within the cells. Expression 

was also more diffuse in the early stages of regeneration; expression at 24 hours was 

seen as a narrower, stronger band across the apical end of the animal. By 48 hours, 

transcript expression was no longer evident. 

Transcript expression in budding animals 

The results in the regenerating and adult animals indicated that HvPaxB might 

be most strongly expressed during periods of growth and reorganization. We assayed 

the expression in budding animals at various developmental stages (Table 1). No ISH 

signal was detected in Stage1 buds (0 of 8 animals.) In Stage 2, only 1/9 animals had 

detectable expression. The strongest expression was found in the Stage 3 and 4 buds. 

In Stage 3, 9/12 of fixed animals showed expression. In particular, the tentacle buds in 

Stage 3 had strong HvPaxB ISH signal as they began to protrude from the main body 

of the bud (Fig 7). 

 

Transcript expression in thin sections 
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To verify tissue localization in budding and regenerating animals, we imaged 

1 µm thin sections, cut from whole-mount ISH specimens (Fig 8), which, confirmed 

cytoplasmic staining, even in isolated cells. It was possible to identify several cell 

types. Staining was visible in putative battery cell complexes (Fig 9), as well as 

several types of neuronal cells. Staining was also present in the buds of Stage 4 

budding animals in the region immediately surrounding the foot of the bud, and in the 

associated adult, immediately proximal to the bud. 
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Discussion  

Our findings indicate that the strongest expression of HvPaxB is concurrent 

with the early formation of tentacles and during the organization of the tentacular 

battery cell complexes (Bode and David 1978). In the developing buds, although 

nascent tentacles expressed HvPaxB, not all did so at the same time. Our data suggest 

that HvPaxB is expressed at high levels only for a short time during tentacle 

development. Expression in mature animals was very low, consistent with Pax’s 

putative role mainly in development. Hydra have pluripotent stem cells called 

interstitial or i-cells which are localized primarily in the region below the head, but 

are found throughout the body column and identified by shape and size and have the 

ability to diversify into several lineages of cell types (David and Challoner 1974, 

Bode 1996.). One cell type, identified by David as the nematoblast, develops into 

nematocytes and neural precursors (David and Challoner 1974, Bridge et al 2010, 

Galliot et al 2009). In many of our specimens, these late-stage neuronal-lineage i-cells 

- identified as small oblate cells occurring in clusters - exhibited HvPaxB transcript 

expression  (Fig 4). 

Expression was seen in i-cells and sensory cells in adults, and in regions 

inhabited by these cell types in regenerating animals. Expression was not seen in 

mature nematocysts, but rather in the surrounding nematocytes (Fig 6 and 9). The 

timing and location of HvPaxB expression in our experiments is consistent with the 

idea that HvPaxB may be involved during the organization of the bud and tissue 

reorganization of the regenerating head. HvPaxB staining was consistent in timing and 

location with the activity of other genes implicated in axial patterning in hydra, such 
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as HyWnt and HyTcf (Hobmayer et al 2000, Broun and Bode 2002).  

Particularly of note is the expression of PaxB in battery cells surrounding the 

non-staining mature nematocysts (Fig 6 and 9). Battery cells have been implicated in 

chemo- and mechanosensory reception and light perception (Kass-Simon and 

Scappaticci 2004, Scappaticci et al 2010, Plachetzki et al 2012). The coexpression of 

CNG and opsin genes in these sensory cells seen in recent work further indicates a 

role for them in photoreception (Plachetzki 2012). Also found to express PaxB were a 

variety of putative neuronal cells, of several different types, both closely associated 

with battery cell complexes and more widely scattered throughout the body. In 

bilaterians, Pax genes have roles in the organization of the nervous system, 

particularly in the specification of the anterior-posterior axis (Gehring and Ikeo 1999). 

The nervous system of hydra appears not to have the same single linear axis as in 

bilaterians; however, evidence indicates that there is an apical-basal differentiation in 

its function (Rushforth and Burke 1971, Westfall et al 1971, Kass-Simon 1972, 

Rushforth and Hofman 1972, Grimmelikhuijzen 1985, and Koizumi 200). It is 

possible that in hydra too, the HvPaxB gene is instrumental in defining the body 

regions that will react to a photic stimulus.  

Expression was seen in clusters of small, oblate cells scattered throughout the 

body, cells visually identified as the developing nematocytes, or nematoblasts, 

described in previous research (Bode and David 1978, Bridge et al 2010). These cells 

have been shown to develop in epithelial niches in the ectoderm (Bosch and David 

1990, Bosch 2008). The clusters have been identified specifically as those i-cells that 

form neuro- and nematoblast cell lineages. Nematocytes in hydra’s tentacles have 
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been shown to respond to electromagnetic, chemical and, mechanical stimuli as well 

as to traditional neurotransmitters (Kass-Simon 1973, Kass-Simon and Scappaticci 

2004, Thurm et al 2004, Scappaticci and Kass-Simon 2008, and Plachetzki et al 

2012). Since nematocytes also develop from the neuroblast precursors (David and 

Challoner 1974, Bridge et al 2010), expression of HvPaxB in these cells is yet another 

indication that HvPaxB is involved in the specification of sensory and effector cells in 

hydra. 

Scattered throughout the bodies of all our specimens were examples of 

putative neuronal precursors, identified by their shape, size, and extending processes. 

In general, two to three such cells were evident in the body column in all preparations, 

even non-regenerating, non-budding adults. We surmise that these cells are 

replacement cells or new cells contributing to a growing animal.  

If it is true that HvPaxB is uniquely expressed in developing neural elements, 

then, with respect to budding animals, expression at the bud’s foot shortly before 

detachment from the parent hints at a neural concentration in the foot in the adult. 

This correlates with the previous findings that light-induced behavioral changes can 

originate in the foot and that light directed to hydra’s foot affects rhythmic potential 

impulses (Passano and McCullough 1962, Rushforth et al 1963, Singer et al 

1963,Taddei-Ferretti and Musio 2000). Expression in closely associated cells of the 

parent animal at the time that the bud is detaching suggests that there may be some 

organizing influence on the formation of the foot of the bud from the parent, or that 

the parent is reorganizing its own sensory cells in preparation for the separation of the 

bud. The possible influence in foot organization is consistent with the idea of a foot 
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organizer in hydra (Hicklin and Wolpert 1973).  

Conclusions 

In summary, we have found that HvPaxB variously expressed in the asexual 

development and regeneration of the hydra. In the adult, expression is seen in 

scattered cells throughout the body, cells that may be interstitial cells of the 

developing neuronal type. It is also present at the site of head regrowth in 24-hour 

regenerating animals. In the developing bud, expression is found in the tentacle stubs 

of mid-stage buds, and in the foot region of late-stage buds. 

The transcript expression pattern of HvPaxB in hydra indicates that, as with 

Pax genes in other organisms, this gene may play a significant role in the organization 

of the nervous and photosensitive systems. 
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Table 1 

 

Condition Staining
Whole

Regenerates
0h

12h
24h
48h

Budding
Stage 1
Stage 2
Stage 3
Stage 4

11 of 11

0 of 6
2 of 10
6 of 8
0 of 9

0 of 8
1 of 9
9 of 16
5 of 12
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Supplementary Fig. 1 

 

Pax gene sequence alignment 
 
CrPaxA    YMRHRIIELAQCGVRPSEISRQLLVSHG 
CrPaxB    PVRRKIVDLASQGVRPCDISRQLRVSHG 
HlPaxA    YMRHRIIELAQCGVRPSEISRQLLVSHG 
HlPaxB    PVRRKIVELAHQGVRPCDISRQLRVSHG 
HvPaxB    SDPEFVIELAHQGVRPCDISRQLRVSHG 
NvPaxA    YMRHRIVELAHCGVRPSEISRQLLVSHG 
NvPaxB    VVRQRIVELAQSGVRPCDISRQLRVSHG 
NvPaxC    YIRHRIIQLATYGVRPCEISRCLLVSHG 
TcPax     QVRRRIVELAHQGVRPCDISRQLRVSHG 
Dm_eyelessSTRQKIVELAHSGARPCDISRILQVSNG 
Mm_Pax6   STRQKIVELAHSGARPCDISRILQVSNG 
Mm_Pax2   VVRQRIVELAHQGVRPCDISRQLRVSHG 
Mm_Pax4   DTRQQIVQLAIRGMRPCDISRSLKVSNG 
Mm_Pax1   AIRLRIVELAQLGIRPCDISRQLRVSHG 
Dm_Pox_mesATRMRIVELARLGIRPCDISRQLRVSHG 
Dm_paired NIRLKIVEMAADGIRPCVISRQLRVSHG 
Dm_Pox_neuCVRRRIVDLALCGVRPCDISRQLLVSHG 
Mm_Pax3   HIRHKIVEMAHHGIRPCVISRQLRVSHG 
Mm_Pax5   VVRQRIVELAHQGVRPCDISRQLRVSHG 
Mm_Pax7   HIRHKIVEMAHHGIRPCVISRQLRVSHG 
Mm_Pax8   VVRQRIVDLAHQGVRPCDISRQLRVSHG 
 
CVSKILGRYYETGSVRPGAIGGSKPK-VATPKVVCRIVKLKEENPCMFAWEIRNSLLAEG 
CVSKILGRFYETGSIRPGVIGGSKPK-VATPSVVQKIADYKAQNPTMFAWEIRECLINNN 
CVSKILGRYYETGSVRPGAIGGSKPK-VATPKVVCRIVKLKEENPCMFAWEIRNSLLAEG 
CVSKILSRFYETGSVRPGVIGGSKPK-VATPSVVAKIQEYKQHNPTMFAWEIRDKLLSEQ 
CVSKILSRFYETGSVRPGVIGGSKPK-VATPSVVAKIQEYKQHNPTMFAWEIRDKLLSEQ 
CVSKILGRYYETGSVRPGAIGGSKPK-VATPKVVSKILEYKDKNPCIFAWEIRNNLLADG 
CVSKILCRFYETGSIKPGVIGGSKPK-VATGNVVTKIAEYKLANPTMFAWEIRDRLLSEG 
CVSKILGRYYETGSIRPGSIGGSKPK-VATPPVVNKILQYKQQNPTIFAWEIRDRLVEEG 
CVSKILGRYYETGSIKPGIIGGSKPK-VATPGVVSKIAEYKRANPTMFAWEIRDRLLQDS 
CVSKILGRYYETGSIRPRAIGGSKPR-VATAEVVSKISQYKRECPSIFAWEIRDRLLQEN 
CVSKILGRYYETGSIRPRAIGGSKPR-VATPEVVSKIAQYKRECPSIFAWEIRDRLLSEG 
CVSKILGRYYETGSIKPGVIGGSKPK-VATPKVVDKIAEYKRQNPTMFAWEIRDRLLAEG 
CVSKILGRYYRTGVLEPKCIGGSKPR-LATPAVVARIAQLKDEYPALFAWEIQHQLCTEG 
CVSKILARYNETGSILPGAIGGSKPR-VTTPNVVKHIRDYKQGDPGIFAWEIRDRLLADG 
CVSKILARYHETGSILPGAIGGSKPR-VTTPKVVNYIRELKQRDPGIFAWEIRDRLLSEG 
CVSKILNRYQETGSIRPGVIGGSKPR-IATPEIENRIEEYKRSSPGMFSWEIREKLIREG 
CVSKILTRFYETGSIRPGSIGGSKTKQVATPTVVKKIIRLKEENSGMFAWEIREQLQQQR 
CVSKILCRYQETGSIRPGAIGGSKPKQVTTPDVEKKIEEYKRENPGMFSWEIRDKLLKDA 
CVSKILGRYYETGSIKPGVIGGSKPK-VATPKVVEKIAEYKRQNPTMFAWEIRDRLLAER 
CVSKILCRYQETGSIRPGAIGGSKPRQVATPDVEKKIEEYKRENPGMFSWEIRDRLLKDG 
CVSKILGRYYETGSIRPGVIGGSKPK-VATPKVVEKIGDYKRQNPTMFAWEIRDRLLAEG 
 
ICDNGNVPSVSSINRILRNHAAEKETKEA 
ICDVESVPSVSSINRIVRNRIGGGGKVSK 
ICDNGNVPSVSSINRILRNHAAEKETKEA 
ICDSDSVPSVSSINRIVRNRLGSSSHASM 
ICDSDSVPSVSSINRIVRNRLGPSSHASM 
VCDKTNVPSVSSINRILRNSAAEKEARAV 
VCTSDNVPSVSSINRIVRNRINSQDKMSN 
ICDRDNTPSVSSINRILRNKAAERAAQFA 
VCSQENVPSVSSINRIVRNRINSTGKEEE 
VCTNDNIPSVSSINRVLRNLAAQKEQQST 
VCTNDNIPSVSSINRVLRNLASEKQQMGA 
ICDNDTVPSVSSINRIIRTKVQQPFHPTP 
LCTQDKAPSVSSINRVLRALQEDQSLHWT 
VCDKYNVPSVSSISRILRNKIGSLAQPGP 
ICDKTNVPSVSSISRILRNKLGSLGHQHT 
VCDRSTAPSVSAISRLVRGRDAPLDNDMS 
VCDPSSVPSISSINRILRNSGLWTDEMTS 
VCDRNTVPSVSSISRILRSKFGKGEEEEA 
VCDNDTVPSVSSINRIIRTKVQQPPNQPV 
HCDRSTVPSVSSISRVLRIKFGKKEDDEE 
VCDNDTVPSVSSINRIIRTKVQQPFNLPM 
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Supplemental Fig. 2 
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Abstract: 

 Previous electrophysiological studies on the cnidarian Hydra vulgaris have 

shown that they have a highly developed and very specific photoresponse, despite 

their lack of any structure recognizable as a traditional photoreceptor. In this work, in 

an effort to isolate the cell types and pathways that may be responsible for the 

photobehavior, we recorded extracellularly from single excised tentacles. The 

tentacles were exposed to wavelengths of light from 450 nm to 600 nm, as well as red 

and white light. Exposure to light caused a change in response that varied by color, 

with the number of large tentacle pulses significantly increasing at 550 and 600 nm, 

and the number of small tentacle pulses trending downward in 500 nm light. In 

addition to the traditional contraction bursts, long trains of pulses were observed. A 

change in light condition caused a switch from bursting to train patterns of activity or 

vice versa. These results indicate that isolated tentacles can and do respond to more 

than just white light, and can distinguish between colors across the visible spectrum.  
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Introduction: 

 Hydra, early-evolved metazoans of the Cnidaria, are tubular cnidarians whose 

bodies consist of two epithelial layers, the endoderm and ectoderm, separated by an 

acellular middle layer, the mesoglea. A ring of five to eight tentacles surrounds a 

mouth. The animals attach to the substrate via adhesion of a basal disc at the aboral 

end of the body column. Hydras possess a complete ectodermal nerve net and have 

gap-junctional connections between the ectodermal and endodermal epithelial cells 

(Hufnagel and Kass-Simon 1976, Wood 1979). Histological evidence indicates that 

there are two nerve rings in the hypostome, one of which appears to be coincident 

with the physiologically defined ring that integrates and coordinates tentacle and body 

contractions (Hufnagel & Kass-Simon 1976, Kass-Simon 1973, Kinnamon 1981, 

Koizumi 1992, Rushforth 1971, 1973, Passano and McCullough 1962, 1964, 1965).

  

 Within the tentacles is a cell type of particular interest to this study, the battery 

cell complex (Hufnagel 1985). The battery cell complex (BCC) is a single large 

epitheliomuscular cell which encloses and supports a complement of sensory and 

effector cells. These include sensory neurons, myonemes, and various types of 

nematocyte. Battery cells are hypothesized to be the basic functional unit of the 

tentacle, and are arranged into battery cell complex rings, a group of four or more 

battery cells which form a ring around the tentacle. In the more distal regions of the 

tentacle, the battery cell complexes are the only type of ectodermal cell. Their 

interdigitating myonemes and neuronal processes allow for conduction of impulses 

and contractions up and down the tentacle, as well as coordinated firing of the 
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nematocytes in response to stimulus.  

 Despite their relatively simple anatomical organization, hydra have a complex 

variety of sensory modalities. Of particular interest is their response to light. Hydra, 

unlike some other cnidarians, bear no eyes, eyespots, or other distinct photoreceptive 

structures. This extraocular photosensitivity may be the oldest extant type of 

photosensitivity, appearing in a variety of species from bacteria through vertebrates, 

and present in non-specialized cells, neurons, and loose aggregations of photopigment 

in cells (Arendt 2003). Though lacking in specific photoreceptive structures, hydra do 

have a variety of specialized sensory and effector cells, some of which may play a 

role in photosensitivity. Candidates for this include sensory neurons of the ectoderm, 

battery cells of the tentacle, and nematocytes in body and tentacle. Despite the 

responsible cell type remaining unknown, hydra have a well-developed light response 

that has been known since the 1890s (Wilson 1891). The most immediately obvious 

evidence of this is their frequently described ‘somersaulting’ behavior, which allows 

them to quickly move toward a light source (Ewer 1947, Feldman and Lenhoff, 1962) 

 In Wilson’s early experiments, Hydra pirardi were exposed to different colors 

of light by means of panes of colored glass placed over their aquarium and quantified 

by the adjacent Fraunhofer lines (Wilson 1891). The Fraunhofer lines are a series of 

measured points corresponding to dark lines on the visible emission spectrum of the 

sun (supplemental figure 1). The animals were found to congregate preferentially 

under blue light. Haug (1933) found that hydra appeared unresponsive to red light 

altogether, with pacemaker activity that did not differ from that in ambient light. 

 Later work by Passano and McCullough showed that shining white light on a 
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narrow band at the foot of dark-adapted Hydra vulgaris caused first extension and 

then contraction (Passano and McCullough 1964). Additionally, in these whole 

animals, exposure to light of less than 500 nm produced a decrease in the frequency of 

contractions pulses of the endodermal musculature, resulting in body column 

extension, as well as an increase in the rate of rhythmic potentials. The contractile 

bursts were also susceptible to interruption by light, as a six-second burst of bright 

light would stop a current burst. Subsequent bursts would increase in number of 

pulses per burst after such an interruption, with the number of pulses per burst 

continuing to increase with every time that a burst was interrupted for a single animal.  

 In bodiless head and tentacle preparations, as well as headless bodies, exposure 

to pulses of colored light changed the frequency and timing of ectodermal contraction 

pulses (Taddei-Ferretti et al. 2004). In addition Taddei-Ferretti, et al describe a large 

slow electrical change in baseline which the authors refer to as “the big slow wave” 

and which does not seem to be related to the classical rhythmic pulses but is changed 

by exposure to light.  

 In other experiments, H. pirardi was shown to have the swiftest change in 

behavior patterns when exposed to 350 to 500 nanometer light, with responses 

decreasing markedly above 500 nm before returning slightly at above 575 nm. The 

contractile response was also affected by the intensity of the light, with the speed of 

the onset of the first contraction directly proportional to the intensity. Intensity of 

light was also shown to affect the tentacle contraction pulses in isolated tentacles, 

with pulses of strong white light causing an increase in tentacle contraction bursts 

compared to ambient light (Singer et al., 1963). 
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 The results in light seen by Passano and McCullough, Taddei-Ferretti, et al. and 

Singer all give a picture of a very defined photoresponse, with the greatest increase in 

activity in high intensity light below a wavelength of 500 nm. Despite this clearly 

defined response, the anatomical diversity of the responding regions of the animal has 

made discernment of the specific cell types and pathways involved in the 

photoresponse unclear. Either this photosensitivity is found in many cells, or the cell 

types responsible are widely distributed. 

 A number of attempts to locate the genetic basis of this photosensitivity have 

also been made. Multiple opsin-like photopigment genes have been isolated from 

hydra genomic DNA using degenerate primers formed from the rhodopsin genes in 

twelve different invertebrates; the finding of genes for multiple photopigments 

hypothesized to respond to different wavelengths is consistent with the suggestion 

that hydra are capable of discerning colors (Santillo et al. 2006). Additionally, in 

hydra, one such opsin has been shown to colocalize with the expression of genes for 

cyclic nucleotide-gated (CNG) proteins, like those found in the phototransduction 

cascade in other taxa (Plachetzki et al. 2007). Inactivation of the CNG channels 

resulted in a loss of firing of nematocysts when the animal was exposed to light 

(Plachetzki et al. 2012).  

 Although isolated tentacles have been found to respond to specific high 

intensity light stimulation, and because other experiments indicate light sensitivity in 

other regions of the body, in order to specifically characterize the tentacular light 

response, we removed the tentacles, allowed them to heal, and recorded 

extracellularly from the base of each tentacle. This allowed the responses of the 
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tentacles to be examined when isolated from the nerve network of the hypostome. Not 

only would this allow for examination of the responses of the tentacles to light, but 

also a comparison of the response patterns of isolated tentacles to that known in other 

preparations in which the hypostome is present would indicate that transmission and 

modification of the behavioral response is occurring after the reception of the light 

signal. In hypostome-free preparations, at least some of this modification is lost. 
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Materials and Methods: 

Animal culture: 

 Specimens of Hydra vulgaris were asexually cultured in glass baking dishes 

containing modified bicarbonate versene culture solution (BVC): 1 x 10 - 7 mol/L 

NaHCO3, 1 x 10-6 mol/L CaCl2, and 1 x 10-8 mol/L EDTA, pH 7.0 +/- 0.2 (Loomis 

and Lenhoff 1956, Muscatine and Lenhoff 1965). All animals were kept in darkness 

in an incubator at 18 +/- 1.0 °C. Hydra cultures were fed freshly hatched Artemia 

salina nauplii once every 48 h. 

 

Experimental Preparations: 

 Twenty-four hour starved animals were placed in BVC in a petri dish under a 

light microscope and allowed to relax. At maximal extension, the tentacles were cut 

off with a scalpel, ensuring that the cut was sufficiently below the insertion of the 

tentacles so that the putative nerve ring and site of contraction burst pacemaker origin 

(Hufnagel and Kass-Simon, unpublished; Kass-Simon, 1972) in the hypostome at the 

base of the tentacles remained intact and no hypostomal tissue carried along with the 

tentacle. Thus, after the ablation of a tentacle, the hypostome continued to bear a 

tentacle stub of approximately 0.5 mm, out of a total tentacle length of approximately 

7 mm (Fig. 1). The tentacles were then placed in fresh BVC and allowed to heal for 6 

hours. Once healed, the tentacles were prodded with a pipette to ensure they were still 

alive and capable of contraction. The tentacles were then allowed to relax again in the 

dark for 5 minutes to eliminate any residual effects of this testing. 
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Electrophysiology: 

 A single tentacle was attached to a suction electrode in BVC under a dissecting 

microscope (Fig. 2). The experimental protocol was as follows: ten minutes of 

darkness, ten minutes of the tested light wavelength, ten minutes of white light. 

Colored light was provided with the use of narrow bandpass (50 nm) filters at 450, 

500, 550, and 600 nanometers (Edmund Optics). All wavelengths were adjusted to a 

constant intensity of 1100 lux using neutral density filters (Edmund Optics) and 

intensity measured using a Luna-Pro lightmeter. All electrical recordings were made 

at 22.0 C +/- 2.0 C, in 5 mL dishes filled with 3 mL of BVC, in complete darkness. 

Impulses were led into the head stage of an A-M Systems Model 3000 amplifier and 

then into an AD Instruments PowerLab. The digital output was recorded with 

LabChart 7 on a MacBook Pro. The protocol was essentially that of Kay and Kass-

Simon, 2009 and Ruggeri, et al., 2004. Impulses, characterized by their shape and 

size, were then measured during each of the three periods and compared using 

FANOVAs and the appropriate post-hoc tests (MATLAB friedman and 

multcompare). 

Tentacle Pulses  

 In the tentacles, two types of pulses were recorded: large tentacle pulses (LTPs) 

and small tentacle pulses (STPs), a subset of which were rhythmic potentials (RPs). 

Large tentacle pulses were larger in size, even greater than 1mV. Small tentacle 

pulses ranged from 3 to 10µV in size, with a recognizable shape that distinguished 

them from the noise. Rhythmic potentials were a subset of these small pulses that 

occurred in groups with a recognizable periodicity and associated with an elongation 
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of the tentacle (Fig. 5).  

 Several overarching patterns of pulses were observed. Contraction impulses 

often arise in bursts of several pulses close together in time; the number of pulses per 

burst and the number of bursts per time were compared. A burst was defined as 

between four and fifteen pulses arising within 15 s of each other and followed by a 

period of silence of at least five seconds (Fig. 3). Shown is a burst of tentacle 

contraction pulses.  

 In some animals and conditions, groups of pulses arose that differed from the 

classical burst by a significant length. These groups of pulses, which we are calling 

trains, consisted of strings of pulses greater than a minute’s duration and with more 

than fifteen pulses (Fig. 4, 6, 7).  

 

Data Analysis: 

 For each of the seven tentacles used for each experimental condition, pulses 

were visually identified and sorted, and their amplitudes recorded. These data were 

then processed in Matlab and compared using FANOVAs via the matlab friedman 

command, with an alpha level of 0.05 and the appropriate follow-up test to determine 

which of the wavelengths produced impulses that were significantly different from 

baseline using multcompare. Significance was defined as p ≤ 0.05, with 0.05 < p ≤ 0.1 

interpreted as a trend. 
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Results: 

 Large Tentacle Pulses: In isolated tentacles, there are two principal spiking 

patterns, essentially uncoupled from the visible movement of the tentacle itself. The 

first, previously mentioned, is the bursting pattern characterized by the large tentacle 

pulses coming in groups of four or more with an extended period of silence afterward. 

When light conditions changed, the number of large tentacle pulses (LTPs) showed 

significant change from baseline, with the direction of the change varying by tested 

wavelength (p=.004 using FANOVAs) - figure 8 and table 1. The largest increase in 

activity was in the higher wavelengths, most particularly 550 and 600 nm light (p = 

0.329). In 550 nm, the median number of pulses was 109 pulses ± 71; in 600 nm light, 

the median number of pulses was 104 pulses ± 74). Exposure to 450 nm light resulted 

in a decreasing trend in the number of these same large pulses relative to white light, 

though this effect fell beneath our significance threshold (median 26 pulses ± 25.5, p 

= 0.0931). Both white and red light produced a slightly increased pulse rate. 

  

 Small Tentacle Pulses: Distinct from the LTPs were the small tentacle pulses, 

or STPs, a subset of which were the rhythmic potentials. Neither STPs or RPs showed 

a significant change relative to changing light conditions when compared across all 

colors at P = 0.05. However, at P = 0.0939, a trend was evident in the STPs (Fig. 9). 

  

 The rhythmic potential system of the tentacles also did not show a clear and 

significant response to different wavelengths of light across the spectrum, although a 

trend toward change was observable (p = 0.0941). The sole exception to this was at 
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500 nm, where exposure to light resulted in a significant decrease in activity relative 

to light, with a median of 11 RPs ± 4 (p = 0.0415). 

 

 Pulse Trains: We have characterized the second behavior as a pulse train. In 

these trains, the large tentacle pulses occur as a series of impulses that continue past 

the usual 15-pulse length of the burst, typically followed by an extended period of 

silence (Fig. 4). The duration of these trains is 1 to 10 minutes, compared to bursts, 

which usually last less than a minute. Most trains lasted five minutes or more and 

included fifty or more single pulses, generally at a slower rate than those found in 

bursts.  In most animals that displayed the train behavior, a change in the light 

condition from darkness to any wavelength of light was sufficient to produce a change 

in behavior pattern (Table 3). 

 Additionally, the interpulse interval may change repeatedly during a train, 

increasing and decreasing in a repetitive pattern similar in appearance to many bursts 

superimposed upon each other. A change in the light condition, in many animals, 

caused a switch from a bursting pattern of activity to a train, or the reverse. The large 

tentacle pulses often arose in different locations, as seen in the changed polarity, 

though not absolute amplitude or shape, over time (Fig. 11).  

 

Effects of light on tentacle contraction bursts:  

 Light produced a change in the number of contraction bursts recorded, although 

the number of pulses per bursts did not change and did not differ from that found in 

other preparations (Table 1). The greatest change occurred when the tentacle was 



 

 69 
 

exposed to 550 nm light, showing a marked increase in the rate of tentacle contraction 

bursts (median 5 bursts ± 3, p = 0.0398). The effect in 600 nm light was similarly 

trending upward (median 5 bursts ± 1.5, p = 0.0739). 

 It was found that the bursting rate in all colors of light differed significantly 

from the bursting pattern in darkness (p=.0239). The strongest effect was seen in 450 

and 500 nm light, with 450 nm light producing a significant decrease in the rate of 

bursting (-1 burst ± 4, p = 0.0206), and 500 nm light (4 bursts  ± 2, p = 0.419) 

producing the strongest increase in bursts over time. 

 

Impulses in white light and darkness: 

 Continued exposure to darkness resulted in a continued diminution of the spike 

amplitudes. When all spikes are plotted against time (Fig. 10), this is evident in the 

increasing proportion of the spikes falling in the smaller ranges. Continued exposure 

to white light does not show this diminution over the course of the stimulus. Before 

600 seconds into the recording, the initial exposure to white light, the maximal spike 

amplitude decreases by as much as 64% over the seven preparations tested. During 

exposure to white light, the maximum decrease in spike amplitude across this twenty 

minute period is 19%. 
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Discussion: 

 In summary, we have confirmed that excised hydra tentacles are sensitive to 

light, even in the absence of the head and body. Moreover, the behavior of the 

tentacles changes in measurable ways depending on the wavelength of the light to 

which the tentacle is exposed.  

 We first wish to deal with the new evidence that hydra are not insensitive to red 

light. Previous studies of hydra have indicated that hydra were incited to contraction 

by pulses of white light, but that they were blind to red (Wilson 1891). Further work 

described the output of the head pacemaker in red light as is similar to that in darkness 

(Passano and McCullough 1962, 1964). Our results here show that the response to red 

light, while not as dramatic as that to blue and green light, is still present in isolated 

tentacles. It may be that earlier findings indicating that hydra do not respond to red 

light are true only for the behavior of the animal when including the head and 

tentacles, perhaps suggesting that there is a form of post-processing active at the head 

that receives and subsequently dismisses the inputs from red light. Given the rapid 

attenuation of red light in water, it may be that this is a response to the environment, 

as it would be energetically expensive to maintain a photoreception mechanism 

specific to a wavelength of light rarely found. 

 Secondly, the most significant changes in activity were seen in the blue and 

green wavelengths (450 to 550 nm). Conversely to the rapid attenuation of red light in 

water, these wavelengths carry furthest. Hydra’s increased contractile activity in blue 

and green light may relate to feeding behavior, the stimulus caused by the movement 

of prey animals through the water, and the changes in light caused by small, 
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semitransparent organisms. 

 Our most interesting findings relate to the changes in activity patterns with 

changes in light conditions. Tentacle pulses in isolated tentacles display two basic 

patterns of activity, as outlined previously - the burst and the train (Fig. 4, 6, 7). Since 

trains frequently arise from bursts, it is possible to consider that a train is a burst 

extended long past the normal termination point. The bursts show more than one of 

the classical patterns of bursting: steady rates, increasing frequencies, and decreasing 

frequencies of impulses were all observed. A change in light often provoked a shift in 

the type of response. Whereas Passano and McCullough (1964) found that when 

contraction bursts were repeatedly blocked by light, the frequency of bursts thereafter 

was increased, in tentacles this was not found. Rather, a change in illumination caused 

a shift in overall behavior pattern from bursts to trains or vice versa. A burst or train 

already in progress was not interrupted. It appears that at least some of the 

pacemakers responsible for the bursting behavior associated with the tentacle 

contraction pulses are located in the head and not present in single-tentacle 

preparations. Some of the tentacle pulse pacemakers must, however, be endogenous to 

the tentacles, as all bursting behavior is not lost. 

 Previous work has located ganglia at the bases of the tentacles, involved with 

the circumferential nerve ring and the tentacular nerve net (Hufnagel et al 1985). It 

was surmised that these ganglia are responsible for the coordination of the tentacle 

pulses. Additionally, a string of tentacle pulses have been shown to increase in 

amplitude until they trigger a through-conducted body contraction, in a process 

known as facilitation (Passano and McCullough 1963, Kass-Simon 1970, 1972, 
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Rushforth 1971). This process may also include feedback to the tentacle to terminate 

the tentacle pulse burst; a loss of this feedback with the removal of the head may play 

a role in the production of the long trains of pulses seen in isolated tentacles. The 

addition of light seems at least partially able to substitute for the head’s feedback. 

 In darkness, long pulse trains and bursts of gradually decreasing spike amplitude 

may continue for long periods. Exposure to light appears to cause a more steady-state 

response, with the large tentacle pulses becoming more uniform in size. We 

hypothesize that the continued light stimulus prevents the diminution in the dark.  

 Previous experiments indicate that tentacle pacemaker impulses feed into the 

hypostomal pacemaker system. In these headless preparations, we theorize that these 

trains are due to a loss of inhibitory inputs from the head that would normally end the 

spiking behavior. This correlates with extended spike trains like this when the hydra 

were exposed to atropine (Kass-Simon, 1978). As with the trains observed after 

exposure to atropine, the amplitude of pulses was reduced by the end of a spike train. 

 

Burst Patterns 

 The tentacle pulse bursts observed (Fig 3 and 5) are similar to parabolic bursting 

patterns described in other organisms, including the sea cucumber Aplysia, with a 

change in rate over the course of the burst (Strumwasser 1967). The degree of the 

parabolic nature of the burst differs from burst to burst. Bursting neurons have 

previously been separated into Type I, Type II, and Type III patterns in this manner; 

in single neurons, it is thought that one type of stimulus in one type of neuron will 

consistently produce one type of burst (Bertram et al. 1995, Rinzel et al. 1987). The 
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presence of multiple patterns of burst activity in our recordings may indicate that 

these pulses do not originate from single neurons across the length of the burst; 

instead, the output of many neurons together creates each burst and causes a changing 

frequency pattern from burst to burst. 

 In previous studies, light was shown to affect the timing and pattern of bursting 

neurons and groups of neurons (Strumwasser 1967, Taddei-Ferretti 2004). 

Particularly of interest here was the work done in Aplysia eyes by Strumwasser, which 

showed that light could affect the entrainment of bursts in the eye. Our results here 

show a pattern of pulses (Fig. 11) of similar amplitude and shape, but different 

polarity. These pulses are correlated with contractile activity of the tentacle, and, 

particularly when they occur in trains, these pulses appear to originate in a number of 

different locations around and along the length of the tentacle. In these bursts and 

trains, the visible electrical response is the aggregate response from many excitable 

cells in the tentacle. Since a change in light conditions results in a change in pattern, 

the change could be due to the excitement  of a new locus, thus setting off a change in 

pattern. This is similar to the shift in excitation locus described by Passano and 

McCullough (1964), in which a change in the light condition in whole animals could 

shift the behavior pattern both spatially and temporally.  

 To an electrode placed at the base of the tentacle, this would give the 

appearance seen in the tentacle pulses. Combined with previous findings on the 

organization of the tentacle nervous networks and the role of the nematocytes and 

battery cells in light reception, it is possible to hypothesize that they serve here as the 

origination points for the tentacle pulses. Possible candidates for this, then, include 
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the neurons forming a network down the tentacle itself, or possibly the battery cells 

(Hufnagel et al. 1985). The battery cells are known to contain a diverse array of 

sensory neurons in conjunction with nematocytes; these sensory cells affect the rate of 

firing of the nematocytes, responding to chemical and mechanical stimuli. When 

coupled with the findings from Plachetzki et al. (2012) that deactivation of the CNG 

channels results in reduced nematocyst response to light, it may be surmised that the 

battery cells include light reception and response in their suite of capabilities. 
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Table 1 

 

Tentacle Pulses

Wavelength Mean and SD Median and IQR

450 nm: Blue (n=7) LTPs 52.43 ± 73.6 26 ± 25.5

STPs 27 ± 33.45 13 ± 36.5

500 nm: Green (n=7) LTPs 6 ± 7.09 3 ± 6.5

STPs 5.14 ± 7.71 4 ± 4

550 nm: Yellow (n=7) LTPs 82.71 ± 48.29 109 ± 71

STPs 12.28 ± 5.76 11 ± 4

600#nm:#Orange#(n=7) LTPs 93.14 ± 41.48 104 ± 74

STPs 17.14 ± 21.08 6 ± 14.5

650 nm: Red (n=7) LTPs 83.29 ± 67.51 59 ± 104

STPs 24.71 ± 35.95 9 ± 19.5

White (n=7) LTPs 68.71 ± 37.18 71 ± 29.5

STPs 41.28 ± 18.27 43 ± 13.5
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Table 2 

 

  

Tentacle Contraction Bursts

Wavelength Mean and SD Median and IQR

450 nm: Blue (n=7) Bursts 4.85 ± 5.24 4 ± 4.5

Change from 
Dark

-1.43 ± 3.21 -1 ± 4

500 nm: Green (n=7) Bursts 5.14 ± 1.36 5 ± 1.5

Change from 
Dark

4 ± 1.41 4 ± 2

550 nm: Yellow (n=7) Bursts 5 ± 2.71 5 ± 3

Change from 
Dark

2 ± 1.73 2 ± 3

600#nm:#Orange#(n=7) Bursts 5.14 ± 1.34 5 ± 1.5

Change from 
Dark

1.57 ± 1.98 1 ± 2

650 nm: Red (n=7) Bursts 3.57 ± 1.71 4 ± 2

Change from 
Dark

0.57 ± 1.90 1 ± 1.5

White (n=7) Bursts 3.71 ± 1.60 4 ± 1.5

Change from 
Dark

1.29 ± 2.28 1 ± 3
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Table 3 

 

 

Tentacle Patterns

Wavelength Animals Showing 
Trains

Pattern Changed 
Under Light

450 nm: Blue (n=7) 3 2

500 nm: Green (n=7) 3 3

550 nm: Yellow (n=7) 4 2

600#nm:#Orange#(n=7) 7 4

650 nm: Red (n=7) 5 5

White (n=7) 7 7
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Supplementary Fig. 1 
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Abstract: 

 The early-evolving cnidarian Hydra vulgaris has a complicated behavioral and 

electrical response to light, as has been shown in a variety of previous work. Light 

changes both the large head pulses and bursts, and the small pulses and rhythmic 

potential system. Here, we recorded from the isolated hypostomes of hydra across a 

spectrum from 450 to 650 nm including red light, and using white light as a baseline. 

We found uniformly low levels of activity in all pulse types in the isolated 

hypostomes, activity that appeared to decrease with the application of light. Due to 

the extremely low levels of impulses, though, this decrease fell below our significance 

threshold. We hypothesize that the head serves primarily as an integration center for 

light signals, rather than a locus for their perception. 
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Introduction: 

 Hydra are early-evolved metazoans of the class Cnidaria, tubular coelenterates 

whose bodies consist of two epithelial layers, the endoderm and ectoderm, separated 

by an acellular middle layer, the mesoglea. A ring of five to eight tentacles surrounds 

a mouth located at the tip of the hypostome. The animals attach to the substrate via 

adhesion of a basal disc at the aboral end of the body column. Hydras possess a 

complete ectodermal nerve net and have gap-junctional connections between the 

ectodermal and endodermal epithelial cells (Hufnagel and Kass-Simon 1976, Wood 

1979). Histological evidence indicates that there are two nerve rings in the 

hypostome, one of which appears to be coincident with the physiologically defined 

ring that integrates and coordinates tentacle and body contractions (Hufnagel & Kass-

Simon 1976, Kass-Simon 1973, Kinnamon 1981, Koizumi 1992, Rushforth 1971, 

1973, Passano and McCullough 1962, 1964, 1965).  

 Despite their relatively simple anatomical organization, hydra have a complex 

variety of sensory modalities, including mechanical and chemical (Kass-Simon and 

Scappaticci, 2002, Thurm 2004). Of particular interest is their response to light. 

Hydra, unlike some other cnidarians, bear no eyes, eyespots, or other distinct 

photoreceptive structures. This extraocular photosensitivity may be the oldest extant 

type of photosensitivity, appearing in a variety of species from bacteria through 

vertebrates, and present in non-specialized cells, neurons, and loose aggregations of 

photopigment in cells (Arendt 2003). Though lacking in specific photoreceptive 

structures, hydra do have a variety of specialized sensory and effector cells, some of 

which may play a role in photosensitivity. Candidates for this include sensory neurons 
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of the ectoderm, battery cells of the tentacle, and nematocytes in body and tentacle. 

Despite the responsible cell type remaining unknown, hydra have a well-developed 

light response that has been known since the 1890s (Wilson 1891). The most 

immediately obvious evidence of this is their frequently described ‘somersaulting’ 

behavior, which allows them to quickly move toward a light source (Ewer 1947, 

Feldman and Lenhoff, 1962) 

 In Wilson’s early experiments, Hydra pirardi were exposed to different colors 

of light by means of panes of colored glass placed over their aquarium and quantified 

by the adjacent Fraunhofer lines (Wilson 1891). The Fraunhofer lines are a series of 

measured points corresponding to dark lines on the visible emission spectrum of the 

sun. The animals were found to congregate preferentially under blue light. Haug 

(1933) found that hydra appeared unresponsive to red light altogether, with 

pacemaker activity that did not differ from that in ambient light. 

 Later work by Passano and McCullough showed that shining white light on a 

narrow band at the foot of dark-adapted Hydra vulgaris caused first extension and 

then contraction (Passano and McCullough 1964). Additionally, in these whole 

animals, exposure to light of less than 500 nm produced a decrease in the frequency of 

contractions pulses of the endodermal musculature, resulting in body column 

extension, as well as an increase in the rate of rhythmic potentials. The contractile 

bursts were also susceptible to interruption by light, as a six-second burst of bright 

light would stop a current burst. Subsequent bursts would increase in number of 

pulses per burst after such an interruption, with the number of pulses per burst 

continuing to increase with every time that a burst was interrupted for a single animal.  
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 In bodiless head and tentacle preparations, as well as headless bodies, exposure 

to pulses of colored light changed the frequency and timing of both ectodermal 

contraction pulses and endodermal rhythmic waves (Taddei-Ferretti et al. 2004). In 

addition Taddei-Ferretti, et al describe a large slow electrical change in baseline 

which the authors refer to as “the big slow wave” which does not seem to be related to 

the classical rhythmic pulses.  

 In other experiments, H. pirardi was shown to have the swiftest change in 

behavior patterns when exposed to 350 to 500 nanometer light, with responses 

decreasing markedly above 500 nm before returning slightly at above 575 nm. The 

contractile response was also affected by the intensity of the light, with the speed of 

the onset of the first contraction directly proportional to the intensity. Intensity of 

light was also shown to affect the tentacle contraction pulses in isolated tentacles, 

with pulses of strong white light causing an increase in contraction bursts compared to 

ambient light (Singer, 1963). 

 The results in light seen by Passano and McCullough, Taddei-Ferretti, et al., and 

Singer all give a picture of a very defined photoresponse, with the greatest increase in 

activity in high intensity light below a wavelength of 500 nm. Despite this clearly 

defined response, the anatomical diversity of the responding regions of the animal has 

made discernment of the specific cell types and pathways involved in the 

photoresponse unclear. Either this photosensitivity is found in many cells, or the cell 

types responsible are widely distributed. 

 A number of attempts to locate the genetic basis of this photosensitivity have 

also been made. Multiple opsin-like photopigment genes have been isolated from 
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hydra genomic DNA using degenerate primers formed from the rhodopsin genes in 

twelve different invertebrates; the finding of photopigments that respond to different 

wavelengths is consistent with the suggestion that hydra are capable of discerning 

colors (Santillo et al. 2006). Additionally, in hydra, one such opsin has been shown to 

colocalize with the expression of genes for cyclic nucleotide-gated (CNG) proteins, 

like those found in the phototransduction cascade in other taxa (Plachetzki et al. 

2007). Inactivation of the CNG channels resulted in a loss of firing of nematocysts 

when the animal was exposed to light (Plachetzki et al. 2012). Hm2 was particularly 

concentrated around the mouth, in a pattern that appears to mirror the locations of the 

proximal hypostomal nerve ring described by Hufnagel and Kass-Simon (Kass-Simon 

et al. 2007 and unpublished). 

 Because both the body region responsible for the reception of light and the 

specific neural circuitry involved remain unclear, we removed the tentacles and body, 

allowed the isolated heads to heal, and recorded extracellularly from the base of the 

head. This allowed for examination of the responses of the hypostome when isolated 

from the nerve network of the rest of the animal. Not only would this allow for 

examination of the responses of the cells of the hypostome to light, but a difference in 

response patterns between isolated hypostomes and isolated tentacles or whole bodies 

would indicate that processing is occurring after the reception of the light signal. 

  



 

 100 
 

Materials and Methods: 

Animal culture: 

 Specimens of Hydra vulgaris were asexually cultured in glass baking dishes 

containing modified bicarbonate versene culture solution (BVC): 1 x 10 - 7 mol/L 

NaHCO3, 1 x 10-6 mol/L CaCl2, and 1 x 10-8 mol/L EDTA, pH 7.0 +/- 0.2 (Loomis 

and Lenhoff 1956, Muscatine and Lenhoff 1965). All animals were kept in darkness 

in an incubator at 18 +/- 1.0 °C. Hydra cultures were fed freshly hatched Artemia 

salina nauplii once every 48 h. 

 

Experimental Preparations: 

 Twenty-four hour starved animals were placed in BVC in a petri dish under a 

light microscope and allowed to relax. For hypostomal recordings, 24-hour starved 

animals were placed in BVC and allowed to relax. At maximal extension, the head 

was removed just below the point of tentacle insertion. The tentacles were then 

excised to produce a ring of hypostomal tissue free of the tentacular nervous system 

(Fig. 1). Care was taken to not damage the portions of the hypostome considered to 

contain the nerve ring by previous authors (Hufnagel 1985, Koizumi 1992). These 

tentacle-free heads were then allowed to heal for six hours before recording. 

 

Electrophysiology: 

 A single head was attached to a suction electrode in BVC under a dissecting 

microscope. The experimental protocol was as follows: ten minutes of darkness, ten 

minutes of the tested light wavelength, ten minutes of white light. Colored light was 
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provided with the use of narrow bandpass (50 nm) filters at 450, 500, 550, and 600 

nanometers (Edmund Optics). All wavelengths were adjusted to a constant intensity 

of 1100 lux using neutral density filters (Edmund Optics) and measured with a Luna-

Pro lightmeter. All electrical recordings were made at 22.0 C +/- 2.0 C, in 5 mL 

dishes filled with 3 mL of BVC, in complete darkness. Impulses were fed into the 

head stage of an A-M Systems Model 3000 amplifier and then into an AD 

Instruments PowerLab. The digital output was recorded with LabChart 7 on a 

MacBook Pro. The protocol was essentially that of Kay and Kass-Simon, 2009 and 

Ruggeri, et al., 2004. Impulses, characterized by their shape and size, were then 

measured during each of the three periods and compared using FANOVAs. Several 

types and patterns of pulses were observed. Contraction impulses often arise in bursts 

of several pulses close together in time; the number of pulses per burst and the 

number of bursts per time were compared. A burst was defined as at least three pulses 

arising within 15 s of each other and followed by a period of silence. 

 

Hypostomal Pulses 

 The hypostomal recordings had three types of pulses: large uncorrelated head 

pulses (LUHPs), medium uncorrelated head pulses (MUHPs), and small uncorrelated 

head pulses (SUHPs.) Large uncorrelated head pulses originated from hypostomal 

tissue and ranged between 571 and 800 µV in size. Medium uncorrelated head pulses 

(MUHPs) ranged between 570 and 301 µV in size, and small uncorrelated head pulses 

between 30 and 300 µV. In contrast to tentacle pulses and rhythmic potentials, these 

uncorrelated pulses were not visibly associated with any external behavior of the 
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animal. A subset of the SUHPs was deemed to be rhythmic potentials (RPs); these 

were similar in size and shape to the SUHPs, but occurred in a recognizably regular 

pattern before stopping again (Fig. 2). 

  

Data Analysis: 

For each of the seven heads used for each experimental condition, pulses were 

visually identified and sorted, and their amplitudes recorded. These data were then 

processed in Matlab and compared using FANOVAs via the Matlab friedman 

command, with an alpha level of 0.05 and the corresponding post-hoc test to 

determine which of the wavelengths produced impulses that were significantly 

different from baseline using multcompare. 
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Results: 

Head Pulses 

 Comparing total spike activity in heads in light to that in darkness, there initially 

appeared to be a was a universal decrease in the rate of small, medium, and large 

uncorrelated head pulses in any color of light. It was not, however significant at a p 

value of 0.05. (See Table 1 and 2). When the electrical responses of the isolated heads 

were compared across colors, none of the three size groups of head pulses showed a 

significant difference from any other. These tentacle free heads also did not show a 

significant change in rhythmic potentials. 

Bursting Activity 

 In the isolated hypostomes, the usual pattern of contraction bursts was not 

observed. Activity levels were uniformly lower than that in isolated tentacles, with 

even the large uncorrelated head pulses primarily occurring singly scattered across the 

length of the recording periods. 

 This is not to say that activity was not observed. The isolated heads did 

demonstrate the usual types of activity, with pulses as large as ± 1mV and as small as 

± 3µV easily observable. In some preparations, bursts of pulses were observed.  
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Discussion: 

 Diverse previous authors have shown light to affect the bursting activity of 

hydra, in various preparations and various ways. In our hands, the isolated hypostome, 

after removal of body and tentacles, all colors of light appeared to result in a reduced 

spiking activity relative to darkness. However, no type of activity was found to be 

significantly affected by a change in the presence or color of light. It might be argued 

that the actual cause of the lack of differential response is due to the recording method 

- a primary side effect of extracellular recording in this manner is the uneven ability to 

pick up impulses from differently located responding cells. It might be possible, then, 

that sensory cells far from the site of the electrode are responding to the changes in 

light, but the pulses are not being through-conducted to the site of the electrode. In 

this case, however, that is not the cause - both large and small pulses were observed in 

our recordings. What was not observed was a differential response to colored light.  

 The lack of difference in response to colored light found here in our hypostomal 

preparations indicates that although the nerve rings in the hypostome may be 

necessary for the complicated bursting patterns and responses seen in whole animals, 

tentacles, and bodiless heads with tentacles, the hypostome alone is not sufficient for 

the full spectrum of photobehavior.  

 This argues for a primary role for the hypostome in integration of inputs from 

the tentacles and body and coordination of the eventual response, rather than direct 

sensory response. 

 Additionally, in these and other experiments (Lauro and Kass-Simon, 

unpublished), the level of bursting activity of the isolated and unstimulated 
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hypostome in darkness is universally low, if found at all. This is even truer when the 

activity levels in the isolated hypostome are compared to the isolated tentacles; the 

tentacles alone show both more frequent pulses and a variety of single pulse, burst, 

and train behaviors. In the hypostome, activity patterns more in keeping with previous 

research on whole animals or head and tentacle preparations, including bursts, will 

return when the hypostome is allowed to heal for a longer period and exposed to a 

chemical stimulus like reduced glutathione. It may be surmised from this, and from 

the immunohistochemical work of Hufnagel et al. on the tentacles and heads, that the 

cells responsible for the head contractile burst pacemaker activity are contained not 

only within the nerve ring itself, but up into the bases of the tentacles. As the tentacles 

regenerate, these pacemaker loci reform and regenerate.  

 The hypostome, then, serves as an organizational center for the pulses that 

originate, change, and are later conducted in and out of the tentacles and body.  
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Fig. 2 
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Table 1 

 

Head Pulses

Wavelength Mean and SD Median and IQR

450 nm: Blue (n=7) SUHPs 2.43 ± 3.82 0 ± 3.5

MUHPs 4.85 ± 6.84 0 ± 9.5

LUHPs 0.71 ± 1.49 0 ± 0.5

500 nm: Green (n=7) SUHPs 3.00 ± 3.87 1 ± 5

MUHPs 4.71 ± 5.47 5 ± 6.5

LUHPs 1 ± 1.53 0 ± 1.5

550 nm: Yellow (n=7) SUHPs 3.00 ± 3.46 2 ± 5

MUHPs 3.42 ± 3.99 2 ± 6

LUHPs 0.43 ± 0.79 0 ± 0.5

600#nm:#Orange#(n=7) SUHPs 12.14 ± 17.46 1 ± 17.5

MUHPs 15.42 ± 21.90 2 ± 22.5

LUHPs 1.42 ± 1.51 1 ± 3

650 nm: Red (n=7) SUHPs 0.14 ± 0.37 0 ± 0

MUHPs 0.28 ± 0.75 0 ± 0

LUHPs 0.14 ± 0.38 0 ± 0

White (n=7) SUHPs 3.00 ± 5.91 0 ± 2.5

MUHPs 3.28 ± 6.24 0 ± 3

LUHPs 0.28 ± 0.48 0 ± 0.5
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Table 2 

 

Head Pulses Change from Darkness

Wavelength Mean and SD Median and IQR

450 nm: Blue (n=7) SUHPs -1.43 ± 4.99 -2 ± 7.5

MUHPs -6.28 ±10.06 -5 ± 10

LUHPs -2.43 ± 4.19 -3 ± 6.5

500 nm: Green (n=7) SUHPs -4.14 ± 7.71 -1 ± 10.5

MUHPs -5.71 ± 10.77 -3 ±14

LUHPs -1.71 ± 4.57 0 ± 7

550 nm: Yellow (n=7) SUHPs -3.14 ± 2.11 -3 ± 2.5

MUHPs -4.00 ± 3.51 -4 ± 2.5

LUHPs 0.43 ± 0.79 0 ± 0.5

600#nm:#Orange#(n=7) SUHPs -1.43 ± 14.59 -5 ± 5

MUHPs -0.85 ± 14.03 -6 ± 18.5

LUHPs -2.28 ± 4.86 -1 ± 5.5

650 nm: Red (n=7) SUHPs -4.14 ± 3.53 -3 ± 5.5

MUHPs -8.00 ± 6.71 -7 ± 10

LUHPs -2.42 ± 3.05 -1 ± 1.5

White (n=7) SUHPs -7.43 ± 12.79 -6 ± 10.5

MUHPs -12.00 ± 16.50 -9 ± 12.5

LUHPs 0.57 ± 4.08 0 ± 1.5
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