
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Graduate School of Oceanography Faculty 
Publications Graduate School of Oceanography 

1997 

Further evidence that the sound-speed algorithm of Del Grosso is Further evidence that the sound-speed algorithm of Del Grosso is 

more accurate than that of Chen and Millero more accurate than that of Chen and Millero 

Christopher S. Meinen 
University of Rhode Island 

D. Randolph Watts 
University of Rhode Island, randywatts@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Meinen, C. S., & Watts, D. R. (1997). Further evidence that the sound-speed algorithm of Del Grosso is 
more accurate than that of Chen and Millero. Journal of the Acoustical Society of America, 102, 
2058-2062. doi: 10.1121/1.419655. 
Available at: https://doi.org/10.1121/1.419655 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Graduate 
School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more 
information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact 
the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/gsofacpubs
https://digitalcommons.uri.edu/gsofacpubs
https://digitalcommons.uri.edu/gso
https://digitalcommons.uri.edu/gsofacpubs?utm_source=digitalcommons.uri.edu%2Fgsofacpubs%2F255&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1121/1.419655
mailto:digitalcommons-group@uri.edu


Further evidence that the sound-speed algorithm of Del Grosso is more accurate Further evidence that the sound-speed algorithm of Del Grosso is more accurate 
than that of Chen and Millero than that of Chen and Millero 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsofacpubs/255 

https://digitalcommons.uri.edu/gsofacpubs/255


Further evidence that the sound-speed algorithm of Del Grosso is more accurate than
that of Chen and Millero
Christopher S. Meinen, and D. Randolph Watts

Citation: The Journal of the Acoustical Society of America 102, 2058 (1997); doi: 10.1121/1.419655
View online: https://doi.org/10.1121/1.419655
View Table of Contents: http://asa.scitation.org/toc/jas/102/4
Published by the Acoustical Society of America

Articles you may be interested in
New equation for the speed of sound in natural waters (with comparisons to other equations)
The Journal of the Acoustical Society of America 56, 1084 (1974); 10.1121/1.1903388

A new equation for the accurate calculation of sound speed in all oceans
The Journal of the Acoustical Society of America 124, 2774 (2008); 10.1121/1.2988296

On equations for the speed of sound in seawater
The Journal of the Acoustical Society of America 93, 255 (1993); 10.1121/1.405660

Speed of sound in seawater as a function of salinity, temperature, and pressure
The Journal of the Acoustical Society of America 97, 1732 (1995); 10.1121/1.413048

Speed of sound in seawater at high pressures
The Journal of the Acoustical Society of America 62, 1129 (1977); 10.1121/1.381646

Comments on ‘‘On equations for the speed of sound in seawater’’ [J. Acoust. Soc. Am. 93, 255–275 (1993)]
The Journal of the Acoustical Society of America 95, 2757 (1994); 10.1121/1.409844

http://asa.scitation.org/author/Meinen%2C+Christopher+S
http://asa.scitation.org/author/Watts%2C+D+Randolph
/loi/jas
https://doi.org/10.1121/1.419655
http://asa.scitation.org/toc/jas/102/4
http://asa.scitation.org/publisher/
http://asa.scitation.org/doi/abs/10.1121/1.1903388
http://asa.scitation.org/doi/abs/10.1121/1.2988296
http://asa.scitation.org/doi/abs/10.1121/1.405660
http://asa.scitation.org/doi/abs/10.1121/1.413048
http://asa.scitation.org/doi/abs/10.1121/1.381646
http://asa.scitation.org/doi/abs/10.1121/1.409844


Further evidence that the sound-speed algorithm of Del Grosso
is more accurate than that of Chen and Millero

Christopher S. Meinen and D. Randolph Watts
Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882

~Received 9 December 1996; revised 13 March 1997; accepted 8 July 1997!

Estimates of the bottom depth of the ocean at 11 sites were determined by combining round-trip
acoustic travel time measurements made by inverted echo sounders on the ocean bottom with
sound-speed profiles determined from simultaneously measured temperature and salinity profiles.
These depths were converted into pressures and were compared to independently measured bottom
pressures to determine the accuracy of the algorithms used to calculate the sound-speed profile. The
sound-speed algorithms tested were those derived by Del Grosso@J. Acoust. Soc. Am.56, 1084–
1091~1974!# and by Chen and Millero@J. Acoust. Soc. Am.62, 1129–1135~1977!#, as well as the
corrected version of Chen and Millero’s algorithm recently published by Millero and Li@J. Acoust.
Soc. Am. 95, 2757–2759~1994!#. The results of this study agree with the results from recent
acoustic tomography experiments which indicate that the algorithm of Del Grosso for the speed of
sound in seawater is more accurate than the currently accepted standard algorithm of Chen and
Millero. Del Grosso’s algorithm also produces more accurate results than those from the Millero and
Li correction to the Chen and Millero algorithm. ©1997 Acoustical Society of America.
@S0001-4966~97!05610-5#

PACS numbers: 43.30.Es@SAC-B#

INTRODUCTION

The algorithm of Chen and Millero1 for sound speed in
seawater is the internationally accepted standard for use with
hydrographic data,2 however, recent acoustic tomography
work by Spiesberger and Metzger,3 Dushaw et al.,4 and
Spiesberger,5 has indicated that the sound-speed algorithm
presented in Del Grosso6 is more accurate. The two algo-
rithms calculate about the same sound-speed profile in the
upper 1000 dbars, but Del Grosso’s algorithm calculates
speeds that are slower by about 0.8 m s21 at depths of 5000
dbars.~The unit for pressure used here is the decibar, or dbar
for short, which is equal to 104 Pascals. Oceanographers
commonly report pressure in dbars rather than the SI units of
Pascals because 1 dbar'1 m of depth in the ocean.! Re-
cently, a correction to the Chen and Millero algorithm for
low temperatures and high pressures was published by Mil-
lero and Li.7 This correction reduces the difference between
the two algorithms, but the corrected algorithm also consis-
tently predicts higher sound speeds in the deep water than
Del Grosso’s algorithm. This study provides further evidence
to support Del Grosso’s algorithm by comparing pressures
measured by pressure sensors to pressures estimated from
acoustic travel time measurements made by inverted echo
sounders.

I. DATA

Inverted echo sounders~IESs! are instruments moored
about one meter off the ocean bottom that measure the time
for 10-kHz pulses to travel the round-trip distance to the
ocean surface and back.8,9 PIES are IESs that are also
equipped with pressure sensors from Paroscientific Inc.,
which are based on oscillating quartz crystals to which ten-
sion is applied via a Bourdon tube.10

If the sound-speed profile through the water column
above the PIES is known concurrently with the travel time
measurement, it is possible to combine this information to
derive an estimate of the bottom depth. Full-water-column
CTD ~conductivity–temperature–depth! profiles obtained
near each PIES site allowed for the calculation of sound-
speed profiles as functions of temperature, salinity, and pres-
sure using any of the three sound-speed algorithms.

This study was based upon 11 PIES records which have
one or more full-water-column CTD profiles taken at the
PIES site during the period of deployment. Four of the PIES
were located in a line across the North Atlantic current at
pressures of 3300–4900,11 six were in a line across the Kuro-
shio at pressures of 450–1100,12 and the final PIES was lo-
cated near Hawaii at a pressure of about 4800 dbars.13

II. METHODS

The travel time measurement,t, was used to estimate
the bottom pressure in the following manner. The round-trip
travel time is given by

t52E
2H

0 1

c
dz, ~1!

whereH is the depth of the acoustic transducer andc is the
sound speed. Defining

K 1

cL 5
1

H E
2H

0 1

c
dz, ~2!

Eq. ~1! can be rearranged to give

H5
t

2^1/c&
. ~3!
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Sound-speed profiles were calculated from the CTD data us-
ing both the Del Grosso~hereafter DG74! and Chen and
Millero ~hereafter CM77! algorithms as well as the corrected
Chen and Millero algorithm~hereafter ML94!. These sound-
speed profiles were then substituted into Eqs.~2! and ~3!
along with the concurrent travel times measured by the PIES
to calculate the depths~in meters! of the PIES using each of
the three sound-speed algorithms. These depths were then
converted into pressures by making use of the equation de-
scribed in Fofonoff and Millard.2 They give the following
equation for converting from pressure to depth,

z5
C1p1C2p21C3p31C4p4

g~f!1 1
2 g8p

1
DD

9.8
,

where C159.726 59, C2522.2512E205, C352.279E
210, C4521.82E215, g852.184E206 m s22 dbar21, p
is the pressure, andDD is the dynamic height anomaly mea-
sured from pressurep to the surface. This equation was in-
verted using an iterative method which resulted in pressures
that are accurate to 0.1 dbars. These calculated pressures~in
dbars! can be compared to the pressures measured by the
pressure sensor located on the PIES.~There are a number of
constant offsets that are inherent to the measurements of
these instruments which must be accounted for as part of this
procedure, as presented in the Appendix.!

III. ERRORS IN THE MEASURED AND CALCULATED
PRESSURES

Before presenting the results of this comparison, a dis-
cussion of the errors involved in both the measurement of
pressure and the calculation of pressure is in order. All errors
quoted throughout this paper are at the one standard devia-
tion level except where otherwise noted. Paroscientific states
that the absolute accuracy of the pressure sensor measure-
ment is 0.01% of full scale, about 0.5 dbars for instruments
designed for up to 4500-m depths.14 These Paroscientific
pressure sensors have historically had problems with long-
term drifts while deployed. However, recent work in the Gulf
Stream has indicated that these drifts can be removed quite
accurately.10 The linear drifts in the pressure sensors used
here were all below 0.3 dbar per year and most of them were
less than 0.05 dbars per year. The travel time measurement
of the IES is accurate to 1 ms,9 which is equivalent to an
error in the calculated pressure of 0.75 dbars.

The largest source of error in the calculation results from
the spatial offset between the PIES site and the location
where the CTD is taken, which introduces random scatter
due to the variation of the sound-speed profile caused by
lateral gradients and internal waves and tides during the sev-
eral hours involved in the CTD measurement. These errors
are difficult to quantify; however, based on the maximum
oceanic thermocline slope and the amplitude of tidal and
higher frequency variability observed the combined error es-
timate is between 0.25~at a CTD–PIES distance of 0 km!
and 2.5 dbars~at a CTD–PIES distance of 3 km!. The spe-
cific CTD–PIES distances and errors are accounted for in the
results section. Finally, errors in the sound-speed equations
will also contribute to errors in the calculated pressure.

DG74 and ML94 both quote an accuracy of 0.05 m s21,
which translates to a maximum potential error in the calcu-
lated pressure of about 0.2 dbars. CM77 quotes an accuracy
of 0.2 m s21, resulting in a maximum potential error of about
0.8 dbars in the calculated pressure.

IV. RESULTS

Table I lists the measured pressures at the 11 PIES sites,
together with the mean of the calculated pressures from all
CTDs at each site, using CM77, ML94, and DG74.~ML94
was not used to calculate pressures at the shallow sites from
the Kuroshio because the correction is for low temperatures
and high pressures.! At the shallow~400–1000 m! sites from
the Kuroshio, the agreement between the calculated pres-
sures and the measured pressures is generally quite good, and
there is little difference between the pressures calculated us-
ing DG74 and CM77. This is to be expected since DG74 and
CM77 give very similar sound-speed profiles above 1000
dbars. Figure 1~A! shows that instruments located at shallow
depths have calculated pressures about equal to the measured
pressures, within the range of the scatter. Because of the
good agreement between the calculated and measured pres-
sures at these sites, the rest of this discussion will focus on
the differences found at the deep sites.

A. Relative differences between algorithms

At depths greater than 3000 m the calculated pressures
are consistently higher than the measured pressures. Figures
1B–D show that for these sites the pressures calculated using
DG74 are about 1–1.5 dbars closer to the measured pres-
sures than those calculated by CM77. The pressures calcu-
lated using ML94 are 0.3–0.4 dbars larger than those from
DG74. These differences are significant because the only dis-
similarities between the different methods of calculation are
the sound-speed algorithms used. The above-quoted sound-
speed algorithm accuracies explain a difference of
A0.8210.2250.82 dbars between DG74 and CM77 and

TABLE I. Calculated pressures compared to the pressure measured by the
bottom pressure sensors. The locations of the instruments are noted. For
sites where multiple CTDs were taken, the mean result from all of the casts
is shown. Number of CTDs taken at each site is noted. For the shallow sites
in the Kuroshio, the ML94 correction to the CM77 algorithm was not used,
as the correction is for low temperature and high pressure only.

Measured
pressure

DG74
~dbars!

CM77
~dbars!

ML94
~dbars!

Number of
CTD casts

at site Location

3313.3 3314.3 3315.2 3314.6 3 North Atlantic
3944.8 3945.3 3946.4 3945.6 2 Current
4814.0 4816.1 4817.6 4816.5 1
4978.2 4977.9 4979.4 4978.3 2

4812.4 4814.4 4815.9 4814.8 9 Hawaii

495.1 496.7 496.7 N/A 1 Kuroshio
1098.1 1097.6 1097.7 N/A 1
1100.9 1100.9 1101.1 N/A 1
540.0 538.9 538.9 N/A 1
495.2 496.1 496.1 N/A 1
531.9 531.4 531.4 N/A 1
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A0.2210.2250.28 dbars between DG74 and ML94. Thus for
an individual PIES and CTD pair, the differences between
pressures calculated using DG74 and CM77 or DG74 and
ML94 would not be significant at the two standard deviation
level. It is important to realize, however, that these offsets

are appearing in the mean of 17 different CTD and PIES
combinations, and thus it is necessary to consider the stan-
dard deviation of the mean. Conservatively, it can be said
that there are at least five degrees of freedom, one for each
independent PIES site, so the standard deviation of the

FIG. 1. Pressure difference (Pmeasured2Pcalculated) plotted vsPmeasured, where pressures calculated using DG74 are denoted by crosses, pressures calculated
using CM77 are denoted by circles, and pressures calculated using ML94 are denoted by open boxes. Panel A shows the sites from the Kuroshio, panel B
shows the site near Hawaii, panel C shows the sites in the North Atlantic Current, and panel D shows all of the sites together. Results from all CTDs are
shown. Dashed line denotes zero error.
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mean offset between DG74 and CM77 is 0.37, and it is 0.13
dbars between DG74 and ML94. Thus even at the two stan-
dard deviation level there are statistically significant differ-
ences between the pressures calculated using DG74 and
those calculated using CM77 and ML94.

B. Absolute differences between measured and
calculated pressures

The mean differences between the measured pressures at
the deep sites and those calculated at the same sites using
DG74, CM77, and ML94 are 1.4, 2.7, and 1.7 dbars, respec-
tively. The total error~one standard deviation level! esti-
mated for the calculations, due mainly to the spatial offset
between the CTD sites and the PIES sites, which have a
mean separation of 1.5 km, is 1.5 dbars for the pressure
calculations using DG74 and ML94, it is 1.6 dbars for the
pressure calculation using CM77. The corresponding stan-
dard deviation of the means, once again assuming five de-
grees of freedom, is about 0.7 dbars for all three algorithms.
Thus the differences between the measured pressures and
those calculated using DG74 are~barely! not statistically sig-
nificant at two-standard deviations of the mean, whereas the
differences from the pressures calculated using CM77 are
nearly twice the size of the 95% errors, and those calculated
using ML94 are more than 20% larger than can be accounted
for by two standard deviations of the mean. These results
indicate that DG74 calculates more accurate sound speeds in
the deep ocean than both CM77 and its recently updated
version, ML94.

Note, however, that even the pressures calculated by
DG74 at the deep North Atlantic Current and Hawaii sites
are consistently greater than the measured pressures. The
amount by which the vertically averaged sound speed@from
Eq. ~2!# would need to change to eliminate the difference
between measured and calculated pressure can be estimated
by rearranging Eq.~3! to giveDc/c'DH/H'Dp/p. Figure
2 demonstrates that for nearly all of the sites at depths
greater than 3000 dbars, the vertical mean sound-speed needs
to be reduced to bring the calculated pressures in line with

the measured pressures. This observation is consistent with
the results of Spiesberger and Metzger,3 who found that
DG74 calculated speeds that were 0.22 m s21 too fast at a
depth of 3 km. Including the correction from Spiesberger and
Metzger3 in DG74 decreases the calculated pressures by
about 0.2–0.4 dbars for the deeper PIES sites~the effect on
the shallow Kuroshio sites is negligible!. In a later paper
Spiesberger5 questioned his proposed correction by explain-
ing that the offsets he noted could have been due to his
model parameters rather than a problem with the DG74 al-
gorithm. Essentially he enlarged his error bars to indicate
that he had insufficient information to determine definitively
whether DG74 was predicting speeds that were too fast in the
deep water. The results of this study indicate that a correc-
tion of the same sign and of somewhat larger magnitude than
that recommended by Spiesberger and Metzger3 would give
better agreement between the calculated and measured pres-
sures. A decrease in the vertically averaged sound speed of
about 0.5 m s21 would reduce the mean of the observed off-
sets between the directly measured pressures and the calcu-
lated pressures to zero. It is important to note, however, that
the pressures calculated using DG74 are not statistically dif-
ferent than the measured pressures based on our estimate of
the errors involved in this calculation, so these results cannot
definitively state that DG74 is calculating speeds that are too
fast. However, since two completely different types of ex-
periments, Spiesberger’s modeling of acoustic tomography
data and this study’s comparison of measured pressures to
acoustically determined pressures, have both found that
DG74 consistently results in deep sound speeds that are too
fast, it seems likely that sound speeds calculated at depths
greater than 1000 dbars are still too high.

V. CONCLUSIONS

This study involved data from three separate experi-
ments: one in the Kuroshio during 1991–92, the second off
Hawaii in 1991–92, and the third in the North Atlantic Cur-
rent from 1993–95. By directly measuring bottom pressure
and comparing it with calculated bottom depth and pressure
from travel times measured by inverted echo sounders and
sound speed calculated from coinciding full-water-column
CTDs, this study has provided additional evidence that Del
Grosso’s6 sound-speed algorithm is more accurate than that
of Chen and Millero.1 Del Grosso’s algorithm provides more
accurate velocities at depths even when the recently pub-
lished correction7 for low temperatures and high pressures
for Chen and Millero’s algorithm is used. The results also
suggest that even Del Grosso’s sound-speed algorithm may
be calculating speeds that are slightly too fast in water deeper
than 1000 dbars. Further measurements would be required to
confirm this hypothesis. Nevertheless, Del Grosso’s algo-
rithm is accurate enough to calculate bottom depths and pres-
sures to within about 1 m and 1 dbar in 5000 dbars.

FIG. 2. Histogram of the change in the vertically averaged sound speed that
would be necessary to make the calculated pressures~using DG74! at the
deep~3000–5000 m! sites equal to the measured pressures.
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APPENDIX: INHERENT OFFSETS IN THE PIES

Both the travel time and pressure measurements made
by the PIES are subject to some constant offsets which are
compensated for here. There is a fixed 3-ms internal response
delay in the IES, which must be subtracted from the mea-
sured travel time to avoid overestimating the depth of the
IES. The pressure sensors measure absolute pressure, rather
than gauge pressure, so the atmospheric pressure must be
removed from the measured pressure, because the PIES mea-
sures the acoustic travel time relative to the sea surface.
Since variations of atmospheric pressure are on the order of a
tenth of a decibar, it is sufficient to subtract the annual mean
regional value of atmospheric pressure~10.2, 10.2, and 10.1
dbars for, respectively, the North Atlantic Current, Hawaii,
and Kuroshio regions!. Last, the pressure sensor on the PIES

is located 0.58 m below the acoustic transducer, so for com-
parison to the pressure estimated from the travel time, the
corresponding small hydrostatic offset~0.60 dbars! was sub-
tracted from the measured pressure.
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