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Monte Carlo computation of correlation times of independent relaxation modes at criticality
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Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881
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Faculty of Applied Sciences, Delft University, P.O. Box 5046, 2600 GA Delft, The Netherlands
Lorentz Institute, Leiden University, Niels Bohrweg 2, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 13 January 2000

We investigate aspects of the universality of Glauber critical dynamics in two dimensions. We compute the
critical exponentz and numerically corroborate its universality for three different models in the static Ising
universality class and for five independent relaxation modes. We also present evidence for universality of
amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality
class is characterized by a single nonuniversal metric factor which determines the overall time scale. This paper
also discusses in detail the variational and projection methods that are used to compute relaxation times with
high accuracy.

[. INTRODUCTION dates has been elusive. This is caused by the difficulty of
obtaining the required accuracy in estimates of the dynamic
Critical-point behavior is a manifestation of power-law critical exponent. Under these circumstances it is evident that
divergences of the correlation length and the correlatioronly a limited progress has been made with respect to the
time. The power laws that describe the divergence of thénteresting questions regarding dynamic universality classes.
correlation length on approach of the critical point are ex- In this paper we present a detailed exposition of a method
pressed by means of critical exponents that are dependent & computing dynamic exponents with high accurééywe
the direction of this approach, which may, e.g., be Ordering_consider single spin-flip Glauber dynamics. This is defined
field like or temperature like. The exponents describing the?y & Markov matrix, and computation of the correlation time
singularities inthermodynamiguantities can be expressed in IS viewed here as an eigenvalue problem, since correlation
terms of the same exponents. In addition to the exponentémes can be obtained from the subdominant eigenvalues of
defining these power laws, another critical exponent, viz., théhe Markov matrix.
dynamic exponent, is required for the singularities in the  If @ thermodynamic system is perturbed out of equilib-
dynamics This exponent is defined by the relationship that fium, different thermodynamic quantities relax back at a dif-
holds between the correlation leng¢hand the correlation ferent rates. More generally, there are infinitely many inde-
time 7, namely, 7 & pendent relaxation modes for a system in the thermodynamic
One of the directions along which one can approach thdimit. Let us label the models within a given universality
critical singularity is the finite-size direction; i.e., one in- class by means of, and denote by ;, the autocorrelation
creases the system size while keeping the independent time of relaxation mode of a system of linear dimensidn
thermodynamic variables at their infinite-system critical val-In this paper we present strong numerical evidence that, as
ues. In this casetxL so thatr=LZ This relation has been indeed renormalization group theory suggests, at criticality
used extensively to obtain the dynamic exponenfrom the relaxation times have the following factorization prop-
finite-size calculations. erty:
In this paper we deal with universality of dynamic
critical-point behavior. One would not expect systems in dif- T~ MAL? D
ferent static universality classes to have the same dynamic
exponents, and even within the same static universality classherem, is a nonuniversalmetric factor, which differs for
different dynamics may have different exponents. For in-different representatives of the same universality class as in-
stance, in the case of the Ising model, Kawasaki dynamicdicated;A; is a universalamplitude, which depends on the
which satisfies a local conservation falaas a larger value of modei; andzis theuniversaldynamical exponent introduced
z than Glauber dynamidsin which such a conservation law above.
is absent. Also the introduction of nonlocal spin updates, as While the relaxation time of the slowest relaxation mode
realized, e.g., in cluster algorithms, is known to lead to ais obtained from the second-largest eigenvalue of the Mar-
different dynamic universal behavitr® kov matrix, lower-lying eigenvalues yield the relaxation
Conservation laws and nonlocal updates tend to have times of faster modes. To compute these we construct, em-
large effect on the numerical value of the dynamic expo-ploying a Monte Carlo method, variational approximants for
nents, but until fairly recently, numerical resolution of the several eigenvectors. These approximants are called opti-
expected differences of dynamic exponents of systems in difmized trial vectors. The corresponding eigenvalues can then
ferent static universality classes for dynamics with local up-be estimated by evaluating with Monte Carlo techniques the
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overlap of these trial vectors and the corresponding matris;, .. .,s, assume values 1. Periodic boundaries are used
elements of the Markov matrix in the truncated basisthroughout. In particular, we focus on models described by
spanned by these optimized trial vectors. It should be notethree ratios 3=K’/K, namely, B=—1/4, 0 (nearest-
that both the optimization scheme and the evaluation of theseeighbor model and 1 (equivalent-neighbor model The
matrix elements critically depend on the fact that the Markovnonplanar models fg8+ 0 are not exactly solvable and their
matrix is sparse. That is, the number of configurations accesritical points are known only approximately. Yet it was
sible from any given configuration is equal to the number ofdemonstrated to a high degree of numerical accuracy that
sites only, rather than the number of possible spin configuthat they belong to the static Ising universality cl&ss>For
rations. the nearest-neighbor model the critical coupling Ks
Given such fixed trial vectors, this approach has the ad=1In(1+/2); for the other two models estimates of the
vantage of simplicity and high statistical accuracy, but thegritical points areK=0.190192 680 (2) for =1 andK
disadvantage is that results are subject to systematic, varia-0.697 220 7(2) fog= —1/41213
tional errors, which only vanish in the ideal limit where the  \We use the dynamics of the heat-bath algorithm with ran-
variational vectors become exact eigenvectors or span an iglom site selection. The single-spin-flip dynamics is deter-
variant subspace of the Markov matrix. Since the conditiormined by the Markov matri® defined as follows. The ele-
is rarely satisfied in cases of practical interest, a projectioment P(S',S) is the transition probability of going from
Monte Carlo method is then used, to reduce the systemati€onfigurationSto S'. If SandS’ differ by more than one

error, but this is at the expense of an increase of the statistspin, P(S',S)=0. If both configurations differ by precisely
cal errors. The method we use in this paper is a combinatiogne spin,

and generalization of the work of Umrigat al® and that of
Ceperley and Bernt. 1

To summarize, the Monte Carlo method discussed here P(S’,S)=—2(1—tan>'{
consists of two phases. In the first phase, trial vectors are 2L

optimized. The ultimate, yet unattainable goal of this phasgyhereL?2 is the total number of spins. The diagonal elements

is to construct exact eigenvectors. In this phase of the comp (s s) follow from the conservation of probability,
putation, very small Monte Carlo samples are used, consist-

ing typically of no more than a few thousand spin configu- ,
rations. In the second phase, one performs a standard Monte 2 P(S,9)=1, (4)
Carlo computation in which one reduces statistical errors by s
increasing the length of the computation rather than the qualvhereS’ runs over all possible 15 spin configurations.
ity of the variational approximation. We denote the probability of finding spin configuratisn

The computed correlation times, derived from the partialat time t by p,(S). By design, the stationary state of the
solution of the eigenvalue problem as sketched above, amarkov process is the equilibrium distribution
used in a finite-size analysis to compute the dynamic critical
exponentz. We verify its universality for several models in exd —H(S)/KT]  ¢g(S)?
the static universality class of the two-dimensional Ising p=(S)= 7 =7z ®)
model. We also address another manifestation of dynamic o _ N )
universality. As was mentioned, in addition to the usua/where the normalization factdt is the partition function.
static critical exponents, there is only one new exponent that The dynamical process defined by Eg) is constructed
governs the leading singularities of critical dynamics, viz., SO as to satisfy detailed balance, which is equivalent to the
Similarly, one would expect that, within the context of statement that the matriR with elements
Glauber dynamics, the description of time-dependent
critical-point amplitudes requires only a single nonuniversal A 1
metric factor to determine the time scale of each different P(S',9)= ~P(S',S)¢5(S) (6)

o . . . Ye(S)

model within a given universality class. Our results corrobo-
rate this idea, which is the immediate generalization to criti-is symmetric. Therefore the eigenvaluesPofire real.
cal dynamics of work on static critical phenomena by Priv- The Markov matrix determines the time evolution of
man and Fishel? p(9), ie.,

In this paper we apply the techniques outlined above to
three different two-dimensional Ising models subject to , ,
Glauber-like spin dynamics. These models are defined on a le(S):g P(S,S)p(S). (@)
simple quadratic lattice of sizex L with periodic boundary
conditions. The HamiltoniarH{, defined on a general spin The simultaneous probability distributign: ; ;((S,S’) that

H(S')—H(S)
TH @

configurationS=(s,,s,, . ..), isgiven by the system is in stat8 at timet’ and in stateS' at timet’
+tis
H(S , ,
USSR K3 55K s, @ b1+ (S.8)=PX(S S)py(S), ®
ij

[kI]
whereP!(S’,S) denotes the%',S) element of theth power

where the first summation is on all nearest-neighbor pairs obf the matrixP. For sufficiently large times’, one may take
sites of the squarke X L lattice, the second summation is on p;/(S)=p..(S) so that the autocorrelation functi@y(t) of
all next-nearest-neighbor pairs, and the Ising variablesn observableA, the average with respect to tinté of
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A(t")A(t+1'), can equivalently be written as the ensemble The dynamical process defined by E§) is constructed
average(A(t')A(t’ +t)) for larget’. Thus so as to satisfy detailed balance, which is equivalent to the

statement that the matriR with elements
Ca(t)=lm X > A(S)A(S)pr v 44(S,S),  (9)

t'—o s’

P(S',9)=
whereA(S) denotes the value @& in a spin configuratiors. ( ) a(
After substitution of Eq(9) and expansion ohA(S)p/(S) in
right-hand eigenvectors of the Markov matri, it follows at js symmetric.

once that the time-dependent correlation functions of a sys- The layout of the rest of this paper is as follows. In Sec. II

P(S".S)¢s(S) (13

!

tem of sizeL have the following form: we discuss the general principles of the method used in this
paper. The expressions in this section feature exhaustive
) t summation over all spin configurations, which renders them
Ca(t)= EI Ci SgNA| ;exp — 2| (10 useless for practical computations. The Monte Carlo summa-
|

tion methods employed instead are discussed in Sec. lll.
where the dependence on the specific madehs been sup- Tial vectors, a vital ingredient of the method, are discussed
pressed in denoting by,; the relaxation times of the inde- in Sec. IV, and numerical results are discussed in Sec. V.
pendent modes of the equilibration process. Fheare de-  Finally, Sec. VI contains a discussion of issues that remain to
termined by the eigenvalues of the Markov matrix. Webe addressed by future work.

denote these eigenvalugs; (i=0,1,2 . .. ,22—1), and or-

der them so that £\ >[N\ 1/=|\2/=--- . Note that II. EXACT SUMMATION
conservation of probability implies that = 1; by construc-
tion, the corresponding right-hand eigenvector is the Boltz- A. Variational approximation

mann distribution. _ )
The relaxation times are given by Single eigenvector
In this section we discuss trial vector optimization, which
1 is used to reduce the statistical errors in the Monte Carlo
=———— (i=12,...). (1) computation of eigenvalues of the Markov matrix. First, we

- .
L= In[x ] review the case of a single eigenvaftié;*® and then we

The factorL 2 is inserted because. as usual. time is measuref€neralize to optimization of multiple trial vectors. In this

units of one flip per spin, which correspondslibiterations section, we d|scu§s the.exact expressions involving summa-

of the process described by E@). tion over all possible spin configurations. In cases of practi-
Note that the stochastic matrix has the same symmetry cal interest, these expressions cannot be evaluated as written;

properties as the Hamiltonian and the Boltzmann distribufor their approximate evaluation one uses the Monte Carlo
ethods discussed in Sec. Ill.

tion. In addition to spin inversion, these symmetries include™ cl hod of — inal
translations, reflections, and rotations of the L lattice. It A powerful method of optimizing a single, many-
follows that each eigenvector & as well as its associated Parameter trial vector, saj-), is minimization of the vari-
relaxation mode, has distinct symmetry properties that can b@fnce of tha:onﬂguranoTal_ elgelrv(?ll;le/yhllch in the chont_ext
characterized by a set of “quantum numbers.” For instance® fquantum Monte Ce;ro Is called theca c;nergyT atis,
the eigenvector associated with the second-largest eigef€fine ¥1(S)=(Syr) for an arbitrary configuratiors. We
value is antisymmetric under spin inversion and invariantViSh to satisfy the eigenvalue equation
under translations, reflections, and rotations. It describes the
relaxation of the total magnetization; this process, with re- P (S)=Ny(9), (14
laxation timer 4, is thus the slowest relaxation mode con-
tained n the stochastic ”?at”x- . where the prime indicates matrix multiplication lﬁy ie.,
In this work, we restrict ourselves to relaxation modes

that are invariant under geometric symmetries of the spirf (S)=2sP(S,S))f(S') for any functionf defined on the
lattice. However, in addition to eigenvectors that are sym-SPin configurations. Even ifr is not an eigenvector, one can
metric under spin inversion, we include antisymmetric onesdefine theconfigurational eigenvaluby

S0 as to obtain the longest relaxation time. As a consequence

TLi

of this restriction to geometric invariance, spatially nonho- PrS)

mogeneous relaxation processes fall outside the scope of this (S if 4(S)#0,

Work. A(S) =14 ¥1(S) (15)
By design, the stationary state of the Markov process is 0, otherwise.

the equilibrium state
If 7 is not an eigenvector, E¢l4) gives an overdetermined
exd —H(S)/KT]  ¢g(S)? set of equations fox for a giveny and a sufficiently big set
p=(S)= i =Tz 12 of configurationsS. One can obtain a least-squares estimate
of the eigenvaluex by minimizing the squared residual of
where the normalization factat is the partition function. Eq. (14). This yields the usual variational estimate
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, 2 span an invariant subspace of the maffixwhich in non-
(el B i) ES P1(S) (S ES A(S)¢(S) trivial applications of course is never the case. Again, how-

A(p)= Ty = , ever, one can solve for the matrix elements in a least-
T > 4(9)? > 4(S)? squares sense. This yields
S S
(16 A=PR1, (20)

which is the average of the configurational eigenvalye
The standard Rayleigh-Ritz variational method, which
can be used for the largest eigenvalue, consists in maximiza-

where

tion off(p) with respect to the parametgusHowever, one Nij :ES Yri(S) ¢ (S) = (il Yrry) (21)
can formulate a different optimization criterion as follows.
The gradient of\ (p) with respect toy(S) is and
Mp)) _ PO P)Y(S) an Pi=2 0999 =(wnlPlum). (@2
Ipr(S ne
%: Yr(S") Note that although these matrix elements depend on the nor-

Clearlv. thi di ishes f . d thi malization of the|¢+;), the matrixA is invariant under an
early, this gradient vanishes fany eigenvector and this -, change of normalization.

suggests as an alternative optimization criterion minimiza- ) L Y .
gd P By diagonalization of thenxX n matrix A one obtains an

tion of the magnitude of the gradient of a normalized trial . . . .
vector ¢. With respect to Eq(14), this corresponds to approximate, partial eigensystem of the Markov matrix.
! More specifically, suppose that

minimization of the normalized squared residual

2 [w,(s)_x(p)lﬁ (S)]Z A:Dildiaq)\o, Ce !)\n—l)D' (23)
S T T

The eigenvalues\,>X,=---=X\,_; of A are variational
lower bounds for the exact eigenvalues of the Markov matrix

x(p)=

2 ~
ES: Yr(S) P, in the sense thak;<\,;,° if the exact eigenvalues are
numbered such thaty>X,=- - -, in contrast with the con-
AA(S) = N(D)120~(S)2 o vention used in the discussion following EG0). This prop-
_Es: LS =PI Yr(S) _(¢T|(P—>\)Z|¢T) erty is a consequence of the interlacing property of the ei-
- - A ' genvalues of symmetric matrices and their submatrices, also
; 1(S)? known as the separation theoréfrNote that in denoting the

eigenvalues we omit the indek indicating system size,
(18 where this is not confusing. The approximate eigenveators

which equals the variance of the configurational eigenvalue2"® given by
as shown. n—1

= JZO Dij i, (24)

B. Multiple eigenvectors

Minimization of y?(p) is a valid criterion for any eigen- which can be verified as follows: multiply E¢19) through

vector, but if this is used without the equivalent of an or- by D,;, and sum ori to verify thathz]/{( proportional toy, .
thogonalization procedure, one would in practice simplyThe expressions derived above are usdalrived by start-
keep reproducing an approximation to the same eigenvectofag from the linear combinations given in this last equation.
the dominant one most of the time. Since orthogonalizationrhe D;; then are treated as variational parameters, and are
is not easily implemented with Monte Carlo methods, wegetermined by requiring stationarity of the Rayleigh quo-

utilize straightforward generalizations of Eq44) and(16)  tient. This yields the following equation for the; -
to deal with more than one eigenvalue and eigenvector.

Equation(18) is a little problematic in this respect, as will A~ .
become clear. > D;iPp=\2 DNy, (29
Suppose we start from a set af trial vectors ¢ (i : :
=0,1,...n—1). We can then write Eq14) in matrix form  a generalized eigenvalue problem equivalent to the eigen-
no1 value problem defined b defined in Eq(20).

, _ 2 Next we discuss the generalization to more than one trial

‘/’Ti(s)‘,zo Aijihri(S). (19 vector of minimization of the variance as given by Etg8).

) R _In this context it is important to keep in mind that the varia-
As before, the prime on the left-hand side indicates matrixjonal approximation is invariant under replacement of the
multiplication by P, and again Eq(19) for all i andSform  basis vectors by a nonsingular linear superposition. This
an overdetermined set of equations for the ma&riijx. These vyields a similarity transformation ok, and leaves invariant
equations have no solution, unless théasis vectorg/; the approximate eigenvalues and eigenvectors. Of course,
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one would like to have an optimization criterion that shares Fort=0 these expressions reduce to E@l) and (22).
this invariance. The squared residual of Etp) fails in this ~ One can view the matrix elements for0 as having been

respect. This sum is not even invariant und_er a simple réspbtained by the substitutiony;)— P ¢;). Expansion in
caling of the basis functiongs;, and there is no obvious the exact eigenvectors immediately shows that the spectral
normalization comparable to the one used in Bd). weights are reduced of “undesirable” eigenvectors with less

. One way to .perform the (_)pt.imi;ation in an invariant way dominant eigenvalues, so that the vecté’r‘é2| Jri) span a
is for each choice of the optimization parameters to compute ' !

linear combination& V| /1), whereV is thenx n matrix, more nearly invariant subspace Bfthan the original states.
hthat/AV-1 | dJ' ! JI Each of these | b This process, however, becomes numerically unstable as
:gﬁs d:ﬁnes as(zlsviaialggn?lé) azfn dotheeSaeral?nee?rercsoﬁ ;E:’ —, since in that case all basis vectors of the same symme-

basis functions can then be optimized by minimization oftry collapse onto the corresponding dominant state.

thesen sums of squares. One may define a convex sum of

thesex? and optimize all parameters for all basis functions . MONTE CARLO SUMMATION

simultaneously with respect to this combined object func-  gpyigusly, the summation over all spin configurations

tion, or, as we did in our computations, one can perform thg seq in the expressions in the previous section can, in gen-

optimization iteratively one vector at a time for eigenvaluesgya1 e done only for small systems. In this section, we

with increasing distance from the top of the spectrum.  giscyss the Monte Carlo estimators of the expressions pre-
Another approach that also yields invariant results is tQsented above. In principle, matrix multiplication involves

perform the optimization by dividing the set of configura- gmmation over all configurations and therefore is not prac-

tions into several subsets, and computing a matrbor each tically feasible. However, for the dynamics we consider in

subset. One can then minimize the variance of the eigenvathis paper the summation required for the matrix multiplica-
ues over these subsets. This is the procedure we followed {g,, by P in (S||5| 1) is an exception, since for a gives

produce the results reported in this paper. there are onlyL? configurationsS’ from which S can be
We have not investigated which of the two procedure§gached with one or fewer spin flips, and these are the only

described above is superior. Both do have a problem in COMkonfigurations for whichP(S,S') does not vanish. For all

mon, namely, that for a wide class of variational basis vecher configuration sums a Monte Carlo method is used.

tprs, they give ri_se.to a singular or nearly singular optimiza-. To produce a Monte Carlo estimate gt(p) as given in
tion problem. Th|§ |saconsequence.of the fact that the ba3|éq_ (18), sample M, spin configurationsS, with «
States are nqt unique, even '.f t_he glgenvalue proplem has 3 ,....M¢ from the Boltzmann distributionyg(S,)2. This
unique solution. For the optimization problem this means . . —

that there are many almost equivalent solutions, a probler'}{IGIdS a Monte Carlo estimate af(p):

commonly encountered when one perforfmsnlineaj least-

squares parameter fits. TS VI(S

More specifically, if the basis vectors are such that a lin- — za: 7(Se)¥1(Se)
ear combination of trial vectors can be expressed exéatly AN(p)~ N ) (28)
to good approximationin the same functional form as the 2 1(S,)?

trial vectors themselves, then there is a gauge symntetry
an approximate gauge symmeétrihat yields a class of
equivalent(or almost equivalentsolutions of the minimiza-
tion problem. That is, if ;) is a solution2;V;;|¢;) is an s
equivalent(or almost equivalentsolution for anyV. This Ie(S,)= Y1(Sa) (29)
problem can be solved straightforwardly by fixing the gauge “ Pe(S)”
and performing the optimization subject to the constraint that

2V )| ¢mi). If the gauge symmetry holds only ap- R P (S,)

proximately, this additional constraint may produce a sub- Y1(S,) = V(S
optimal solution. Bl Sa

where

(30

Similarly,
C. Beyond the variational approximation

The eigenvalues obtained by the variational scheme dis- o) N 2
cussed in the previous sections have a bias caused by admix- % [#1(Sa) =N ip1(S,) ]
ture of eigenvectors in that part of the spectrum that is being x*(p)= - (32)
ignored. This variational bias can be reduced in principle > P(S,)?
arbitrarily as follows’ «

Let us introduce generalized matrices with elements

Parameter optimization for a single vector is done by gen-
Nij(t):<‘/fTi||st|‘//Tj> (26)  erating a sample of a few thousand configurations and sub-
sequently varying the parametegs while keeping this
and sample fixed. The same applies to the optimization of more
than one vector, in which case estimates of the required ma-

Py (0= (i P ). (27)  trix elementsN;; and7; are computed by
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Nij=~> §mi(Sa) #ri(Sa)=N;; (32)

and

P~ IS dri(S) =P . (33

We attached tildes to the symbols on the right-hand side

of Egs.(32) and(33) to indicate that the corresponding quan-

M. P. NIGHTINGALE AND H. W. J. BLOTE
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S
=SO’Z_ s Uri(S) ¥ri(So)P(SISi-1) - - - P(S1|So)
X (So)? (39)
M
=Mo" 2 ii(Sy ) Ui(S,) (39

tities are stochastic variables, which is important to keep in

mind for the following discussion.
Since the matrixP is symmetric, one might be inclined to
symmetrize its estimatoﬁj with respect toi andj. This

symmetrization, however, destroys the zero-variance prin
ciple satisfied by the expressions as written. As mentioned

before, the eigensystem df is obtained exactly and without
statistical noise, if the basis vectays; are linear combina-
tions of n exact eigenvectors. In that ideal cask, is
uniquely determined by Eq19) even if it is applied only to
an subset of configuratior® The same holds for a weighted

subset as represented by a Monte Carlo sample. Even though
the matricesP andN themselves depend on the weights and

Similarly,

H=_ 3

#7i(Sr1)P(Si+1S) - - - P(S1|So) ¢ (So)

the subset, factors responsible for statistical noise cancel in

the productPN 1. To demonstrate this, we write the estima-
tor in matrix form

N=P¥T (34)

and

P=0'PT (35
where ¥ is a rectangular matrix with element¥;,
= y7i(S,) and ¥/, = ¢4 (S,). Equation(19) in matrix form
becomes

V' =AT. (36)
Clearly, if this last equation holds, PNt

=P'PTI(PPNH"1=A without statistical noise, as an-
nounced.

We have assumed that one matrix multiplication by the £
Markov matrix can be done exactly; repeated multiplications .,
rapidly become intractable. This is a problem for the compu- >

tation of the matrix elements given in Eq26) and(27). To

obtain a statistical estimate of these matrix elements, one

generates a time series with the Markov maRixOne then

exploits the fact that in the steady state of the Markov pro-

cess, the relative probability of finding configurations
S1,S,, .. .,S1 in immediate succession is given by

P(Si+11S) - - - P(Sa|S) ¥e(S1)%. (37

For a Monte Carlo run of lengthl, this property allows
us to write

S
X g(Sp)? (40)
MC
m(zwlcrlgl [94(Syst) ¥7i(Se) + ¥5(S,)
X §7i(Sy+0)]- (42)

The first term in expressio1) follows immediately from
expression(40); to obtain the second term one has to use the
time reversal symmetry of a stochastic process that satisfies
detailed balance, viz.,

P(Si+1]S) - - P(Sy|S1) ¥s(S1)?

=P(S1Sy)- - - P(S|St41) ¥a(Si+1)° (42
Again, these estimators satisfy the zero-variance principle
mentioned above, as long as the expressions are used as writ-

ten, i.e., without symmetrization with respectitandj.

LF T
t
05 ;
H
O_
t
05t i
1
10 8 6 4 2 0 2 4 6 8 10
M

FIG. 1. Prefactory, / 4z of the first subdominant eigenvector of
the Markov matrix vs total magnetizatiod for a 3X3 nearest-
neighbor Ising f=0) lattice. For each value &fl 1(S)/4g(S) is
plotted for all configuration$§ with M(S)=M. All 512 points are
plotted, but because of symmetries, many coincide.
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FIG. 2. Prefactory, / 4z of the first subdominant eigenvector of
the Markov matrix vs total magnetizatiod for a 4X4 nearest-
neighbor Ising f=0) lattice.

FIG. 4. Prefactogy, / g of the second subdominant eigenvector
of the Markov matrix vs total magnetizatiovl for a 5X5 nearest-
neighbor Ising B=0) lattice.

truth, but there are two shortcomings. First of all, there is
scatter, which indicates that,(S)/#g(S) is a function of

As we mentioned, the form of the trial vectors used inmore than just the magnetization. Second, the “curve” is
these calculations is a major factor determining the statisticghonlinear. The latter problem can be cured quite easily by
accuracy of the results. It not too difficult to make an initial replacingm in Eq. (43) by an odd polynomiam(1+ a,m?
guess for the form of the eigenvector corresponding to the; .. .) with coefficientsa, to be determined variationally.
second largest eigenvalue of the Markov matrix. Numeri- Similarly, computations for small systenisee Sec. V A
cally exact calculations for small systems show that this eifor further detaily suggest that the second largest eigenvalue
genvector is antisymmetric under spin inversion, which is gs associated with an eigenvector that is even under spin
manifestation of the longevity of fluctuations of the magne-jnversion, as illustrated in Fig. 4. A trial vector of this form
tization and not a peculiarity of small systems. is readily constructed by replacing on the right-hand side

This suggests the following initial approximation of the of Eq. (43) by a polynomial even im. It turns out that the
eigenvector belonging to the second largest eigenvector, theaneral picture as just described is largely independeht of
first subdominant Eigenvector of the Symmetrized Markov More in generaL the p|ots shown in F|gs 1-7 Strong|y
matrix P: suggest that the subdominant eigenvectors of the Markov
matrix P, subject to the imposed spin, rotation, and transla-
tion symmetries, are reasonably approximated by the Boltz-
mann distribution multiplied by a mode-dependent function
oA ©f the magnetization. As can be seen in Figs. 1-7, the num-
of 41(S)/ rs(S) versus the total magnetizati=L"m for  por of nodes of this prefactor increases by 1 as one steps
the exact eigenvectop, computed for X3, 4X4, and 5 gown the spectrum, but it is also clear that, especially for the

X5 nearest-neighbor Ising systems. For all three, the prefagass dominant eigenvectors, the residual variance is signifi-
tor min Eq. (43) clearly captures a significant part of the gt

To begin to address the problem of the scatter and to

IV. TRIAL VECTORS

r1(S)=my(9), (43

wherem is the average magnetization. Figures 1-3 are plot

L ' ' ' ' ) per improve the trial vector systematically, it is necessary to
! L — . — .
05 | | [ ] I I I
' | | i
= 05 | 1
>
~ 0 ' l 1 . I - i
S 0 e i .
-0.5 ' l i > ; i + ’ +
L ' 05 l I :
N . . . . = !
20 -10 0 10 20 ' l
M -1 . F ot A A .
_ ) _ 20 -10 0 10 20
FIG. 3. Prefactory, / 4z of the first subdominant eigenvector of M

the Markov matrix vs total magnetizatiod for a 5X5 nearest-

neighbor Ising B=0) lattice. Although up to 400 configuration FIG. 5. Prefactony; /g of the third subdominant eigenvector
collapse onto a single point, crowding prevents individual resolu-of the Markov matrix vs total magnetizatidvi for a 5X 5 nearest-
tion of most data points. neighbor Ising B=0) lattice.
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FIG. 6. Prefactony, / g of the fourth subdominant eigenvector
of the Markov matrix vs total magnetizatiov for a 5X5 nearest-

neighbor Ising f=0) lattice.

identify other important variables besides the magnetization
and to incorporate them in the trial vector. We tried multi- #7(S) = ¥&(S)

. a“, a,flkz, ... arepolynomials inm, which are either odd

20 or even under spin inversion and are to be chosen according
to the desired symmetry. Rotation and reflection symmetries
of the lattice are imposed by equating coefficients of the
appropriate monomials im.

The results reported in Ref. 6 were obtained using a more
complicated version of Eq45), namely,

10

— ’ —
a~(m)+ k§<2 i, (M) My, My S, +k,,0

spin correlations involving nearby spins but after consider-

able failed experimentation we established that long-
wavelength fluctuations of the magnetization are the suitable

N
+ A ke (M) My, My, My S, 1k, +kg 0 - - -

’
k1 Kz.Kg

variables. This is reasonable when one compares, e.g., the

eigenvalue equations foyy(S') and #4(S’) and realizes
that the eigenvalues differ only very little from unity except

[
X a+(m)+k§2 i, (M) My, My, S +k,.0

for very small systems. We therefore used the Fourier com-

ponents of the spin configuration, which are defined by

2i

L L
m=L"2> exp[T<k1|1+kzlz)

I1=1 15=1

+ >

- k(M) M My, My ik, +kq0
1:82,83

(46)

Si1, (44

In those calculations also the coupling constant appearing in
the Boltzmann factor was treated as a variational parameter,

wherek= (ki ,kp) with 0<k; k<L, ands, ;, denotes the but it turned out that the optimal value of this parameter was

spin at lattice sitel(,l,). Note thatm=mg,. If we restrict
ourselves to eigenvectors that are translationally invarian
the arguments presented in the previous paragraph yield tik

following trial odd or even vectors:

indistinguishable from the critical coupling. It does not seem
that the more complicated form of expressidg) resulted in
3 major improvement, but we did not perform a systematic
comparison of these trial vectors.

The coefficients in the trial vector are treated as varia-
tional parameters. As in all nonlinear fitting problems it is
important to use parameters parsimoniously, and to do so

] one has to establish a hierarchy among these parameters. The
* scheme we used was to iterate the following st@p:sys-
tematically add terms of increasing degreenin (b) when
this saturates, increase the degree of terms with products of

The effectivity of this variational approach using low-

&
‘ ‘ | i m, with m,# (0,0).

momentum Fourier components, as described here, becomes
apparent when one compares the variational eigenvalues
with the exact numerical ones. For instance, the difference in
the case of the second eigenvalue of the5 nearest-
neighbor model was only:210 .

1F . . T — T T
t
05
5_" +¢$:l|| iI +
> 0F l i + 1
= + i+
‘ |
-0.5 b
+ 1
-1k . . + . . . 1
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M

FIG. 7. Prefactow)s / ¢z of the fifth subdominant eigenvector of
the Markov matrix vs total magnetizatiod for a 5X5 nearest-

neighbor Ising f=0) lattice.

V. NUMERICAL RESULTS
A. Exact eigenvectors for small systems

The full, symmetric Markov matriX® for an L x L Ising
model is a 22>< 2L2 matrix, so that exact numerical calcula-
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tions are possible only for very small systems; see, e.g., regiven in expressiori46) and used up to 36 variational pa-
sults forL=<4 in Ref. 18. In the present work, we performed rameters. Also included in the present analysis are the simu-
such exact computations for systems uph.te5. In order to  |ations reported in Ref. 7, which contained %.20° Monte
restrict the numerical task, we chose representatimfs iof Carlo samples for all three models with system sizes up to
subspaces with the appropriate symmetries. Two distindt =20.

symmetries were chosen, both of which impose invariance of In addition, new simulations for each of the three models
the eigenvectors o with respect to geometric translation, were performed, with a length of 210° Monte Carlo
rotation, and mirror inversion. The vectors were chosen to beamples for system sizes uplte- 20 and of 1.6 10 Monte
either even or odd under spin inversion. This reduced byCarlo samples for system size=21. These new simulations
almost a factor 400 the dimensionality Bf In this way, the used up to 89 variational parameters in the trial functions for
computation of a restricted set of eigenvectors became fe@ach eigenvector of each model.

sible for the resulting matrices of order 86 056 for the In order to suppress biases due to deviations of random-
=5 cases. For the diagonalization we made use of spars@ess, we made use of a random number generator which
matrix methods and the conjugate-gradient mettse@, e.g., combines two different binary shift registers such as de-
Refs. 19 and 20which computes the eigenvector with the scribed and discussed in Ref. 21.

largest eigenvalue. Subsequent orthogonalization with re- The required Fourier components of the spatial magneti-
spect to this eigenvector yields the eigenvector with the seczation distribution were sampled at intervals of one sweep
ond largest eigenvalue, and further eigenvectors can be olfor the smallest systems up to about 15 sweeps for the largest
tained similarly. Thus we obtained exact numerical solutiongnes. The Monte Carlo calculation of the autocorrelation
for six eigenvalues. ; and their corresponding eigenvectors times (actually the eigenvalues of the Markov majrixas

#(S) (i=0,...,5) of theeigenvalue equation performed for each run as a whole as well as separately for a
number of up to 1024 blocks into which the run was split.

E P(s, S (S) =N ti(S). (47)  This blocking procedure enabled us to estimate the statistical

s’ errors. Furthermore, the calculation of the eigenvalues ac-

The largest eigenvalue,  is equal to 1, in accordance with cording toP(t)N(t) ~*=A{ still depends on the time dis-

the conservation of probability; its corresponding eigenvecplacements [see Eqs(39) and(41)]. The calculation oft ()

tor satisfiesyo(S)= ¢(S), as follows from detailed balance. was performed for time displacemerits 2=0,1,2 ... up

It is even with respect to spin inversiomiy(S) = ¢o(—S) to 10 or 20 of the above-mentioned intervals. For small
where —S is obtained fromS by inverting all spins. For all  these eigenvalue estimates reflect variational bias due to the
system sizes and models included here, we observed that thesidual contributions of relaxation modes decaying faster
six leading eigenvectors, ordered according to magnitude ahan the mode for which the trial vector was constructed. If
their eigenvalues, alternate between the odd and even sufire relaxation times of these faster modes are considerably
spaces: the first eigenvector is even, the second one is 0dghorter than that of the mode under investigation, one can
the third one is even subspace, and so on, with the cavegfearly see a fast convergence of the eigenvalue estimate as a

that forL =2, e.g., the odd subspace contains only two indey,,ion oft. Convergence, however, occurs to a level that is

pendent stat_es. As we_dlscuss_ed above, the resulting e'_gegﬁly approximately constant because of the correlated statis-
vectors provide useful information on how to construct trial

0tical noise whose effect still depends brWith increasing,
L<5 provided an powerful test of the Monte Carlo method dne can also ob_serye that the statistical errors increase. The
. . . ‘latter effect, which is as slow as the pertinent relaxation
t_he results of which are presented in the following SubsecFnode, occurs when the autocorrelations of the Monte Carlo
tion. sample are decreasing significantly witirhis situation was
indeed observed for the largest eigenvalues; the data con-
B. Monte Carlo calculations verged well witht before the coherence of the sampled data

All simulations took place at the respective critical points Was lost. It was thus rather simple to select a “best estimate”
of the models considered. This point is known exactly in theof those eigenvalues. However, the situation for the smaller
case of the nearest-neighbor moflkl.= In(1+ ﬁ)/Z], and e€igenvalues myeshgated here was much more difficult, be-
was determined numericaﬂilfor the other two modelsk, cause Fhe relative differences between sut_)sequent autocorre-
—0.190 192 680 (2) for theequivalent-neighbor model and Ia}tlon times are rr_1uch §maller. The numerical results for the
K.=0.697 2207(2) for the model with antiferromagnetic €igenvalues are listed in Ref. 22
next-nearest-neighbor interactions. The finite-size scaling
analysis presented in Ref. 12 showed that, to the extent they
are compatible with the numerical results, deviations from
Ising universal behavior are extremely small. The raw simu- In two-dimensional Ising models, finite-size corrections
lation data used in this current paper include the data omre known that decay with finite size &s 2, and integral
which were based the numerical results for the largest relaxpowers thereof may also be expected. In the absence of in-
ation time of the nearest-neighbor model, reported in Ref. 6formation on possible additional finite-size corrections of a
The latter results were obtained fromx80° Monte Carlo  different type that could occur in dynamic phenomena, we
samples for systems with finite sizes uplte-15. The trial  try to describe the finite-size data for the various autocorre-
vector used for these computations consisted was of the forfation times, as given in Eq11), by the formula

C. Determination of the dynamic exponent
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TABLE I. Best estimates for the dynamic exponentfor five TABLE Il. Comparison between fits to the autocorrelation
relaxation modes in three Ising-like models. These results were sdimes, with and without a logarithmic finite-size dependence. These
lected from a much larger set of least-squares fits, obtained fofits apply to the slowest relaxation mode. The first column shows
different choices of the minimum system size and of the number othe minimum system size included, the second the number of cor-
corrections taken into accoutgee Ref. 22 The error estimate in  rection terms included. The fourth column displays the squared re-
the last decimal place of each entry is listed in parentheses, and sdual y? obtained when the dynamic exponenwas left free and

taken to be two standard deviations in the best fit. the amplitudeb of the logarithm was fixed at zero. The fifth column
shows the squared residyg] whenz was fixed at value 2, while
Mode B=-1/4 B=0 B=1 was left free. The sixth column lists the number of degrees of free-

dom of the fit for comparison.

1 2.164 (3 21660 (10 2.1667 (5
2 2166 (3 2167 (1) 2167 (1) L= Model n, - 2 d

3 2164 (50 2170 (20 2167 (1)
4 2.17 (1) 2162 (4 2170 (8) S B=0 1 239. 274. 76
5 2.15 2 217 @ 217 (1) 6 B=0 1 98. 187. 72
7 B=0 1 83.5 127. 67
8 B=0 1 68.7 87.9 62
e 9 B=0 1 63.8 71.9 57
L~ LZKZO a2 (48) 10 B=0 1 55.9 57.5 52
Herezis the dynamic exponent the finite-size amplitude, 8 p=1 1 6.0 71.1 o1
andn, is the number of correction-to-scaling terms included. p=1 1 0.1 57.4 47
Not explicitly shown in this notation is that the autocorrela- 10 p=1 1 49.4 49.7 43
tion times depend on the relaxation mode and the model. 4 B=0 2 89 2 341, 76
On the basis of Eq(48), a considerable number of least- 5 B=0 5 85.0 136 75
squares fits were applied to the numerical results for the au- 6 B=0 2 83.3 97_2' 71

tocorrelation times. For each model and relaxation mode,
one may vary botim., the number of correction terms, and

the low-L cutoff specifying the minimal system size included  Next we address the question whether the finite-size di-
in the fit. The smaller the number of corrections, the largeergence of the autocorrelation times at criticality can be
the lowL cutoff must be chosen in order to obtain an acceptyescribed by a dynamic exponert2 when a logarithmic
able squared residuaf. A selection of fits that display the factor is included. This possibility was suggested by
numerical trends is presented in Ref. 22 Domany?® and pursued by Swendsérand Stauffe?®, who

The “best fits” were chosen on the basis of thé crite-  ysed very large lattices and found that this possibility seems
rion, the dependence on the ldw<cutoff, and the mutual inconsistent with one way of simulation, but not with a dif-
consistency of fits with different.. The fits are summarized ferent one. Further references concerning this question are
in Table 1. Since the errors are not only of a statistical naturegjven in Ref. 29.
but also depend on residual bias in the autocorrelation times Although the present work is restricted to very small sys-
and subjective choices made in the selection of the best fitsem sizes, the data are relatively accurate. Thus we tried to fit

we quote error bars equal to two standard deviations as obhe following form to the finite-size data for the slowest re-
tained from statistical considerations only. We believe thaigxation mode:

these 2r error estimates are conservative in the case of the

analysis of the second and third largest eigenvalues of the e

B=0 models. The8= — 1/4 model was found to be numeri- n~L%1+blin L)(;O akLZK) : (49

cally less well behaved: the statistical errors, as well as the -

corrections to scaling, appear to be larger. Also, the construd=ixing z=2 and takingb as a variable parameter, we found

tion of trial vectors was somewhat less successful than in théhat this form could well describe the data for large enough

cases of the8=0 models. n.. The quality, as determined by thé criterion, of a num-
The new data are somewhat more accurate than and coher of such fits is shown in Table Il. For comparison we

sistent with our previous work.They are also consistent include fits in whichzis a variable parameter without a loga-

with the results of Wang and Hufor the slowest relaxation rithmic correction.

mode of a different set of Ising-like models. They provide a The results in Table Il indicate that the fits with a variable

clear confirmation of universality of the dynamic exponent,exponent are usually better than those which include a loga-

with regard to relaxation modes as well as models. Our besithmic term; i.e., the residua}? decreases faster when the

estimatez=2.1667(5) applies to the sloweébdd relax- low-L cutoff is increased. This is especially apparent for

ation mode of the equivalent-neighbgg£ 1) model. smalln. and for theB=0 andB=1 models, where the sta-
This result forz is consistent with most of the recently tistical accuracy is optimal.

published values. This agreement includes the results of Finally we tried a fit according to E¢49) with bothz and

Stauffef* on damage spreading in the Ising modéfhe b as free parameters. The resolution of both parameters si-

value listed in Ref. 6 was incorrectly quotgdt is slightly ~ multaneously is quite hard, and lies near the limit of what

larger than the value 2.14 derived by Alexandrowian the can be gleaned from the present data. For the nearest-

basis of a scaling argument. neighbor model we find, using system sites8 and larger,
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TABLE l1ll. Best estimates for the finite-size amplitudes of five relaxation modes in three Ising-like
models. These results were selected from a much larger set of least-squares fits obtained for different choices
of the minimum system size and of the number of corrections taken into actsmeRRef. 22 The error
estimate in the last decimal place of each entry is listed in parentheses, and is taken to be two standard
deviations of the best fit. The amplitudes can be written as the product of mode-dependent and model-
dependent constantsee texk the difference in the last decimal place between the amplitudes and this
product is shown between square brackets.

Mode/model k=1 k=2 k=3

1 (odd) 6.763 (6) [-10] 4.4089 (13 [8] 2.8312 (5) [0]
2 (even 0.2516 (2 [2] 0.16364 (5) [0] 0.10510 (2 [0]
3 (odd) 0.1188 (1) [1] 0.07727 3 [0] 0.04963 (1) [0]
4 (even 0.07195 (7) [3] 0.04677 (4) [-4] 0.03008 (3 [2]
5 (odd) 0.0466 (1) [-1] 0.03041 (3 [-1] 0.01956 (2) [2]

and n,=1, that z=2.13+0.07 andb=0.05+0.09, which  are best. However, even in this case it is not possible to rule
again fails to support the presence of a logarithmic term. out a divergence of the relaxation time of the fotri(1
+blInL). Nevertheless, our results viewed in their totality
make this behavior rather unlikely. First, the assumption of
this logarithmic form yields fits that converge less rapidly, as

In orlder to determ(;ni tr:f leading da;nplift}udgg MOre  mentioned above. Second, one would have to Hawe /6
precisely, we _repeate the fits as use or the eterm'n‘"‘t'otrj'hiversalIy, independent of model and relaxation mode,
of the dynamic exponent, but with the value of the latter

. : since our results for the range of system size we studied are
fixed atz=13/6. We note that the combined results fare 9 y

H H H z 13/6
consistent with this fraction. A considerable number of fitsconSIStent with ‘a divergence of the form oL L

~] 2 i i i ;
were made, and “best estimates” of the amplitudes are pre-wL (1+1/6InL). Universality of the amplitude of a loga

sented in Table III rithmic correction would be quite unusual and does not fit
As mentioned in Ref. 7, according to a modest generali-imo any theoretical framework of which we are aware.

zation of accepted ideas on universality, the finite-size am- SOMe Open questions remain regarding the optimized
plitudes of the autocorrelation times should satisfy variational vectors to which this computation owes its accu-
=A;m,, where them, are nonuniversal, model-dependent 'acy- Variational basis vectors of the general form given in
constants; the subscript refers to the specific model. We EQ. (45 are special in the sense that all parameters enter
use the notationk=2+sgn(8) so thatk=1 refers to the linearly. The method outlined here does not require this fea-
model with ferromagnetic nearest-neighbor and antiferrofure and in fact it was not present in previous computations,
magnetic next-nearest-neighbor couplings; 2 denotes the eported in Ref. 6. .
nearest-neighbor model, and=3 refers to the equivalent- For most of the results presented here we used trial vec-
neighbor model. The\;, i=1, ...,5, aremode-dependent tors with linear parameters optimized by minimization of the
constants, whose ratios are universal. Since only the produ¥@riance of the configurational eigenvalues. As an apparently
matters, we are free to choose an arbitrary value for one gtquivalent alternative, the full set of symmetrized monomials

these constants. We chose toAix=1, so that allA; should N the Fourier coefficients of the spin configuration could be
become universal constants. chosen as basis vectors rather than the linear combinations

The remaining constanta, (i=2, ...,5) andm, were defined in Eq(4_5). With this choice, the basis vectors Wpulo_l
fitted accordingly to the amplitudes listed in Table Il. The NOt have contained any parameters, but employing this big-
result of this least-squares fit ig,=6.773+0.003, m, ger truncated basis, the same linear parametersAwouId have
=4.4081+0.0009, m;=2.8312+0.0005, A,=0.037123 been reintroduced by computing the matrix eleméhisand
+0.000008, A3;=0.017536-0.000004, A,=0.010618 75”- and solving the generalized eigenvalue problem defined
+0.000006, andA5;=0.006901-0.000005. This fit has by Eqg.(25). In this way, we would have obtained the coef-
eight degrees of freedom ang?=9.0, in good agreement ficients for which the Rayleigh quotient is stationary, at least
with the assumptions of dynamic universality, and suggestif the summation over configurations could have been done
ing that our 2r error estimates are not unrealistic. The dif- exactly. Proceeding in this way, we could have altogether
ferences between our amplitude estimates and the fitteskipped the optimization scheme based on minimization of
productA;m,. are included in Table Ill, in units of the last the variance of the configurational eigenvalliek Eq. (18)
decimal place listed. and Sec. Il B.

The obvious question is what is accomplished by the non-
linear minimization of the variance of the configurational
eigenvalues. We do not yet have a convincing answer to this

The analysis presented above produces an apparenttyestion. On the one hand, it is not difficult to show that the
highly accurate estimate of the dynamic critical exporent zero-variance principle holds for individual eigenstates. That
=2.1667-0.0005 for the case of the equivalent-neighboris, if an eigenvector can represented exactly as a linear com-
model, where the statistical accuracy and the convergendanation of the basis vectors, the variationetQ) case will

D. Universality of finite-size amplitudes

VI. DISCUSSION
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already produce the exact result even if it the eigenvalu¢he stochastic matrix. In order to enable a comparison with
problem contains eigenvectors that cannot be represented exther types of dynamics, we choose our unit of time as
actly in the truncated basis. This is in fact precisely whatl?9~2Yn Wolff steps ( is the linear system size] the di-
happens for the dominant even eigenvector: this vector imensionality, andy,, the magnetic renormalization expo-
represented exactly even in the truncated basis we use, anénj. Since the average Wolff cluster consists of a number
indeed its eigenvalue is reproduced exactly. On the otheof sites proportional td-?Yn~9, this choice guarantees that,
hand, our tentative numerical experiments show that the opander equilibrium conditions, an average number of otder
timization method produces more accurate results, which ispins is processed per unit of time.
not surprising when one considers that the optimized basis Because of the efficiency of the Wolff algorithm, only a
functions give rise to much smaller truncated basis sets. Thifew units of time are needed to generate an independent spin
in turn yields a generalized eigenvalue problem involvingconfiguration under practical circumstances. However, if the
much smaller matrices that are numerically and statisticallyfully ordered antiferromagnetic state is chosen as the initial
much more robust. spin configuration, a number of Wolff steps of ordeft is

A related problem with a large basis set is that the matrixequired to remove the the antiferromagnetic order; i.e., its
N in the generalized eigenvalue problem of Eg5) be- relaxation to equilibrium is anomalously slow. A less ex-
comes numerically singular. In fact, the only way in which treme but related phenomenon is observed under practical
we were able to obtain meaningful results at all is by per-Wolff simulation conditions at equilibrium: from time to
forming the inversion in the usual regularized fashion as foltime large critical fluctuations occur that bring the system

lows. Use the fact thall is symmetric and non-negative into a state of relatively large disorder and small magnetiza-
definite to write it in the form tion. These configurations are relatively long lived. In the

time autocorrelation function of the magnetization, this phe-

N=Wdiag,u§, -'Mﬁ) wt (50) nomenon translates i_nto a slowerjthan_—exponential d&tay,
at least on the numerically accessible time scale. In the lan-
Then define a regularized inverse M¥? as follows: guage of Eq(10) such a situation follows if one assumes the
o o _ existence of anomalously large autocorrelation timgsas-
N‘1/2=Wdiag,ufl, e ,,u,?l) w', (51 sociated with anomalously small amplitudgs Under these

—1 1. ) circumstances we cannot exclude the possibility that the
whereu; "= u; ~ if u; exceeds a suitable chosen threshold,jongest relaxation time following from the Markov matrix
e.g., the square root of the machine accuracy, ﬁﬁﬂizo for the Wolff simulation of a finite system corresponds with
otherwise. The nonvanishing eigenvaluesl\_bT 12pN~— 1/2 an extremely u_nlikely deviation from equilibrium_._ Since this
then yield a subset of the eigenvalues Rfthat are least Kind (_)f flugtuz_i'qons may have too low a probability to be of .
f d by th ical sinqularity &F practical significance, these considerations suggest the possi-
a eA(l:tﬁ %tf € Eumerlg{:}. singu arlgyh ' ional bility that the time needed to generate an “independent con-

though further modifications of the computational pro- figuration” is not simply related to the second largest eigen-
cedures may lead to additional improvements of our teChi/alue of the Markov matrix, but rather to some intricate

nigue, the numerical results obtained thus far are alread}ﬁverage possibly involving the complete spectrum
quite promising and the question arises what further applica- ' '

tions are obvious in the field of dynamics of Monte Carlo
methods.

For instance, it seems well possible to apply the present |t is our pleasure to acknowledge stimulating discussions
techniques in three dimensions and to spin-conserving Kawith Bob Swendsen. This research was supported by the
wasaki dynamic’salthough itis clear that the construction of U.S. National Science FoundatiofiNSP through Grants
trial vectors will have to be modified. In the same context,DMR-9725080. This research was conducted in part using
we note that direct application of the method used in thishe resources of the Cornell Theory Center, which received
paper to the dynamics of cluster algorithirsis frustrated major funding from the NSF and New York State, with ad-
by the requirement that one should be able to comput@itional support from the Advanced Research Projects
(S|P|#7) numerically exactly. An additional problem for Agency (ARPA), the National Center for Research Re-
such dynamics from the perspective of our approach is thatources at the National Institutes of HealiH), the IBM
the conceptorrelation timehas to be handled carefully in Corporation, and other members of the center’'s Corporate
this context. Research Institute. This research is supported in part by the

Let us demonstrate this point by means of the followingDutch FOM foundation (“Stichting voor Fundamenteel
thought experiment: the application of the Wolff algorithm Onderzoek der Materig”’which is financially supported by
to the ferromagnetic, critical Ising model. As usual, we de-the NWO (“Nederlandse Organisatie voor Wetenschappelijk
fine the autocorrelation times in terms of the eigenvalues oOnderzoek’).
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