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Universal Dynamics of Independent Critical Relaxation Modes

M. P. Nightingale
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

H. W. J. Blöte
Department of Applied Physics, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands

and Lorentz Institute, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 7 August 1997)

We obtain the relaxation times of several, progressively rapid, independent modes of three models
in a two-dimensional Ising universality class. Their size dependence can be described by one single
dynamic exponent and universal amplitude ratios. This analysis is based on variational approximations
of the eigenstates of the Markov matrix describing heat-bath, single-spin-flip dynamics. Monte Carlo
computation of the corresponding autocorrelations and cross correlations, in which the variational error
is systematically reduced, yields eigenvalues and the associated relaxation times with considerably
higher statistical accuracy than is the case for traditional correlations. [S0031-9007(97)05176-4]

PACS numbers: 64.60.Ht, 02.70.Lq, 05.70.Jk, 64.60.Fr

It is generally accepted that static critical phenomena in
two dimensions fall into classes characterized by universal
critical exponents and amplitude ratios. However, for dy-
namic critical phenomena the situation is much less clear,
because exact and accurate numerical results are scarce.
In this Letter, we show that relaxation modes of a class,
parameterized byk, of two-dimensional Ising-like models
with single-spin-flip dynamics have a universal exponent
z and universal amplitude ratios of the corresponding re-
laxation times. At critically,tLiskd, the relaxation time of
modei of a system of sizeL, behaves as

tLiskd . mkAiL
z, (1)

where Ai is universal, but depends on the modei; the
nonuniversal metric factor [1–3]mk depends only on the
microscopic details of the interactions and the dynamics.
One is led to Eq. (1) by simple scaling arguments. These
imply that self-similarity under spatial rescaling by a factor
b requires rescaling of time bybz , and that similarity
within a universality class is established by the metric
factor which characterizes the time scale of each member
of the class. Equation (1) is numerically verified by the
Monte Carlo method introduced below.

This method is applied to square-lattice Ising models
with nearest and next-nearest neighbor couplingsK and
K 0, and periodic boundaries and Hamiltonian

H ykT ­ 2K
X
si,jd

sisj 2 K 0
X
si,jd0

sisj , (2)

where si, jd and si, jd0 run over all nearest and next-
nearest neighbor pairs. We choose three values ofk ­
K 0yK, namely k ­ 2

1
4 , 0, 1: the opposite-, nearest-,

and equivalent-neighbormodels. The Markov matrixP
defines the dynamics. ElementPsS0, Sd is the conditional
probability of a transition toS0, given a configurationS.
If S andS0 differ by more than one spin,PsS0, Sd ­ 0. If
they differ by precisely one spin, heat-bath probabilities

apply:

PsS0, Sd ­
1

L2

Ω
1 2 tanh

∑
H sS0d 2 H sSd

2kT

∏æ
, (3)

and PsS, Sd ­ 1 2
P

S0 PsS0, Sd. We denote by1 ­
lL0 . lL1 $ . . . the eigenvalues of the Markov matrix.
The associated relaxation times aret

21
Li skd ­ 2Ld ln lLi .

The dimensionalityd of the system enters because the
Markov matrix evolves only one spin at a time.

We compute the spectrum ofP by means of a method
used previously for a single eigenstate [4] generalized
to several dominant eigenvalues of the Markov matrix.
The second part of the method was introduced by Ceper-
ley and Bernu in the context of quantum Monte Carlo
methods [5]. Crucial in our approach is the construction
of optimized trial states obtained by generalization of
ideas of Umrigaret al. [6]. The optimization is ap-
plied to trial states of the following form. The leading
eigenstate of the Markov matrix is the Boltzman distri-
bution expf2H sSdykT g ; cBsSd2. Since P satisfies
detailed balance, P̃sS0, Sd ; cBsS0d21PsS0, SdcBsSd
is symmetric in S and S0 and equivalent toP. We
approximate eigenvectors of̃P by the functional form
c s6dsSdcBsSd defined in Eqs. (12) and (13) of Ref. [4].
That is, we construct translationally and rotationally
invariant trial states, even or odd under spin inversion.
These trial states are written as linear combinations of
zero-momentum monomials in the magnetization and
other long-wavelength Fourier components of the spin
configuration.

We generalize to simultaneous optimization of multiple
trial states, a powerful method [6–8] of optimizing
a single many-parameter trial state: minimization of
the variance of the configurational eigenvalue. Suppose
that cT sS, pd is the value of the trial statecT for
configurationS and some choice of the parametersp to

0031-9007y98y80(5)y1007(4)$15.00 © 1998 The American Physical Society 1007
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be optimized. Theconfigurational eigenvaluelsS, pd of
a spin configurationS is defined by

c 0
T sS, pd ; lsS, pdcT sS, pd , (4)

where the prime indicates matrix multiplication byP̃, i.e.,
f 0sSd ­

P
S0 P̃sS, S0dfsS0d for arbitrary f. The optimal

values of the variational parameters are obtained by
minimization of the variance oflsS, pd, estimated by
means of a small Monte Carlo sample. The trial state,
once optimized, is employed in a long Monte Carlo
calculation yielding the corresponding eigenvalue ofP̃.
We refer to Ref. [4] for details and mention only a key
feature of this method: for an (almost) exact eigenstate
cT , the variance of the eigenvalue (almost) vanishes. A
similar zero-variance principle holds for the method of
simultaneous optimization of several trial states to be
discussed next.

For simplicity of presentation we first generalize the
above method to a hypothetical case that yieldsm exact
eigenvalues of the Markov matrix̃P. Suppose we have
m basis statescTi, i ­ 1, . . . , m and again M spin
configurationsSa , a ­ 1, . . . , M sampled fromc

2
B. The

case we consider is ideal in that we assume that these
statescTi span anm-dimensional invariant subspace of
P̃. In that case, by definition there exists a matrixL̂ of
orderm such that

c 0
TisSad ­

mX
j­1

L̂ijcTjsSad . (5)

Again, the prime indicates matrix multiplication bỹP.
If M is large enough,L̂ is for all practical purposes
determined uniquely by Eq. (5) and one finds

L̂ ­ N̂21P̂ , (6)

where

N̂ij ­ Z21
XM

a­1 cTisSadcTjsSad ,

P̂ij ­ Z21
XM

a­1 cTisSadc 0
TjsSad ,

(7)

and whereZ is an arbitrary normalization constant; again,
the prime indicates matrix multiplication bỹP. In the
nonideal case, the space spanned by them basis states
cTi is not an invariant subspace of the matrixP̃. In
that case, even though Eq. (5) generically has no true
solution, Eqs. (6) and (7) still constitute solution in the
least-squares sense, as may be verified by solving the
normal equations.

If states span an invariant subspace, so does any
nonsingular linear combination. In principle, the opti-
mization criterion should have the same invariance. The
spectrum of the matrix̂L has this property, which sug-
gests that one subdivide the sample in subsamples and
minimize the variance of thelocal spectrumover these
subsamples. In practice, however, precisely this invari-
ance gives rise to a near-singular nonlinear optimization
problem. Therefore, to avoid slow or no convergence, we

add a contribution to the above least-squares merit func-
tion to ensure that the basis statesthemselvesare good
approximate eigenstates, and we use an iterative optimiza-
tion procedure: First a combination of the single and
multieigenstate merit functions is used, and finally the
resulting approximate eigenstates are optimized one at a
time using the single-state procedure only. Unfortunately,
this method is capricious and often we proceed by trial
and error.

The variational states can be used directly only to ob-
tain results with systematic errors, but these can be sup-
pressed by the quantum Monte Carlo projection method
introduced by Ceperley and Bernu [5]. Define general-
ized matrix elements

Nijstd ­ kcTijP̃
tjcTjl ,

Pijstd ­ kcTi jP̃
t11jcTjl .

(8)

For t ­ 0 Eqs. (7) are Monte Carlo estimators for these
matrix elements, apart from the inconsequential normal-
ization constantZ. One can view the matrix elements
for t . 0 as having been obtained by the substitution
jcTil ! P̃ty2jcTil, which implies that spectral weight of
“undesirable” subdominant states is reduced. The matrix
elements in Eqs. (8) are the following equilibrium auto-
correlation and cross-correlation functions of the Markov
process generated by the matrixP: kcTisS0dcTjsStdl and
kcTisS0dc 0

TjsStdl, whereS0 andSt are spin configurations
separated in time byt single-spin flips.

It should be noted that in the limit of vanishing statisti-
cal error, each eigenvalue estimate obtained by the above
method is bounded from above by the corresponding ex-
act eigenvalue. The reader is referred to Ref. [5] for fur-
ther details and references. The systematic error decreases
for increasing projection timet while the statistical error
increases. An optimal intermediatet has to be chosen,
which yields biased estimators and some uncertainty in
the statistical error estimates.

Of the three Ising-like models investigated here, the crit-
ical point is exactly known only for the nearest-neighbor
model, where it occurs atK ­ Kcs0d ­ 1

2 lns1 1p
2d. The critical points of the two crossing-bond

models—Kcs1d ­ 0.190 192 680 7s2d and Kcs2 1
4 d ­

0.697 220 7s2d—were determined elsewhere [9]. That
analysis confirmed with a high precision that both
crossing-bond models belong to the static Ising universal-
ity class.

Monte Carlo averages were taken over1.2 3 108 spin
configurations, for system sizes in the range5 # L #

20. For the nearest-neighbor model these samples were
separated by a number of Monte Carlo steps per spin
equal to one forL ­ 5 and increasing quadratically to ten
for L ­ 20. For the other systems these numbers where
multiplied by the appropriate scale factors. These surpris-
ingly short intervals are possible because the convergence
of the eigenvalue estimatesas a function of projection
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TABLE I. Universality of the dynamic exponentz. Results
of least-squares fits for the dynamic exponent for three Ising-
like models and for five distinct relaxation modes, identified in
the first column: ok refers to odd mode numberk and ek refers
to the corresponding even mode. Subsequent pairs of columns
list L0, the smallest system size included in the fit, and the
resulting estimates ofzk for three ratiosk ­ K 0yK. Estimated
errors are shown in parentheses. The numerical errors inz tend
to increase for the faster relaxation modes. This is due to the
proximity of other subdominant eigenvalues ofP, which affect
the convergence as a function of the projection timet. To
account for this effect, and for possible flaws in Eq. (9), two
standard errors are quoted.

L0 z2 1
4

L0 z0 L0 z1

o1 4 2.163 (6) 4 2.1666 (14) 4 2.1659 (16)
o2 5 2.165 (6) 6 2.171 (4) 8 2.171 (4)
o3 7 2.11 (4) 8 2.178 (8) 9 2.167 (18)
e2 6 2.166 (6) 5 2.168 (2) 5 2.168 (2)
e3 8 2.17 (2) 9 2.14 (4) 8 2.19 (2)

time t in Eqs. (8) is governed by lower-lying Markov ma-
trix eigenvalues. These are much smaller than the largest
odd eigenvalue, which usually determines the relaxation
rate. For the system sizeL ­ 5, the Monte Carlo results
for the largest odd eigenvalues of the three models were
compared with numerically exact results [4]. The consis-
tency of both types of results confirms the validity of our
numerical procedures.

As noted before for the largest odd eigenvalue of the
nearest-neighbor model [4], the high statistical accuracy
of the Monte Carlo estimates of the eigenvalue is due to
the accuracy of the approximation of the eigenvector of the
Markov matrix by the optimized trial states. The present
Monte Carlo results for the largest odd eigenvalues of the
nearest-neighbor models agree with those of Ref. [4]. The
new data are based on statistical sample smaller by a factor
of about 7, but the current trial vectors had more variational
freedom.

For finite system sizesL we expect to the leading scal-
ing behaviortL , Lz . Following Ref. [4], we assume
corrections proportional to even powers of1yL:

tLi ø Lz
ncX

k­0

akiL
22k , (9)

where the series is truncated at ordernc. Although we
cannot exclude other powers in1yL, we have used Eq. (9)
to analyze the Monte Carlo relaxation times.

Results of such fits withnc ­ 3 are presented in
Table I. The smallest systems do not fit Eq. (9) well for
this value ofnc. However, the residuals decrease rapidly
whenL0, the smallest size included in the fit, is increased.
The smallest acceptable value ofL0, as judged from the
x2 criterion, is also included in Table I.

The estimates ofz obtained from the largest odd
eigenvalues for the three models shown in Table I are in
a good agreement mutually and also with the resultz ­
2.1665 (12) of Ref. [4] for the nearest-neighbor model.
Universality of z has independently been confirmed by
Wang and Hu [10], with a level of precision in the order
of 1022. The results for the largest odd eigenvalues are
in agreement with those obtained for the other relaxation
modes. Although the differences do occasionally amount
to 3s, we attribute these to imperfections of Eq. (9) and
underestimation of the statistical errors of the eigenvalues
themselves. Thus we interpret the data in Table I as a
confirmation that dynamic universality applies to different
models and modes of relaxation.

Correlation-time amplitudes were obtained from least-
squares fits using Eq. (9) withz fixed at 13

6 , which
happens to be close to the most accurate results in
Table I. These amplitudes are in excellent agreement with
Eq. (1) and determine the nonuniversal metric factorsmk .
Defining m1 ; 1, we found m2 1

4
­ 2.391 6 0.002 and

m0 ­ 1.5572 6 0.0005. Table II shows results of the
fits. Figure 1 is a semilogarithmic plot of the effective,
size-dependent amplitudesALiskd ; tLiL2zymk derived
from the spectral gaps of the Markov matrices of the
opposite-, nearest, and equivalent-neighbor Ising models,
k ­ 2

1
4 , 0, and 1. The data collapse clearly illustrates

the universality of the amplitude ratios. Finite-size
dependences, clearly resolved in the fits, are only barely
visible in the figure, but can be reconstructed by assuming
L22 corrections.

We note that, if one suppresses all but the magne-
tization dependence of the optimized trial states, one
obtains reasonably good approximate. Their number of

TABLE II. Universality of relaxation-time amplitudes. Results of least-squares fits for the finite-size amplitudes for three Ising-
like models and for five distinct relaxation processes. The first column and ones labeledL0 are as in Table I. The columns labeled
Aiskd contain the amplitudes defined in Eq. (1) for three interaction ratiosk ­ K 0yK with metric factorsmk as given in the text.
Estimated errors, as defined in Table I, are shown in parentheses. The differenceAis1d 2 Aiskd divided by its error is denoted
by r.

L0 Ais2
1
4 d r L0 Ais0d r L0 Ais1d

o1 5 2.827 (3) 1.1 5 2.8318 (8) 20.6 5 2.8311 (10)
e2 6 0.10503 (2) 0.1 5 0.10504 (5) 0.1 5 0.10504 (2)
o2 5 0.04970 (4) 20.9 6 0.04958 (2) 1.6 8 0.04965 (4)
e3 6 0.03009 (5) 0.3 9 0.03013 (8) 20.3 8 0.03011 (6)
o3 6 0.01956 (4) 21.2 8 0.01955 (4) 20.9 9 0.01949 (4)
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FIG. 1. Universality of relaxation-time amplitudes, shown by
a plot of the effective, size-dependent amplitudesALi on a
logarithmic scale. To separate data points for the three models,
1
4 sgnk was added to the abscissae. The data collapse predicted
by Eq. (1) was produced by fitting two metric factors,m0
and m2

1
4
. Amplitudes of odd and even states alternate in

magnitude.

nodes equals the number of the corresponding eigenvalue
counted from the top of the spectrum, which is in agree-
ment with the odd-even alternation shown in Table II.
Thus, roughly speaking, one may associate the hiearchy
of relaxation times with magnetization cumulants of in-
creasing order. Since the second magnetization moment
correlates strongly with the energy, the even cumulants
apply to the relaxation of the energy as well. As an alter-
native interpretation of our results, we mention the follow-
ing. The Markov matrix generates translations in time for
dynamics. For statics, the transfer matrix generates the
same in space and its spectrum matrix defines an infinite
hierarchy of correlation lengths, with amplitudes satisfy-
ing the equivalent of Eq. (1) [11].

This research was supported by the (U.S.) National
Science Foundation through Grants DMR-9725080 and

CHE-9625498 and by the Office of Naval Research. This
research was conducted in part using the resources of
the Cornell Theory Center, which receives or received
major funding from the National Science Foundation
(NSF) and New York State, with additional support from
the Advanced Research Projects Agency (ARPA), the
National Center for Research Resources at the National
Institutes of Health (NIH), IBM Corporation, and other
members of the center’s Corporate Research Institute.

[1] M. P. Nightingale and H. W. J. Blöte, J. Phys. A16, L657
(1983); see also references therein.

[2] V. Privman and M. E. Fisher, Phys. Rev. B30, 322 (1984).
[3] H. W. J. Blöte and M. P. Nightingale, Physica (Amster-

dam)134A, 274 (1985).
[4] M. P. Nightingale and H. W. J. Blöte, Phys. Rev. Lett.76,

4548 (1996).
[5] D. M. Ceperley and B. Bernu, J. Chem. Phys.89, 6316

(1988). Also see B. Bernu, D. M. Ceperley, and W. A.
Lester, Jr., J. Chem. Phys.93, 552 (1990); W. R. Brown,
W. A. Glauser, and W. A. Lester, Jr., J. Chem. Phys.103,
9721 (1995).

[6] C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Phys.
Rev. Lett.60, 1719 (1988); C. J. Umrigar, K. G. Wilson,
and J. W. Wilkins, in Computer Simulation Studies in
Condensed Matter Physics, Recent Developments,edited
by D. P. Landau, K. K. Mon, and H. B. Schüttler, Springer
Proc. Phys. (Springer, Berlin, 1988).

[7] M. P. Nightingale,Computer Simulation Studies in Con-
densed Matter Physics,edited by D. P. Landau, K. K.
Mon, and H. B. Schüttler, Springer Proc. Phys. (Springer,
Berlin, 1997).

[8] M. P. Nightingale and C. J. Umrigar, inRecent Advances
in Quantum Monte Carlo Methods,edited by W. A. Lester,
Jr. (World Scientific, Singapore, 1997).

[9] M. P. Nightingale and H. W. J. Blöte, Physica A (Amster-
dam) (to be published).

[10] F.-G. Wang and C.-K. Hu, Phys. Rev. E56, 2310 (1997).
[11] M. P. Nightingale, inFinite-Size Scaling and Simulation

of Statistical Mechanical Systems,edited by V. Privman
(World Scientific, Singapore, 1990) pp. 287–351.

1010


	Universal Dynamics of Independent Critical Relaxation Modes
	Citation/Publisher Attribution

	Universal Dynamics of Independent Critical Relaxation Modes
	Publisher Statement
	Terms of Use


	tmp.1443455999.pdf.A7T3K

