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Universal Dynamics of Independent Critical Relaxation Modes

M. P. Nightingale
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881

H.W.J. Blote

Department of Applied Physics, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands
and Lorentz Institute, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
(Received 7 August 1997

We obtain the relaxation times of several, progressively rapid, independent modes of three models
in a two-dimensional Ising universality class. Their size dependence can be described by one single
dynamic exponent and universal amplitude ratios. This analysis is based on variational approximations
of the eigenstates of the Markov matrix describing heat-bath, single-spin-flip dynamics. Monte Carlo
computation of the corresponding autocorrelations and cross correlations, in which the variational error
is systematically reduced, yields eigenvalues and the associated relaxation times with considerably
higher statistical accuracy than is the case for traditional correlations. [S0031-9007(97)05176-4]

PACS numbers: 64.60.Ht, 02.70.Lg, 05.70.Jk, 64.60.Fr

It is generally accepted that static critical phenomena irapply:
two dimensions fall into classes characterized by universal ,
critical exponents and amplitude ratios. However, fordy-  p(gr ¢y — L{l B tanl{ H(S') - H(S)}} (3)
namic critical phenomena the situation is much less clear, ’ L? 2kT ’
because exact and accurate numerical results are scarce.
In this Letter, we show that relaxation modes of a classand P(S,S) =1 — > P(§',S). We denote byl =
parameterized by, of two-dimensional Ising-like models Azo > Az1 = ... the eigenvalues of the Markov matrix.
with single-spin-flip dynamics have a universal exponeniThe associated relaxation times ajg' (x) = —L¢In Az,;.
z and universal amplitude ratios of the corresponding reThe dimensionalityd of the system enters because the
laxation times. At critically7;;(x), the relaxation time of Markov matrix evolves only one spin at a time.
modei of a system of sizé&, behaves as We compute the spectrum &f by means of a method
(k) = meALS, 1) used prewously for a.smgle eigenstate [4] generallged
] ) to several dominant eigenvalues of the Markov matrix.
where A; is universal, but depends on the modethe  The second part of the method was introduced by Ceper-
nonuniversal metric factor [1-34, depends only on the |ey and Bernu in the context of quantum Monte Carlo
microscopic details of the interactions and the dynamicsmethods [5]. Crucial in our approach is the construction
One is led to Eqg. (1) by simple scaling arguments. Thesgt optimized trial states obtained by generalization of
imply that self-similarity under spatial rescaling by a factorjgeas of Umrigaret al.[6]. The optimization is ap-
b requires rescaling of time by, and that similarity pjied to trial states of the following form. The leading
within a universality class is established by the metriCeigenstate of the Markov matrix is the Boltzman distri-
factor which characterizes the time scale of each membey,tion exp—FH (S)/kT] = (). Since P satisfies
of the class. Equation (1) is numerically verified by thedetailed balance, P(S',S) = y(S") 'P(S’, S)ys(S)
Monte Carlo method introduced below. is symmetric inS and S’ and equivalent toP. We
This method is applied to square-lattice Ising modelsapproximate eigenvectors d? by the functional form
with nearest and next-nearest neighbor couplikgand Y E(S)yp(S) defined in Egs. (12) and (13) of Ref. [4].

K’, and periodic boundaries and Hamiltonian That is, we construct translationally and rotationally
o D N invariant trial states, even or odd under spin inversion.
H/,T = —K ZS’SJ K Z SiSjs (2) ' These trial states are written as linear combinations of

©J) (E5Y zero-momentum monomials in the magnetization and
where (i, j) and (i, j)’ run over all nearest and next- other long-wavelength Fourier components of the spin
nearest neighbor pairs. We choose three values ef  configuration.
K'/K, namely k = —%, 0, 1: the opposite; nearest; We generalize to simultaneous optimization of multiple
and equivalent-neighbomodels. The Markov matri  trial states, a powerful method [6—8] of optimizing
defines the dynamics. ElemeR(sS’, S) is the conditional a single many-parameter trial state: minimization of
probability of a transition t&’, given a configuratiors.  the variance of the configurational eigenvalue. Suppose
If S andS’ differ by more than one spiR(S’,S) = 0. If  that ¢7(S, p) is the value of the trial state/r for
they differ by precisely one spin, heat-bath probabilitiesconfigurationS and some choice of the parametergo
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be optimized. Theonfigurational eigenvalua(s, p) of  add a contribution to the above least-squares merit func-
a spin configuratior$ is defined by tion to ensure that the basis statbemselvesare good
Wh(S. p) = (S, p)ur(S, p). (4) approximate eigengtates, and we use an iterativ.e optimiza-
tion procedure: First a combination of the single and
multieigenstate merit functions is used, and finally the
resulting approximate eigenstates are optimized one at a
¥ime using the single-state procedure only. Unfortunately,
this method is capricious and often we proceed by trial
and error.
The variational states can be used directly only to ob-
tain results with systematic errors, but these can be sup-
ressed by the quantum Monte Carlo projection method

where the prime indicates matrix multiplication By i.e.,
f1(S) = >4 P(S,S")f(S") for arbitrary f. The optimal
values of the variational parameters are obtained b
minimization of the variance ofA(S, p), estimated by
means of a small Monte Carlo sample. The trial state
once optimized, is employed in a long Monte Carlo
calculation yielding the corresponding eigenvalue fof
We refer to Ref. [4] for details and mention only a key
feature of this method: for an (almost) exact eigenstate .oquced by Ceperley and Bernu [5]. Define general-
yr, the variance of the eigenvalue (almost) vanishes. A4 matrix elements

similar zero-variance principle holds for the method of

simultaneous optimization of several trial states to be Nij(t) = (il P'lpr)) ®)
discussed next. Po(t) = (i B )
For simplicity of presentation we first generalize the () = Wi Y)-

above method to a hypothetical case that yieidexact For; = 0 Eqs. (7) are Monte Carlo estimators for these
eigenvalues of the Markov matrik. Suppose we have matrix elements, apart from the inconsequential normal-
m basis statesyr;, i =1,....,m and againM spin  jzation constantZ. One can view the matrix elements

- : 2 . . "
configurationsS,, « = 1,..., M sampled fromjz. The  for ; > ( as having been obtained by the substitution
case we consider is ideal in that we assume that thegg,,.y — P/2|y;), which implies that spectral weight of

statesy7; span anm-dimensional invariant subspace of «yndesirable” subdominant states is reduced. The matrix
P. In that case, by definition there exists a mathixof  elements in Egs. (8) are the following equilibrium auto-

orderm such that correlation and cross-correlation functions of the Markov

L process generated by the matfx (¢r;(So)¥r;(S;)) and
Uri(Sa) = Z Aijiprj(Sa)- (5) (Yri(So)¥r;(Sy)), whereS, and S, are spin cor%figurations

= separated in time by single-spin flips.

Again, the prime indicates matrix multiplication bg. It should be noted that in the limit of vanishing statisti-

If M is large enoughA is for all practical purposes cal error, each eigenvalue estimate obtained by the above

determined uniquely by Eqg. (5) and one finds method is bounded from above by the corresponding ex-

A=RN"1P, (6) act eigenvalue. The reader is referred to Ref. [5] for fur-

ther details and references. The systematic error decreases
for increasing projection time while the statistical error

© M increases. An optimal intermediatehas to be chosen,

Nij =2 Za=1 Pri(Sa)ri(Sa) which yields biased estimators and some uncertainty in

A INTM / the statistical error estimates.

Pi=2 Za:l Yri(Sa)irr;(Sa) Of the three Ising-like models investigated here, the crit-
and whereZ is an arbitrary normalization constant; again,ical point is exactly known only for the nearest-neighbor
the prime indicates matrix multiplication b§. In the model, where it occurs atk = K.(0) = 5In(l +
nonideal case, the space spanned byihéasis states +/2). The critical points of the two crossing-bond
Jri is not an invariant subspace of the mat#x In  models—K.(1) = 0.1901926807(2) and KC(—%) =
that case, even though Eq. (5) generically has no true.6972207(2)—were determined elsewhere [9]. That
solution, Egs. (6) and (7) still constitute solution in theanalysis confirmed with a high precision that both
least-squares sense, as may be verified by solving th@ossing-bond models belong to the static Ising universal-
normal equations. ity class.

If states span an invariant subspace, so does any Monte Carlo averages were taken ove? X 10® spin
nonsingular linear combination. In principle, the opti- configurations, for system sizes in the ranges L =
mization criterion should have the same invariance. Th&0. For the nearest-neighbor model these samples were
spectrum of the matrixA has this property, which sug- separated by a number of Monte Carlo steps per spin
gests that one subdivide the sample in subsamples ardjual to one fol. = 5 and increasing quadratically to ten
minimize the variance of théocal spectrumover these for L = 20. For the other systems these numbers where
subsamples. In practice, however, precisely this invarimultiplied by the appropriate scale factors. These surpris-
ance gives rise to a near-singular nonlinear optimizatioingly short intervals are possible because the convergence
problem. Therefore, to avoid slow or no convergence, wef the eigenvalue estimatess a function of projection

where

(7)

1008



VOLUME 80, NUMBER 5 PHYSICAL REVIEW LETTERS 2 EBRUARY 1998

TABLE I. Universality of the dynamic exponent Results where the series is truncated at order Although we
of least-squares fits for the dynamic exponent for three Isingcannot exclude other powers ifiL, we have used Eq. (9)
like models and for five distinct relaxation modes, identified int0 analyze the Monte Carlo relaxation times

the first column: @ refers to odd mode numbérand & refers . . - ) .

to the corresponding even mode. Subsequent pairs of columns Results of such fits withn, =3 are presented in
list Lo, the smallest system size included in the fit, and theTable I. The smallest systems do not fit Eq. (9) well for
resulting estimates o, for three ratiosx = K’/K. Estimated this value ofn.. However, the residuals decrease rapidly

errors are shown in parentheses. The numerical errardeénd  whenL,, the smallest size included in the fit, is increased.

to increase for the faster relaxation modes. This is due to th ;
proximity of other subdominant eigenvalues ®f which affect q-ge ?m"’.‘“eSt. accep_table valge b, as judged from the
X~ criterion, is also included in Table I.

the convergence as a function of the projection time To h ’
account for this effect, and for possible flaws in Eg. (9), two The estimates of; obtained from the largest odd

standard errors are quoted. eigenvalues for the three models shown in Table | are in
Lo - Lo % Lo 2 a good agreement mutually and also with the result
3 2.1665 (12) of Ref. [4] for the nearest-neighbor model.
ol 4 2163(6) 4 21666 (14) 4 2.1659 (16) Universality of z has independently been confirmed by
02 5 2165(6) 6 2.171(4) 8 2171 (4 Wang and Hu [10], with a level of precision in the order
(e)g (75 3&(136(42)6) i 22-11288 ((g)) 95 22-11%; ((12?) of 1072. The results for the largest odd eigenvalues are
e3 8 217(2) o 214 (4 8 219 (2) in agreement with those obtained for the other relaxation

modes. Although the differences do occasionally amount
to 30, we attribute these to imperfections of Eq. (9) and
underestimation of the statistical errors of the eigenvalues
timer in Egs. (8) is governed by lower-lying Markov ma- themselves. Thus we interpret the data in Table | as a
trix eigenvalues. These are much smaller than the largesenfirmation that dynamic universality applies to different
odd eigenvalue, which usually determines the relaxatiormodels and modes of relaxation.
rate. For the system size = 5, the Monte Carlo results Correlation-time amplitudes were obtained from least-
for the largest odd eigenvalues of the three models wergquares fits using Eq. (9) with fixed at % which
compared with numerically exact results [4]. The consis-happens to be close to the most accurate results in
tency of both types of results confirms the validity of our Table 1. These amplitudes are in excellent agreement with
numerical procedures. Eqg. (1) and determine the nonuniversal metric factats

As noted before for the largest odd eigenvalue of theédefining m; = 1, we foundm-, = 2.391 *+ 0.002 and
nearest-neighbor model [4], the high statistical accuracyry = 1.5572 £ 0.0005. Table Il shows results of the
of the Monte Carlo estimates of the eigenvalue is due tdits. Figure 1 is a semilogarithmic plot of the effective,
the accuracy of the approximation of the eigenvector of thesize-dependent amplitudes ;(«) = 7,;L%/m, derived
Markov matrix by the optimized trial states. The presentfrom the spectral gaps of the Markov matrices of the
Monte Carlo results for the largest odd eigenvalues of th@pposite-, nearest, and equivalent-neighbor Ising models,
nearest-neighbor models agree with those of Ref. [4]. Th& = —i, 0, and 1. The data collapse clearly illustrates
new data are based on statistical sample smaller by a facttiie universality of the amplitude ratios. Finite-size
of about 7, but the current trial vectors had more variationatlependences, clearly resolved in the fits, are only barely
freedom. visible in the figure, but can be reconstructed by assuming

For finite system sizes we expect to the leading scal- L2 corrections.
ing behaviorr;, ~ L*. Following Ref. [4], we assume  We note that, if one suppresses all but the magne-
corrections proportional toneven powerslgfL: tization dependence of the optimized trial states, one

r ~ LF Z aul 2k, ) obtains reasonably good approximate. Their number of
k=0

TABLE Il. Universality of relaxation-time amplitudes. Results of least-squares fits for the finite-size amplitudes for three Ising-
like models and for five distinct relaxation processes. The first column and ones l@hedeel as in Table I. The columns labeled
A;(x) contain the amplitudes defined in Eq. (1) for three interaction raties K’/K with metric factorsm, as given in the text.
Estimated errors, as defined in Table I, are shown in parentheses. The diffdréhce- A;(«) divided by its error is denoted
by r.

Lo Ai(_%) r Lo A;(0) r Ly Ai(1)
ol 5 2.827 (3) 11 5 2.8318 (8) —06 5 2.8311 (10)
e2 6 0.10503 (2) 0.1 5 0.10504 (5) 0.1 5 0.10504 (2)
02 5 0.04970 (4) ~0.9 6 0.04958 (2) 16 8 0.04965 (4)
e3 6 0.03009 (5) 03 9 003013 (8)  —0.3 8 0.03011 (6)
03 6 0.01956 (4) —12 8 0.01955 (4) ~09 9 0.01949 (4)
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