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ABSTRACT 

The extent of shrubland and young forest in the Northeast, USA, has declined 

rapidly since the mid-1900’s. Accordingly, the abundance of wildlife that depends on 

young forest has also declined. For example, American woodcock (Scolopax minor), 

an upland shorebird species, require an appropriate spectrum and spatial configuration 

of young forest to thrive and their populations have declined significantly since at least 

1968. Active forest management is required to conserve populations of American 

woodcock and other young forest wildlife, but the importance of young forest 

management to some aspects of the ecology of key wildlife are not fully understood. I 

investigated three aspects of American woodcock ecology in relation to young forest 

management in Rhode Island, USA. First, I monitored the daytime locations of radio-

marked American woodcock to assess habitat selection at multiple scales in relation to 

young forest management. Second, I also monitored American woodcock movements 

between daytime and nighttime locations and quantified food availability and predator 

activity at these sites to test the foraging-benefit and predation-risk hypotheses that 

were proposed to explain American woodcock commuting behavior. Third, I 

compared landbird communities at managed forest openings used by breeding 

American woodcock and nearby random forest sites to determine whether American 

woodcock habitat management benefits non-target landbirds and so verifies adopting 

American woodcock as an umbrella species useful for conservation. 

Daytime habitat selected by American woodcock comprised areas of younger 

forest where the biomass of preferred food (i.e., earthworms [Haplotaxida]) was 1.7 – 

3.1 times greater, and the density of shrub and sapling stems was two times greater, 



 

compared to random sites. American woodcock home ranges were typically <50 ha 

and encompassed wetland forests and deciduous or mixed upland forests on flatter 

slopes ≤1.5 km from streams, agricultural openings, upland young forests, and moist 

soils. Across Rhode Island, most forested land was in the low – moderate classes of 

relative probability of use, but young forest management in key areas effectively 

increased relative use. I illustrated how land managers can use resource selection 

functions to predict the response of American woodcock to young forest management 

and so maximize conservation benefits. 

All of the American woodcock I monitored commuted between dense forest 

stands and forest openings during the day and night, respectively. I found no support 

for the foraging-benefit hypothesis because individuals moved from daytime locations 

where earthworms were 3 – 4 times more abundant to nighttime locations where 

preferred food was scarce. Soil moisture content was greater at daytime than nighttime 

locations which may explain why earthworms were more prevalent at those sites. In 

contrast, I found support for the predation-risk hypothesis because individuals moved 

from daytime locations where mammalian predators were more active to nighttime 

locations where mammalian predators were less active. Thus, American woodcock 

commuted between daytime and nighttime locations to avoid predators and not to 

feed. Maintaining forest openings is an important part of American woodcock habitat 

management so that individuals can eat by day and stay safe by night. 

I identified 38 – 51 bird species during 10-minute point counts at American 

woodcock singing grounds and random forest sites, and 62 – 73% of the more 

frequently occurring species were more common at American woodcock singing 



 

grounds. On average, 55% of the more common species at American woodcock 

singing grounds were of high regional or local conservation priority. Young forest 

species such as prairie warbler (Setophaga discolor) and gray catbird (Dumetella 

carolinensis) were more abundant at American woodcock singing grounds and scarce 

or absent at random forest sites while the opposite was true for more mature forest 

species such as ovenbird (Seiurus aurocapilla) and red-eyed vireo (Vireo olivaceus). 

Moreover, the total number of birds (all species combined) and diversity of birds were 

≥1.5 times greater at American woodcock singing grounds than random forest sites. 

Critical breeding sites for American woodcock can be managed by clearcutting ≥2-ha 

patches of older secondary forest and many other young forest bird species of 

conservation priority inhabit these managed areas. Thus, the American woodcock can 

serve as an effective umbrella species for young forest birds in the Northeast, USA, 

but complementary umbrella species such as the ovenbird should be considered to aid 

in the conservation of more mature forest birds. 
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Abstract 

Declines of young forest and associated populations of wildlife are major conservation 

concerns in the Northeast, USA. Active forest management is required to conserve 

declining populations of young forest wildlife and investigating habitat selection by 

target species can help inform management decision-making. The American 

woodcock (Scolopax minor) is a key indicator species of young forest and their 

populations have declined significantly since 1968. We investigated multiscale habitat 

selection by woodcock in Rhode Island, USA, in order to characterize their daytime 

habitat, and to predict state-wide relative probability of use by woodcock of forested 

land. We used radio-telemetry to monitor the daytime locations of woodcock at three 

state wildlife management areas from 23 May – 25 August 2011 and 2012. Compared 

to random sites, woodcock selected younger forest where the biomass of preferred 

food (i.e., earthworms [Haplotaxida]) was 46 – 67% greater and the density of shrub 

and sapling stems was about two times greater. Most woodcock home ranges were 

<50 ha and usually comprised wetland forests and deciduous or mixed upland forests 

on flatter slopes that were closer to streams, agricultural openings, upland young 

forests, and moist soils. We used resource selection functions, to determine a) that the 

majority of forested land in Rhode Island was in the low – moderate classes of relative 

use and b) that 92% of older second-growth upland forest in the state is located where 

woodcock habitat management would be beneficial for increasing relative use. We 

illustrate how land managers can use resource selection functions to compare expected 

responses of woodcock to alternative forest management scenarios and so maximize 

conservation benefits. 
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1. Introduction 

Reduced extent of early-successional forest and shrubland vegetation types 

(hereafter young forest) in the Northeast, USA, over the last 60 years has caused 

declines in populations of wildlife that depend on young forest (Askins, 2001; 

DeGraaf and Yamasaki, 2003; Dettmers, 2003; Trani et al., 2001). Historically, natural 

disturbance regimes such as wind, fire, and ice storms, and biological agents including 

insects, pathogens, beavers (Castor canadensis), and Native Americans sustained 

patchworks of young forest (Askins, 2001; Day, 1953; Foster and Aber, 2004; 

Lorimer, 2001). Prior to European settlement, young forest may have occupied up to 

13% of the land area in some regions of eastern North America (Lorimer, 2001), but 

following European settlement, intensive logging and conversion of land from forest 

to agriculture formed a largely non-forested landscape which eventually produced an 

influx of young forest across the Northeast. Indeed, in central New England, USA, 

>75% of remaining forests were <30 years old during the late-1800’s (Foster et al., 

1998). However, since the 1960’s, the amount of young forest in the region declined 

from about 30 – 35% to ≤3% (Buffum et al., 2011; Trani et al., 2001). Consequently, 

active forest management is now required to conserve populations of young forest 

wildlife (DeGraaf and Yamasaki, 2003; Schlossberg and King, 2007), and habitat 

selection by target species should be investigated using quantitative methods to 

promote more informed and efficient forest management decision-making. 

Classical approaches to investigating habitat selection involve comparing 

attributes of habitat or food measured at sites used by target species and sites unused 

by or available to target species (Johnson, 1980; Manly et al., 2002). For example, 
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studies comparing vegetation structure at nest or roost sites and random sites using 

traditional null hypothesis testing help describe habitat features associated with 

reproduction or occupancy for forest birds (e.g., McAuley et al., 1996; Miller and 

Jordan, 2011; Zahner et al., 2012) and mammals (e.g., Hackett and Pagels, 2003; 

O’Keefe et al., 2009). More recently, studies of habitat selection have transitioned 

towards using resource selection functions (RSFs) to understand how probability of 

use by target species is influenced by environmental covariates (Johnson et al., 2006; 

Manly et al., 2002; McDonald, 2013). Importantly, these analysis methods allow 

multiple competing hypotheses to be easily tested using an information-theoretic 

approach (Anderson et al., 2000; Johnson et al., 2006), facilitate studies of habitat 

selection across multiple spatial scales (e.g., Johnson et al., 2004), and can be used to 

predict shifts in probability of use by target species in response to environmental 

change (e.g., Brown et al., 2007). We investigated habitat selection by American 

woodcock (Scolopax minor) using both traditional and contemporary analysis methods 

in order to inform young forest management in the Northeast. 

The American woodcock (hereafter woodcock) is a key indicator species of young 

forest because populations thrive only in landscapes with an appropriate mixture of 

young forest ranging from forest openings to approximately 30-year-old forest stands 

(Kelley et al., 2008). Woodcock breed across the eastern USA and adjacent southern 

and southeastern Canada and winter mainly across the southern half of the eastern 

USA (Sheldon, 1967), and their populations have declined significantly since 1968 

(Cooper and Rau, 2012). Although woodcock are a popular game bird, woodcock 

survival is similar between hunted and non-hunted sites and so recreational hunting is 
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not believed to be contributing to observed population declines (McAuley et al., 

2005). Instead, loss and degradation of preferred young forest is the principal factor 

driving population declines (Dessecker and McAuley, 2001; Kelley et al., 2008; 

McAuley et al., 2005). High densities of small tree and shrub or sapling stems 

characteristic of young forests provide protective cover from diurnal predators 

(Dessecker and McAuley, 2001; Keppie and Whiting, 1994; McAuley et al., 1996; 

Straw et al., 1986) whereas recent forest clearcuts, maintained or abandoned 

agricultural fields, tree plantations, and other forest openings provide critical breeding 

areas during spring crepuscular periods (Sheldon, 1967), safe roosting areas during 

summer nights (Dunford and Owen, 1973; Masse et al., 2013), and feeding or roosting 

areas during fall and winter nights (Blackman et al., 2012; Connors and Doerr, 1982; 

Krohn et al., 1977). 

In this study, we investigated habitat selection by woodcock in important state-

owned wildlife management areas in Rhode Island, USA, where young forest was 

limited, but actively being created. Young forest occupies only 3% of the land area in 

Rhode Island (Buffum et al., 2011) and an estimated 377 km2 of new young forest is 

recommended to restore woodcock densities (Kelley et al., 2008). Our objectives were 

to 1) characterize the daytime habitat selected by woodcock, 2) predict and map the 

relative probability of use by woodcock of forested land across Rhode Island, and 3) 

illustrate how land managers can forecast how forest management practices aimed at 

creating woodcock habitat influence relative use of the surrounding landscape. 

Addressing these objectives will increase knowledge of woodcock habitat selection in 

areas where preferred young forest is uncommon and permit more informed forest 
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management decision-making. We predicted that woodcock would select areas of 

younger forest where preferred food (i.e., earthworms [Haplotaxida]) and shrub or 

sapling stems were more abundant, and that creating upland young forest and forest 

openings via forest clearcutting at sites deemed most beneficial for woodcock habitat 

management would increase relative use of the surrounding landscape. 

2. Methods 

2.1. Study area 

We investigated woodcock habitat selection in three state wildlife management 

areas (Arcadia, Big River, and Great Swamp) in Kent and Washington Counties, 

Rhode Island. Each management area was dominated by forested cover types although 

the relative proportions of each differed among sites (RIGIS, 2012). Arcadia 

(41°35′10″N, 71°43′20″W) was 62 km2 of which deciduous (33%), mixed (31%), and 

coniferous upland forest types (24%) predominated, while wetland forest types (7%) 

were uncommon. Big River (41°37′0″N, 71°36′60″W) was 33 km2 and comprised 

deciduous (8%), mixed (31%), and coniferous upland forest types (45%), while 

wetland forest types (6%) were scarce. In contrast, Great Swamp (41°27′15″N, 

71°35′19″W) was 15 km2 and composed of deciduous (16%), mixed (5%), and 

coniferous upland forest types (1%), while wetland forest types (55%) were common. 

Mixed oaks (Quercus spp.), hickories (Carya spp.), and red maple (Acer rubrum) 

dominated deciduous upland forest types while coniferous and mixed upland forest 

types were dominated by Eastern white pine (Pinus strobus) and oaks and pines, 

respectively (Enser and Lundgren, 2006). Red maple swamps were the most 
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widespread wetland forest type and Atlantic white cedar (Chamaecyparis thyoides) 

swamps occurred locally (Enser and Lundgren, 2006). 

During 1995, the Rhode Island Department of Environmental Management 

initiated a forest cutting program to benefit declining populations of woodcock and 

other wildlife associated with young forest. A series of 2 – 5-ha clearcuts in older 

second-growth forest (e.g., 60 – 100 years) were initially made at Great Swamp 

followed by additional forest management at that site during 2007 and 2012. Similar 

forest management began at Arcadia and Big River during 1996 and 2006, 

respectively. Future management at each site is expected to involve additional forest 

cutting at regular (e.g., 10-year) intervals and, where appropriate, the creation of larger 

(e.g., 10-ha) young forest patches. At the time of this study, Great Swamp contained 

the highest proportion of combined upland and wetland young forest (15%) whereas 

young forest was uncommon at Arcadia (2%) and Big River (1%). Forest openings in 

the form of abandoned meadows and agricultural fields were also maintained to 

benefit woodcock and other wildlife, but the relative proportions of these at each site 

were low (i.e., 1 – 2%). 

2.2. Woodcock capture, marking, and tracking 

We caught woodcock from 2 April – 16 May 2011 and 2012 (IACUC protocol 

AN10-02-017) by placing mist-nets at known singing grounds where males engaged in 

crepuscular courtship displays to attract females for breeding (McAuley et al., 1993; 

Sheldon, 1967). We included only male woodcock in our study because females are 

difficult to catch with mist-nets during spring (McAuley et al., 1993). We caught 50 

males during 2011 and 42 males during 2012, and determined age by examining 
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plumage characteristics of wings (Sheldon, 1967). After capture, we fitted each 

woodcock with an Advanced Telemetry Systems two-stage transmitter (Model A5400) 

using cattle tag cement and a wire belly-band for attachment (package weight ≤4.0 g; 

McAuley et al., 1993) and released birds on site. 

From 23 May – 25 August 2011 and 2012, we monitored the daytime locations of 

each bird 3 – 4 times per week. We tracked radio-marked birds on foot using a three-

element antenna and approached each bird until the receiver gave an audible signal 

without the use of the antenna or headphones. On average, this method allowed us to 

approach to ≤18 m (Masse et al., 2013) and we marked exact locations in the field 

using a handheld GPS unit. We located each bird once during each monitoring day 

(0600 – 1900 EST) and stratified our telemetry schedule by time of day during 

subsequent weeks to ensure that the majority of the daytime period was represented in 

the sample of telemetry locations for each bird. Male woodcock generally concentrate 

daytime activity within small areas (Hudgins et al., 1985), called diurnal coverts, and 

so we approached marked birds from different directions on subsequent visits in order 

to circumscribe selected coverts. Since we were interested in summer habitat selection 

we included in our study only those individuals for which we obtained >25 locations 

throughout each monitoring period. Consequently, we excluded 40 woodcock because 

they died (2011: n = 4; 2012: n = 4), slipped their transmitters (2011: n = 3; 2012: n = 

4), or moved away from study sites and could not be relocated (2011: n = 16; 2012: n 

= 9) prior to obtaining sufficient numbers of telemetry locations (Table 1). 
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2.3. Habitat sampling 

We sampled woodcock habitat at two spatial scales in order to investigate third- 

and second-order selection. Third-order selection pertains to specific sites selected by 

individuals within their home ranges whereas second-order selection pertains to the 

positioning of home ranges within a broader landscape or geographical range 

(Johnson, 1980). 

2.3.1. Third-order selection 

For analysis of third-order selection, we considered diurnal coverts represented by 

clusters of telemetry locations for each bird similar to Hudgins et al. (1985). For each 

woodcock, clusters of five or more locations in which each location was ≤100 m of 

another location were defined as a diurnal covert and we delineated the boundaries of 

diurnal coverts using minimum convex polygons (MCP; Mohr, 1947). We delineated 

1 – 3 diurnal coverts for each woodcock, but each bird generally showed preference 

for a single diurnal covert and so we designated for each bird a primary diurnal covert 

that contained the most telemetry locations. If an individual woodcock selected 

multiple diurnal coverts with equal frequency then we randomly selected one to 

represent the primary diurnal covert. Primary diurnal coverts for 16 of 52 woodcock 

overlapped to some degree and so in situations where overlap was >20% we randomly 

selected one woodcock’s primary diurnal covert for inclusion. In addition, one 

woodcock was tracked during both years so we randomly selected one year to include 

for this individual. As a result, we promoted independence among the primary diurnal 

coverts included in this portion of our study and ensured that each woodcock (2011: n 
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= 11 at Arcadia, 8 at Big River, and 3 at Great Swamp; 2012: n = 4 at Arcadia, 7 at 

Big River, and 9 at Great Swamp) was represented equally. 

We assessed third-order selection by measuring habitat variables in 5-m radius 

(0.008-ha) circular plots that were randomly located inside (n = 5) and outside (n = 5) 

each bird’s primary diurnal covert from 24 August – 30 September 2011 and 2012. 

We used Geospatial Modeling Environment (Beyer, 2013) to randomly select plot 

locations up to 500 m outside each primary diurnal covert. We enforced a minimum 

distance of 15 m between plot locations to ensure that plots did not overlap. At the 

center of each plot, we collected a 10-cm deep soil core and determined soil pH, soil 

moisture content (% by weight), and soil organic matter content (% by weight) 

following Masse et al. (2013). We also dug a 900-cm2 soil pit to 10-cm deep at the 

center of each plot and collected all earthworms by hand sorting soil pit contents 

(Dangerfield, 1997). We estimated earthworm density (#/m2) and measured fresh and 

freeze-dried earthworm weight (g/m2) to the nearest 0.001 g. We calculated canopy 

closure (%) at the center of each plot using a spherical densiometer (Lemmon, 1957) 

and visually estimated overstory height class (i.e., 0 – 3 m, 3 – 9 m, or >9 m) for each 

plot. We measured diameter at breast height (dbh) of all live trees (>10-cm dbh) 

within each plot to the nearest 0.1 cm and used the program NED-2 (Twery et al., 

2011) to determine density (#/ha), basal area (m2/ha), and medial dbh (cm) of trees, 

and overstory size class (i.e., regeneration [<2.5-cm dbh], sapling [2.5 – 11.4-cm dbh], 

pole [11.5 – 26.7-cm dbh], small sawtimber [26.8 – 41.9-cm dbh], or large sawtimber 

[≥42.0-cm dbh]) for each plot. We also recorded generalized overstory cover type (i.e., 

deciduous upland forest, coniferous upland forest, mixed upland forest, wetland forest, 
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or herbaceous) for each plot based on dominant vegetation. Lastly, within each plot we 

counted the number of live shrub and sapling stems (≤10-cm dbh and ≥1.5-m tall) in 

four randomly located 1-m2 quadrats and calculated mean shrub and sapling density 

(#/ha) for each plot. 

2.3.2. Second-order selection 

For analysis of second-order selection, we estimated the diurnal home range and 

core-use area for each bird during 2011 and 2012 using kernel density methods 

(Worton, 1989). We used Geospatial Modeling Environment (Beyer, 2013) to generate 

each home range (95% contour) and core-use area (50% contour) using a Gaussian 

kernel with likelihood cross-validation bandwidth estimator. The least squares cross-

validation bandwidth estimator and ≥30 locations per individual have been 

recommended for home range studies (Seaman et al., 1999), but the likelihood cross-

validation bandwidth estimator produces better fit and less variability with moderate to 

small sample sizes (i.e., ≤50 locations per individual; Horne and Garton, 2006). On 

average, we obtained 35 and 34 locations per individual during 2011 and 2012, 

respectively. However, we included four woodcock (2011: n = 2; 2012: n = 2) with 26 

– 29 locations each because the size of their home ranges and core-use areas were 

within the range of values for woodcock with ≥30 locations. Previous research of 

woodcock movements and habitat selection used MCPs to determine home range size 

(e.g., Hudgins et al., 1985; Sepik and Derleth, 1993) and so we also calculated these 

home range estimates to facilitate comparisons with other studies. 

We used a design I study with sampling protocol A (Manly et al., 2002) to assess 

second-order selection. For each site, we delineated a composite area of available 
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woodcock habitat by pooling individual kernel home ranges across years and 

circumscribing them with a MCP. We delineated available habitat in this way because 

individuals frequently moved across the landscape during crepuscular periods (Masse 

et al., 2013) and so encountered, and selected against, areas outside of their diurnal 

home ranges. We delineated a composite area of used woodcock habitat for each site 

by pooling individual kernel core-use areas across years. Since woodcock remain in 

forested coverts during the day (Dessecker and McAuley, 2001; Hudgins et al., 1985) 

we clipped composite areas of available and used habitat by forest boundaries using 

ArcGIS 10.1 (Environmental Systems Research Institute, Redlands, CA). We 

converted composite areas of available and used woodcock habitat into separate raster 

grids (10-m2 pixel resolution) for each management area and generated raster-based 

habitat data at this standardized cell size. We obtained 1/3 arc-second elevation (Gesch 

et al., 2002), stream (RIGIS, 2001), soil (RIGIS, 2013), and land cover data (RIGIS, 

2012), and generated separate grids for elevation (m), slope (%), forest cover type 

(i.e., coniferous upland forest, deciduous upland forest, mixed upland forest, upland 

young forest, coniferous wetland forest, deciduous wetland forest, mixed wetland 

forest, and wetland young forest), and Euclidean distance (m) to the nearest stream, 

nearest agricultural opening (i.e., agriculture, pasture, idle agriculture, or tillable 

crops), nearest upland young forest, and nearest moist soil (i.e., moderately well 

drained, poorly drained, or very poorly drained). For each site, we randomly selected 

10% of available (n = 22,598 at Arcadia, 16,955 at Big River, and 13,431 at Great 

Swamp) and used (n = 1,275 at Arcadia, 537 at Big River, and 1,235 at Great Swamp) 
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pixels, and extracted values from the corresponding cells in the elevation, slope, forest 

cover type, and distance grids. 

2.4. Statistical analysis 

We treated all variables measured inside and outside primary diurnal coverts 

quantitatively except for generalized overstory cover type. For each of the interval 

variables (e.g., overstory size class) we either assigned mid-point values to each 

interval or, for open-ended intervals (e.g., large sawtimber), assigned a value 

consistent with the spacing of interval mid-points to permit quantitative analysis. We 

calculated the mean for each quantitative variable across the five plots inside and 

outside each primary diurnal covert and log-transformed earthworm density, 

earthworm fresh weight, and earthworm dry weight to improve normality. 

We conducted principle components analysis using the correlation matrix (Johnson 

and Wichern, 2007) of the 13 quantitative variables to obtain uncorrelated, linear 

combinations of these variables. We used analysis of variance (Ott and Longnecker, 

2010) to test the main effects of plot location (i.e., inside vs. outside), age, site, and 

year on each retained principle component, and adjusted for multiple comparisons 

using the Tukey-Kramer method (Kramer, 1956). We also tested for interactions 

between plot location and other main effects, but dropped interaction terms that were 

not significant (i.e., P > 0.05). We verified model assumptions of residual normality 

using the Shapiro-Wilk test (Shapiro and Wilk, 1965) and by inspecting normal 

probability plots, and homogeneity of variance by inspecting residual plots. We used 

multinomial logistic regression (Agresti, 2007) to test the main effects of plot location, 

age, and year on generalized overstory cover type. We set mixed upland forest as the 
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reference category, specified a mixed model by treating bird identity as a random 

effect, and used the Gauss-Hermite quadrature approximation method to obtain 

maximum likelihood estimation (SAS, 2011; PROC GLIMMIX). We did not test the 

main effect of site on generalized overstory cover type because not all cover types 

were represented at each site and cover type differences were already evident among 

management areas (see 2.1.) so we were not interested in further quantifying these 

differences. 

Kernel home range and core-use area size were strongly correlated (r = 0.99) so 

we tested for differences in home range size only. Kernel home ranges and core-use 

areas were often divided into multiple parts as a result of woodcock movement 

patterns and so we counted the number of home range and core-use area divisions for 

each bird to help characterize this aspect of second-order selection. The number of 

home range and core-use area divisions were moderately correlated (r = 0.51) so we 

retained both variables. We log-transformed kernel home range size in order to 

improve normality and used analysis of variance to test the main effects of age, site, 

and year on home range size. We adjusted for multiple comparisons, tested for 

interactions between main effects, and assessed model assumptions as before. We used 

log-linear regression assuming a Poisson distribution (Agresti, 2007) to test the main 

effects of age, site, and year on the number of home range and core-use area divisions. 

We also tested for interactions between main effects, but dropped interactions that 

were not significant. We adjusted for slight underdispersion in the number of home 

range divisions, and slight overdispersion in the number of core-use area divisions, 

using the deviance scale parameter (SAS, 2011; PROC GENMOD). 
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We used logistic regression to derive the coefficient values for the exponential 

form of the RSF [w(x) = exp(β1x1 + … + βpxp)] based on available and used habitat 

(Manly et al., 2002). Johnson et al. (2006) found this approach to be both theoretically 

appropriate and quantitatively robust to sample contamination (i.e., available sample 

containing used and unused resource units) and overlap (i.e., resource units occurring 

in the available sample and used sample). Contamination of our sample of available 

habitat was low (6%) and overlap among our samples of available and used habitat 

was minimal (<1%). Correlations among quantitative variables were weak (|r| <0.39) 

and variance inflation factors were low (<1.5) so we retained all variables for model 

building. We generated 15 a priori logistic regression models relating the probability 

of use by woodcock of forested land to geographic variables and used the information-

theoretic approach based on Akaike’s Information Criterion (AIC) and Akaike weights 

(wi) to select the best candidate model (Anderson et al., 2000). We used Raster 

Calculator (ArcGIS 10.1) to map the relative probability of use by woodcock of 

forested land in Rhode Island based on the best candidate model and reclassified 

relative use into five ordinal classes using geometrical interval classification. Johnson 

et al. (2006) noted that typical methods for assessing logistic regression performance 

and model fit are not appropriate for use-availability designs and so we used their 

validation method to evaluate the best candidate model and to assess proportionality of 

the RSF to true probability of use. We generated a validation dataset by merging 

composite areas of used woodcock habitat across sites and randomly selecting 10% of 

remaining pixels (n = 2,494) that were not present in the samples used to build the 

RSFs. Following Johnson et al. (2006), we determined observed and expected 
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numbers of used pixels in the validation dataset within each ordinal class, converted 

these into proportions, and used linear regression and chi-square goodness-of-fit to 

assess the relationship between observed and expected proportions. 

Lastly, we illustrated how the RSF can be used to 1) identify areas of older 

second-growth upland forest in Rhode Island, generally 60 – 100-years-old (Butler et 

al., 2012), where management to create woodcock habitat might be most beneficial, 

and 2) forecast how certain forest management practices influence relative use by 

woodcock of the surrounding landscape. For the first illustration, we calculated for 

each quantitative variable retained in the best candidate model, the maximum value 

within the composite areas of used woodcock habitat. For those variables that reduced 

the relative probability of use by woodcock, we considered maximum values to 

represent tolerances beyond which were less suitable for woodcock. For example, if 

distance to the nearest upland young forest reduced the relative probability of use by 

woodcock and the maximum distance within composite areas of used woodcock 

habitat was 1,000 m, then areas ≤1,000 m from upland young forest were considered 

more suitable for woodcock while those >1,000 m were considered less suitable. We 

used the maximum value for each of these variables to select older second-growth 

upland forest that might be most beneficial for woodcock habitat management. For the 

second illustration, we considered a 4-km2 case study area because management of a 

woodcock habitat mosaic is recommended at this scale (Williamson, 2010). We chose 

a site in Arcadia where woodcock were known to occur, forest management practices 

to improve woodcock habitat have previously been implemented, and the estimated 

relative use by woodcock varied from low to high. We simulated the creation of about 
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30 ha of upland young forest patches (n = 7; range = 2 – 10 ha) and 10 ha of 

herbaceous forest openings (n = 3; range = 2 – 6 ha) within areas of deciduous, mixed, 

or coniferous second-growth forest deemed most beneficial for habitat management, 

and then re-calculated the RSF to illustrate how relative use changed in response to 

forest cutting. For simplicity, we placed hypothetical management units adjacent to 

roads (i.e., access points) and ≥100 m from the nearest stream. We ignored other 

criteria which might influence where forest cutting can occur, but vary from region to 

region (e.g., state or local ordinances). 

3. Results 

3.1. Third-order selection 

We identified 46 diurnal coverts during 2011 and 36 diurnal coverts during 2012. 

During 2011, 15 of 27 woodcock selected 2 – 3 diurnal coverts throughout the summer 

while others selected one diurnal covert. In contrast, during 2012, 14 of 25 woodcock 

selected one diurnal covert throughout the summer while others selected two diurnal 

coverts. Diurnal coverts represented small areas of concentrated activity (mean ± SE = 

0.64 ± 0.07 ha; median = 0.43 ha; range = 0.02 – 4.22 ha) and primary diurnal coverts 

were only marginally larger (mean = 0.86 ± 0.10 ha; median = 0.64 ha; range = 0.12 – 

4.22 ha). 

We retained the first three principle components because their eigenvalues were 

>2.0, whereas all other eigenvalues were <1.0. The first three components accounted 

for 80% of the total variance. Component 1, forest overstory, was characterized by 

greater values of canopy closure, overstory height class, tree density, basal area, 

medial dbh, and overstory size class; component 2, food resource, was characterized 
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by greater values of earthworm density, earthworm fresh weight, and earthworm dry 

weight; and component 3, forest understory, was characterized by greater values of 

soil moisture content, soil organic matter content, and shrub and sapling density 

(Table A.1). 

Forest overstory component scores were lower inside primary diurnal coverts (F1 = 

15.18, P < 0.001; Fig. 1a), and we found no evidence for significant effects of age, 

site, year, or interactions (P ≥ 0.152). Canopy closure was about 7% lower, and tree 

density, basal area, and medial dbh were 21 – 29% lower inside primary diurnal 

coverts (Table 2). Overstory height class was within the 3 – 9 m interval inside 

primary diurnal coverts while height class was >9 m outside primary diurnal coverts. 

Overstory size class was within the 11.5 – 26.7 cm (i.e., pole) interval inside and 

outside primary diurnal coverts, but overstory trees outside primary diurnal coverts 

tended towards the 26.8 – 41.9 cm (i.e., small sawtimber) interval (Table 2). 

Food resource component scores were similar at Arcadia and Big River, but 

greater at Great Swamp (F2 = 6.87, P = 0.002), and were greater inside primary 

diurnal coverts (F1 = 5.97, P = 0.009; Fig. 1b). We found no evidence for significant 

effects of age, year, or interactions (P ≥ 0.063). Non-transformed earthworm density 

(mean ± SE) was 20 – 24% greater at Great Swamp (18.70 ± 4.56) than Arcadia 

(14.89 ± 4.68) or Big River (14.14 ± 3.91) while earthworm fresh weight was 48 – 

62% greater at Great Swamp (10.91 ± 4.41) than Arcadia (5.63 ± 1.87) or Big River 

(4.18 ± 1.21). Earthworm dry weight was 39 – 51% greater at Great Swamp (2.10 ± 

0.80) than Arcadia (1.28 ± 0.41) or Big River (1.02 ± 0.30). Irrespective of site, 
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earthworm density, earthworm fresh weight, and earthworm dry weight were 46 – 

67% greater inside primary diurnal coverts (Table 2). 

Forest understory component scores were also similar at Arcadia and Big River, 

but greater at Great Swamp (F2 = 14.02, P < 0.001), and were greater inside primary 

diurnal coverts (F1 = 3.24, P = 0.038; Fig. 1c). We found no evidence for significant 

effects of age, year, or interactions (P ≥ 0.220). Soil moisture content (mean ± SE) 

was 30 – 51% greater at Great Swamp (57.56 ± 3.98) than Arcadia (40.35 ± 2.84) or 

Big River (27.96 ± 2.51) and soil organic matter content was 37 – 51% greater at 

Great Swamp (40.57 ± 3.72) than Arcadia (25.76 ± 3.35) or Big River (19.81 ± 2.67). 

Shrub and sapling density was 44 – 52% greater at Great Swamp (25,000.00 ± 

2,821.69) than Arcadia (12,033.33 ± 2,419.62) or Big River (14,083.33 ± 2,699.20). 

Regardless of site, soil moisture content and soil organic matter content were similar 

inside and outside primary diurnal coverts whereas shrub and sapling density was 46% 

greater inside primary diurnal coverts (Table 2). 

Generalized overstory cover type differed by plot location (F4, 248 = 4.58, P = 

0.001), but we found no evidence for significant effects of age or year (P ≥ 0.124). 

Relative to mixed upland forest, the odds of occurring inside primary diurnal coverts 

were similar for deciduous upland forest (odds ratio = 1.26, 95% CI = 0.68 – 2.34), 

wetland forest (odds ratio = 1.61, 95% CI = 0.80 – 3.21), and herbaceous cover types 

(odds ratio = 0.52, 95% CI = 0.14 – 1.90). In contrast, relative to mixed upland forest, 

coniferous upland forest was less likely to occur inside primary diurnal coverts (odds 

ratio = 0.16, 95% CI = 0.06 – 0.44). 
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3.2. Second-order selection 

We found no evidence for significant effects of age, site, year, or interactions on 

kernel home range size (P ≥ 0.091). Non-transformed kernel home range size varied 

from 1.04 – 474.52 ha with a mean ± SE of 51.13 ± 13.81 ha and median of 11.29 ha. 

Core-use areas varied from 0.19 – 75.49 ha with a mean of 8.45 ± 2.21 ha and median 

of 2.03 ha. Minimum convex polygon home ranges varied from 0.43 – 487.01 ha with 

a mean of 57.55 ± 12.52 ha and median of 19.24 ha. The number of kernel home range 

divisions differed by age (F1, 47 = 5.15, P = 0.023), but we found no evidence for 

significant effects of site, year, or interactions (P ≥ 0.065). The home ranges of after-

second-year males were divided into 1.59 (95% CI = 1.06 – 2.41) times more parts 

than the home ranges of second-year males. We found no evidence for significant 

effects of age, site, year, or interactions on the number of core-use area divisions (P ≥ 

0.246). 

Of the 15 a priori logistic regression models that we tested (Table A.2), the top-

ranked model produced the lowest AIC and accounted for 94% of the Akaike weight. 

This model suggested that the relative probability of use by woodcock 1) increased 

with increasing elevation, 2) decreased with increasing slope, 3) was higher in 

deciduous upland forest, mixed upland forest, deciduous wetland forest, mixed 

wetland forest, and wetland young forest, but lower in coniferous upland forest, 

upland young forest, and coniferous wetland forest, and 4) decreased with increasing 

distance to the nearest stream, agricultural opening, upland young forest, and moist 

soil (Table 3). The vast majority of forested land in Rhode Island occurred in the low 

(445 km2), low-moderate (234 km2), moderate (533 km2), and moderate-high (444 
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km2) classes of relative use whereas areas of high relative use (46 km2) were widely 

scattered (Fig. 2a). Our validation of the RSF revealed adequate fit between observed 

and expected proportions of pixels in each ordinal class (Χ2
4 = 0.083, P = 0.999). In 

addition, the linear regression model relating observed and expected proportions of 

pixels in each ordinal class (y = 0.921x + 0.016) had an intercept similar to 0 (P = 

0.718), a slope >0 (P = 0.011), but near 1, and a high R2 (0.912) indicating that the 

RSF was proportional to true probability of use. 

3.3. Applications of the resource selection function 

Older second-growth upland forest (e.g., 60 – 100 years) in Rhode Island where 

woodcock habitat management was deemed most beneficial was within the maximum 

values of used woodcock habitat (i.e., composite core-use areas; see 2.3.2.) for each 

quantitative variable that reduced relative probability of use in the top-ranked RSF. 

Generally, management of older second-growth upland forest was deemed most 

beneficial on slopes ≤53% and within 1,211 m of the nearest stream, 1,314 m of the 

nearest agricultural opening, 1,498 m of the nearest upland young forest, and 639 m of 

the nearest moist soil. Most (1,281 km2) older second-growth upland forest was 

located in areas where woodcock habitat management was classified as most 

beneficial while only 109 km2 was located in areas where management was classified 

as least beneficial (Fig. 2b). Across the 4-km2 case study area, clearcutting 40 ha 

(10%) to produce young forest and forest openings reduced the 210 ha of forested land 

in the low class of relative use to 118 ha, increased the 77 ha in both the low-moderate 

and moderate classes of relative use to 103 ha and 115 ha, respectively, and increased 

the 22 ha in the moderate-high class of relative use to 38 ha (Fig. 3). 
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4. Discussion 

4.1. Third-order selection 

We found that daytime activity by male woodcock in Rhode Island was highly 

localized within areas of their home range. In Pennsylvania, USA, the diurnal coverts 

of male woodcock during April – May were about 0.1 – 1.0 ha (Hudgins et al., 1985). 

Most (74%) of the diurnal coverts that we identified were within this range, but some 

were as much as four times larger. Adult females caring for young concentrated 

daytime activity within areas that were approximately 0.8 – 2.6 ha in Minnesota, USA 

(Wenstrom, 1974), and 1.0 – 2.8 ha in Pennsylvania (Caldwell and Lindzey, 1974) so 

localized habitat selection is not specific to males. Localized habitat selection has also 

been found during winter months in Alabama, USA, where woodcock activity centers 

were from 0.4 – 5.7 ha (Horton and Causey, 1979). Historically, young forest likely 

occurred as relatively small, isolated patches resulting from localized natural 

disturbances (Askins, 2001) so woodcock and other young forest birds likely adapted 

to exploit small areas of preferred habitat (Askins et al., 2007). 

The structure of preferred young forest provides woodcock protection from 

predators (Dessecker and McAuley, 2001; Keppie and Whiting, 1994; McAuley et al., 

1996; Straw et al., 1986), but older forest might also be selected for nesting, brood-

rearing, or feeding if the density of shrub or sapling stems is sufficient to provide 

similar protective cover (Dessecker and McAuley, 2001; Williamson, 2010). On 

average, tree density inside the primary diurnal coverts that we investigated was about 

466 stems/ha which was less than the tree density associated with aspen (Populus spp.; 

mean = 760 stems/ha) and mixed deciduous forest types (mean = 890 stems/ha) 
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selected by woodcock in Michigan, USA (Rabe, 1977), but similar to the tree density 

associated with nesting and brood-rearing habitat selected by female woodcock (range 

= 400 – 783 stems/ha; Dessecker and McAuley, 2001). In Pennsylvania, optimum 

basal area of trees and sapling density for daytime habitat was estimated to be 14.3 

m2/ha and 4,900 stems/ha, respectively, and woodcock generally avoided areas where 

basal area was ≥20.0 m2/ha and sapling density was <1,500 stems/ha (Straw et al., 

1986). We found that mean basal area inside primary diurnal coverts was 22.1 m2/ha 

and shrub and sapling density was 21,452 stems/ha. While overstory trees inside 

primary diurnal coverts tended to be shorter and smaller in diameter (i.e., younger) 

than those outside (Table 2), woodcock in Rhode Island may currently be selecting the 

best available forest rather than optimum forest. 

The high shrub and sapling density typical of diurnal coverts in Rhode Island may 

protect woodcock from predators even though the structure of selected coverts differs 

from young forests that woodcock typically select in other areas of the Northeast. 

Indeed, in some areas, understory structure rather than species composition may be 

most useful for identifying sites selected by woodcock (Rabe, 1977). The shrub and 

sapling density that we observed inside primary diurnal coverts was over four times 

greater than the sapling density at sites selected by woodcock in Pennsylvania (Straw 

et al., 1986) and similar to shrub and sapling densities in areas selected by female 

woodcock in Minnesota (Morgenweck, 1977) and Maine, USA (McAuley et al., 

1996). Moreover, shrub and sapling density was nearly two times greater inside than 

outside primary diurnal coverts. We only documented eight mortalities among the 60 

woodcock that we monitored during summers 2011 and 2012 so woodcock survival is 
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relatively high in Rhode Island. Woodcock survival is also relatively high in Maine 

(Derleth and Sepik, 1990) where optimum habitat is more widespread. Thus, the shrub 

and sapling density typical of diurnal coverts in Rhode Island apparently provides 

similar protective cover as forests selected by woodcock in other parts of the 

Northeast. 

Woodcock typically feed in forested coverts during the day (Masse et al., 2013) 

and so our findings that woodcock consistently selected forest stands where 

earthworm availability was at least 46% greater than random sites (Table 2) help 

support this conclusion. On average, earthworm dry weight at heavily-used diurnal 

coverts in Maine was 18.2 g/m2 compared to 15.4 and 7.8 g/m2 at commonly- and 

rarely-used diurnal coverts, respectively (Reynolds et al., 1977). During summer, 

greater earthworm density or biomass at sites selected by woodcock has also been 

reported in Pennsylvania (mean = 34.4 earthworms/m2; Hudgins et al., 1985) and 

Minnesota (range = 4.4 – 23.0 g/m2; Morgenweck, 1977). In contrast, Sepik and 

Derleth (1993) found no relationship between earthworm dry weight and woodcock 

habitat selection in Maine, but noted that mean earthworm dry weight was 8.9 g/m2 at 

sites selected by woodcock. Mean earthworm density (23.7 earthworms/m2) and dry 

weight (1.8 g/m2) inside primary diurnal coverts in Rhode Island were generally lower 

than those found elsewhere in the Northeast. However, earthworm availability was 

even more limited outside primary diurnal coverts (Table 2) suggesting that woodcock 

selected areas that could maximize feeding opportunities. 
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4.2. Second-order selection 

We found that the size of kernel home ranges and core-use areas for male 

woodcock in Rhode Island were highly variable, but did not differ by age, site, or year. 

Historically, MCPs have been the standard method used to estimate woodcock home 

ranges, but the shortcomings of this method have prompted researchers to advocate 

kernel methods for contemporary studies (Powell, 2000). Yet, MCPs may still be a 

valid and favored method for delineating areas used by certain taxa (e.g., 

herpetofauna; Row and Blouin-Demers, 2006) or under certain situations (e.g., our 

delineation of primary diurnal coverts). During summer, mean diurnal home range size 

(MCP) for adult (19 ha) and juvenile (13 ha) male woodcock in Maine did not differ 

(Sepik and Derleth, 1993) which coincides with our conclusion using kernel methods. 

The mean home range sizes that we observed for woodcock in Rhode Island using 

either kernel or MCP methods were considerably larger than mean MCP home range 

estimates for woodcock in Maine (8 – 19 ha depending on cohort; Sepik and Derleth, 

1993) and Alabama (9.2 ha; Horton and Causey, 1979). However, the median home 

range sizes that we observed were similar to those found in Pennsylvania (median = 

3.1 – 73.6 ha depending on activity level; Hudgins et al., 1985) and more similar to 

mean home range sizes reported elsewhere. The unusually large home ranges that we 

observed for some woodcock (e.g., 474.5 ha) inflated our estimates of mean home 

range size and are clearly not typical of most woodcock in Rhode Island as 73% and 

67% of kernel and MCP home ranges, respectively, were <50 ha. 

Adult male woodcock have been found to move greater distances between 

successive daytime locations than juvenile males (Sepik and Derleth, 1993) so this 
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could partially explain why the number of home range divisions was greater for the 

older cohort in our study. Animal memory is likely an important factor influencing 

home range use patterns (Van Moorter et al., 2009) and the diurnal home ranges of 

more experienced (i.e., older) woodcock might be divided into more parts if these 

birds tend to re-visit familiar sites on the landscape in order to exploit resources which 

could vary spatially or temporally (e.g., earthworms; Reynolds et al., 1977). For 

example, the one woodcock that we were able to monitor during subsequent summers 

was a second-year during 2011 and an after-second-year during 2012. During 2011, 

his diurnal home range was divided into two parts which were separated by about 146 

m whereas his home range during 2012 was divided into four parts which, on average, 

were separated by about 973 m (range = 137 – 1,628 m). Importantly, this male 

showed some capacity to re-visit sites used in previous years while also exploiting 

apparently new areas on the surrounding landscape since one of the four divisions of 

his 2012 home range overlapped with one of the divisions of his 2011 home range. 

All else being equal, relative use by woodcock of forested land tended to be 

greatest in wetland forest and lowest in coniferous upland forest (Table 3). Wetland 

forest may be particularly attractive to woodcock as daytime habitat during summer 

because the moist soils typically associated with this cover type tend to promote 

higher densities of earthworms and shrub or sapling stems (Williamson, 2010). The 

fact that relative use was most negatively influenced by coniferous upland forest 

coincides with our finding that this cover type was less likely to occur inside primary 

diurnal coverts. Consequently, relative use by woodcock can effectively be increased 

if older, second-growth, coniferous upland forests are harvested and replaced with 
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upland young forest, or deciduous or mixed upland forest. However, coniferous 

upland forest may be selected by woodcock during periods of summer drought (Sepik 

et al., 1983) so some of this forest type should be maintained on landscapes within or 

around woodcock habitat mosaics. 

We also found that relative use by woodcock of forested land decreased at higher 

slopes and farther distances from the nearest stream, moist soil, upland young forest, 

and agricultural opening. Woodcock habitat suitability also declined on steeper slopes 

in West Virginia, USA (Steketee, 2000). In general, woodcock habitat management is 

considered most beneficial on flatter slopes (Dessecker and McAuley, 2001) perhaps 

because these areas can better support earthworm populations (Steketee, 2000). Our 

findings that proximity to streams and moist soils influences relative use supports the 

views that creating woodcock habitat closer to streams (Williamson, 2010) or across 

moisture gradients (Dessecker and McAuley, 2001) is most beneficial. The affinity of 

woodcock to young forest has been well-documented across the Northeast (Hudgins et 

al., 1985; McAuley et al., 1996; Sheldon, 1967) and so we expected relative use to 

decrease as distance to the nearest upland young forest increased. However, we were 

somewhat surprised to find that relative use also decreased as distance to the nearest 

agricultural opening increased because greater proportions of agriculture on the 

surrounding landscape reduced woodcock habitat suitability in West Virginia 

(Steketee, 2000) and were not associated with areas used by woodcock during spring 

in Pennsylvania (Klute et al., 2000). Variation in the response of woodcock 

populations to agricultural openings likely relates to the predominant type of 

agriculture in a region or considered in a given study, but this subject has yet to be 



28 

 

investigated. Some agricultural openings provide critical breeding sites for woodcock 

during spring (Sheldon, 1967) and roosting sites during summer (Dunford and Owen, 

1973; Masse et al., 2013) so the proximity of these landscape features to forests used 

by woodcock has some ecological relevance. Declines of woodcock populations in 

Pennsylvania from the 1960’s – 1970’s mirrored declines in the extent of pastureland 

and other cover types used by woodcock (Gutzwiller et al., 1980) so it seems 

reasonable that forests farther from certain agricultural openings are generally less 

ideal than those closer to these forest openings. 

4.3. Applications of the resource selection function 

Given the link between declines of woodcock populations and young forest, the 

American Woodcock Conservation Plan (AWCP) established habitat goals for 

restoring woodcock densities to those of the 1970’s (Kelley et al., 2008). Across the 

Northeast, >22,000 km2 of young forest is needed to restore woodcock densities 

(Kelley et al., 2008) so widespread, active forest management will be required if the 

goals of the AWCP are to be met. Forest clearcutting is generally regarded as the most 

efficient method for creating quality woodcock habitat (Dessecker and McAuley, 

2001; McAuley et al., 1996; Williamson, 2010). On the one hand, non-game birds 

which require similar young forest would likely benefit from woodcock habitat 

management. On the other hand, removing all trees from select areas may be 

aesthetically displeasing (Gobster, 2001) or viewed as harmful to populations of 

wildlife that require more mature forest (Wallendorf et al., 2007). Consequently, forest 

management efforts to create quality woodcock habitat should be strategically-
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coordinated and scientifically-informed so that conservation benefits are maximized 

while negative impacts are minimized. 

Managing young forest to increase relative probability of use by woodcock of 

surrounding landscapes can help improve connectivity between habitat patches 

thereby reducing the negative impacts of habitat patch isolation. Moderate-high and 

high classes of relative use were widely scattered across Rhode Island (Fig. 2a) and 

metapopulation theory dictates that immigration to habitat patches decreases as 

isolation of habitat patches increases (Hanski, 1998). We used our RSF to identify 

1,281 km2 of older second-growth upland forest where habitat management might be 

most beneficial for increasing relative use by woodcock (Fig. 2b). About 377 km2 of 

young forest must be managed in Rhode Island to restore woodcock population 

densities (Kelley et al., 2008), but this represents roughly 14% of the total land area 

and is about four times larger than the current extent of young forest in the state 

(Buffum et al., 2011). A more feasible goal might be to first stabilize the extent of 

non-coastal upland young forest by clearcutting about 136 ha of older second-growth 

forest per year over the next 20 years (Buffum et al., 2011). We recommend that forest 

clearcutting to create habitat for woodcock and other young forest wildlife (e.g., New 

England cottontail [Sylvilagus transitionalis]) should take place in areas identified as 

most beneficial for management in order to help meet the goals of the AWCP. In 

addition, other land management practices such as allowing ≥30-m buffers around 

agricultural openings to regenerate into young forest benefit woodcock (Williamson, 

2010) and increase the extent of young forest without requiring older forest to be cut 

down. 
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In the Northeast, woodcock best management practices focus on creating habitat 

mosaics that provide all necessary components of quality habitat within a 4-km2 

landscape (Williamson, 2010). About 25% of each habitat mosaic should be 

maintained as young forest by clearcutting blocks >2 ha on a 40-year rotation 

(McAuley et al., 1996), and occasional herbaceous forest openings (e.g., wildlife 

openings or old fields) should be maintained to provide breeding sites (e.g., >0.2 ha 

each; about eight per 40 ha) and roosting sites (e.g., >2 ha each; about one per 40 ha; 

Williamson, 2010). Clearcutting forest blocks >1 ha has also been recommended to 

conserve other species of young forest birds (Schlossberg and King, 2007). Moreover, 

wildlife openings such as old fields provide adequate habitat for some of these species 

(King et al., 2009). We used our RSF to show that creating 30 ha of upland young 

forest and 10 ha of herbaceous forest openings at key sites in a 4-km2 case study area 

increased relative use by woodcock of surrounding forested land (Fig. 3). 

Clearcutting older second-growth upland forest to enhance woodcock habitat is not 

suitable in all areas so tools that can distinguish where management efforts are likely 

to be most effective will be useful in forest management decision-making. The RSF 

that we developed represents such a tool for biologists managing woodcock habitat 

across Rhode Island or similar landscapes in the Northeast. Geographic data sets can 

be easily manipulated allowing biologists to simulate competing forest management 

plans, forecast the response of target woodcock populations using our RSF, and then 

select the management plan that produces the greatest increase in relative probability 

of use. Resource selection functions can accommodate various study designs and data 

collection methods (Manly et al. 2002) so biologists in other regions can develop their 



31 

 

own RSFs provided they have basic data on used and available or unused sites. 

Employing quantitative tools such as RSFs during the decision-making process will 

help to maximize conservation benefits and facilitate more efficient and effective 

forest management planning. 
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Fig. 1 

Mean scores for the forest overstory (a), food resource (b), and forest understory (c) 

habitat components sampled inside and outside the primary diurnal coverts of male 

woodcock in Kent and Washington Counties, Rhode Island, USA, from 24 August – 

30 September 2011 (n = 22) and 2012 (n = 20). Primary diurnal coverts exhibited 

lower forest overstory scores (P < 0.001), greater food resource scores (P = 0.009), 

and greater forest understory scores (P = 0.038). Whiskers represent ± 1 SE. 

Fig. 2 

Relative probability of use by woodcock of forested land (a) and areas of older 

second-growth upland forest, generally 60 – 100 years, where woodcock habitat 

management was deemed most beneficial for increasing relative use (b) in Rhode 

Island, USA. Relative use was derived from the exponential form of a resource 

selection function based on a use-availability design. Second-growth upland forest was 

classified as most beneficial for woodcock habitat management if it occurred on slopes 

≤53% and within 1,211 m of the nearest stream, 1,314 m of the nearest agricultural 

opening, 1,498 m of the nearest upland young forest, and 639 m of the nearest moist 

soil. Arcadia Wildlife Management Area, the site where an example case study was 

conducted, is shown for reference. 

Fig. 3 

Relative probability of use by woodcock of forested land in a 4-km2 case study area in 

Arcadia Wildlife Management Area in southwestern Rhode Island, USA, that is 

considered for forest management (a). The hypothetical forest management scenario 

considered for this site (b) included creating 30 ha of upland young forest and 10 ha of 
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herbaceous forest openings (e.g., wildlife openings or old fields) in areas of older 

second-growth upland forest (e.g., 60 – 100 years) deemed most beneficial for 

woodcock habitat management. Following management (c), the estimated extent of 

low relative use by woodcock of the managed forest decreased by 92 ha while the 

estimated extents of low-moderate, moderate, and moderate-high relative use 

increased by 26 ha, 38 ha, and 16 ha, respectively. White areas represent non-forested 

cover types in panels (a) and (c), and these cover types along with cover types other 

than older second-growth upland forest in panel (b).
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Table 1 

Initial and remaining number of radio-tagged male woodcock in Kent and Washington Counties, Rhode Island, USA. Woodcock were 

removed from the initial sample if they died (n = 8), slipped their transmitter (n = 7), or moved away from study sites and could not be 

relocated (n = 25) prior to obtaining >25 telemetry locations during 23 May – 25 August 2011 and 2012. We determined age as either 

after-second-year (ASY) or second-year (SY) based on plumage characteristics of wings. 

  2011    2012  

Age Arcadia Big River Great Swamp  Arcadia Big River Great Swamp 

ASY        

Initial 11 9 9  7 9 5 

Remaining 7 7 3  2 6 3 

SY        

Initial 11 5 5  6 5 10 

Remaining 6 4 0  4 3 7 
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Table 2 

Non-transformed range, mean ± SE, and median for the variables associated with the forest overstory, food resource, and forest 

understory habitat components measured inside and outside the primary diurnal coverts of male woodcock in Kent and Washington 

Counties, Rhode Island, USA, from 24 August – 30 September 2011 (n = 22) and 2012 (n = 20). 

 Inside diurnal coverts  Outside diurnal coverts 

Variable Range Mean Median  Range Mean Median 

Canopy closure (%) 23.14 – 98.44 77.79 ± 3.44 87.26  22.83 – 99.22 83.30 ± 2.23 87.21 

Overstory height class (m) 1.50 – 10.50 7.99 ± 0.42 8.70  5.10 – 10.50 9.34 ± 0.20 9.60 

Tree density (#/ha) 0.00 – 

1196.80 

465.63 ± 44.36 382.00  178.30 – 

967.70 

591.14 ± 29.23 611.15 

Basal area (m2/ha) 0.00 – 46.30 22.07 ± 2.30 21.93  5.09 – 67.84 31.27 ± 2.08 29.98 

Medial dbh (cm) 0.00 – 41.51 20.62 ± 1.75 20.87  12.11 – 38.77 26.63 ± 0.96 26.98 

Overstory size class (cm) 5.80 – 40.80 22.44 ± 1.45 23.00  11.80 – 37.80 26.69 ± 0.91 25.60 

Earthworm density (#/m2) 0.00 – 95.50 23.70 ± 4.30 12.20  0.00 – 51.10 7.72 ± 2.01 0.00 

Earthworm fresh weight (g/m2) 0.00 – 41.71 8.29 ± 1.65 3.31  0.00 – 102.69 4.96 ± 2.51 0.00 
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Earthworm dry weight (g/m2) 0.00 – 8.71 1.84 ± 0.36 0.64  0.00 – 17.47 1.00 ± 0.45 0.00 

Soil moisture content (%) 9.33 – 86.09 40.04 ± 3.31 35.44  11.12 – 82.39 41.65 ± 2.86 36.72 

Soil organic matter content (%) 1.68 – 87.64 25.87 ± 3.25 19.46  5.71 – 63.14 29.86 ± 2.53 29.22 

Shrub and sapling density (#/ha) 2,500.00 – 

78,500.00 

21,452.38 ± 

2,704.03 

15,500.00  0.00 – 

33,000.00 

11,488.10 ± 

1,457.64 

7,750.00 
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Table 3 

Coefficient values (β) for each of the variables included in the three highest-ranked 

resource selection functions relating the relative probability of use by woodcock of 

forested land from 23 May – 25 August 2011 and 2012 to geographic variables in 

Rhode Island, USA. Coefficients were derived using logistic regression under a use-

availability design. Variables included elevation, slope, forest cover type (ForCov), 

and Euclidean distance to the nearest stream (D2Strm), agricultural opening (D2Ag), 

upland young forest (D2UYF), and moist soil (D2MS). Coefficients for forest cover 

type were estimated using dummy variables with mixed upland forest serving as the 

reference category. 

β Model 1 Model 2 Model 3 

Elevation 0.00210  0.00165 

Slope -0.01870 -0.01760  

ForCova    

CUF -0.31110 -0.32520 -0.31970 

DUF 0.09060 0.08440 0.07260 

UYF -0.22690 -0.26200 -0.19820 

CWF -0.02730 -0.05390 0.03100 

DWF 0.68390 0.61330 0.75650 

MWF 0.19930 0.15660 0.26160 

WYF 0.39340 0.32270 0.47500 

D2Strm -0.00080 -0.00083 -0.00075 

D2Ag -0.00162 -0.00162 -0.00163 
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D2UYF -0.00025 -0.00021 -0.00025 

D2MS -0.00117 -0.00106 -0.00135 

 

a coniferous upland forest (CUF), deciduous upland forest (DUF), upland young forest 

(UYF), coniferous wetland forest (CWF), deciduous wetland forest (DWF), mixed 

wetland forest (MWF), and wetland young forest (WYF). 
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Appendix A. Supplementary material. 

Table A.1. 

Loadings (correlations) for retained principle components in relation to 13 quantitative habitat variables measured inside and outside 

the primary diurnal coverts of male woodcock in Kent and Washington Counties, Rhode Island, USA, from 24 August – 30 September 

2011 (n = 22) and 2012 (n = 20). 

Habitat variable Forest overstory 

component 

Food resource 

component 

Forest understory 

component 

Soil pH -0.526 0.398 0.405 

Soil moisture content (%) 0.461 0.287 0.780 

Soil organic matter content (%) 0.496 0.161 0.766 

Earthworm density (#/m2)a -0.477 0.822 -0.055 

Earthworm fresh weight (g/m2)a -0.447 0.866 -0.120 

Earthworm dry weight (g/m2)a -0.456 0.820 -0.191 

Canopy closure (%) 0.822 0.179 0.039 
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Overstory height class (m) 0.867 0.263 -0.094 

Tree density (#/ha) 0.694 0.342 -0.097 

Basal area (m2/ha) 0.790 0.227 -0.211 

Medial dbh (cm) 0.914 0.198 -0.156 

Overstory size class (cm) 0.900 0.175 -0.092 

Shrub and sapling density (#/ha) -0.258 -0.081 0.713 

 

a log-transformed prior to conducting the principal components analysis. 
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Table A.2 

Fifteen a priori logistic regression models used to derive coefficients for resource selection functions relating the relative probability 

of use by woodcock of forested land from 23 May – 25 August 2011 and 2012 to geographic variables in Rhode Island, USA. 

Variables included elevation (E), slope (S), forest cover type (ForCov), and Euclidean distance to the nearest stream (D2Strm), 

agricultural opening (D2Ag), upland young forest (D2UYF), and moist soil (D2MS). Akaike Information Criterion (AIC), ∆AIC, and 

Akaike weights (wi) are provided for model comparison. 

Model Variables AIC ∆AIC wi 

1 E, S, ForCov, D2Strm, D2Ag, D2UYF, D2MS 22,469.76 0.00 0.94 

2 S, ForCov, D2Strm, D2Ag, D2UYF, D2MS 22, 475.42 5.66 0.06 

3 E, ForCov, D2Strm, D2Ag, D2UYF, D2MS 22,497.92 28.16 0.00 

4 ForCov, D2Strm, D2Ag, D2UYF, D2MS 22,500.64 30.88 0.00 

5 ForCov, D2Strm, D2Ag, D2UYF 22,530.29 60.53 0.00 

6 ForCov, D2Ag, D2UYF, D2MS 22,561.01 91.25 0.00 

7 E, ForCov, D2Ag, D2MS 22,565.80 96.05 0.00 
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8 ForCov, D2Ag, D2UYF 22,644.97 175.21 0.00 

9 E, S, D2Strm, D2Ag, D2UYF, D2MS 22,676.68 206.92 0.00 

10 S, D2Strm, D2Ag, D2UYF, D2MS 22,678.42 208.67 0.00 

11 D2Ag, D2UYF, D2MS 22,816.95 347.20 0.00 

12 S, ForCov, D2Strm, D2UYF, D2MS 22,962.59 492.83 0.00 

13 S, ForCov, D2Strm, D2UYF 22,978.46 508.71 0.00 

14 ForCov, D2Strm, D2UYF, D2MS 22,992.03 522.27 0.00 

15 ForCov, D2Strm, D2UYF 23,017.66 547.90 0.00 
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Abstract 

Moving between sites is a common behavior employed by prey in order to balance 

trade-offs associated with acquiring resources and avoiding predators. At dusk during 

summer, American woodcock (Scolopax minor) frequently fly from diurnal coverts in 

forests to nocturnal roost fields. We tested two hypotheses, the foraging-benefit 

hypothesis and predation-risk hypothesis, to determine the benefit gained by 

woodcock that commute. We used telemetry to identify the diurnal coverts and 

nocturnal roost fields used by woodcock in Rhode Island, USA during two summers. 

At each site we measured the availability and diversity of woodcock prey, soil 

properties, and mammalian predator activity. Earthworms were 3–4 times more 

abundant at diurnal coverts than nocturnal roost fields. The richness and diversity of 

woodcock foods was greater at diurnal coverts during 2011, but similar between sites 

during 2012. Soil moisture content was about 1.5 times greater at diurnal coverts 

whereas other soil properties were similar between sites. At night, mammalian 

predators visited diurnal coverts more frequently than nocturnal roost fields for 73% 

of the woodcock we monitored during 2011. During 2012, the number of days until 

initial predator visit was 1.8 times greater at nocturnal roost fields. Our results provide 

the first empirical support for the predation-risk hypothesis. During summer, 

woodcock fly from diurnal coverts to nocturnal roost fields to avoid predators and not 

to feed. 
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INTRODUCTION 

Prey must balance the costs and benefits of acquiring resources while avoiding 

predators (Milinski and Heller 1978; Sih 1980; Lima 1985; Lima et al. 1985; Lima and 

Dill 1990). The predation risk allocation hypothesis states that temporal variation in 

predation risk imposed on prey by predators often forces prey to trade-off when to 

feed and when to engage in antipredator behaviors during periods of dissimilar risk 

(Lima and Bednekoff 1999). This hypothesis, and its associated predictions, has 

recently been questioned on the grounds that some assumptions may be unrealistic in 

ecological settings, specifically the assumption that prey experience imposed 

schedules of risk for set periods, and thus, cannot actively manage risk (Beauchamp 

and Ruxton 2011). On the contrary, antipredator behaviors allow prey to actively 

manage risk, but prey are unable to control when and where predators occur and so 

decisions to adopt such behaviors are made under risk imposed by predators 

(Bednekoff and Lima 2011). Discriminating between these scenarios requires studies 

that demonstrate spatial or temporal variation in predation risk and then show how 

certain antipredator behavior(s) can favorably balance predation risk and the need to 

feed. 

Active risk management via antipredator behaviors has been documented for 

diverse taxa including insects (Rothley et al. 1997), amphibians (Van Buskirk et al. 

2002), fishes (Ferrari et al. 2010), mammals (Searle et al. 2008; Périquet et al. 2012), 

and birds (Tilgar et al. 2011; Huang et al. 2012). One behavior aimed at balancing the 

trade-off between acquiring resources and avoiding predators involves moving 

between sites. For instance, red-backed salamanders (Plethodon cinereus) exposed to 
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simulated predation climbed higher on plants than controls and so moved farther away 

from food-rich areas which were on the ground (Roberts and Liebgold 2008). 

Similarly, shorebirds frequently fly between shallow feeding areas at low-tide and safe 

resting areas with less food at high-tide (Dias et al. 2006; Rogers et al. 2006; van Gils 

et al. 2006). Organisms that typically move between sites provide behavioral 

ecologists unique opportunities to investigate the timescales at which predation risk 

allocation may occur and simultaneously test hypotheses about the trade-offs between 

foraging and predation risk at different sites. We investigated these aspects of the 

behavioral ecology of the American woodcock (Scolopax minor), a 116–279-g 

shorebird that inhabits forests and shrublands in eastern North America (Keppie and 

Whiting 1994). 

American woodcock (hereafter woodcock) are a migratory species breeding 

primarily across the northern half of the eastern United States and adjacent southern 

Canada and wintering primarily across the southern and southeastern United States. 

Generally, woodcock return to northern breeding grounds during March and depart for 

southern wintering grounds during October (Keppie and Whiting 1994). Throughout 

the year woodcock often commute between quite different vegetation types during the 

day and night, although the reasons for this behavior can vary by season. During fall 

and winter, woodcock frequently fly from forests to grazed pastures, recent forest 

clearcuts, or harvested agricultural fields at dusk to actively feed (Glasgow 1958; 

Krohn et al. 1977; Krementz 2000; Blackman et al. 2012) or roost (Connors and Doerr 

1982). During spring, woodcock fly from forests to recent forest clearcuts, maintained 

or abandoned meadows and fields, tree plantations, or other forest openings during the 
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morning and evening crepuscular periods to perform courtship displays and copulate 

(Sheldon 1967; Dwyer et al. 1988). Male woodcock perform courtship flights over 

these forest openings, called singing grounds, whereas females typically nest and rear 

young in nearby forests (Sheldon 1967). During summer, woodcock typically spend 

the day feeding in moist, young, deciduous or mixed hardwood-conifer forests 

(Sheldon 1967; Straw et al. 1986; Keppie and Whiting 1994; McAuley et al. 1996; 

Dessecker and McAuley 2001), called diurnal coverts, and then some fly to natural or 

maintained forest openings at dusk (Mendall and Aldous 1943; Sheldon 1961; Krohn 

1971). Although these movements by woodcock during summer have been described, 

the benefits gained by woodcock that fly to forest openings at dusk are not clear. 

Two hypotheses, the foraging-benefit hypothesis (Mendall and Aldous 1943; 

Sheldon 1961) and the predation-risk hypothesis (Dunford and Owen 1973), have 

been proposed to explain why woodcock fly to forest openings, called nocturnal roost 

fields, at dusk to spend the night during summer. Observations of some woodcock 

feeding on invertebrates (e.g., ants [Hymenoptera], moths [Lepidoptera], and beetle 

[Coleoptera] larvae) at nocturnal roost fields prompted early researchers to 

hypothesize that those birds flew to these areas to exploit novel food resources that 

were not available at diurnal coverts (Mendall and Aldous 1943; Sheldon 1961; 

Sheldon 1967). Although earthworms (Haplotaxida) are favored woodcock foods, 

other invertebrates may account for 15–40% of the volume of food in woodcock 

stomachs (Sheldon 1967; Keppie and Whiting 1994). Because woodcock are 

opportunistic feeders (Sheldon 1967) it is likely that many of these prey items could 

be obtained at diurnal coverts. Moreover, no one to date has directly tested the 
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foraging-benefit hypothesis by quantifying the availability or diversity of woodcock 

foods at both the diurnal coverts and nocturnal roost fields used by individuals. 

Subsequent research found that little, or no, feeding occurred by woodcock at 

nocturnal roost fields during summer (Krohn 1970). Furthermore, nocturnal roost 

fields used by woodcock during summer typically are not conducive to feeding 

because the soils at these sites tend to be dry, hard, and lacking in potential prey items 

(Sheldon 1961; Krohn 1970; Wishart and Bider 1976). After flying to nocturnal roost 

fields, woodcock are usually inactive throughout the night during summer (Dunford 

and Owen 1973; Owen and Morgan 1975; Wishart and Bider 1977) so these areas 

likely provide some benefit other than feeding opportunities. Dunford and Owen 

(1973) suggested that woodcock flew from diurnal coverts to nocturnal roost fields 

during summer because these areas provided safer refuge from predators. While it is 

generally accepted (e.g., Williamson 2010), no one to date has directly tested the 

predation-risk hypothesis. 

Our objective was to simultaneously test the foraging-benefit and predation-risk 

hypotheses for woodcock that fly between diurnal coverts and nocturnal roost fields 

during summer to determine the benefit afforded to individuals engaging in this 

behavior. Specifically, we compared the availability and diversity of woodcock foods, 

soil properties, and mammalian predator activity at both the diurnal coverts and 

nocturnal roost fields used by individually-marked woodcock. The foraging-benefit 

hypothesis predicts greater availability and diversity of soil macrofauna at woodcock 

nocturnal roost fields than diurnal coverts. The predation-risk hypothesis predicts 
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greater mammalian predator activity during the night at woodcock diurnal coverts than 

nocturnal roost fields. 

MATERIALS AND METHODS 

We conducted this field study within and around three state wildlife management 

areas – Arcadia, Big River, and Great Swamp – in central and southern Rhode Island, 

USA. Arcadia (41° 35' 10" N, 71° 43' 20" W) is approximately 62 km2 predominantly 

comprised of mixed (35%), deciduous (35%), and coniferous forest (26%) with 

roughly 88% of the management area consisting of upland habitat; Big River (41° 37' 

0" N, 71° 36' 60" W) is approximately 33 km2 mainly comprised of coniferous (46%), 

mixed (34%), and deciduous forest (8%) with nearly 84% of the management area 

consisting of upland habitat; Great Swamp (41° 27' 15" N, 71° 35' 19" W) is 

approximately 15 km2 chiefly comprised of deciduous (61%), mixed (18%), and 

coniferous forest (8%) with only about 31% of the management area consisting of 

upland habitat (RIGIS 2012). Red maple (Acer rubrum) swamps are the dominant 

wetland type at Great Swamp. Common trees and shrubs at all sites included red 

maple, oaks (Quercus spp.), eastern white pine (Pinus strobus), pitch pine (Pinus 

rigida), blueberries (Vaccinium spp.), and pepperbush (Clethra alnifolia). 

At each management area a variety of maintained forest openings including recent 

forest clearcuts, herbaceous meadows, and agricultural fields are managed to improve 

woodcock habitat. In 1995, a series of 2–5-ha clearcuts were made at Great Swamp to 

provide forest openings and create young forest habitat. Additional habitat 

management occurred at that site during 2007 and 2012. Similar management 
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practices were initiated at Arcadia and Big River during 1996 and 2006, respectively, 

and have continued sporadically since then. 

Woodcock movements and data collection 

We used mist nets to catch adult woodcock on singing grounds, where males perform 

courtship flights and copulate with females (Sheldon 1967), during April–June 2011 

and 2012 as part of a separate study investigating the distribution, habitat selection, 

and survival of woodcock in the region (IACUC protocol AN10-02-017). We attached 

an Advanced Telemetry Systems Model A5400, two-stage transmitter to each bird 

using all-weather cattle tag cement and a wire belly band (≤4 g; McAuley et al. 1993). 

We marked 98 adult woodcock between 2011 (n = 54; 50 males and four females) and 

2012 (n = 44; 42 males and two females). Females were underrepresented in our 

sample because of the difficulty associated with catching them in mist nets during 

spring (McAuley et al. 1993). During 2011, six woodcock died, four slipped their 

transmitters, and 20 left the study sites and could not be relocated prior to the start of 

field experiments. During 2012, six woodcock died, four slipped their transmitters, 

and ten left the study sites and could not be relocated prior to the start of field 

experiments. All of the 48 remaining woodcock (2011: 15 after-second-year [ASY] 

and nine second-year [SY] males; 2012: ten ASY and 13 SY males and one ASY 

female) flew from diurnal coverts to nocturnal roost fields on some nights.  

For the present study, we monitored the daytime and nighttime locations of radio-

marked woodcock 1–3 times per week from 1 July–20 August each year. We tracked 

each individual on foot using a three-element antenna and used a GPS to determine 

exact locations once each day (0600–1900 hrs EST) and once each night (2030–0240 
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hrs). The location of each bird was determined by slowly moving in the direction of 

the radio signal while reducing the gain of the receiver until the receiver began giving 

an audible signal without the use of the antenna or headphones. We quantified the 

accuracy of this technique by placing five transmitters on the ground, approaching 

each transmitter from each cardinal direction, then measuring the distance to the 

transmitter once the receiver first started giving an audible signal without the antenna 

or headphones. On average, we were (mean ± SD) 17.7 ± 8.3 m from transmitters 

using this technique. Because we were interested in determining which variables cause 

woodcock to fly between diurnal coverts and nocturnal roost fields, we identified the 

location of the diurnal covert and nocturnal roost field used during a 6-day period for 

each bird included in this study. This paired design allowed us to directly compare the 

foraging-benefit and predation-risk associated with each bird’s diurnal covert and 

nocturnal roost field. 

We collected soil macrofauna at the nocturnal roost field and diurnal covert of 

each woodcock by digging five 900-cm2 soil pits to 10-cm deep. We flushed each 

woodcock once at its nocturnal roost field from 8–20 August 2011 and from 9 July–7 

August 2012 and centered the first soil pit on the flush point. Four additional soil pits 

were located 5 m in each cardinal direction from the flush point to provide an overall 

average density of soil macrofauna at each site. We stored soil pit contents in plastic 

bags that were tied shut, returned early the following morning, then collected all soil 

macrofauna by hand sorting similar to Dangerfield (1997) except we sorted pit 

contents over white plastic bags. On subsequent days we flushed each woodcock once 

at its diurnal covert and collected potential prey in the same manner, but immediately 
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hand sorted soil pit contents after digging. We counted all soil macrofauna and 

identified individuals to Order except centipedes (Chilopoda) and millipedes 

(Diplopoda). Since earthworms are the dominant prey of woodcock (Sheldon 1967) 

we also weighed fresh and freeze-dried earthworm samples from each site. We tested 

the foraging-benefit hypothesis using 38 of the available radio-marked woodcock 

(2011: nine ASY and eight SY males; 2012: eight ASY and 12 SY males and one 

ASY female) because we had complete information on food abundance at both their 

diurnal coverts and nocturnal roost fields. 

We collected a 10-cm deep soil core from the flush point and two randomly 

chosen soil pits at each diurnal covert and nocturnal roost field to determine soil 

moisture content and soil pH during 2011 and these variables along with soil organic 

matter content during 2012. We measured soil moisture content gravimetrically by 

drying to a constant weight at 105º C. We measured soil pH using a 1:5 soil/water 

(mass/vol) ratio (Hendershot et al. 1993) with a glass pH electrode and a pH meter 

(model UB-10; Denver Instruments). We measured soil organic matter content using 

the loss-on-ignition method via combustion of oven-dry (105o C) soil in a furnace at 

550º C for 4 hr. We expressed soil moisture content and soil organic matter content as 

percent by weight.  

We quantified mammalian predator activity at the diurnal covert and nocturnal 

roost field of each woodcock in two ways. First, during 2011, we established baited 

track stations (Linhart and Knowlton 1975; Gompper et al. 2006) at each site and 

monitored them for evidence of mammalian predator activity for ten nights each from 

2–30 September. We expanded the soil pit at each flush point to 1 m2 by loosening and 
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smoothing the soil and baited each station with a 0.25 can of albacore tuna (Thunnus 

alalunga). We prepared track stations during the late afternoon and checked them for 

evidence of mammalian predator activity (e.g., tracks, dig marks, or missing bait) 

early the following morning. For each site we recorded the total number of nights (out 

of ten) that any mammalian predator visited and, when possible, predator identity. 

Second, during 2012, we established bait stations at each site in the same manner and 

monitored them constantly for up to 14 days using camera traps (Gompper et al. 2006) 

from 6–31 August. We baited each station with a 0.25 can of albacore tuna and a 

single northern bobwhite (Colinus virginianus) carcass and replenished bait after 

seven days as necessary. For each site we recorded the number of days until initial 

predator visit along with predator identity. During both years, we delayed the start of 

predator monitoring at these sites until after all soil macrofauna were collected (2011: 

average = 19 days, range = 12–24 days; 2012: average = 17 days, range = 1–31 days) 

in order to minimize the influence of these activities on predator behavior and ensure 

that all sites were monitored for predator activity during a similar time period within 

each year. Because several woodcock might roost in the same forest opening at night 

(Sheldon 1967) we randomly selected one woodcock from forest openings where >1 

radio-tagged bird was present to include in our sample. This reduced our sample size, 

but was necessary to ensure independence between pairs of observations. We tested 

the predation-risk hypothesis using 23 of the 38 woodcock (2011: six ASY and five 

SY males; 2012: four ASY and eight SY males) included in the test of the foraging-

benefit hypothesis because these individuals satisfied our independence criteria and 



 

67 

 

we had complete information on mammalian predator activity at both their diurnal 

coverts and nocturnal roost fields.  

We acknowledge that raptors are also important predators of woodcock. Great 

horned owls (Bubo virginianus) and barred owls (Strix varia) may occasionally kill 

woodcock in forest openings at night during spring and summer (Derleth and Sepik 

1990; Longcore et al. 1996), but mammalian predators, particularly weasels (Mustela 

spp.) and raccoons (Procyon lotor), pose a more serious threat at diurnal coverts 

(Longcore et al. 2000; McAuley et al. 2005). 

Statistical analysis 

We calculated the population density of each potential prey item at each diurnal covert 

and nocturnal roost field used by each woodcock. Since woodcock might not consume 

all macrofauna found in the soil we also calculated the cumulative density of known 

woodcock foods (see Keppie and Whiting 1994) at each site. We estimated the 

richness of soil macrofauna at each site by counting the number of unique taxonomic 

groups and estimated diversity by calculating the Shannon Index, H', (Magurran 2004) 

and then converting to diversity (Jost 2006). We used either paired t-tests or Wilcoxon 

signed-rank tests (Ott and Longnecker 2010) to compare population densities of 

potential prey, cumulative densities of known prey, richness, and diversity depending 

on the normality of paired differences. We assessed normality using a combination of 

histograms, boxplots, or normal probability plots. We also used paired t-tests or 

Wilcoxon signed-rank tests to compare earthworm weight, soil moisture content, soil 

pH, and soil organic matter content. We tested for a difference in the number of nights 

that baited track stations were visited by any mammalian predator during 2011 using 



 

68 

 

log-linear regression assuming a Poisson distribution (Gardner et al. 1995; Agresti 

2007; Pedan 2011). We used a mixed effects model (PROC GLIMMIX, SAS Version 

9.2) and included bird identity as a random effect to account for the paired nature of 

our data. Finally, we used a paired t-test to compare the number of days until initial 

predator visit at each site during 2012. Unless otherwise stated, we used Program R 

(Version 2.10.1) to conduct these analyses. We considered a significance level of α = 

0.05 for all tests. 

RESULTS 

Woodcock flew on average 1,201 ± 594 m (range: 402–2,236 m) in 2011 (17 males; 

one observation per bird) and on average 874 ± 544 m (range: 85–2,133 m) in 2012 

(20 males and one female; one observation per bird) between sample locations at 

diurnal coverts and nocturnal roost fields. 

During 2011, all potential prey items found at woodcock nocturnal roost fields 

were also found at diurnal coverts (Table 1). Average population densities of 

millipedes and earthworms were about 49 times greater (V = 78.00, P < 0.01) and 3 

times greater (t16 = 2.14, P = 0.02), respectively, at diurnal coverts whereas the 

average population density of ants was about 10 times greater (V = 5.00, P = 0.04) at 

nocturnal roost fields. Average population densities of all other soil macrofauna were 

similar between sites (P ≥ 0.09; Table 1). During 2012, cockroaches (Blattodea), 

centipedes, and butterfly/moth larvae were unique to nocturnal roost fields, but 

average population densities of these were extremely low (Table 2). The average 

population density of beetles was nearly 3 times greater (V = 26.00, P = 0.01) at 

nocturnal roost fields while average population densities of earthworms and pillbugs 
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(Isopoda) were approximately 4 times greater (t20 = 2.52, P = 0.01) and 8 times greater 

(V = 60.00, P = 0.02), respectively, at diurnal coverts. Average population densities of 

all other soil macrofauna were similar between sites (P ≥ 0.09; Table 2). During both 

years, earthworm fresh weight (P < 0.03) and dry weight (P < 0.03) were greatest at 

diurnal coverts (Figure 1a), and the cumulative density of known woodcock foods was 

similar between sites (P ≥ 0.39; Figure 1b). During 2011 we found greater richness (t16 

= 2.85, P = 0.01) and diversity (t16 = 2.30, P = 0.04) of soil macrofauna at diurnal 

coverts, but these measures were similar between sites during 2012 (P ≥ 0.46; Figure 

1c). 

Generally, radio-marked woodcock spent the day in forested wetlands, floodplain 

forests, or moist upland forests and flew to small forest clearcuts, maintained or 

abandoned herbaceous meadows, or other idle agricultural fields to spend the night. At 

diurnal coverts, soil moisture content during 2011 (41.6 ± 25.1%) and 2012 (43.3 ± 

28.5%) was 1.7 times greater (t16 = 2.97, P < 0.01) and 1.5 times greater (t20 = 2.67, P 

= 0.01), respectively, than at nocturnal roost fields. Soil pH was similar between sites 

during both years (P ≥ 0.22) and we found no evidence that soil organic matter content 

differed between sites (P = 0.09). 

During 2011, nocturnal mammalian predators visited baited track stations at 

diurnal coverts more frequently than nocturnal roost fields for about 73% (8 of 11) of 

the woodcock that we monitored (F1, 10 = 8.11, P = 0.02; Figure 2). We observed 

raccoon, mink (Neovison vison), red fox (Vulpes vulpes), coyote (Canis latrans), 

domestic cat (Felis catus), striped skunk (Mephitis mephitis), domestic dog (Canis 

familiaris), and unidentified canid and mustelid tracks at sites used by woodcock. 
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During 2012, the number of days until initial predator visit was approximately 1.8 

times greater at nocturnal roost fields than diurnal coverts (t11 = 2.02, P = 0.03; Figure 

3). We photographed raccoon, fisher (Martes pennanti), coyote, red fox, Virginia 

opossum (Didelphis virginiana), striped skunk, domestic cat, and long-tailed weasel 

(Mustela frenata) at sites used by woodcock. We also photographed one broad-winged 

hawk (Buteo platypterus) at a diurnal covert and one red-tailed hawk (Buteo 

jamaicensis) at a nocturnal roost field. 

DISCUSSION 

Our results show that the benefit afforded to woodcock that fly between diurnal 

coverts and nocturnal roost fields during summer is one of reduced predation risk and 

not novel feeding opportunities. Several lines of evidence support this conclusion. 

First, nearly all soil macrofauna that we found at nocturnal roost fields were also 

found at diurnal coverts and the population densities of potential prey were not 

consistently greater at nocturnal roost fields. Second, preferred woodcock foods (i.e., 

earthworms) were always more abundant at diurnal coverts, the cumulative density of 

known woodcock foods was similar between sites, and the richness and diversity of 

soil macrofauna was similar or greater at diurnal coverts depending on the year. Third, 

two separate indices of predator activity suggest that nocturnal mammalian predators 

are more active at diurnal coverts. Taken together, this evidence provides the first 

empirical support for the predation-risk hypothesis and against the foraging-benefit 

hypothesis to explain the function of woodcock commuting between forests and fields 

during summer. 
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Why woodcock commute during summer 

Previous studies have indicated that woodcock do not move to forest openings at night 

to feed during summer (Krohn 1970; Dunford and Owen 1973; Owen and Morgan 

1975; Wishart and Bider 1977). At a field in Maine, USA, only one earthworm and 

few other potential woodcock foods including ants, beetle larvae, and spiders 

(Araneae) were found in soil collected at night at ten woodcock flush points and 20 

random points (Krohn 1970). Further, the stomach contents of most birds collected 

from ten fields at various times during the night contained few if any earthworms or 

other soil macrofauna (Krohn 1970). In contrast, earthworms were prevalent in the 

stomachs of birds collected immediately before or after landing in forest openings at 

night in Maine (Krohn 1970) and Massachusetts, USA (Sheldon 1961). This suggests 

that feeding occurs predominantly at diurnal coverts prior to flying to nocturnal roost 

fields. 

However, an important difference between our study and previous ones is that our 

paired design allowed us to directly compare food availability at both diurnal and 

nocturnal sites for individuals that commuted. Since earthworms are the dominant 

prey of woodcock (Sheldon 1967) our findings of greater earthworm availability at 

diurnal coverts further support the conclusion that most feeding likely occurs at these 

sites. Although some woodcock have been observed feeding soon after moving to 

forest openings at night during summer (Sheldon 1961) this may simply represent 

infrequent opportunistic foraging (Sheldon 1967). Generally, woodcock were 

sedentary after moving to fields at night during summer in Quebec, Canada (Wishart 

and Bider 1977) and Maine (Dunford and Owen 1973; Owen and Morgan 1975). This 
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contrasts with behaviors observed in forest openings at night during fall and winter in 

New Jersey (Krohn et al. 1977), North Carolina (Stribling and Doerr 1985), and 

Louisiana, USA (Glasgow 1958), where woodcock actively fed at night. The reasons 

for this seasonal difference in behavior are not well understood, but higher food 

availability at nocturnal roost fields during fall (Krohn et al. 1977) and winter 

(Blackman et al. 2012) may be a driving factor. 

We simultaneously documented less nocturnal mammalian predator activity at 

nocturnal roost fields than at diurnal coverts. In addition to visiting baited track 

stations less frequently at night, mammalian predators took longer to find bait stations 

at nocturnal roost fields than diurnal coverts. In the northeastern USA, weasels and 

raccoons were major ground predators of woodcock (Derleth and Sepik 1990; 

McAuley et al. 2005). Many mammalian predators concentrate their activity along 

habitat edges or within wooded areas adjacent to edges and not within forest openings 

such as fields (Bider 1968; Gehring and Swihart 2003; Šálek et al. 2010). Thus, 

woodcock flying to forest openings at night during summer should be safer since these 

areas are less likely to be searched by potential predators. Eurasian woodcock 

(Scolopax rusticola) may experience increased predation risk in fields at night during 

winter (Duriez et al. 2005), whereas such predation risk in fields at night during winter 

is inadequately documented for American woodcock. 

We acknowledge that raptors are important woodcock predators, especially during 

the spring courtship period when conspicuous male displays are likely to attract 

attention (Sheldon 1967; Longcore et al. 1996). However, it is logistically difficult to 

quantify the risk of depredation by raptors to woodcock during summer nights when 
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the latter is sedentary. We attempted to accomplish this by monitoring raptor visits to 

caged rock pigeons (Columba livia) placed at diurnal coverts and nocturnal roost 

fields (IACUC protocol AN12-03-019) since rock pigeons are typically excellent lures 

for attracting raptors (Berger and Hamerstrom 1962). Surprisingly, we never 

documented a raptor visit at either site from 17 July–5 August 2012 despite constant 

surveillance using camera traps. Consequently, we have no reason to expect woodcock 

are at greater risk of raptor depredation at nocturnal roost fields where they are 

sedentary throughout the night. Nevertheless, additional research using alternative 

methods, such as call count surveys (Rogers and Dauber 1977; Fuller and Mosher 

1981), to quantify raptor activity around woodcock diurnal coverts and nocturnal roost 

fields may be warranted. 

Fully understanding the function of woodcock commuting behavior during 

summer is complicated by differential habitat use patterns between age-sex classes. 

On average, juvenile males fly to forest openings at night more often than all other 

age-sex classes from June–October and males tend to fly to forest openings at night 

more often than females (Sepik and Derleth 1993). In contrast, female woodcock may 

remain at diurnal coverts or fly to different forested sites at night (Sepik and Derleth 

1993). However, females frequently move to forest openings at night during July 

(Sepik and Derleth 1993). We were not able to determine the regularity with which 

female woodcock fly to forest openings at night in Rhode Island because of the 

difficulty associated with catching females (McAuley et al. 1993). Nonetheless, 

moving to forest openings at night during summer must provide some benefit to both 

males and females, especially during periods when this behavior is prevalent. 
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Testing hypotheses about the trade-offs between foraging and predation risk in 

ecological systems: insights provided by commuting behavior. 

Organisms that move between sites within each day (i.e., those that commute) provide 

behavioral ecologists unique opportunities to investigate the trade-offs between 

foraging and predation risk for individuals within a relevant ecological context. We 

have shown that the decision by woodcock to move from diurnal coverts to nocturnal 

roost fields during summer may be advantageous because woodcock can acquire 

resources by day and better avoid predators at night. Temporal or spatial variation in 

foraging benefits and predation risk should be required if prey are to use commuting 

behavior to best balance the trade-offs between feeding and avoiding predators 

(Duriez et al. 2005; Bednekoff and Lima 2011). In our case, woodcock remaining at 

diurnal coverts throughout the night could conserve energy compared to other birds 

that commute, although the energy savings may be modest (e.g., corvids; Sonerud et 

al. 2001; Wright et al. 2003). Perhaps more importantly, woodcock remaining at 

diurnal coverts throughout the night could exploit preferred foods (Wishart and Bider 

1977; Sepik and Derleth 1993; this study). However, our data show that predation risk 

during the night is elevated at diurnal coverts compared to nocturnal roost fields. 

During periods of high risk, prey species are expected to allocate more time to 

antipredator behaviors and less time to feeding whereas feeding effort should be 

increased during periods of lower risk (Lima and Bednekoff 1999). Rather than 

remaining at diurnal coverts throughout the day and night, woodcock appear to 

balance the trade-off between feeding and avoiding predators by feeding at diurnal 
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coverts during the day, a time when nocturnal mammalian predators are usually less 

active, and then moving to nocturnal roost fields at night. 

Consistent movement by woodcock to forest openings at night during summer is 

influenced by the end of the breeding season, the independence of broods, and the 

postnuptial molt period (Sheldon 1967; Krohn 1971; Owen and Krohn 1973). Thus, 

during some nights, female woodcock may favor remaining at diurnal coverts, where 

preferred food availability is greatest, in order to rebuild energy reserves after 

reproducing (Sepik and Derleth 1993). Male woodcock do not produce eggs or rear 

young so their decision to move to forest openings at night during summer may be less 

influenced by such energetically expensive events (Sepik and Derleth 1993). On the 

other hand, male woodcock might remain at diurnal coverts to feed during some nights 

to help replenish energy reserves used during spring courtship flights. Importantly, 

male and female woodcock may elect to remain at diurnal coverts where they can feed 

efficiently at night in order to meet energy demands associated with postnuptial molt 

(Owen and Krohn 1973) or build fat stores prior to fall migration (Sepik and Derleth 

1993). Indeed, state-dependent decision making is an anticipated part of risk allocation 

(Beauchamp and Ruxton 2011; Bednekoff and Lima 2011) and should be expected to 

cause varying patterns of antipredator behavior as prey attempt to optimize their 

respective trade-offs between feeding and avoiding predators. For woodcock, if 

feeding requirements can be met during the day, and if building energy reserves is not 

of concern, then individuals should favor flying to nocturnal roost fields at night 

during summer where they are safer from predators even though foraging 

opportunities are more limited. 
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Animals living in complex environments where food availability and predation 

risk are variable should maximize fitness by adopting behaviors that balance trade-offs 

between finding food and becoming food (Lima and Bednekoff 1999; Higginson et al. 

2012). Because prey allocate risk under schedules imposed by predators (Bednekoff 

and Lima 2011) understanding the timescale at which risk allocation occurs is an 

important step towards identifying behaviors employed to actively manage risk. In this 

study, we illustrate that woodcock experience periods of variable risk on a daily basis 

during summer months. Some species manage risk by increasing vigilance (Périquet et 

al. 2012) whereas others manage risk by moving between microhabitats where 

predators have limited access (Roberts and Liebgold 2008). Here, we show that some 

species can effectively reduce their risk of predation by moving between dissimilar 

vegetation types during the day and night. Consequently, maintaining forest openings 

is an important part of woodcock habitat management throughout the species summer 

range so that individuals have the option to fly between diurnal coverts and nocturnal 

roost fields where they can eat by day and stay safe by night. 
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Figure 1 

Average differences in earthworm fresh and dry weight (a), median difference in the 

cumulative density of known prey (b), and average differences in richness and 

diversity of soil macrofauna (c) at the diurnal coverts and nocturnal roost fields of 

radio-marked American woodcock (2011: 17 males; 2012: 20 males and one female) 

during July–August in Rhode Island, USA. Positive bars indicate greater values at 

diurnal coverts. Negative bars indicate greater values at nocturnal roost fields. 

Whiskers represent 95% confidence intervals. 

Figure 2 

Difference in the number of nights that any mammalian predator visited a baited track 

station at the diurnal covert and nocturnal roost field for each of 11 radio-marked 

American woodcock males during September 2011 in Rhode Island, USA. Positive 

bars indicate more nights with a predator visit at diurnal coverts. Negative bars 

indicate more nights with a predator visit at nocturnal roost fields. 

Figure 3 

Difference in the number of days until initial predator visit at the diurnal covert and 

nocturnal roost field for each of 12 radio-marked American woodcock males during 

August 2012 in Rhode Island, USA. Positive bars indicate more days until initial 

predator visit at diurnal coverts. Negative bars indicate more days until initial predator 

visit at nocturnal roost fields. 
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Table 1 

Average density (no./m
2
) of potential prey found in the soils at the diurnal coverts and nocturnal roost fields of 17 radio-

marked American woodcock males during August 2011 in Rhode Island, USA 

   Average density 

(no./m2) 

   Test 

statistica 

  

Taxon Common name Diurnal 

coverts 

 Nocturnal 

roosts 

 V  t16 P 

Araneae Spiders 0.39  0.00  6.00  --- 0.15 

Coleoptera Beetles 11.63  17.12  ---  0.96 0.35 

Diplopoda Millipedes 6.40  0.13  78.00  --- <0.01 

Diptera True flies 5.23  0.52  27.00  --- 0.22 

Haplotaxida Earthworms 30.59  9.93  ---  2.14 0.02 

Hymenoptera Ants 1.31  13.59  5.00  --- 0.04 

Isopoda Pillbugs 0.78  0.00  10.00  --- 0.09 
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a Wilcoxon signed-rank test (V) or paired t-test (t16). 

 

 

 

 

 

 

 

 

 

 

 

Lepidoptera Butterflies/Moths 0.13  0.52  3.00  --- 0.23 

Stylommatophora Slugs 0.52  0.00  3.00  --- 0.37 
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Table 2 

Average density (no./m
2
) of potential prey found in the soils at the diurnal coverts and nocturnal roost fields of 21 radio-

marked American woodcock (20 males and one female) during July–August 2012 in Rhode Island, USA 

 

   Average density 

(no./m2) 

   Test 

statistica 

  

Taxon Common name Diurnal 

coverts 

 Nocturnal 

roosts 

 V  t20 P 

Araneae Spiders 0.53  0.95  18.00  --- 0.33 

Blattodea Cockroaches 0.00  0.11  0.00  --- 1.00 

Caudata Salamanders 0.11  0.11  1.50  --- 1.00 

Chilopoda Centipedes 0.00  0.21  0.00  --- 0.35 

Coleoptera Beetles 5.18  14.71  26.00  --- 0.01 

Dermaptera Earwigs 0.11  0.00  1.00  --- 1.00 
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a Wilcoxon signed-rank test (V) or paired t-test (t20). 

Diplopoda Millipedes 3.60  1.38  70.50  --- 0.09 

Diptera True flies 0.42  0.74  13.50  --- 0.28 

Haplotaxida Earthworms 15.66  4.23  ---  2.52 0.01 

Hemiptera True bugs 0.42  0.11  12.00  --- 0.23 

Hymenoptera Ants 23.70  80.84  57.00  --- 0.22 

Isopoda Pillbugs 2.65  0.32  60.00  --- 0.02 

Lepidoptera Butterflies/Moths 0.00  0.11  0.00  --- 1.00 
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Abstract 

Young forest is an important vegetation type in the Northeast, USA, which has 

declined in extent during the past 60 years. Accordingly, populations of young forest 

wildlife have declined and forest management is required to conserve these species. 

Land managers often target conservation shortcuts (e.g., umbrella species) with hopes 

that non-target species benefit, but the effectiveness of these shortcuts is seldom 

verified. We compared landbird communities during summer at managed forest 

openings used by breeding American woodcock and nearby random forest sites to 

determine whether habitat management for woodcock benefits non-target landbirds. 

We used 50-m radius point counts to quantify the abundance and diversity of landbirds 

during summer at woodcock singing grounds and nearby random forest sites at three 

wildlife management areas in Rhode Island, USA. We identified 38 – 51 species at 

each management area and 62 – 73% of the more frequently occurring species were 

more common at woodcock singing grounds. Young forest species were more 

abundant at woodcock singing grounds and scarce or absent at random forest sites yet 

the opposite was true for mature forest species. The total number of birds (all species 

combined) and diversity of birds were ≥1.5 times greater at woodcock singing grounds 

than random forest sites. Habitat management to conserve woodcock populations 

simultaneously benefits certain other non-target landbirds. Thus, the woodcock can 

serve as an effective umbrella species for young forest birds, but complementary 

umbrella species such as the ovenbird should be considered to aid in the conservation 

of bird species breeding in more mature forest. 
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1. Introduction 

Declines of early-successional forests and shrublands (hereafter young forest) and 

populations of associated wildlife are major conservation concerns in the Northeast, 

USA (Buffum et al., 2011; Dettmers, 2003; Litvaitis, 2001). Young forest is an 

important vegetation type that historically was maintained by natural and biological 

disturbances from wind and ice storms, fires, beavers (Castor canadensis), insect or 

pathogen outbreaks, and Native Americans (Askins, 2001; Day, 1953; Foster and 

Aber, 2004; Lorimer, 2001). From the late-1800’s to mid-1900’s, young forest 

expanded rapidly across the Northeast in response to widespread abandonment of 

farmlands that were initially converted from forest to agriculture by European settlers 

(Foster and Aber, 2004; Foster et al., 1998). However, the extent of young forest in the 

Northeast declined from highs of about 30 – 35% of the land area during the 1960’s to 

≤3% in some regions by the early- to mid-2000’s (Buffum et al., 2011; Trani et al., 

2001). Populations of young forest birds and mammals simultaneously declined since 

at least the 1960’s (Dettmers, 2003; Litvaitis, 2001; Sauer et al., 2012). Given that 

former natural and biological disturbances are unable to maintain sufficient amounts 

of young forest on contemporary landscapes, conservation planning to support 

populations of young forest wildlife requires active forest management (DeGraaf and 

Yamasaki, 2003; Schlossberg and King, 2007). 

Conservation planning that requires active habitat management is often 

complicated because not all species can be managed for simultaneously. Land 

managers must often set priorities with limited resources, and therefore, may target 

conservation shortcuts such as indicator, flagship, keystone, focal, or umbrella species 
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to maximize conservation benefits (Lambeck, 1997; Niemi et al., 1997; Noss, 1990; 

Simberloff, 1998). Umbrella species are usually depicted as large-bodied, wide-

ranging species with vast area requirements (Caro and O’Doherty, 1999; Noss, 1990) 

although they seldom fit a single description (Fleishman et al., 2000). More generally, 

umbrella species are simply those whose conservation works to conserve populations 

of sympatric non-target wildlife (Fleishman et al., 2000). However, the effectiveness 

of managing for umbrella species has been debated (Andelman and Fagan, 2000; 

Sattler et al., 2013; Simberloff, 1998; Suter et al., 2002) because managing for some 

putative umbrella species (e.g., capercaillie [Tetrao urogallus] and Siberian flying 

squirrel [Pteromys volans]; Hurme et al., 2008; Pakkala et al., 2003; Suter et al., 2002) 

effectively enhances diversity and abundance of non-target species while managing 

for others (e.g., California gnatcatcher [Polioptila californica] and greater sage-grouse 

[Centrocercus urophasianus]; Rowland et al., 2006; Rubinoff, 2001) may not be as 

effective. Habitat specialists may be best suited to serve as umbrella species, but 

ubiquity (or rarity), sensitivity to disturbance, and ease of monitoring should also be 

considered when identifying potential umbrella species (Andelman and Fagan, 2000; 

Caro and O’Doherty, 1999; Fleishman et al., 2000). Importantly, the co-occurrence of 

diverse non-target species is a necessary criterion for an effective umbrella species 

(Fleishman et al., 2000). Consequently, we investigated one of these criteria, the co-

occurrence of non-target landbirds, with managed forest openings used by breeding 

American woodcock (Scolopax minor) to help verify the status of this bird as an 

umbrella species. 
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The American woodcock (hereafter woodcock), a 116 – 279-g migratory upland 

shorebird, might represent an especially effective umbrella species because woodcock 

populations require a mixture of young forest ranging from forest openings to 30-year-

old forest stands (Kelley et al., 2008). Forest openings such as recently managed 

clearcuts, maintained or abandoned agricultural fields, and wildlife openings 

composed of scattered shrubs and trees provide necessary singing grounds during 

spring where males engage in crepuscular courtship displays to attract females for 

breeding (Sheldon, 1967). Similar forest openings also provide safe nocturnal roost 

sites during summer (Dunford and Owen, 1973; Masse et al., 2013) and nocturnal 

feeding or roosting sites during fall and winter (Blackman et al., 2012; Connors and 

Doerr, 1982; Krohn et al., 1977). In contrast, regenerating forest stands from 2 – 30 

years old provide nesting and brood rearing habitat for females and daytime cover for 

both sexes (Kelley et al., 2008). High densities of sapling or small tree stems typical of 

young forest protect woodcock from diurnal predators (Dessecker and McAuley, 

2001; Keppie and Whiting, 1994; McAuley et al., 1996; Straw et al., 1986), but once 

regenerating forests are >30 years old they become less suitable (Kelley et al., 2008). 

Importantly, woodcock populations decline without the appropriate spectrum and 

spatial configuration of young forest (Dessecker and McAuley, 2001; McAuley et al., 

2005; Williamson, 2010). 

In this study, we compared landbird communities at managed forest openings used 

by breeding woodcock (i.e., woodcock singing grounds) to those at nearby random 

forest sites. Woodcock singing grounds typically comprise forest openings > 0.2 ha 

with areas of low herbaceous ground cover and scattered shrubs or small trees 
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(Williamson, 2010). Our objectives were to 1) determine the composition of the 

breeding bird communities, and 2) compare the abundance and diversity of breeding 

birds at woodcock singing grounds and nearby random forest sites. If woodcock 

represent an effective umbrella species then we predict that non-target young forest 

birds occur more frequently and are more abundant at woodcock singing grounds, and 

the overall number and diversity of birds is greater at these managed forest openings. 

2. Methods 

2.1.  Study area 

We conducted this study at three forest-dominated wildlife management areas 

(Arcadia, Great Swamp, and Big River) in Kent and Washington Counties, Rhode 

Island, USA. Arcadia (41°35′10″N, 71°43′20″W) was 62 km2 comprised of relatively 

even proportions of coniferous (24%), mixed (31%), and deciduous upland forests 

(33%) while wetland forests (7%) were uncommon; Great Swamp (41°27′15″N, 

71°35′19″W) was 15 km2 of which coniferous (1%), mixed (5%), and deciduous 

upland forests (16%) were less common while wetland forests (55%) predominated; 

and Big River (41°37′0″N, 71°36′60″W) was 33 km2 dominated by coniferous (45%) 

and mixed upland forests (31%) while deciduous upland forests (8%) and wetland 

forests (6%) were infrequent (RIGIS, 2012). Coniferous upland forests in the region 

were dominated by eastern white pine (Pinus strobus) or a mix of eastern white pine 

and pitch pine (Pinus rigida), mixed upland forests typically contained these species 

along with various oaks (Quercus spp.), and deciduous upland forests were dominated 

by red maple (Acer rubrum), hickories (Carya spp.), and oaks (Enser and Lundgren, 
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2006). Red maple swamps were the typical wetland forest type in the region (Enser 

and Lundgren, 2006). 

At each site, the Rhode Island Department of Environmental Management has 

maintained herbaceous forest openings and patches of young forest by periodically 

clearcutting areas of older secondary upland forest (e.g., 40 – 100 years old) in order 

to conserve populations of woodcock and other young forest wildlife. A series of 2 – 

5-ha clearcuts were first managed at Great Swamp, Arcadia, and Big River during 

1995, 1996, and 2006, respectively. Managed clearcuts initially provide woodcock 

necessary singing grounds during spring (Dessecker and McAuley, 2001; Sheldon, 

1967) and roosting sites during summer (Dunford and Owen, 1973; Masse et al., 

2013), and also provide important nesting and diurnal cover as saplings, shrubs, and 

trees regenerate (Kelley et al., 2008; McAuley et al., 1996). During 2007, additional 

clearcuts were managed at Great Swamp and a long-term young forest management 

plan was adopted which, with support from the Wildlife Management Institute, helped 

designate a section of Great Swamp as a Woodcock Habitat Demonstration Area 

during 2008. Forest clearcuts were most recently managed at each site during 2012 

and future cutting is expected to include larger (e.g., 10-ha) patches at more regular 

intervals (e.g., 5 – 10 years). Through 2020, about 40 ha of the demonstration area at 

Great Swamp will be managed for young forest by clearcutting blocks of older 

secondary forest, and patches of young forest will be maintained at each site on a 30 – 

40-year rotation. Given past habitat management, the proportion of young forest was 

highest at Great Swamp (15%) followed by Arcadia (2%) and Big River (1%). 
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Maintained or abandoned agricultural fields and other herb-dominated forest openings 

comprised 1 – 2% of each management area. 

2.2. Data collection 

We used standard 10-minute, 50-m radius point count surveys (Ralph et al., 1993) 

to determine the abundance and diversity of bird species at woodcock singing grounds 

and at randomly selected forest sites. We identified woodcock singing grounds from 2 

April – 19 May at Arcadia and Great Swamp during 2011 – 2013 and at Big River 

during 2012 – 2013 as part of a separate study investigating woodcock habitat use in 

the region (Masse, 2014). During evening crepuscular periods, from sunset to ca. 1 hr 

after sunset, 1 – 5 observers scouted sections of each management area by watching 2 

– 3 courtship flights of each displaying male woodcock and marking the exact 

locations of woodcock singing grounds with surveyor flagging (McAuley et al., 1993). 

Each spring, we identified 15 – 20 woodcock singing grounds at Arcadia, 10 – 13 at 

Great Swamp, and 14 at Big River. Woodcock singing grounds were generally located 

in either 4 – 7-year-old clearcuts or wildlife openings with scattered shrubs and trees, 

but some were located in grasslands or near the margins of agricultural fields. Male 

woodcock conduct courtship displays to attract females for breeding so the quality of 

surrounding habitat for nesting and brood rearing (by females) likely influences 

singing ground use (Dessecker and McAuley, 2001). Consequently, some woodcock 

singing grounds at each site were clustered near one another in areas where nesting 

habitat was concentrated. For this study, we included a random subset of nine 

woodcock singing grounds at Arcadia and Great Swamp during 2011 and ten 

woodcock singing grounds at each site during 2012 – 2013 that were ≥200 m apart in 
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order to promote independence. If the same woodcock singing grounds were used 

during successive years then we retained those locations in our sample and revisited 

them each year they were used. Otherwise, we randomly selected new woodcock 

singing grounds for inclusion provided they met our minimum distance criteria. From 

2011 – 2013, we surveyed 15 different woodcock singing grounds at Arcadia (40% 

sampled one year; 27% sampled two years; 33% sampled three years) and 13 different 

woodcock singing grounds at Great Swamp (23% sampled one year; 31% sampled 

two years; 46% sampled three years). From 2012 – 2013, we surveyed 15 different 

woodcock singing grounds at Big River (67% sampled one year; 33% sampled two 

years). At each management area, we generated a simple random sample of ten forest 

points to survey that were >200 m from each other and from known woodcock singing 

grounds using ArcGIS 10.1 (Environmental Systems Research Institute, Redlands, 

CA) and revisited these locations each year. 

From 27 May – 2 July, we conducted one point count per year at each woodcock 

singing ground and random forest site. In order to eliminate potential bias from 

differences in observer ability (Alldredge et al., 2007), the same experienced observer 

conducted all surveys from 0510 – 1045 (EST) during mornings with calm wind and 

no rain. We navigated to point count locations on foot using a handheld GPS unit and 

conducted 4 – 6 surveys during a given morning. We alternated the timing of point 

counts at woodcock singing grounds and random forest sites to ensure that surveys at 

both treatment types were conducted at various times throughout the morning period. 

We identified bird species and counted the number of individuals seen or heard within 
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50 m of each point count location and excluded ‘fly-by’ species that were observed 

above the height of the surrounding canopy. 

2.3. Statistical analysis 

We calculated the frequency of occurrence and relative abundance for each species 

across point counts at each of the three sites and for each year. We also summarized 

data from each point count location in two separate ways. First, we calculated the total 

number of birds (all species combined). Second, we estimated the diversity of birds by 

calculating the Shannon-Weiner Index (H′; Magurran, 2004) and converting to 

Diversity (D; Jost, 2006). We used a mixed model to test the main effects of location 

(i.e., woodcock singing ground vs. random forest), site, year, and all interactions on 

the number and diversity of birds. Interactions that were not significant (P > 0.05) 

were subsequently dropped from the model. We specified a random intercept 

corresponding to individual point count locations to account for the repeated structure 

of our data and we used the Gauss-Hermite quadrature approximation method to 

obtain maximum likelihood estimation (SAS, 2011; PROC GLIMMIX). We assumed 

a normal distribution because Shapiro-Wilk tests (Shapiro and Wilk, 1965) and normal 

probability plots suggested that the number and diversity of birds were normally 

distributed, and we adjusted for multiple comparisons using the Tukey-Kramer 

method (Kramer, 1956). For each dependent variable, we ran a separate model for 

Arcadia and Great Swamp during 2011 – 2013 and for all sites during 2012 – 2013 

because the former provided us the strongest test for annual differences while the latter 

provided us the strongest test for site differences. 
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We used sample-based rarefaction (Colwell et al., 2004) to generate species 

accumulation curves for woodcock singing grounds and random forest sites at each 

management area. Woodcock singing grounds that were surveyed during only one 

year were automatically included in this analysis. For woodcock singing grounds that 

were surveyed during 2 – 3 years, we randomly selected one year to include so that 

each point count location in this analysis was represented by equal sampling effort. 

Likewise, we randomly selected one year to include for each random forest site. We 

used the program EstimateS 9.1.0 (Colwell, 2013) to extrapolate rarefaction curves to 

20 point count surveys and assessed differences in the expected number of species by 

examining the overlap of 95% confidence intervals (Colwell et al., 2012). 

3. Results 

We documented a total of 46 bird species at Arcadia, 38 at Big River, and 51 at 

Great Swamp (Table A.1). Nineteen species were unique to woodcock singing 

grounds and ten species were unique to random forest sites at both Arcadia and Big 

River, whereas 27 species were unique to woodcock singing grounds and 11 species 

were unique to random forest sites at Great Swamp. Most species were infrequent, but 

the mean frequency of occurrence was ≥0.20 for 11, 15, and 13 species at Arcadia, Big 

River, and Great Swamp, respectively; 62 – 73% of these species were more common 

at woodcock singing grounds. At Arcadia, 5 of 7 more common species at woodcock 

singing grounds and 3 of 4 more common species at random forest sites were either 

young forest species or species of high conservation priority (Table 1). At Big River, 7 

of 11 more common species at woodcock singing grounds met these criteria compared 

to 1 of 4 more common species at random forest sites (Table 2). In contrast, at Great 
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Swamp, nearly all more common species at woodcock singing grounds (7 of 8) and 

random forest sites (4 of 5) were young forest species or species of high conservation 

priority (Table 3). At each site, the relative abundances of the more common species at 

woodcock singing grounds and random forest sites were dissimilar (Table A.2). 

Generally, young forest species such as prairie warbler (see Table A.1 for scientific 

names), gray catbird, and common yellowthroat were more abundant at woodcock 

singing grounds and scarce or absent at random forest sites while the opposite was true 

for more mature forest species such as ovenbird, veery, and red-eyed vireo (Fig. 1). 

The total number (all species combined) and diversity of birds were highly 

correlated at each site (r ≥ 0.86). During 2011 – 2013, the number of birds (mean ± SE 

per 50-m plot) was 30% lower at Arcadia (4.70 ± 0.38) than Great Swamp (6.65 ± 

0.38; F1, 68 = 13.12, P < 0.001) and, in general, about two times greater at woodcock 

singing grounds (7.53 ± 0.38) than random forest sites (3.82 ± 0.38; F1, 68 = 47.40, P < 

0.001). The number of birds did not differ between years (F2, 68 = 2.39, P = 0.099) and 

we found no evidence for significant interactions (P ≥ 0.299). Likewise, bird diversity 

was 23% lower at Arcadia (3.40 ± 0.23) than Great Swamp (4.42 ± 0.23; F1, 68 = 9.36, 

P = 0.003) and 1.6 times greater at woodcock singing grounds (4.81 ± 0.23) than 

random forest sites (3.01 ± 0.23; F1, 68 = 29.63, P < 0.001). Bird diversity did not differ 

between years (F2, 68 = 2.38, P = 0.100) and we found no significant interactions (P ≥ 

0.409). 

During 2012 – 2013, the number of birds (mean ± SE) was similar at Arcadia (5.15 

± 0.46) and Big River (4.52 ± 0.46; P = 0.590), but at least 1.3 times greater at Great 

Swamp (6.84 ± 0.46; P ≤ 0.033). The number of birds was 1.7 – 2.7 times greater at 
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woodcock singing grounds than random forest sites (P ≤ 0.007; Fig. 2) and we found 

no evidence for significant effects of year or interactions (P ≥ 0.149). Bird diversity 

was also similar at Arcadia (3.63 ± 0.28) and Big River (3.21 ± 0.28; P = 0.546), but 

at least 1.3 times greater at Great Swamp (4.64 ± 0.28; P ≤ 0.035). Bird diversity was 

1.5 – 2.4 times greater at woodcock singing grounds than random forest sites (P ≤ 

0.036; Fig. 2) and we found no evidence for significant effects of year or interactions 

(P ≥ 0.489). 

The cumulative numbers of species expected at woodcock singing grounds was 

always higher than random forest sites, but the 95% confidence intervals for these 

estimates overlapped at Arcadia and Big River. At Arcadia, the species accumulation 

curve for woodcock singing grounds approached an approximate asymptote at about 

32 species while the curve for random forest sites began leveling off around 25 species 

(Fig. 3a). Similarly, the curves for woodcock singing grounds and random forest sites 

at Big River approached asymptotes at 29 and 23 species, respectively (Fig. 3b). In 

contrast, rarefaction curves at Great Swamp showed more divergence with 

approximate asymptotes of 38 species at woodcock singing grounds and 16 species at 

random forest sites (Fig. 3c). 

4. Discussion 

4.1. Bird communities differ between woodcock singing grounds and random forest 

sites 

We found that bird communities at managed forest openings used by breeding 

woodcock were largely distinct from those at random forest sites. Most or all of the 

more frequently occurring species that were unique to woodcock singing grounds were 
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young forest species whereas those unique to random forest sites were typically 

mature forest species (Tables 1 – 3). However, at each management area, 2 – 3 species 

(including 1 – 2 young forest species) occurred at ≥1 woodcock singing ground and 

random forest site each year. These species included cedar waxwing and red-eyed 

vireo at Arcadia (Table 1); black-capped chickadee, chipping sparrow, and eastern 

towhee at Big River (Table 2); and black-and-white warbler, American robin, and gray 

catbird at Great Swamp (Table 3). Forest generalists such as black-capped chickadee 

and red-eyed vireo were detected equally in clearcut stands (ca. 4 – 29 years old) and 

forest reserves (ca. 85 – 140 years old) in New Hampshire, USA, whereas cedar 

waxwing, chipping sparrow, American robin, and black-and-white warbler were more 

common in managed stands (Welsh and Healy, 1993). Young forests occupy only 3% 

of Rhode Island’s land area (Buffum et al., 2011) and about 86% of the secondary 

forest in the state is ca. 40 – 100 years old (Butler et al., 2012). Given insufficient 

habitat, some young forests species might select older, less optimal forests or specific 

forest types (e.g., wetland forests) which may provide similar young forest structure 

(e.g., American woodcock; Masse, 2014). While some young forest species occurred 

at ≥1 woodcock singing ground and random forest site each year the relative 

abundances of these were nearly always higher at woodcock singing grounds (Fig. 1; 

Table A.2). 

We also found some indication that landscape composition of forest cover types 

likely influences the composition of bird communities. Indeed, some species that were 

common at one management area were uncommon at others (Fig. 1). The composition 

of bird communities often differs between forest types (DeGraaf and Chadwick, 1987; 
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Diaz, 2006; Sabo, 1980) or upland and riparian areas (Murray and Stauffer, 1995; 

Palmer and Bennett, 2006). Arcadia was dominated by relatively equal proportions of 

coniferous, mixed, and deciduous upland forest whereas Big River was dominated by 

coniferous and mixed upland forest, and Great Swamp was dominated by wetland 

forest (Fig. 2a). Accordingly, species with an affinity to coniferous or mixed upland 

forests (e.g., chipping sparrow, prairie warbler, and pine warbler [Middleton, 1998; 

Nolan et al., 1999; Rodewald et al., 2013]) were more common at Arcadia or Big 

River. In contrast, species favoring dense undergrowth provided by wetland forests 

(e.g., veery, northern waterthrush, and black-and-white warbler [Bevier et al., 2005; 

Golet et al., 2001; Kricher, 1995; Whitaker and Eaton, 2014]) were more abundant at 

Great Swamp. As a result, land managers should consider how the composition of 

forest cover types influences the composition of bird communities when setting 

conservation priorities during forest management planning. 

4.2. The number and diversity of birds differ between woodcock singing grounds and 

random forest sites 

We found that the total number (all species combined) and diversity of birds 

differed among the three study sites, but were always at least 1.5 times greater at 

managed forest openings used by breeding woodcock than at random forest sites (Fig. 

2b – c). In New York, USA, bird abundance and diversity were >2 times greater in 6-

year-old forest clearcuts than more mature even-aged stands (Keller et al., 2003) and 

bird diversity was greater in forests subjected to clearcutting than forest reserves in 

New Hampshire (Welsh and Healy, 1993). Forest clearcuts 3 – 12 years old also 

contained greater bird diversity than pole-sized or mature forests in Virginia, USA 
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(Conner and Adkisson, 1975). Managing young forest for woodcock and other species 

necessarily results in the creation of habitat edges which often enhance wildlife 

diversity due to increased vegetative complexity or close proximity of disparate 

vegetation types (Johnston, 1947; Leopold, 1933; Yahner, 2000). Some edge effects 

(e.g., increased predation or brood parasitism) may be detrimental to forest birds in 

more agricultural landscapes (Donovan et al., 1997; Hoover et al., 2006), but in forest-

dominated regions of the Northeast these edge effects may have less of an impact 

(Rudnicky and Hunter, 1993; Yahner, 2000). Forest clearcuts and wildlife openings 

provide necessary habitat for young forest species (Chandler et al., 2009; King et al., 

2009) and forest generalist or edge-species (this study) which further increases bird 

diversity at woodcock singing grounds. 

Cumulative numbers of bird species expected at woodcock singing grounds and 

random forest sites were similar at Arcadia and Big River, but greater at woodcock 

singing grounds than random forest sites at Great Swamp (Fig. 3). Coniferous, mixed, 

and deciduous upland forests were more prevalent at Arcadia and Big River than Great 

Swamp (Fig. 2a) so the samples of random forest sites at each of those management 

areas contained a greater diversity of forest types. Since bird communities differ 

among forest types (DeGraaf and Chadwick, 1987; Diaz, 2006) it seems reasonable 

that similarities in the cumulative numbers of species expected at woodcock singing 

grounds and random forest sites at Arcadia and Big River were due, in part, to the fact 

that samples of random forest sites included several different forest types whereas 

samples of woodcock singing grounds included only young forest. Stratifying our 

samples of random forest sites by forest type would have allowed for more meaningful 
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comparisons between woodcock singing grounds and specific secondary forest types, 

but this was not our intent. Even- and uneven-aged forest management practices 

represent complementary approaches to landbird conservation (Gram et al., 2003) and 

our findings that the cumulative numbers of expected species are similar (or greater) at 

managed forest openings used by breeding woodcock compared to random forest sites 

in some landscapes support this view. 

4.3. Are woodcock an effective umbrella species? 

Woodcock populations throughout the eastern USA have declined by 0.8 – 1.0% 

per year since 1968 (Cooper and Rau, 2013) as a result of young forest loss and 

degradation (Dessecker and McAuley, 2001; McAuley et al., 2005). Consequently, 

widespread, active forest management is required to conserve woodcock populations 

(Kelley et al., 2008). Clearcutting patches of older secondary forest is suggested as the 

most efficient method for increasing the extent of young forest (Dessecker and 

McAuley, 2001; McAuley et al., 1996; Williamson, 2010) and >22,000 km2 of young 

forest needs to be managed in the Northeast to meet woodcock population goals 

(Kelley et al., 2008). On the one hand, populations of many other young forest birds 

have also declined as a result of habitat loss and degradation and are therefore likely to 

benefit from such extensive young forest management (Brawn et al., 2001; DeGraaf 

and Yamasaki, 2003). Indeed, of the 22 young forest bird species that we observed, 55 

– 77% occurred at woodcock singing grounds whereas only 14 – 32% occurred at 

random forest sites (Table A.1). On the other hand, populations of more mature forest 

species may decline in response to disturbances such as timber harvest (Gram et al., 

2003; Wallendorf et al., 2007). Our results suggest that woodcock can serve as an 
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umbrella species for the young forest bird assemblage in the Northeast. Moreover, 

detailed best management practices provide a specific prescription that public and 

private land managers can follow to improve woodcock habitat (Williamson, 2010) 

which further enhances the efficacy of woodcock to serve as a conservation shortcut. 

In the Northeast, woodcock habitat can effectively be improved by creating a 

mosaic of ≥2-ha clearcuts on about 25% of a 200 – 400-ha landscape (Williamson, 

2010). Maintaining clearcuts on a 40-year rotation provides the necessary spectrum of 

young forest for woodcock populations to thrive (McAuley et al., 1996; Williamson, 

2010). The productivity and survival of young forest songbirds is typically not reduced 

in smaller patch sizes (Lehnen and Rodewald, 2009; Rodewald and Vitz, 2005), but 

clearcuts >1 – 4 ha are likely to be used by a greater proportion of young forest bird 

species (Schlossberg and King, 2007). Young forest birds are typically less common 

or absent in older secondary forest whereas mature forest birds generally avoid young 

forest during the breeding season (Keller et al., 2003; Wallendorf et al., 2007; Welsh 

and Healy, 1993). However, recent research suggests that patches of young forest 

provide important habitat for some mature forest species during the post-fledging 

period (Chandler et al. 2012; Marshall et al., 2003). Thus, maintaining some young 

forest on a given landscape should be viewed as a means to maximize biological 

conservation. We suggest that woodcock can serve as an effective umbrella species in 

the Northeast, especially for birds breeding in young forests, but complementary 

umbrella species such as the ovenbird should be considered to aid in the conservation 

of birds breeding in more mature forests. 
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Fig. 1 

Relative abundances (mean no. of individuals per 50-m radius plot) for bird species 

observed with the three highest frequencies of occurrence during 10-minute point 

counts conducted at woodcock singing grounds and random forest sites from 27 May – 

2 July 2011 – 2013 at Arcadia (a), Big River (b), and Great Swamp (c) Wildlife 

Management Areas in Kent and Washington Counties, Rhode Island, USA. The 

highest frequencies of occurrence were identical for several species in secondary 

forests at Big River and so two additional species are represented. Whiskers represent 

1 SE. Scientific names are provided in Table A.1. 

Fig. 2 

Proportions of forest cover types at Arcadia, Big River, and Great Swamp Wildlife 

Management Areas in Kent and Washington Counties, Rhode Island, USA (a). Mean 

number of birds (b) and diversity of birds (c) per 50-m plot at woodcock singing 

grounds and random forest sites based on 10-minute point counts conducted from 27 

May – 2 July 2011 – 2013 at Arcadia and Great Swamp and 2012 – 2013 at Big River. 

Whiskers represent 95% confidence intervals. 

Fig. 3 

Sample-based rarefaction curves showing the cumulative number of species expected 

(solid lines) at woodcock singing grounds and random forest sites at Arcadia (a), Big 

River (b), and Great Swamp (c) Wildlife Management Areas in Kent and Washington 

Counties, Rhode Island, USA, based on 10-minute point counts conducted from 27 

May – 2 July 2011 – 2013 at Arcadia and Great Swamp and 2012 – 2013 at Big River. 

Dashed lines represent 95% confidence intervals. 
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Table 1 

Bird species with a mean ± SE frequency of occurrence ≥ 0.20 at woodcock singing grounds or random forest sites based on 10-

minute, 50-m radius point counts conducted from 27 May – 2 July 2011 – 2013 at Arcadia Wildlife Management Area in Kent and 

Washington Counties, Rhode Island, USA. Scientific names are provided in Table A.1. 

 Frequency of occurrence 

Common name Woodcock singing grounds  Random forest sites 

prairie warbler1, 2, 3 0.55 ± 0.09  0.00 ± 0.00 

chipping sparrow 0.48 ± 0.02  0.03 ± 0.03 

cedar waxwing1 0.44 ± 0.11  0.13 ± 0.03 

indigo bunting1, 3 0.38 ± 0.09  0.00 ± 0.00 

pine warbler 0.37 ± 0.17  0.03 ± 0.03 

eastern towhee1, 2, 3 0.31 ± 0.06  0.03 ± 0.03 

gray catbird1, 3 0.27 ± 0.08  0.03 ± 0.03 

red-eyed vireo 0.13 ± 0.07  0.43 ± 0.03 
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ovenbird3 0.00 ± 0.00  0.37 ± 0.03 

black-and-white warbler1, 2, 3 0.04 ± 0.04  0.23 ± 0.07 

scarlet tanager2, 3 0.00 ± 0.00  0.20 ± 0.06 

 

1 Young forest species (Schlossberg and King 2007). 

2 High continental or regional priority in southern New England (Dettmers and Rosenberg 2000). 

3 Greatest conservation need in Rhode Island (RIDEM 2005). 
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Table 2 

Bird species with a mean ± SE frequency of occurrence ≥ 0.20 at woodcock singing grounds or random forest sites based on 10-

minute, 50-m radius point counts conducted from 27 May – 2 July 2012 – 2013 at Big River Wildlife Management Area in Kent and 

Washington Counties, Rhode Island, USA. Scientific names are provided in Table A.1. 

 Frequency of occurrence 

Common name Woodcock singing grounds  Random forest sites 

gray catbird1, 3 0.60 ± 0.10  0.00 ± 0.00 

prairie warbler1, 2, 3 0.50 ± 0.00  0.00 ± 0.00 

common yellowthroat1, 3 0.35 ± 0.05  0.05 ± 0.05 

chipping sparrow 0.30 ± 0.10  0.10 ± 0.10 

eastern towhee1, 2, 3 0.30 ± 0.00  0.10 ± 0.00 

field sparrow1, 3 0.30 ± 0.10  0.00 ± 0.00 

American robin 0.25 ± 0.05  0.00 ± 0.00 

barn swallow 0.20 ± 0.10  0.00 ± 0.00 
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cedar waxwing1 0.20 ± 0.20  0.00 ± 0.00 

northern cardinal1 0.20 ± 0.10  0.00 ± 0.00 

red-winged blackbird 0.20 ± 0.20  0.00 ± 0.00 

pine warbler 0.00 ± 0.00  0.30 ± 0.00 

black-capped chickadee 0.10 ± 0.10  0.20 ± 0.10 

ovenbird3 0.05 ± 0.05  0.20 ± 0.00 

veery 0.00 ± 0.00  0.20 ± 0.10 

 

1 Young forest species (Schlossberg and King 2007). 

2 High continental or regional priority in southern New England (Dettmers and Rosenberg 2000). 

3 Greatest conservation need in Rhode Island (RIDEM 2005). 
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Table 3 

Bird species with a mean ± SE frequency of occurrence ≥ 0.20 at woodcock singing grounds or random forest sites based on 10-

minute, 50-m radius point counts conducted from 27 May – 2 July 2011 – 2013 at Great Swamp Wildlife Management Area in 

Washington County, Rhode Island, USA. Scientific names are provided in Table A.1. 

 Frequency of occurrence 

Common name Woodcock singing grounds  Random forest sites 

gray catbird1, 3 0.83 ± 0.06  0.27 ± 0.09 

yellow warbler1, 3 0.72 ± 0.09  0.00 ± 0.00 

common yellowthroat1, 3 0.61 ± 0.16  0.07 ± 0.07 

blue-winged warbler1, 2, 3 0.45 ± 0.03  0.00 ± 0.00 

eastern towhee1, 2, 3 0.36 ± 0.19  0.00 ± 0.00 

American robin 0.35 ± 0.08  0.13 ± 0.03 

cedar waxwing1 0.34 ± 0.09  0.03 ± 0.03 

ruby-throated hummingbird1 0.21 ± 0.06  0.07 ± 0.07 
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veery 0.03 ± 0.03  0.60 ± 0.10 

northern waterthrush3 0.00 ± 0.00  0.47 ± 0.07 

black-and-white warbler1, 2, 3 0.10 ± 0.10  0.33 ± 0.07 

Canada warbler1, 2, 3 0.00 ± 0.00  0.27 ± 0.03 

ovenbird3 0.00 ± 0.00  0.20 ± 0.08 

 

1 Young forest species (Schlossberg and King 2007). 

2 High continental or regional priority in southern New England (Dettmers and Rosenberg 2000). 

3 Greatest conservation need in Rhode Island (RIDEM 2005). 
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Fig. 1 
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Fig. 2 
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Fig. 3
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Appendix A. Supplementary material. 

Table A.1 

Common and scientific name, long-term population trend, and mean frequency of occurrence for bird species observed during 10-

minute, 50-m radius point count surveys at woodcock singing grounds and random forest sites from 27 May – 2 July 2011 – 2013 at 

Arcadia and Great Swamp Wildlife Management Areas, and 2012 – 2013 at Big River Wildlife Management Area, in Kent and 

Washington Counties, Rhode Island, USA. Population trend (percent change per year) is based on the North American Breeding Bird 

Survey for the New England/Mid-Atlantic Coast Region (Sauer et al. 2012). 

        Frequency of occurrence  

  Pop. 

trend 

  Woodcock 

singing grounds 

   Random 

forest sites 

 

Common name Scientific name 1966 - 

2011 

 Arcadia Big 

River 

Great 

Swamp 

 Arcadia Big 

River 

Great 

Swamp 

American goldfinch1 
Spinus tristis 3.0  0.03 0.15 0.07  0.00 0.00 0.00 

American redstart Setophaga ruticilla -0.4  0.00 0.10 0.10  0.00 0.00 0.03 
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American robin Turdus migratorius -0.3  0.13 0.25 0.35  0.03 0.00 0.13 

Baltimore oriole2, 3 
Icterus galbula -2.6  0.04 0.15 0.10  0.00 0.00 0.00 

barn swallow Hirundo rustica -1.2  0.00 0.20 0.00  0.00 0.00 0.00 

barred owl3 
Strix varia 0.7  0.00 0.00 0.00  0.03 0.00 0.00 

black-and-white warbler1, 2, 3 
Mniotilta varia -3.2  0.04 0.05 0.10  0.23 0.10 0.33 

black-capped chickadee Poecile atricapillus 0.2  0.17 0.10 0.03  0.13 0.20 0.17 

black-throated green warbler3 
Setophaga virens 0.4  0.00 0.00 0.00  0.00 0.00 0.13 

blue jay Cyanocitta cristata -2.5  0.00 0.05 0.00  0.00 0.00 0.03 

blue-gray gnatcatcher Polioptila caerulea 1.6  0.03 0.00 0.00  0.00 0.00 0.00 

blue-winged warbler1, 2, 3 
Vermivora cyanoptera -2.4  0.07 0.00 0.45  0.00 0.00 0.00 

broad-winged hawk3 
Buteo platypterus -0.5  0.00 0.00 0.00  0.00 0.00 0.07 

brown creeper3 
Certhia americana -0.6  0.00 0.00 0.00  0.03 0.05 0.00 

brown thrasher1, 3 
Toxostoma rufum -4.6  0.03 0.00 0.00  0.00 0.00 0.00 

brown-headed cowbird Molothrus ater 0.3  0.03 0.00 0.11  0.03 0.00 0.03 
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Canada warbler1, 2, 3 
Cardellina canadensis -5.7  0.00 0.00 0.00  0.03 0.00 0.27 

Carolina wren1 
Thryothorus ludovicianus 3.1  0.03 0.05 0.00  0.00 0.00 0.00 

cedar waxwing1 
Bombycilla cedrorum 4.1  0.44 0.20 0.34  0.13 0.00 0.03 

chestnut-sided warbler1, 3 
Setophaga pensylvanica -2.8  0.00 0.00 0.03  0.00 0.00 0.00 

chipping sparrow Spizella passerina 0.3  0.48 0.30 0.04  0.03 0.10 0.00 

common grackle Quiscalus quiscula -2.2  0.07 0.10 0.03  0.00 0.00 0.00 

common yellowthroat1, 3 
Geothlypis trichas -2.0  0.11 0.35 0.61  0.03 0.05 0.07 

Cooper's hawk Accipiter cooperii 8.8  0.00 0.00 0.00  0.03 0.00 0.00 

downy woodpecker Picoides pubescens 0.8  0.03 0.00 0.14  0.03 0.05 0.00 

eastern bluebird Sialia sialis 4.5  0.00 0.00 0.10  0.00 0.00 0.00 

eastern kingbird3 
Tyrannus tyrannus -3.1  0.00 0.00 0.00  0.00 0.00 0.03 

eastern phoebe Sayornis phoebe -0.2  0.10 0.05 0.03  0.00 0.00 0.00 

eastern towhee1, 2, 3 
Pipilo erythrophthalmus -5.4  0.31 0.30 0.36  0.03 0.10 0.00 

eastern wood-pewee2 
Contopus virens -0.5  0.00 0.00 0.00  0.17 0.05 0.00 
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European starling Sturnus vulgaris -2.7  0.00 0.00 0.04  0.00 0.00 0.00 

field sparrow1, 3 
Spizella pusilla -5.5  0.00 0.30 0.03  0.00 0.00 0.00 

gray catbird1, 3 
Dumetella carolinensis 0.3  0.27 0.60 0.83  0.03 0.00 0.27 

great crested flycatcher3 
Myiarchus crinitus 0.2  0.03 0.00 0.03  0.03 0.00 0.17 

hairy woodpecker2, 3 
Picoides villosus -0.6  0.00 0.05 0.00  0.07 0.05 0.03 

hooded warbler3 
Setophaga citrina -0.6  0.00 0.00 0.00  0.00 0.00 0.03 

house finch Haemorhous mexicanus 5.2  0.00 0.00 0.03  0.00 0.00 0.00 

house wren1 
Troglodytes aedon -0.9  0.04 0.00 0.03  0.00 0.00 0.00 

indigo bunting1, 3 
Passerina cyanea -0.2  0.38 0.15 0.14  0.00 0.00 0.00 

mourning dove Zenaida macroura 0.3  0.07 0.00 0.04  0.00 0.00 0.00 

northern cardinal1 
Cardinalis cardinalis 1.5  0.03 0.20 0.00  0.00 0.00 0.03 

northern flicker3 
Colaptes auratus -3.4  0.00 0.00 0.04  0.00 0.00 0.00 

northern parula3 
Setophaga americana 1.0  0.00 0.00 0.03  0.00 0.00 0.00 

northern rough-winged swallow Stelgidopteryx serripennis 0.2  0.10 0.00 0.00  0.00 0.00 0.00 
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northern waterthrush3 
Parkesia noveboracensis -1.0  0.00 0.00 0.00  0.03 0.00 0.47 

ovenbird3 
Seiurus aurocapilla -0.7  0.00 0.05 0.00  0.37 0.20 0.20 

pine warbler Setophaga pinus 2.1  0.37 0.00 0.00  0.03 0.30 0.10 

prairie warbler1, 2, 3 
Setophaga discolor -4.1  0.55 0.50 0.03  0.00 0.00 0.00 

red-bellied woodpecker Melanerpes carolinus 2.4  0.00 0.00 0.11  0.00 0.05 0.00 

red-breasted nuthatch3 
Sitta canadensis 1.1  0.07 0.00 0.00  0.00 0.00 0.00 

red-eyed vireo Vireo olivaceus -0.6  0.13 0.10 0.07  0.43 0.15 0.03 

red-winged blackbird Agelaius phoeniceus -2.0  0.00 0.20 0.10  0.00 0.00 0.00 

ruby-throated hummingbird1 
Archilochus colubris 2.2  0.03 0.00 0.21  0.03 0.00 0.07 

scarlet tanager2, 3 
Piranga olivacea -1.6  0.00 0.05 0.00  0.20 0.10 0.00 

song sparrow1 
Melospiza melodia -1.4  0.10 0.00 0.07  0.00 0.00 0.00 

tree swallow Tachycineta bicolor -0.2  0.03 0.05 0.14  0.00 0.00 0.00 

tufted titmouse Baeolophus bicolor 3.1  0.10 0.05 0.03  0.07 0.00 0.17 

veery Catharus fuscescens -0.8  0.04 0.00 0.03  0.13 0.20 0.60 
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white-breasted nuthatch Sitta carolinensis 2.6  0.03 0.00 0.00  0.17 0.05 0.00 

white-eyed vireo1 
Vireo griseus -1.3  0.00 0.00 0.13  0.00 0.00 0.00 

willow flycatcher1, 3 
Empidonax traillii 4.1  0.00 0.00 0.04  0.00 0.00 0.00 

winter wren3 
Troglodytes hiemalis -0.3  0.00 0.00 0.00  0.00 0.05 0.00 

wood thrush2, 3 
Hylocichla mustelina -2.8  0.00 0.00 0.03  0.10 0.00 0.00 

yellow warbler1, 3 
Setophaga petechia 0.4  0.03 0.15 0.72  0.00 0.00 0.00 

yellow-billed cuckoo1, 3 
Coccyzus americanus -1.3  0.07 0.00 0.00  0.00 0.00 0.00 

yellow-rumped warbler3 
Setophaga coronata 1.0  0.00 0.00 0.00  0.00 0.05 0.00 

yellow-throated vireo3 
Vireo flavifrons -0.1  0.00 0.00 0.00  0.00 0.05 0.00 

 

1 Young forest species (Schlossberg and King 2007). 

2 High continental or regional priority in southern New England (Dettmers and Rosenberg 2000). 

3 Greatest conservation need in Rhode Island (RIDEM 2005). 
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Table A.2 

Mean ± SE relative abundance (no. of individuals per 50-m radius plot) for bird species observed during 10-minute point count 

surveys at woodcock singing grounds and random forest sites from 27 May – 2 July 2011 – 2013 at Arcadia and Great Swamp 

Wildlife Management Areas, and 2012 – 2013 at Big River Wildlife Management Area, in Kent and Washington Counties, Rhode 

Island, USA. 

  Woodcock singing grounds  Random forest sites 

Common name Arcadia Big River Great Swamp  Arcadia Big River Great Swamp 

American goldfinch1 0.03 ± 0.03 0.15 ± 0.05 0.15 ± 0.15  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

American redstart 0.00 ± 0.00 0.10 ± 0.10 0.10 ± 0.06  0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.03 

American robin 0.20 ± 0.12 0.40 ± 0.00 0.45 ± 0.05  0.03 ± 0.03 0.00 ± 0.00 0.13 ± 0.03 

Baltimore oriole2, 3 0.04 ± 0.04 0.15 ± 0.15 0.10 ± 0.06  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

barn swallow 0.00 ± 0.00 0.20 ± 0.10 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

barred owl3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.03 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 

black-and-white warbler1, 2, 3 0.04 ± 0.04 0.05 ± 0.05 0.10 ± 0.10  0.23 ± 0.07 0.10 ± 0.00 0.37 ± 0.09 
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black-capped chickadee 0.30 ± 0.20 0.10 ± 0.10 0.03 ± 0.03  0.13 ± 0.03 0.30 ± 0.20 0.27 ± 0.12 

black-throated green warbler3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.07 

blue jay 0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.03 

blue-gray gnatcatcher 0.03 ± 0.03 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

blue-winged warbler1, 2, 3 0.07 ± 0.07 0.00 ± 0.00 0.48 ± 0.06  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

broad-winged hawk3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.03 

brown creeper3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.03 ± 0.03 0.05 ± 0.05 0.00 ± 0.00 

brown thrasher1, 3 0.03 ± 0.03 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

brown-headed cowbird 0.03 ± 0.03 0.00 ± 0.00 0.21 ± 0.13  0.03 ± 0.03 0.00 ± 0.00 0.03 ± 0.03 

Canada warbler1, 2, 3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.03 ± 0.03 0.00 ± 0.00 0.33 ± 0.07 

Carolina wren1 0.03 ± 0.03 0.05 ± 0.05 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

cedar waxwing1 1.26 ± 0.43 0.55 ± 0.55 0.93 ± 0.32  0.20 ± 0.06 0.00 ± 0.00 0.07 ± 0.07 

chestnut-sided warbler1, 3 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.07  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

chipping sparrow 0.69 ± 0.05 0.35 ± 0.05 0.04 ± 0.04  0.03 ± 0.03 0.20 ± 0.20 0.00 ± 0.00 
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common grackle 0.18 ± 0.10 0.15 ± 0.05 0.03 ± 0.03  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

common yellowthroat1, 3 0.11 ± 0.06 0.50 ± 0.10 0.75 ± 0.10  0.03 ± 0.03 0.05 ± 0.05 0.10 ± 0.10 

Cooper's hawk 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.03 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 

downy woodpecker 0.03 ± 0.03 0.00 ± 0.00 0.17 ± 0.04  0.03 ± 0.03 0.05 ± 0.05 0.00 ± 0.00 

eastern bluebird 0.00 ± 0.00 0.00 ± 0.00 0.24 ± 0.18  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

eastern kingbird3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.03 

eastern phoebe 0.13 ± 0.07 0.05 ± 0.05 0.03 ± 0.03  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

eastern towhee1, 2, 3 0.41 ± 0.10 0.35 ± 0.05 0.43 ± 0.26  0.03 ± 0.03 0.15 ± 0.05 0.00 ± 0.00 

eastern wood-pewee2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.17 ± 0.03 0.05 ± 0.05 0.00 ± 0.00 

European starling 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.04  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

field sparrow1, 3 0.00 ± 0.00 0.50 ± 0.30 0.07 ± 0.07  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

gray catbird1, 3 0.34 ± 0.12 0.85 ± 0.35 1.70 ± 0.15  0.03 ± 0.03 0.00 ± 0.00 0.27 ± 0.09 

great crested flycatcher3 0.03 ± 0.03 0.00 ± 0.00 0.03 ± 0.03  0.03 ± 0.03 0.00 ± 0.00 0.23 ± 0.12 

hairy woodpecker2, 3 0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00  0.07 ± 0.03 0.05 ± 0.05 0.03 ± 0.03 
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hooded warbler3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.03 

house finch 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.03  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

house wren1 0.04 ± 0.04 0.00 ± 0.00 0.03 ± 0.03  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

indigo bunting1, 3 0.51 ± 0.21 0.15 ± 0.05 0.14 ± 0.04  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

mourning dove 0.11 ± 0.06 0.00 ± 0.00 0.04 ± 0.04  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

northern cardinal1 0.03 ± 0.03 0.30 ± 0.20 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.03 

northern flicker3 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.04  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

northern parula3 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.03  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

northern rough-winged swallow 0.20 ± 0.15 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

northern waterthrush3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.03 ± 0.03 0.00 ± 0.00 0.73 ± 0.09 

ovenbird3 0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00  0.37 ± 0.03 0.30 ± 0.10 0.33 ± 0.12 

pine warbler 0.24 ± 0.09 0.00 ± 0.00 0.00 ± 0.00  0.03 ± 0.03 0.35 ± 0.05 0.10 ± 0.06 

prairie warbler1, 2, 3 0.62 ± 0.06 0.50 ± 0.00 0.03 ± 0.03  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

red-bellied woodpecker 0.00 ± 0.00 0.00 ± 0.00 0.11 ± 0.06  0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00 
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red-breasted nuthatch3 0.07 ± 0.04 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

red-eyed vireo 0.13 ± 0.07 0.10 ± 0.10 0.07 ± 0.04  0.50 ± 0.00 0.20 ± 0.10 0.03 ± 0.03 

red-winged blackbird 0.00 ± 0.00 0.50 ± 0.50 0.13 ± 0.07  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

ruby-throated hummingbird1 0.03 ± 0.03 0.00 ± 0.00 0.24 ± 0.07  0.03 ± 0.03 0.00 ± 0.00 0.07 ± 0.07 

scarlet tanager2, 3 0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00  0.20 ± 0.06 0.10 ± 0.10 0.00 ± 0.00 

song sparrow1 0.14 ± 0.04 0.00 ± 0.00 0.07 ± 0.03  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

tree swallow 0.07 ± 0.07 0.10 ± 0.10 0.24 ± 0.03  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

tufted titmouse 0.17 ± 0.09 0.05 ± 0.05 0.07 ± 0.07  0.07 ± 0.03 0.00 ± 0.00 0.23 ± 0.07 

veery 0.04 ± 0.04 0.00 ± 0.00 0.03 ± 0.03  0.17 ± 0.07 0.25 ± 0.15 0.93 ± 0.13 

white-breasted nuthatch 0.03 ± 0.03 0.00 ± 0.00 0.00 ± 0.00  0.23 ± 0.09 0.05 ± 0.05 0.00 ± 0.00 

white-eyed vireo1 0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.07  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

willow flycatcher1, 3 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.04  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

winter wren3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00 

wood thrush2, 3 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.03  0.13 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 
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yellow warbler1, 3 0.03 ± 0.03 0.15 ± 0.05 0.99 ± 0.12  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

yellow-billed cuckoo1, 3 0.07 ± 0.03 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

yellow-rumped warbler3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00 

yellow-throated vireo3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00  0.00 ± 0.00 0.05 ± 0.05 0.00 ± 0.00 

 

1 Young forest species (Schlossberg and King 2007). 

2 High continental or regional priority in southern New England (Dettmers and Rosenberg 2000). 

3 Greatest conservation need in Rhode Island (RIDEM 2005). 
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